

MATHS

BOOKS - SHRI BALAJI MATHS (ENGLISH)

SOLUTION OF TRIANGLES

Exercise 1 Single Choice Problems

1. In a ΔABC if $9(a^2+b^2)=17c^2$ then the value of the $rac{\cot A+\cot B}{\cot C}$

is

A.
$$\frac{13}{4}$$

B. $\frac{7}{4}$
C. $\frac{5}{4}$
D. $\frac{9}{4}$

Answer: D

2. Let H be the orthocentre of triangle ABC. Then angle subtended by side

BC at the centre of incircle of ΔCHB is

A.
$$\frac{A}{2} + \frac{\pi}{2}$$

B.
$$\frac{B+C}{2} + \frac{\pi}{2}$$

C.
$$\frac{B-C}{2} + \frac{\pi}{2}$$

D.
$$\frac{B+C}{2} + \frac{\pi}{4}$$

Answer: B

Watch Video Solution

3. Circum radius of a ΔABC is 3 units, let O be the circum and H be the

orthocentre then the value of
$$rac{1}{64}ig(AH^2+BC^2ig)ig(BH^2+AC^2ig)ig(CH^2+AB^2ig)$$
 equals :

A. 3^4

B. 9^{3}

 $\mathsf{C.}\,27^6$

 $\mathsf{D.}\,81^4$

Answer: B

Watch Video Solution

4. The angles A, B and C of a triangle ABC are in arithmetic progression. If

 $2b^2=3c^2$ then the angle A is :

A. $15^{\,\circ}$

B. 60°

C. 75°

D. $90^{\,\circ}$

Answer: C

5. In a triangle ABC if tan. $\frac{A}{2}$ tan. $\frac{B}{2} = \frac{1}{3}$ and ab = 4, then the value of c can be A. 1 B. 2 C. 4 D. 6 Answer: B Watch Video Solution

A.
$$\frac{rs}{R}$$

B.
$$\frac{r}{sR}$$

C. $\frac{R}{rs}$
D. $\frac{Rs}{r}$

Answer: A

7. The set of all real numbers
$$a$$
 such that
 $a^2 + 2a, 2a + 3, anda^2 + 3a + 8$ are the sides of a triangle is_____
A. $(0, \infty)$
B. $(5, 8)$
C. $\left(-\frac{11}{3}, \infty\right)$
D. $(5, \infty)$

Answer: D

8. In triangle ABC, $\angle B = \frac{\pi}{3}$, $and \angle C = \frac{\pi}{4}$. Let D divided BC internally in the ratio 1:3. Then $\frac{\sin \angle BAD}{\sin \angle CAD}$ equals (a) $\frac{1}{\sqrt{6}}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{\frac{2}{3}}$

Answer: A

Watch Video Solution

9. Let AD, BE, CF be the lengths of internal bisectors of angles A, B, C respectively of triangle ABC. Then the harmonic mean of $AD \sec \frac{A}{2}$, $BE \sec \frac{B}{2}$, $CF \sec \frac{C}{2}$ is equal to :

A. Harmonic mean of sides of ΔABC

B. Geometric mean of sides of ΔABC

C. Arithmetic mean of sides of ΔABC

D. Sum of reciprocals of the sides of ΔABC

Answer: A

Watch Video Solution

10. In $\triangle ABC$, if 2b = a + c and $A - C = 90^{\circ}$, then sin B equal

All symbols used have usual meaning in ΔABC .]

Answer: C

11. In a triangle ABC, if $2a\cos\left(rac{B-C}{2}
ight)=b+c$, then secA is equal to :

A.
$$\frac{2}{\sqrt{3}}$$

B. $\sqrt{2}$

D. 3

Answer: C

Watch Video Solution

12. In a triangle ABC if BC = 1 and AC = 2, then what is the maximum possible value of angle A?

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$

Answer: A

Watch Video Solution

13. $\Delta I_1 I_2 I_3$ is an excentral triangle of an equilateral triangle ΔABC such that $I_1 I_2 = 4$ unit, if ΔDEF is pedal triangle of ΔABC , then $\frac{Ar(\Delta I_1 I_2 I_3)}{Ar(\Delta DEF)} =$

