© 'doubtnut

MATHS

BOOKS - SHRI BALAJI MATHS (ENGLISH)

PROBABILITY

Exercise 1 Single Choice Problems

1. The boy comes from a family of two children,

What is the probability that the other child is his
sister ? :
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer: C

D Watch Video Solution

2. If A be any event in sample space then the maximum value of $3 \sqrt{P(A)}+4 \sqrt{P(\bar{A})}$ is :
A. 4
B. 2
C. 5
D. Can not determined

Answer: C

D Watch Video Solution

3. Let A and B be two events, such that
$P(\overline{A \cup B})=\frac{1}{6}, P(A \cap B)=\frac{1}{4}$ and $P(\bar{A})=\frac{1}{4}$
, where \bar{A} stands for complement of event A.

Then events A and B are :
A. equally likely and mutually exclusive
B. equally likely but not independent
C. independent but not equally likely
D. mutually exclusive and independent

Answer: C

D Watch Video Solution
4. Let n ordinary fair dice are rolled once. The probability that at least one of the dice shows an odd number is $\left(\frac{31}{32}\right)$ than ' n ' is equal to :
A. 3
B. 4
C. 5
D. 6

Answer: C
5. Three a's, three b's and three c's are placed randomly in 3×3 matrix. The probability that no row or column contain two identical letters
can be expressed as $\frac{p}{q}$, where p and q are coprime then $(p+q)$ equals to :
A. 151
B. 161
C. 141
D. 131

Watch Video Solution

6. A set contains 3 n members. Let P_{n} be the probability tha S is partitioned into 3 disjoint subsets with n members in each subset such that the three members of S are in different subsets. Then $\lim _{n \rightarrow \infty} P_{n}=$
A. $2 / 7$
B. $1 / 7$
C. $1 / 9$
D. $2 / 9$

Answer: D

D Watch Video Solution

7. Three different numbers are selected at random from the set $A=\{1,2,3, \ldots, 10\}$. The probability that the product of two of the numbers is equal to third, is
A. 39
B. 40
C. 41

D. 42

Answer: C

D Watch Video Solution

8. Poor Dolly's T.V. has only 4 channels, all of them quite boring. Hence it is not surprising that she desires to switch (change) channel after every one minute. Then find the number of ways in which she can change the channels so that she is back to her original channel for the first time after 4 min.
A. 27
B. 12
C. 23
D. 33

Answer: B

D Watch Video Solution

9. Letters of the word TITANIC are arranged to form all possible words. What is the probability
that a word formed starts either with a T or a
vowel ?

> A. $\frac{2}{7}$
> B. $\frac{4}{7}$
> C. $\frac{3}{7}$
> D. $\frac{5}{7}$

Answer: D
(D) Watch Video Solution
10. One mapping is selected at random from all mappings of the set $S=\{1,2,3, \ldots n\}$ into itself. If the probability that the mapping is oneone is $3 / 32$, then the value of n is 2 b .3 c .4 d . none of these
A. 3
B. 4
C. 8
D. 16
11. A 4 digit number is randomly picked from all the 4 digit numbers, then the probability that the product of its digit is divisible by 3 is :

$$
\begin{aligned}
& \text { A. } \frac{107}{125} \\
& \text { B. } \frac{109}{125} \\
& \text { C. } \frac{111}{125}
\end{aligned}
$$

D. None of these
12. To obtain a gold coin, 6 men, all of different
weight, are trying to build a human pyramid as
shown in the figure. Human pyramid is called
"stable" if some one not is the bottom row is
"supported by" each of the two closest people
beneath him and no body can be supported by
anybody of lower weight. Formation of 'stable' pyramid is the only condition to get a gold coin.

What is the probability that they will get gold
coin?

A. $\frac{1}{45}$
B. $\frac{2}{45}$
C. $\frac{4}{45}$
D. $\frac{1}{\lfloor 5}$

Answer: A

D Watch Video Solution

13. From a pack of 52 playing cards, half of the cards are randomly removed without looking at them. From the remaining cards, 3 cards are drawn randomly. The probability that all are king.
A. $\frac{1}{(25)(17)(13)}$
B. $\frac{1}{(25)(15)(13)}$
C. $\frac{1}{(52)(17)(13)}$
D. $\frac{1}{(13)(51)(17)}$

Answer: A

- Watch Video Solution

14. A bag contains 10 white and 3 black balls. Balls are drawn one-by-one without replacement
till all the black balls are drawn. The probability
that the procedure of drawing balls will come to
an end at the seventh draw, is
A. $\frac{15}{286}$
B. $\frac{105}{286}$
C. $\frac{35}{286}$
D. $\frac{7}{286}$

