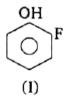


India's Number 1 Education App


CHEMISTRY

BOOKS - VK JAISWAL ENGLISH

CHEMICAL BONDING (BASIC)

Level 1

1. The correct order of boiling point is:

A.
$$I > II > III$$

B.
$$III > II > I$$

$$\mathsf{C}.\,II > I > III$$

D.
$$III > I > II$$

Answer: B

Watch Video Solution

- **2.** Which of the following is not true about H_2O molecule?
 - A. The molecule has $\mu=0$
 - B. The molecule can act as a base
 - C. Shows abnormally high boiling point in comparison to the hydrides
 - of other elements of oxygen group
 - D. The molecule has a bent shape

Answer: A

3. The boiling points at atmospheric pressure of $HF,\,H_2S,\,NH_3$ can be arranged in the following order :

A.
$$HF>NH_3>H_2S$$

B.
$$HF>H_2S>NH_3$$

$$\mathsf{C.}\,HF < H_2S < NH_3$$

D.
$$HF < NH_3 < H_2S$$

Answer: A

- **4.** The correct order of strength of $H-\,$ bond in the following compound .
 - A. $H_2O>H_2O_2>HF>H_2S$
 - B. $HF > H_2O_2 > H_2O > H_2S$
 - C. $HF>H_2O>H_2S>H_2O_2$

D.
$$HF>H_2O>H_2O_2>H_2S$$

Answer: D

Watch Video Solution

- **5.** Which compound has electrovalent, covalent, co-ordinate as well as hydrogen bond ?
 - A. $\left[Cu(H_2O)_4\right]SO_4$. H_2O
 - B. $\left[Zn(H_2O)_6\right]SO_4$. H_2O
 - C. $\left[Fe(H_2O)_6\right]SO_4$. H_2O
 - D. $\left[Fe(H_2O)_6\right]Cl_3$

Answer: A

6. Which statement is correct?

A. m.p. of $H_2O,\,NH_3$ are maximum in their respective group due to intermolecular H-Bonding

B. b.p. of CH_4 out of CH_4 , SiH_4 , GeH_4 and SnH_4 is least due to weak intermolecular force of attraction

C. formic acid forms dimer by H-bonding

D. all are correct

Answer: D

Watch Video Solution

- **7.** Which of the following molecules are expected to exhibit intermolecular H-bonding ?
- (I) Acetic acid ((II) o-nitrophenol (III) m-nitrophenol (IV)o-boric acid

Select correct alternate:

A. I, II, III B. I,II,IV C. I,III,IV D. II,III,IV **Answer: C Watch Video Solution** 8. Which of the following compounds can form H-bonding with each other? A. CH_3COOH and H_2O B. Phenol and CH_4 C. CHF_3 and acetone D. PH_{3} and HF Answer: A

- **9.** BF_3 and NF_3 both are covalent compounds but NF_3 is polar whereas BF_3 is non-polar. This is because :
 - A. Nitrogen atom is smaller than boron atom
 - B. N-F bond is more polar than B-F bond
 - C. NF_3 is pyramidal whereas BF_3 is planar triangular
 - D. BF_3 is electron deficient whereas NF_3 is not

Answer: C

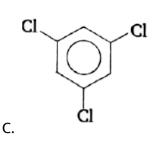
- **10.** Which of the following molecules will have polar bonds but zero dipole moment?
 - A. O_2

 $\mathsf{B.}\,CHCl_3$

 $\mathsf{C}.\,CF_4$

D. none of these

Answer: C



Watch Video Solution

11. Which has maximum dipole moment?

A.

В.

D.