A. 16

B. 4

C. 2

D. 1

Answer: A

14. Let ABC be a triangle with $\angle BAC = 2\pi/3$ and AB = x such that (AB) (AC) = 1. If x varies, then find the longest possible length of the angle bisector AD

A.
$$\frac{1}{3}$$

B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{\sqrt{2}}{3}$

Answer: B

15. In an equilateral ΔABC , (where symbols used have usual meanings),

then r, R and r_1 form :

A. an A.P.

B. a G.P.

C. an H.P.

D. none of these

Answer: A

Watch Video Solution

16. If in a triangle ABC,
$$\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$$
, then

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

17. In $\triangle ABC$, $\tan A = 2$, $\tan B = \frac{3}{2}$ and $c = \sqrt{65}$, then circumradius of the triangle is : (a) 65 (b) $\frac{65}{7}$ (c) $\frac{65}{14}$ (d) none of these

A. 65

B. $\frac{65}{7}$ C. $\frac{65}{14}$

D. none of these

Answer: C

72

18. In a triangle ABC, if the sides a,b,c, are roots of
$$x^3 - 11x^2 + 38x - 40 = 0$$
, then find the value of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$
A. $\frac{61}{144}$
B. $\frac{61}{144}$

C.
$$\frac{169}{144}$$

D. $\frac{59}{144}$

Answer: A

19. In
$$\triangle ABC$$
, if $\angle C = 90^{\circ}$, then $\frac{a+c}{b} + \frac{b+c}{a}$ is equal to:
A. $\frac{c}{r}$
B. $\frac{1}{2Rr}$
C. 2
D. $\frac{R}{r}$

Answer: A

20. In a ΔABC , if $a^2 \sin B = b^2 + c^2$, then :

A. $\angle A$ is obtuse

B. $\angle A$ is acute

C. $\angle B$ is abtuse

D. $\angle A$ is right angle

Answer: A

Watch Video Solution

21. If R and R' are the circumradii of triangles ABC and OBC, where O is the

orthocenter of triangle ABC, then :

A. $R' = rac{R}{2}$ B. R' = 2RC. R' = R

 $\mathsf{D}.R' = 3R$

Answer: C

Answer: C

23. In a ΔABC right angled at A, a line is drawn through A to meet BC at

D dividing BC in 2:1. If $tan(\angle ADC) = 3$ then $\angle BAD$ is : (a) 30° (b) 45°

(c) 60° (d) 75° A. 30°

B. $45^{\,\circ}$

 $\mathsf{C.}\,60^\circ$

D. $75^{\,\circ}$

Answer: B

D Watch Video Solution

24. A circle is cirumscribed in an equilateral triangle of side 'l'. The area of any square inscribed in the circle is :

A.
$$\frac{4}{3}l^2$$

B. $\frac{2}{3}l^2$
C. $\frac{1}{3}l^2$
D. l^2

Answer: B

25. if the sides of a triangle are in the ratio $2:\sqrt{6}:\sqrt{3}+1$, then the largest angle of the trangle will be (1) 60 (3) 72 (2) 75 (4) 90

A. 60°

- B. 72°
- C. 75°

D. 90°

Answer: C

26. In a triangle ABC if a, b, c are in A.P. and $C-A=120^{\,\circ}$, then $rac{s}{r}=$

(where notations have their usual meaning)

A. $\sqrt{15}$

B. $2\sqrt{15}$

C. $3\sqrt{15}$

D. $6\sqrt{15}$

Answer: C

Watch Video Solution

27. If in $\triangle ABC, a = 5, b = 4 ext{ and } \cos(A - B) = rac{31}{32}$, then side c is

A. $\sqrt{6}$

B. $6\sqrt{6}$

C. 6

D. $(216)^{1/4}$

Answer: C

28. If semiperimeter of a triangle is 15, then the value of $(b+c)\cos(B+C) + (c+a)\cos(C+A) + (a+b)\cos(A+B)$ is equal to :