Answer: A

- Watch Video Solution

15. Let S be the set of all function from the set $\{1$,
$2, \ldots, 10\}$ to itself. One function is selected from S, the probability that the selected function is oneone onto is :

$$
\begin{aligned}
& \text { A. } \frac{9!}{10^{9}} \\
& \text { B. } \frac{1}{10} \\
& \text { C. } \frac{100}{10!} \\
& \text { D. } \frac{9!}{10^{10}}
\end{aligned}
$$

Answer: A
16. Two friends visit a restaurant randomly during 5 pm to 6 pm . Among the two, whoever comes first waits for 15 min and then leaves. The probability that they meet is :
A. $\frac{1}{4}$
B. $\frac{1}{16}$
C. $\frac{7}{16}$
D. $\frac{9}{16}$

Answer: C

17. Three numbers are randomly selected from the set $\{10,11,12, \ldots, 100\}$. Probability that they
form a Geometric progression with integral
common ratio greater than 1 is :

$$
\begin{aligned}
& \text { A. } \frac{15}{{ }_{91} C_{3}} \\
& \text { B. } \frac{16}{{ }^{91} C_{3}} \\
& \text { C. } \frac{17}{{ }^{91} C_{3}} \\
& \text { D. } \frac{18}{{ }^{91} C_{3}}
\end{aligned}
$$

Answer: D

(Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are

 Correct1. A consignment of 15 record players contain 4 defectives. The record players are selected at random, one by one and examined. The one examined is not put back. Then : Find the Probability that $9^{t h}$ one examined is the last defective is $\frac{8}{195}$.

- Watch Video Solution

2. If $A_{1}, A_{2}, A_{3}, \ldots \ldots . A_{1006}$ be independent events
such
that
$P(A)=\frac{1}{2 i}(i=1,2,3, \ldots .1006)$
and
probability that none of the events occur be
$\frac{\alpha!}{2^{\alpha}(\beta!)^{2}}$. then
A. β is of form $4 k+2, k \in I$
B. $\alpha=2 \beta$
C. β is a composite number
D. α is of form $4 k, k \in I$

Answer: A::B::C::D

- Watch Video Solution

3. A bag contains four tickets marked with numbers $112,121,211$, and 222 . One ticket is drawn at random from the bag. Let $E_{i}(i=1,2,3)$ denote the event that $i t h$ digit on the ticket is 2 . Then
A. E_{1} and E_{2} are independent
B. E_{2} and E_{3} are independent
C. E_{3} and E_{1} are independent
D. E_{1}, E_{2}, E_{3} are independent

Answer: A::B::C

D Watch Video Solution

4. For two events A and B let, $P(A)=\frac{3}{5}, P(B)=\frac{2}{3}$, then which of the following is/are correct ?
A. $P(a \cap \bar{B}) \leq \frac{1}{3}$
B. $P(A \cup B) \geq \frac{2}{3}$
C. $\frac{4}{15} \leq P(A \cap B) \leq \frac{3}{5}$
D. $\frac{1}{10} \leq P(\bar{A} / B) \leq \frac{3}{5}$

Answer: A::B::C::D

(D) Watch Video Solution

Exercise 3 Comprehension Type Problems

1. There are four boxes B_{1}, B_{2}, B_{3} and B_{4}. Box
B_{i} has i cards and on each card a number is printed, the numbers are from 1 to i. A box is
selected randomly, the probability of selecting
box B_{i} is $\frac{i}{10}$ and then a card is drawn.
Let E_{i} respresent the event that a card with number ' i ' is drawn, Then :
Q. $P\left(E_{1}\right)$ is Equal to :
A. $\frac{1}{5}$
B. $\frac{1}{10}$
C. $\frac{2}{5}$
D. $\frac{1}{4}$

Answer: C
2. There are four boxes B_{1}, B_{2}, B_{3} and B_{4}. Box
B_{i} has i cards and on each card a number is printed, the numbers are from 1 to i. A box is
selected randomly, the probability of selecting
box B_{i} is $\frac{i}{10}$ and then a card is drawn.
Let E_{i} respresent the event that a card with number ' i ' is drawn, Then :
Q. $P\left(E_{1}\right)$ is Equal to :
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