Answer: B

Watch Video Solution

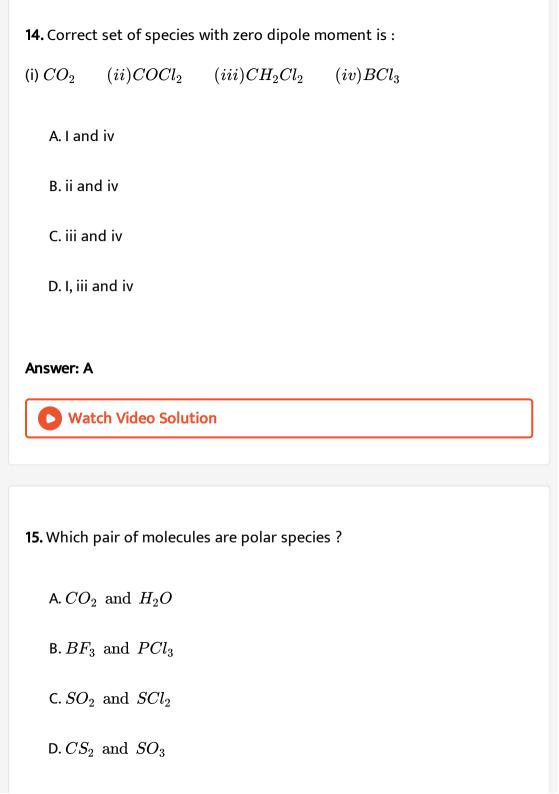
12. Which of the following compound is planar and non-polar?

A. XeO_4

B. SF_4

C.	XeF_4
D.	CF_4

Answer: C


Watch Video Solution

13. H_2O has net dipole moment while BeF_2 has zero dipole moment because

- A. F is more electronegativity than oxygen
- B. Be is more electronegativity than oxygen
- C. H_2O molecule is linear and BeF_2 is bent
- D. BeF_2 molecule is linear and H_2O is bent

Answer: D

Answer: C

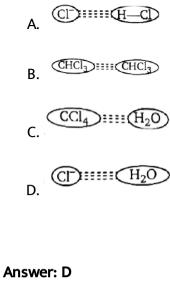
Watch Video Solution

16. In which molecule does the chlorine have the most positive partial charge?

A. HCl

B. BrCl

 $\mathsf{C}.\,Ocl_2$


D. SCl_2

Answer: C

Watch Video Solution

17. Which of the following attraction is strongest?

18. Which is distilled first?

A. Liquid H_2

B. Liquid CO_2

C. Liquid O_2

D. Liquid N_2

Answer: A

watch video Solution

19. The molecular size of Icl and Br_2 is approximately same, but b.p. of Icl is about $40^{\circ}\,C$ higher than that of Br_2 . It is because :

A. Icl bond is stronger than Br-Br bond

B. IE of iodine < IE of bromine

C. Icl is polar while Br_2 is nonpolar

D. I has larger size than Br

Answer: C

Watch Video Solution

20. Which of the following order of molecular force of attraction among given species is incorect ?

A. $HI>HBr>Cl_2$

 $\operatorname{B.}CH_3Cl > CCl_4 > CH_4$

C. n-pentane > iso-pentane > neo-pentane

 $\mathsf{D}.\,OH_2 > O(CH_3)_2 > OBr_2$

Answer: D

Watch Video Solution

21. Which gas should not be collected over water because of its high solubility in water?

A. H_2

B. N_2

 $\mathsf{C}.\,CH_4$

 $\mathsf{D}.\,HCl$

Answer: D

22. Low melting point is expected for a solid :		
A. Ionic solid		
B. Metallic solid		
C. Molecular solid		
D. Covalent solid		
Answer: C		
Watch Video Solution		
23. Which substance has the strongest London dispersion forces ?		
23. Which substance has the strongest London dispersion forces ? A. SiH_4		
A. SiH_4		
A. SiH_4 B. CH_4		

Watch Video Solution 24. Which of the following compounds has the lowest boiling point? A. HF B. HCl C. HBr D. HI **Answer: B Watch Video Solution**

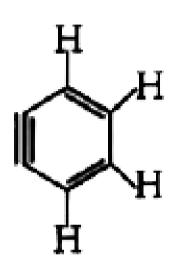
Answer: C

25. When the substances $Si, KCl, CH_3OH \ {
m and} \ C_2H_6$ are arranged in order of increasing melting point, what is the correct order ?