(where symbols used have usual meanings)

A. -60

B. -15

C. -30

D. can not be determined

Answer: C

29. Let triangle ABC be an isosceles with AB=AC. Suppose that the angle bisector of its angle B meets the side AC at a point D and that BC = BD + AD. Measure of the angle A in degrees, is :

|--|

B. 100

C. 110

D. 130

Answer: B

Watch Video Solution

30. In triangle ABC if A:B:C=1:2:4, then $\left(a^2-b^2
ight)\left(b^2-c^2
ight)\left(c^2-a^2
ight)=\lambda a^2b^2c^2,$ where $\lambda=$

(where notations have their usual meaning)

A. 1

B. 2

C. 4

D. 9

Answer: A

31.	In	а	triangle	ABC	with	altitude	AD,	
$igta BAC = 45^\circ, DB = 3 { m and} CD = 2$. The area of the triangle ABC is :								
A.	6							
B.	15							
C.	15/4							
D.	12							
Answer: B								

32. A triangle has base 10 cm long and the base angles of 50° and 70° . If

the perimeter of the triangle is $x+y{\cos z^\circ}$ where $z\in(0,90)$ then the

value of a	x + y + y	z equals :
------------	-----------	------------

A. 40

Β.

C.

D.

Answer:

Watch Video Solution

33. Let H be the orthocentre of triangle ABC. Then angle subtended by side BC at the centre of incircle of ΔCHB is

$$\begin{array}{l} \mathsf{A}.\,\frac{A}{2}+\frac{\pi}{2}\\\\ \mathsf{B}.\,\frac{B+C}{2}+\frac{\pi}{2}\\\\ \mathsf{C}.\,\frac{B-C}{2}+\frac{\pi}{2}\\\\ \mathsf{D}.\,\frac{B+C}{2}+\frac{\pi}{4} \end{array}$$

Answer: B

34. Triangel ABC is right angles at A. The points P and Q are on hypotenuse BC such that BP = PQ = QC. If AP = 3 and AQ = 4, then length BC is equal to

A. $\sqrt{27}$

- B. $\sqrt{36}$
- $\mathsf{C.}\,\sqrt{45}$

D. $\sqrt{54}$

Answer: C

35. In a ΔABC , if b =(sqrt3-1) a and angle C=30^(@),`then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

A. $15^{\,\circ}$

B. 45°

C. 75°

D. $105^{\,\circ}$

Answer: D

36. Through the centroid of an equilateral triangle, a line parallel to the base is drawn. On this line, an arbitrary point P is taken inside the triangle. Let h denote the perpendicular distance of P from the base of the triangle. Let h_1 and h_2 be the perpendicular distance of P from the other two sides of the triangle. Then :

A.
$$h = rac{h_1 + h_2}{2}$$

B. $h = \sqrt{h_1 h_2}$
C. $h = rac{2h_1 h_2}{h_1 + h_2}$
D. $h = rac{(h_1 + h_2)\sqrt{3}}{4}$

Answer: A

37. The angles A, B and C of a triangle ABC are in arithmetic progression.

AB=6 and BC=7. Then AC is :

A. $\sqrt{41}$

B. $\sqrt{39}$

C. $\sqrt{42}$

D. $\sqrt{43}$

Answer: D

38. In $\triangle ABC$, if $A - B = 120^{\circ}$ and R = 8r, then the value of $\frac{1 + \cos C}{1 - \cos C}$ equals:

(All symbols used hav their usual meaning in a triangle)

A. 12

B. 15

C. 21

D. 31

Answer: B

39. The lengths of the sides CB and CA of a triangle ABC are given by a and b and the angle C is $\frac{2\pi}{3}$. The line CD bisects the angle C and

meets AB at D. Then the length of CD is : (a) $\frac{1}{a+b}$ (b) $\frac{a^2+b^2}{a+b}$ (c)

$$\frac{ab}{2(a+b)} \text{ (d) } \frac{ab}{a+b}$$
A. $\frac{1}{a+b}$
B. $\frac{a^2+b^2}{a+b}$
C. $\frac{ab}{2(a+b)}$
D. $\frac{ab}{a+b}$

Answer: D

Watch Video Solution

40. In $\triangle ABC$, angle A is $120^{\circ}, BC + CA = 20$, and AB + BC = 21

Find the length of the side BC

A. 13

B. 15

C. 17

Answer: A

41. A triangle has sides 6,7, and 8. The line through its incenter parallel to the shortest side is drawn to meet the other two sides at P and Q. Then find the length of the segment PQ.