D Watch Video Solution

3. Mr. A randomly picks 3 distinct numbers from
the set $\{1,2,3,4,5,6,7,8,9\}$ and arranges them
in descending order to form a three digit number. Mr. B randomly picks 3 distinct numbers
from the set $\{1,2,3,4,5,6,7,8\}$ and also arranges them in descending order to form a 3
digit number.
Q. The probability that A and B has the same 3 digit number is :
A. $\frac{37}{56}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer: A
(D) Watch Video Solution
4. Mr. A randomly picks 3 distinct numbers from the set $\{1,2,3,4,5,6,7,8,9\}$ and arranges them in descending order to form a three digit number. Mr. B randomly picks 3 distinct numbers
from the set $\{1,2,3,4,5,6,7,8\}$ and also arranges them in descending order to form a 3 digit number.
Q. The probability that A and B has the same 3 digit number is :
A. $\frac{7}{9}$
B. $\frac{4}{9}$
C. $\frac{1}{84}$
D. $\frac{1}{72}$

Answer: C

D Watch Video Solution

5. Mr. A randomly picks 3 distinct numbers from the set $\{1,2,3,4,5,6,7,8,9\}$ and arranges them in descending order to form a three digit number. Mr. B randomly picks 3 distinct numbers
from the set $\{1,2,3,4,5,6,7,8\}$ and also arranges them in descending order to form a 3
digit number.
Q. The probability that A and B has the same 3 digit number is :
A. $\frac{37}{56}$
B. $\frac{39}{56}$
C. $\frac{31}{56}$
D. none of these

Answer: A
6. In an experiment a coin is tossed 10 times.
Q. Probability that no two heads are consecutive
is :

$$
\begin{aligned}
& \text { A. } \frac{143}{2^{10}} \\
& \text { B. } \frac{9}{2^{6}} \\
& \text { C. } \frac{2^{7}-1}{2^{10}} \\
& \text { D. } \frac{2^{6}-1}{2^{6}}
\end{aligned}
$$

Answer: B
7. In an experiment a coin is tossed 10 times.
Q. The probability of the event that "exactly four heads occur and occur alternately" is :

$$
\begin{aligned}
& \text { A. } 1-\frac{4}{2^{10}} \\
& \text { B. } 1-\frac{7}{2^{10}} \\
& \text { C. } \frac{4}{2^{10}} \\
& \text { D. } \frac{5}{2^{10}}
\end{aligned}
$$

Answer: C
8. The rule of an "obstacle course" specifies that at the $n^{\text {th }}$ obstacle a person has to tos a fair 6 sided die n times. If the sum of points in these n tosses is bigger than 2^{n}, the person is said to have crossed the obstacle.
Q. The probability that a person crosses the first three obstacles :
A. 4
B. 5
C. 6
D. 7

Answer: A

D Watch Video Solution

9. The rule of an "obstacle course" specifies that at the $n^{\text {th }}$ obstacle a person has to tos a fair 6 sided die n times. If the sum of points in these n tosses is bigger than 2^{n}, the person is said to have crossed the obstacle.
Q. The probability that a person crosses the first three obstacles :
A. $\frac{143}{216}$

B. $\frac{100}{243}$
 C. $\frac{216}{243}$
 D. $\frac{100}{216}$

Answer: B

D Watch Video Solution

10. The rule of an "obstacle course" specifies that at the $n^{\text {th }}$ obstacle a person has to tos a fair 6 sided die n times. If the sum of points in these n tosses is bigger than 2^{n}, the person is said to
have crossed the obstacle.
Q. The probability that a person crosses the first two obstacles but fails to cross the third obstacle.

$$
\begin{aligned}
& \text { A. } \frac{36}{243} \\
& \text { B. } \frac{116}{216} \\
& \text { C. } \frac{35}{243} \\
& \text { D. } \frac{143}{243}
\end{aligned}
$$

Answer: C

11. In an objective paper, there are two sections of 10 questions each. For "section 1" , ech question has 5 options and only one option is correct and "sectin 2" has 4 option with multiple answer an marks for a question in this section is awarded only if he ticks all correct answers.

Marks for each question in "section 1 " is 1 and in
"section 2" is 3. (therefore is no negativve marking.)

If a candidate attempts only two questions by guessing, one from "section 1" and one from
"section 2", the probability that he score in both questions is
A. $\frac{74}{75}$
B. $\frac{1}{25}$
C. $\frac{1}{15}$
D. $\frac{1}{75}$

Answer: D

D Watch Video Solution
12. In an objective paper, there are two sections of 10 questions each. For "section 1" , ech question has 5 options and only one option is correct and "sectin 2" has 4 option with multiple answer an marks for a question in this section is awarded only if he ticks all correct answers.