Answer: D Watch Video Solution 26. Which substance has the highest melting point? A. CO $B.CO_2$ $\mathsf{C}.\,SiO_2$ D. P_2O_5

A. Si, KCl, CH_3OH , C_2H_6

B. CH_3OH , C_2H_6 , Si, KCl


 $\mathsf{C}.\,KCl,\,Si,\,C_2H_6,\,CH_3OH$

D. C_2H_6 , CH_3OH , KCl, Si

Answer: C

View Text Solution

27. How many sp^2 and sp-hybridised carbon atoms are present respectively in the following compound?

- A. 4,2
- B. 6,0
- C. 3,3
- D. 5,1

Answer: B

28. Which of the following is a correct set with respect to molecule,

hybridization, and shape?

A. $BeCl_2,\,sp^2$, linear

B. $BeCl_2, sp^2$, triangular planar

C. BCl_3, sp^2 , triangular planar

D. BCl_3, sp^3 , tetrahedral

Answer: C

Watch Video Solution

29. Hybridisation of central atom in ICl_2^+ is

A. dsp^2

 $\mathsf{B.}\,sp$

 $\mathsf{C.}\,sp^2$

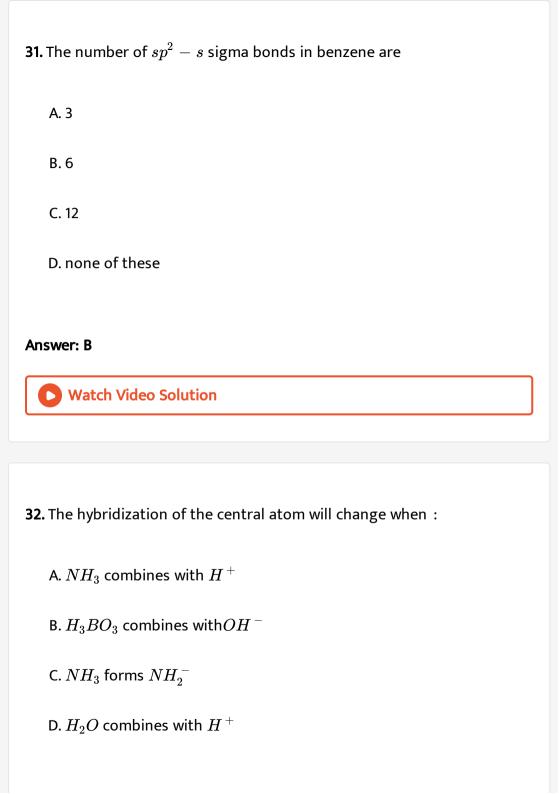
D.	sp^3
-	$^{\circ}$

Answer: D

Watch Video Solution

30. The state of hybridization of the central atom is not the same as in the others :

A. B in BF_3


B. O in H_3O^+

C. N in NH_3

D. P in PCl_3

Answer: A

Answer: B

Watch Video Solution

33. $CH_3 - CH_2 - CH = CH_2$ has hybridisation :

A. $sp,\,sp,\,sp^2,\,sp^2$

 $\mathsf{B}.\,sp^3,\,sp^3,\,sp^2,\,sp$

 $\mathsf{C.}\,sp^3,sp^3,sp^2,sp^2$

D. sp^3, sp^2, sp^2, sp

Answer: C

Watch Video Solution

34. The state of hybridization of xenon of XeF_6 is

A. sp^3d^3

 $\mathsf{C}.\,sp^3d$

 $\mathsf{D.}\, sp^3$

Answer: B

Watch Video Solution

35. During the complete combustion of methane CH_4 , what change in hybridisation does the carbon atom undergo?

- A. sp^3 to sp
- $B. sp^3$ to sp^2
- $\mathsf{C}.\,sp^2$ to sp
- D. sp^2 to sp^3