A.
$$\frac{12}{5}$$

B. $\frac{15}{4}$
C. $\frac{30}{7}$
D. $\frac{33}{9}$

Answer: C

42. The perimeter of a ΔABC is 48cm and one side is 20cm. Then remaining sides of ΔABC must be greater than : (a) 8cm (b) 9cm (c) 12cm (d) 4cm

A. 8 cm

B. 9 cm

C. 12 cm

D. 4 cm

Answer: D

Watch Video Solution

43.

In an equilateral ΔABC , (where symbols used have usual meanings),

then r, R and r_1 form :

i) an A.P.

ii)a G.P.

iii) an H.P.

iv) neither an A.P., G.P. nor H.P.

A. an A.P.

B. a G.P.

C. an H.P.

D. neither an A.P., G.P. nor H.P.

Answer: A

Watch Video Solution

44. Prove that
$$rac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}=\sin^2$$

A. $\cos^2 A$

 $\mathsf{B}.\sin^2 A$

 $\mathsf{C}.\cos A\cos B\cos C$

 $\mathsf{D}.\sin A \sin B \sin C$

Answer: B

45. Circumradius of an isosceles ΔABC with $\angle A = \angle B$ is 4 times its in radius, then cosA is root of the equation :

A.
$$x^2 - x - 8 = 0$$

B. $8x^2 - 8x + 1 = 0$
C. $x^2 - x - 4 = 0$
D. $4x^2 - 4x + 1 = 0$

Answer: B

46. A is the orthocentre of ΔABC and D is reflection point of A w.r.t.

perpendicualr bisector of BC, then orthocenter of ΔDBC is :

A. D		
B. C		
С. В		
D. A		

Answer: A

Watch Video Solution

47. Let a, b, c be positive and not all equal. Show that the value of the

determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is negative.

A. ≥ 0

- $\mathsf{B.} > 0$
- $\mathsf{C.}~\leq~-1$

D. < 0

Answer: D

49. In any triangle, the minimum value of $r_1r_2r_3/r^3$ is equal to

B. 3 C. 8

A. 1

D. 27

Answer: D

Watch Video Solution

50. In a triangle ABC, side BC = 3, AC = 4 and AB = 5. The value of

 $\sin A + \sin 2B + \sin 3C$ is equal to :

A.
$$\frac{24}{25}$$

B. $\frac{14}{25}$
C. $\frac{64}{25}$

D. None

Answer: B

51. In any triangle ABC, the value of $\frac{r_1 + r_2}{1 + \cos C}$ is equal to (where notation have their usual meaning) :

A. 2R

B. 2r

C. R

D.
$$rac{2R^2}{r}$$

Answer: A

52. In a triangle ABC, medians AD and BE are deawn. IF $AD = 4, \angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of the triangle

ABC is-

A.
$$\frac{8}{3\sqrt{3}}$$

B.
$$\frac{16}{3\sqrt{3}}$$

C.
$$\frac{32}{3\sqrt{3}}$$

D.
$$\frac{64}{3\sqrt{3}}$$

Answer: C

53. The sides of a triangle are $\sin \alpha$, $\cos \alpha$, $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$ then the greatest angle of the triangle is :

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{2}$
C. $\frac{2\pi}{3}$

D.
$$\frac{5\pi}{6}$$

Answer: C

Watch Video Solution

54. Let ABC be a right with $\angle BAC = rac{\pi}{2}$, then $\left(rac{r^2}{2R^2} + rac{r}{R}
ight)$ is equal to :

(where symbols used have usual meaning in a striangle)