Marks for each question in "section 1 " is 1 and in
"section 2" is 3. (therefore is no negativve marking.)

If a candidate attempts only two questions by guessing, one from "section 1" and one from
"section 2", the probability that he score in both questions is

$$
\begin{aligned}
& \text { A. } \frac{1}{15}\left(\frac{1}{15}\right)^{2} \\
& \text { B. } \frac{4}{5}\left(\frac{1}{15}\right)^{3} \\
& \text { C. } \frac{1}{5}\left(\frac{14}{15}\right)^{3}
\end{aligned}
$$

D. none of these

Answer: D

D Watch Video Solution

1. A is a set containing n elements, A subset P
(may be void also) is selected at random from
set A and the set A is then reconstructed by
replacing the elements of P. A subset Q (may be
void also) of A is again chosen at random. The

probability that

	Column-I		
(A)	Number of elements in P is equal to the number of elements in Q is	(P)	 (B) The number of elements in P is more than that in Q is 4^{n}
(C) $P \cap Q=\phi$ is	(Q)	$\frac{\left(2^{2 n}-{ }^{2 n} C_{n}\right)}{2^{2 n+1}}$	
(D) Q is a subset of P is	(R)	$\frac{{ }^{2 n} C_{n+1}}{4^{n}}$	
		(S)	$\left(\frac{3}{4}\right)^{n}$

- Watch Video Solution

1. Mr. A writes an article. The article originally is
error free. Each day Mr. B introduces one new
error into the article. At the end of the day, Mr. A
checks the article and has $\frac{2}{3}$ chance of catching each individual error still in the article. After 3 days, the probability that the article is error free can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Let $\lambda=q-p$, then find the sum of the digits of λ.
2. India and Australia play a series of 7 one-day matches. Each team has equal probability of winning a match. No match ends in a draw. If the probability that India wins atleast three consecutive matches can be expressed as $\frac{p}{q}$
where p and q are relatively prime positive integers. Find the unit digit of p.

D Watch Video Solution

3. If $a, b, c \in N$, the probability that $a^{2}+b^{2}+c^{2}$ is divisible by 7 is $\frac{m}{n}$ where m, n
are relatively prime natural numbers, then $m+n$ is equal to :

D Watch Video Solution

4. A fair coin is tossed 10 times. If the probability that heads never occur on consecutive tosses be $\frac{m}{n}$ (where m, n are coprime and m
then the value of $(n-7 m)$ equals to:

D Watch Video Solution

5. A bag contains 2 red, 3 green and 4 black balls.

3 balls are drawn randomly and exactly 2 of them are found to be red. If p denotes the chance that one of the three balls drawn is green, find the value of 7 p .

D Watch Video Solution

6. There are 3 different pairs (i.e. 6units say
$a, a, b, b, c, c)$ of shoes in a lot. Now three person come \& pick the shoes randomly (each gets 2 units). Let p be the probability that no
one is able to wear shoes (i.e. no one gets a correct pain), then $\frac{13 p}{4-p}$ is

D Watch Video Solution

7. A fair coin is tossed 12 times. If the probability
that two heads to not occur consecutively is p,
then the value of $\frac{[\sqrt{4096 p}-1]}{2}$ is, where [] denotes greatest integer function :

D Watch Video Solution

8. The probabilities of solving a problem correctly by A and B are $\frac{1}{8}$ and $\frac{1}{12}$ respectively.

Given that they obtain the same answer after solving a problem and the probability of a common mistake by them is $\frac{1}{1001}$, then probability that their solution is correct is (Assuming that if they commit different mistake, then their answers will differ)

Watch Video Solution

9. Seven digit numbers are formed using digits 1 ,
$2,3,4,5,6,7,8,9$ without repetition. The probability of selecting a number such that product of any 5 consecutive digits is divisible by either 5 or 7 is P. Then $12 P$ is equal to

D Watch Video Solution

10. Assume that for every person the probability
that he has exactly one child, exactly 2 children
and exactly 3 children are $\frac{1}{4}, \frac{1}{2}$ and $\frac{1}{4}$ respectively. The probability that a person will
have 4 grand children can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the value of $5 p-q$.

D Watch Video Solution

11. Mr. B has two fair 6 -sided dice, one whose
faces are numbered 1 to 6 and the second whose
faces are numbered 3 to 8 . Twice, he randomly picks one of dice (each dice equally likely) and rolls it. Given the sum of the resulting two rolls is 9 , The probability he rolled same dice twice is

m where m and n are relatively prime positive n

 integers. Then the value of $(m+n)$ is- Watch Video Solution