Answer: A

36. The hybridisation of central iodine atom in IF_5, I_3^- and I_3^+ are respectively:

A.
$$sp^3d^2$$
, sp^3d , sp^3

$$\mathsf{B.}\, sp^3d,\, sp^3d,\, sp^3$$

$$\mathsf{C.}\, sp^3d^2,\, sp^3d^2,\, sp^3$$

D.
$$sp^3d, sp^3d^2, sp^3$$

Answer: A

Watch Video Solution

37. In which of the following combination hybridisation of central atom

A.
$$H_2O+\overset{*}{C}O_2$$

B.
$$H_3 \overset{*}{B} O_3 + OH^-$$

C.
$$BF_3 + \overset{*}{N}H_3$$

D. none of these

Answer: C

Watch Video Solution

38. Which of the following species used both axial set of d-orbitals in hybridisation of central atom ?

A.
$$PBr_4^{\,+}$$

B. PCl_4^-

C. ICl_{4}^{-}

D. none of these

Answer: C

39. Which bonds are formed by a carbon atom with sp^2 -hybridisation ?

- A. 4π -bonds
- B. $2\pi\text{-bonds}$ and $2\sigma\text{-bonds}$
- C. 1π -bonds and 3σ -bonds
- D. 4σ -bonds

Answer: C

Watch Video Solution

40. What are the hybridisation of the carbon atoms labeled C_1 and C_2 , respectively in glycine ?

B.
$$rac{C_1}{sp^2} rac{C_2}{sp^3}$$
C. $rac{C_1}{sp^3} rac{C_2}{sp^2}$
D. $rac{C_1}{sp^3} rac{C_2}{sp^3}$

Answer: C

Watch Video Solution

41. The H-O-H bond angles in H_3O^+ are approximately 107° . The orbitals

used by oxygen in these bonds are best described as:

A. p-orbitals

B. sp-hybrid orbitals

C. sp^2 -hybrid orbital

D. sp^3 -hybrid orbital

Answer: D

42. Which pair of elements can form multiple bond with itself and oxygen

A. F,N

?

B. N, Cl

C. N,P

D. N,C

Answer: D

Watch Video Solution

43. Which of the following is a covalent compound?

A. Al_2O_3

 $\operatorname{B.}AlF_3$

C. $AlCl_3$

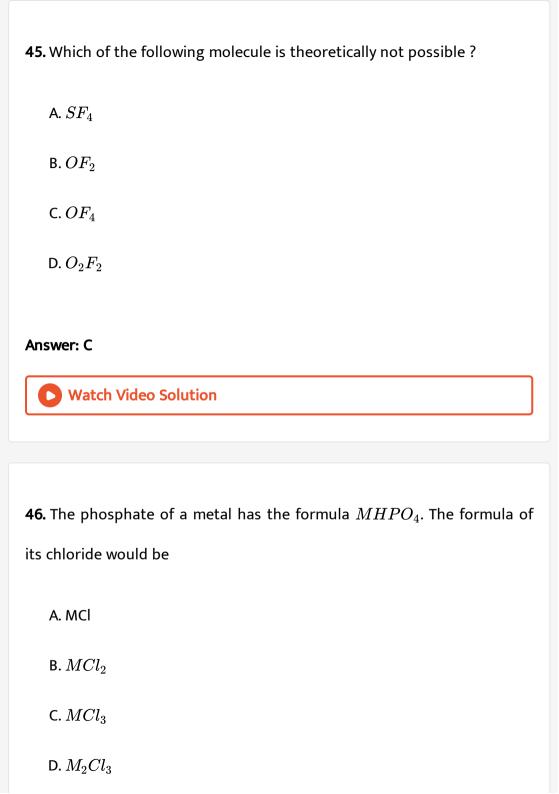
D. $Al_2(SO_4)_3$

Answer: C

Watch Video Solution

44. Which of the following is an example of super octet molecule?

A. ClF_3


B. PCl_5

 $\mathsf{C}.\,IF_7$

D. All the three

Answer: D

Answer: B

Watch Video Solution

47. The compound that has the higest ionic character associated with the

X-Cl bond is:

- A. PCl_5
- B. BCl_3
- C. CCl_4
- D. $SiCl_4$

Answer: D

Watch Video Solution

48. The bond having the highest bond energy is :

A.
$$C=C$$

 $\mathsf{B.}\,C=S$

C. C = O

D.P = N

Answer: C

Watch Video Solution

- 49. Which of the following species is neither hypervalent nor hypovalent?
 - A. ClO_4^-
 - $B.BF_3$

D. $CO_3^{2\,-}$

- $\operatorname{C.}SO_4^{2\,-}$

Answer: D

50. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons ?