A. sinB sinC

B. tanB tanC

C. secB secC

D. cotB cotC

Answer: A

55. Find the radius of the circle escribed to the triangle ABC (Shown in the

 $\angle NAB = 30^{\circ}, \angle BAC = 30^{\circ}, AB = AC = 5.$

Answer: A

56. In a ΔABC , with usual notations, if b>c then distance between foot of median and foot of altitude both drawn from vertex A on BC is :

A.
$$\frac{a^2 - b^2}{2c}$$

B. $\frac{b^2 - c^2}{2a}$
C. $\frac{b^2 + c^2 - a^2}{2a}$
D. $\frac{b^2 + c^2 - a^2}{2c}$

Answer: B

A.
$$\frac{rs}{R}$$

B. $\frac{r}{sR}$
C. $\frac{R}{rs}$
D. $\frac{Rs}{r}$

Answer: A

Watch Video Solution

58. A circle of area 20 sq. units is centered at the point O. Suppose ΔABC is inscribed in that circle and has area 8 sq. units. The central angles α, β and γ are as shown in the figure. The value of $(\sin \alpha + \sin \beta + \sin \gamma)$ is equal to

A. $\frac{4\pi}{5}$ B. $\frac{3\pi}{4}$ C. $\frac{2\pi}{5}$

D.
$$\frac{\pi}{4}$$

Answer: A

Exercise 2 One Or More Than One Answer Is Are Correct

1. If r_1, r_2, r_3 are radii of the escribed circles of a triangle ABC and r it the radius of its incircle, then the root(s) of the equation $x^2 - r(r_1r_2 + r_2r_3 + r_3r_1)x + (r_1r_2r_3 - 1) = 0$ is/are :

A. r_1

 $\mathsf{B.}\,r_2+r_3$

C. 1

D. $r_1 r_2 r_3 - 1$

Answer: C::D

2. In
$$\triangle ABC, \angle A = 60^{\circ}, \angle B = 90^{\circ}, \angle C = 30^{\circ}$$
. Let H be its

orthocentre, then :

(where symbols used have usual meanings)

A. AH = c

 $\mathsf{B.}\, CH=a$

 $\mathsf{C}.\,AH=a$

 $\mathsf{D}.\,BH=0$

Answer: A::B::D

Watch Video Solution

3. In an equilateral triangle, if inradius is a rational number then

A. circumradius is always rational

B. exradii are always rational

C. area is always ir-rational

D. perimeter is always rational

Answer: A::B::C

4. Let A, B, C be angles of a triangle ABC and let
$$D = \frac{5\pi + A}{32}, E = \frac{5\pi + B}{32}, F = \frac{5\pi + C}{32}$$
, then :
(where $D, E, F \neq \frac{n\pi}{2}, n \in I$, I denote set of integers)
A. $\cot D \cot E + \cot E \cot F + \cot D \cot F = 1$

 $\mathsf{B.}\cot D + \cot E + \cot F = \cot D \cot E \cot F$

 $\mathsf{C}.\tan D\tan E + \tan E\tan F + \tan F\tan D = 1$

 $\mathsf{D}. an D + an E + an F = an D an E an F$

Answer: B::C

5. In a triangle ABC, if a=4, b=8 and $\angle C=60^{\,\circ}$, then :

(where symbols used have usual meanings)

A.
$$c=6$$

B. $c=4\sqrt{3}$
C. $\angle A=30^{\circ}$
D. $\angle B=90^{\circ}$

Answer: B::C::D

6. If in a triangle
$$rac{r}{r_1}=rac{r_2}{r_3}$$
, then
A. $a^2+b^2+c^2=8R^2$
B. $\sin^2 A+\sin^2 B+\sin^2 C=2$
C. $a^2+b^2=c^2$

$$\mathsf{D}.\,\Delta=s(s+c)$$

Answer: A::B::C

7. ABC is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the triangle, then :

A.
$$\angle BOC = A$$

B. $\angle BIC = \frac{\pi}{2} + \frac{A}{2}$
C. $\angle BHC = \pi - A$
D. $\angle BHC = \pi - \frac{A}{2}$

Answer: B::C

8. In a triangle ABC, tanA and tanB satisfy the inequality $\sqrt{3}x^2 - 4x + \sqrt{3} < 0$, then which of the following must be correct ? (where symbols used have usual meanings)