- A. $BF_4^{\,-}$
- $\operatorname{B.}NCl_3$
- $\mathsf{C.}\,PCl_4^{\,+}$
- D. SF_4

Answer: D

Watch Video Solution

51. Which atom can have more than eight valence electrons when it is forming covalent bonds ?

- A. H
- B. N

C. F
D. Cl
Answer: D
Watch Video Solution
52. Which bond is expected to be the least polar?
A. O-F
B. P-F
C. Si-N
D. B-F
Answer: A
Watch Video Solution

53. Which set contains only covalently bonded molecules?

A. $BCl_3, SiCl_4, PCl_3$

B. NH_4Br, N_2H_4, HBr

 $\mathsf{C}.\,I_2,\,H_2S,\,NaI$

D. $Al,\,O_3,\,As_4$

Answer: A

Watch Video Solution

54. Which molecule does not exist?

A. OF_2

 $\operatorname{B.}OF_4$

 $\mathsf{C}.\,SF_2$

D. SF_4

Answer: B

Watch Video Solution

55. Solid NaCl is a bad conductor of electricity because

- A. in solid NaCl there are no ions
- B. solid NaCl is covalent
- C. in solid NaCl there is no mobility of ions
- D. in solid NaCl there are no electrons

Answer: C

Watch Video Solution

56. An ionic compound $A^{\,+}B^{\,-}$ is most likely to be formed when :

A. the ionization energy of A is high and electron affinity of B is low

B. the ionization energy of A is low and electron affinity of B is high

C. both, the ionization energy of A and electron affinity of B are high

D. both, the ionization energy of A and electron affinity of B are low

Answer: B

Watch Video Solution

57. A compound contains atom A, B and C. The oxidation number of A is

+2, of B is +5 and C is -2. The possible formula of the compound is

A. $A_3(B_4C)_2$

B. $A_3(BC_4)_2$

 $\mathsf{C}.\,A_2(BC_3)_2$

D. ABC_2

Answer: B

58. Which pair of atoms form strongest ionic bond?

A. Al and As

B. Al and N

C. Al and Se

D. Al and O

Answer: D

Watch Video Solution

59. The correct order of increasig C-O bond length of CO, CO_3^{2-}, CO_2 is

A.
$$CO_3^{2-} < CO_2 < CO$$

 $\mathsf{B.}\, CO_2 < CO_3^{2-} < CO$

C. $CO < CO_3^{2-} < CO_2$

D.
$$CO < CO_2 < CO_3^{2-}$$

Answer: A

Watch Video Solution

- $\textbf{60.} \ \mathsf{Resonance} \ \mathsf{structures} \ \mathsf{can} \ \mathsf{be} \ \mathsf{written} \ \mathsf{for} \ .$
 - A. O_3
 - B. NH_3
 - $\mathsf{C}.\,CH_4$
 - D. H_2O

Answer: A

Watch Video Solution

61. The correct order of Cl-O bond order is :

A.
$$ClO_3^- < ClO_4^- < ClO_2^- < ClO^-$$

B.
$$ClO^- < ClO_4^- < ClO_3^- < ClO_2^-$$

$$\mathsf{C.}\,\mathit{ClO}^- < \mathit{ClO}_2^- < \mathit{ClO}_3^- < \mathit{ClO}_4^-$$

$$\operatorname{D.}ClO_4^- < ClO_3^- < ClO_3^- < ClO^-$$

Answer: C

Watch Video Solution

62. How many resonance structures can be drawn for the nitrate ion, NO_3^- ?

- A. 1
- B. 2

C. 3

D. 4

Answer: C

63. Among given species identify the isostructural pairs :

- A. $[NF_3 \text{ and } BF_3]$
- B. $\left[BF_4^{\;-} \text{ and } NH_4^{\;+}\right]$
- C. $[BCl_3 \text{ and } BrCl_3]$
- D. $\left[NH_3 \text{ and } NO_3^-\right]$

Answer: B

64. If 0.1 mole H_3PO_x is completely neutralised by 5.6g KOH then select the true statement.

- A. x=3 and given acid is dibasic
- B. x=2 and given acid is monobasic

- C. x=3 and given acid is monobasic
- D. x=4 and given acid forms three series of salt