A.
$$a^2 + b^2 - ab < c^2$$

B. $a^2 + b^2 > c^2$
C. $a^2 + b^2 + ab > c^2$
D. $a^2 + b^2 < c^2$

Answer: A::C

Watch Video Solution

9. If in
$$\triangle ABC$$
, $\angle C = \frac{\pi}{8}$, $a = \sqrt{2}$ and $b = \sqrt{2 + \sqrt{2}}$ then find the measure of angle A (in degree).

A. $45^{\,\circ}$

B. 135°

C. 30°

D. $150\,^\circ$

Answer: A

Watch Video Solution

10. In triangle ABC, a = 3, b = 4, c = 2. Point D and E trisect the side BC. If $\angle DAE = \theta$, then $\cot^2 \theta$ is divisible by :

A. 2

B. 3

C. 5

D. 7

Answer: B::C

11. In a triangle ABC, 3sinA + 4cosB = 6 and 4sinB + 3cosA = 1. Find the measure of angle C.

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{5\pi}{6}$

Answer: B

12. If the line joining the incentre to the centroid of a triangle ABC is parallel to the side BC. Which of the following are correct ?

A.
$$2b = a + c$$

B. $2a = b + c$
C. $\cot{\frac{A}{2}}\cot{\frac{C}{2}} = 3$

01

D.
$$\cot{rac{B}{2}}\cot{rac{C}{2}}=3$$

Answer: B::D

13. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P, then the length of the third side can be (a) $5 - \sqrt{6}$ (b) $3\sqrt{3}$ (c) 5 (d) $5 + \sqrt{6}$

- A. $5 \sqrt{6}$ B. $5 + \sqrt{6}$
- $\mathsf{C.}\,6-\sqrt{5}$
- $\mathsf{D.}\,6+\sqrt{5}$

Answer: A::B

14. If area of $\Delta ABC(\Delta)$ and angle C are given and if c opposite to given angle is minimum, then

A.
$$a = \sqrt{\frac{2\Delta}{\sin C}}$$

B. $b = \left(\frac{2\Delta}{\sin C}\right)$
C. $a = \frac{4\Delta}{\sin C}$
D. $b = \frac{4\Delta}{\sin^2 C}$

Answer: A::B

Watch Video Solution

15. In a triangle ABC , if $\tan A = 2\sin 2C$ and $3\cos A = 2\sin B\sin C$,

then C=

A.
$$\frac{\pi}{8}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$

D.
$$\frac{\pi}{3}$$

Answer: C::D

Exercise 3 Comprehension Type Problems

1. Internal bisectors of ΔABC meet the circumcircle at point D, E, and F

Area of ΔDEF is

A.
$$2R^2 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)$$

B. $2R^2 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right)$
C. $2R^2 \sin^2\left(\frac{A}{2}\right) \sin^2\left(\frac{B}{2}\right) \sin^2\left(\frac{C}{2}\right)$
D. $2R^2 \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right)$

Answer: D

2. Internal angle bisecotors of ΔABC meets its circum circle at D, E and F

where symbols have usual meaning.

Q. The ratio of area of triangle ABC and triangle DEF is :

A. ≥ 1

- B. ≤ 1
- C. $\geq 1/2$
- D. $\leq 1/2$

Answer: B

Watch Video Solution

3. Let triangle ABC is right triangle right angled at C such that A < Band r = 8, R = 41.

Q. Area of ΔABC is :

B. 1440

C. 360

D. 480

Answer: A

Watch Video Solution

4. Let triangle ABC is right triangle right angled at C such that A < Band r = 8, R = 41. Q. $\tan \frac{A}{2} =$ A. $\frac{1}{18}$ B. $\frac{1}{3}$ C. $\frac{1}{6}$ D. $\frac{1}{9}$

Answer: D

5. Let the incircle of $\triangle ABC$ touches the sides BC, CA, AB at A_1, B_1, C_1 respectively. The incircle of $\triangle A_1B_1C_1$ touches its sides of B_1C_1, C_1A_1 and A_1B_1 at A_2, B_2, C_2 respectively and so on.