Answer: B

Watch Video Solution

65. The solid PCl_5 exists as

- A. PCl_5
- $\operatorname{B.}\operatorname{PCl}_{4}^{+}\operatorname{Cl}^{-}$
- $\mathsf{C.}\,PCl_4^+\,PCl_6^-$
- D. PCl_5 . Cl_2

Answer: C

66. The ratio of $\sigma-$ bond and $\pi-$ bond in tetracryano ethylene is :
A. 2:1 B. 1:1
C. 1: 2
D. none of these
Answer: B
Watch Video Solution
67. The bonds present in $N_2 O_5$ are .
A. only ionic
B. only covalent
C. covalent and co-ordinate
D. covalent and ionic

Answer: C

Watch Video Solution

68. The pair of species with similar shape is :

- A. PCl_3 , NH_3
- B. CF_4 , SF_4
- $\mathsf{C}.\,PbCl_2,\,CO_2$
- D. PF_5 , IF_5

Answer: A

Watch Video Solution

69. Which of the following statements is correct in the context of the allene molecule, C_3H_4 ?

A. The central carbon is sp hybridized

B. The terminal carbon atoms are sp^2 hybridized

C. The planes containing the CH_2 groups are mutually perpendicular

to permit the formations of two separate π -bonds

D. All are correct

Answer: D

Watch Video Solution

70. Number of S-S bond in $H_2S_nO_6$ is :

A. n

B. (n-1)

C. (n-2)

D. (n+1)

Answer: B

71. How many S-S bonds, S-O-S bonds, σ -bonds, π -bonds are present in trimer of sulphur trioxide ?

72. Number of identical Cr-O bonds in dichromate ion $Cr_2O_7^{2-}$ is :

- A. 0,3,16,2
- B. 0,3,12,6
- C. 0,6,12,16
- D. 0,4,12,6

Answer: B

Watch Video Solution

A. 4

B. 6

C. 7

D. 8

Answer: B

Watch Video Solution

73. The nodal plane in the π -bond of ethene is located in:

A. the molecular plane

B. a plane parallel to the molecular plane

C. a plane perpendicular to the molecular plane which bisects the carbon-carbon σ bond at right angle

D. a plane perpendicular to the molecular plane which contains the carbon-carbon bond

Answer: A

74. Which of the following pairs of ions are isoelectronic and isostructural?

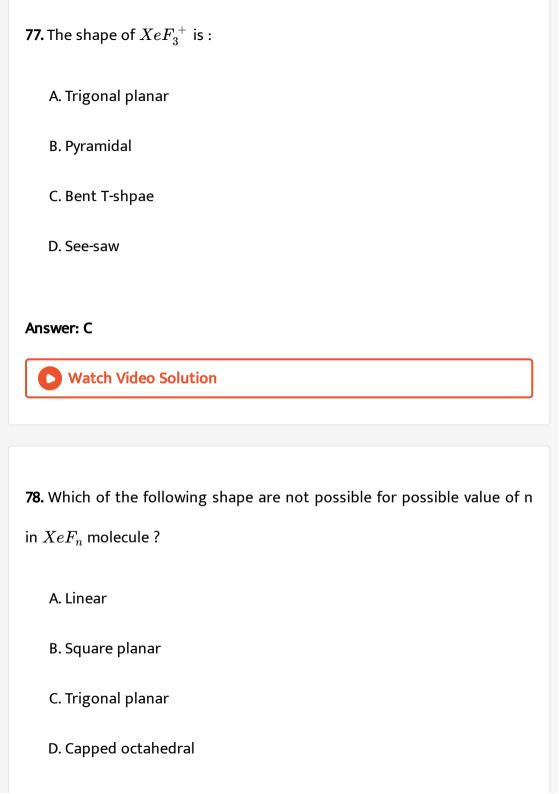
- A. NO_3^- , $CO_3^{2\,-}$
- $\mathsf{B.}\,SO_3,NO_3^-$
- $\mathsf{C.}\,\mathit{ClO}_3^-,\mathit{CO}_3^{2\,-}$
- D. CO_3^{2-} , ClO_3^-