Q. $\lim_{n o \infty} \ \angle A_n =$

A. 0

B. $\frac{\pi}{6}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{3}$

Answer: D

6. Let the incircle of ΔABC touches the sides BC, CA, AB at A_1, B_1, C_1

respectively. The incircle of $\Delta A_1 B_1 C_1$ touches its sides of

 B_1C_1, C_1A_1 and A_1B_1 at A_2, B_2, C_2 respectively and so on.

Q. In $\Delta A_4 B_4 C_4$, the value of $\angle A_4$ is:

A.
$$\frac{3\pi + A}{6}$$

B.
$$\frac{3\pi - A}{8}$$

C.
$$\frac{5\pi - A}{16}$$

D.
$$\frac{5\pi + A}{16}$$

Answer: D

Watch Video Solution

7. Let ABC be a given triangle. Points D and E are on sides AB and AC respectively and point F is on line segment DE. Let $\frac{AD}{AB} = x, \frac{AE}{AC} = y, \frac{DF}{DE} = z$. Let area of $\Delta BDF = \Delta_1$, Area of $\Delta CEF = \Delta_2$ and area of $\Delta ABC = \Delta$. Q. $\frac{\Delta_2}{\Delta}$ is equal to :

A. (1-x)y(1-z)

B.
$$(1-x)(1-y)z$$

C. $x(1-y)(1-z)$
D. $(1-x)yz$

Answer: C

8.

a, b, c are the length of sides BC, CA, AB respectively of ΔABC satisfying

$$\log \left(1 + rac{c}{a}
ight) + \log a - \log b = \log 2$$
. a, b, c are in :
i) A.P.

ii) G.P.

iii) H.P.

iv) none

A. A.P.

B. G.P.

C. H.P.

D. None

Answer: A

Watch Video Solution

9. a, b, c are the length of sides BC, CA, AB respectively of ΔABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2$. Also the quadratic equation $a(1-x^2) + 2bx + c(1+x^2) = 0$ has two equal roots.

. Measure of angle C is :

A. $30^{\,\circ}$

B. 45°

C. 60°

D. 90°

Answer: D

10. a, b, c ar the length of sides BC, CA, AB respectively of ΔABC satisfying $\log\left(a + \frac{c}{a}\right) + \log a - \log b = \log 2$. Also the quadratic equation $a(1 - x^2) + 2bx + c(1 + x^2) = 0$ has two equal roots.

Q. The value of $(\sin A + \sin B + \sin C)$ is equal to :

A.
$$\frac{5}{2}$$

B. $\frac{12}{5}$
C. $\frac{8}{3}$

Answer: B

D. 2

11. Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}, l_b = \frac{m_b}{M_b}, l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a, M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q. l_a equals :

A.
$$\frac{\sin A}{\sin\left(B + \frac{A}{2}\right)}$$

B.
$$\frac{\sin B \sin C}{\sin^2\left(\frac{B+C}{2}\right)}$$

C.
$$\frac{\sin B \sin C}{\sin^2\left(B + \frac{A}{2}\right)}$$

D.
$$\frac{\sin B + \sin C}{\sin^2\left(B + \frac{A}{2}\right)}$$

Answer: C

12. Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}, l_b = \frac{m_b}{M_b}, l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a, M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q. The maximum value of the product
$$(l_a l_b l_c) imes \cos^2\left(rac{B-C}{2}
ight) imes rac{\cos^2(C-A)}{2} imes \cos^2\left(rac{A-B}{2}
ight)$$
 is equal to :

A.
$$\frac{1}{8}$$

B. $\frac{1}{64}$
C. $\frac{27}{64}$
D. $\frac{27}{32}$

Answer: C

13. Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}, l_b = \frac{m_b}{M_b}, l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a, M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q. The minimum value of the expression $rac{l_a}{\sin^2 A} + rac{l_b}{\sin^2 B} + rac{l_c}{\sin^2 C}$ is :

A. 2

B. 3

C. 4

D. none of these

Answer: B

Watch Video Solution

Exercise 4 Matching Type Problems

	Column-I	1	Column-ll
(A)	Find the sum of the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's	(P)	7
(B)	The length of the sides of $\triangle ABC$ are a, b and c and A is the angle opposite to side a . If $b^2 + c^2 = a^2 + 54$ and $bc = \frac{a^3}{\cos A}$ then the value of $\left(\frac{b^2 + c^2}{9}\right)$, is	(Q)	学 10 1 社 1
(C)	The equations of perpendicular bisectors of two sides AB and AC of a triangle ABC are $x + y + 1 = 0$ and $x - y + 1 = 0$ respectively. If circumradius of $\triangle ABC$ is 2 units and the locus of vertex A is $x^2 + y^2 + gx + c = 0$, then $(g^2 + c^2)$, is equal to	(R)	13 13 13
(D)	Number of solutions of the equation $\cos \theta \sin \theta + 6(\cos \theta - \sin \theta) + 6 = 0$ in [0, 30], is equal to	(S)	3

Watch Video Solution

2. In ΔABC , If $r_1=21, r_2=24, r_3=28$, then

1. If the median AD of triangle ABC makes an angle $\frac{\pi}{4}$ with the side BC, then find the value of $|\cot B - \cot C|$. **Watch Video Solution**

2. In parallelogram ABCD, the bisector of angle A meets DC at P and AB=

2AD. Prove that:

BP bisects angle B

D Watch Video Solution

3. In a ΔABC , inscribed circle with centre I touches side AB, AC and BC at

D, E, F respectively . Let area of quadrilateral ADIE is 5 units and area of

quadrilteral BFID is 10 units. Find the value of
$$\frac{\cos\left(\frac{C}{2}\right)}{\sin\left(\frac{A-B}{2}\right)}$$
.

4. If Δ be area of incircle of a triangle ABC and Δ_1 , Δ_2 , Δ_3 be the area of excircles then find the least value of $\frac{\Delta_1 \Delta_2 \Delta_3}{729\Delta^3}$ Watch Video Solution 5. In ΔABC , P is an interior point such that $\angle PAB = 10^\circ$, $\angle PBA = 20^\circ$, $\angle PCA = 30^\circ$, $\angle PAC = 40^\circ$ then ΔABC is

6. In an acute angled triangle ABC, $\angle A = 20^{\circ}$, let DEF be the feet of altitudes through A, B, C respectively and H is the orthocentre of $\triangle ABC$. Find $\frac{AH}{AD} + \frac{BH}{BE} + \frac{CH}{CF}$.

7. If the quadratic equation $ax^2 + bx + c = 0$ has equal roots where a, b, c denotes the lengths of the sides opposite to vertex A, B and C of the ΔABC respectively then find the number of integers in the range of $\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}$

Watch Video Solution

8. If in the triangle ABC, $\tan \frac{A}{2}$, $\tan \frac{B}{2}$ and $\tan \frac{C}{2}$ are in harmonic progression then the least value of $\cot^2 \frac{B}{2}$ is equal to :

Watch Video Solution

9. Sides AB and AC in an equilateral triangle ABC with side length 3 is extended to form two rays from point A as shown in the figure. Point P is chosen outside the triangle ABC and between the two rays such that $\angle ABP + \angle BCP = 180^{\circ}$. If the maximum length of CP is M, then $M^2/2$

10.

Let a, b, c be sides of a triangle ABC and Δ denotes its area .

If $a=2, \Delta=\sqrt{3}$ and $a\cos C+\sqrt{3}a\sin C-b-c=0$, then find the value of (b+c).

(symbols used have usual meaning in ΔABC).

11. Circumradius of ΔABC is 3 cm and its area is $6cm^2$. If DEF is the triangle formed by feet of the perpendicular drawn from A,B and C on the sides BC, CA and AB, respectively, then the perimeter of ΔDEF (in cm) is