Answer: A

Watch Video Solution

75. In the electronic structure of H_2SO_4 , the total number of unshared electrons is :

- A. 20
- B. 16


C. 12
D. 8
Answer: B
Watch Video Solution
76. Which of the following xenon compound ha
pairs as in I_3^- ?
A. XeO_4
$\mathbf{p}_{\mathbf{v}}\mathbf{v}_{\mathbf{c}}\mathbf{v}$

s the same number of lone

- B. XeF_4
- $\mathsf{C}.\,XeF_2$
- $\operatorname{D.}XeO_3$

Answer: C

Answer: C

Watch Video Solution

79. $BeCl_2$ is not isostructural with

- A. ICl_2^-
- B. C_2H_2
- $\mathsf{C}.\,XeF_2$
- D. $GeCl_2$

Answer: D

 CS_2 ?

Watch Video Solution

80. Which statement is true about the most stable Lewis structure for

- A. There are no lone pairs in molecule
- B. All bonds are double bonds
- C. The central atom does not have an octet of electrons
- D. A sulfur atom must be the central atom for the structure to be stable

Answer: B

Watch Video Solution

- **81.** Shape of the compounds XeF_3^+ and XeF_5^+ are respectively
 - A. Square pyramidal, T-shpaed
 - B. Bent-T-shape, square pyramidal
 - C. See-saw, square pyramidal
 - D. Square pyramidal, see -saw

Answer: B

82. In which of the following species maximum atom can lie in same plane

A. XeF_2O_2

?

B. PCl_5

C. $AsH_4^{\ +}$

D. XeF_4

Answer: D

Watch Video Solution

83. Correct statement regarding molecules SF_4 , CF_4 and XeF_4 are :

A. 2,0 and 1 lone pairs of central atom respectively

B. 1,0 and 1 lone pairs of central atom respectively

- C. 0,0 and 2 lone pairs of central atom respectively
- D. 1,0 and 2 lone pairs of central atom respectively

Answer: D

Watch Video Solution

- **84.** The geometrical arrangement and shape of $I_3^{\,-}$ are respectively
 - A. trigonal bipyramidal geometry, linear shape
 - B. hexagonal geometry, T-shape
 - C. triangular planar geometry, triangular shape
 - D. tetrahedral geometry, pyramidal shape

Answer: A

- **85.** Which of the following statements is incorrect for PCl_5 ?
 - A. Its three P-Cl bond lengths are equal
 - B. It involves sp^3 d hybridization
 - C. It has an regular geometry
 - D. Its shape is trigonal bipyramidal

Answer: C

- **86.** Molecular shapes of $SF_4,\,CF_4,\,XeF_4$ are
 - A. the same with 2,0 and 1 lone pair of electrons respectively
 - B. the same with 1,1 and 1 lone pair of electrons respectively
 - C. the same with 0m1 and 2 lone pair of electrons respectively
 - D. the same with 1,0 and 2 lone pair of electrons respectively

Answer: D

Watch Video Solution

87. The structure of the noble gas compound XeF_4 is :

- A. square planar
- B. distorted tetrahedral
- C. tetrahedral
- D. octahedral

Answer: A

Watch Video Solution

88. The molecule exhibiting maximum number of non-bonding electron pairs (l.p.) around the central atom is :

D. XeO_3 **Answer: C** Watch Video Solution 89. Which is the following pairs of species have identical shapes? A. NO_2^+ and $NO_2^ B. PCl_5 \text{ and } BrF_5$ $\mathsf{C}.\,XeF_4$ and ICl_4^- D. $TeCl_4$ and XeO_4 **Answer: C Watch Video Solution**

A. $XeOF_4$

B. XeO_2F_2

 $\mathsf{C}.\,XeF_3^-$

90. The shapes of XeF_4 , XeF_5^- and $SnCl_2$ are :

- A. octahedral, trigonal bipyramidal and bent
- B. square pyramidal, pentagonal planar and linear
- C. square planar, pentagonal planar and angular
- D. see-saw, T-shaped and linear

Answer: C

- 91. Which is not correctly matched?
 - A. XeO_3 -Trigonal bipyramidal
 - B. ClF_3 bent T-shape
 - C. $XeOF_4$ Square pyramidal

D. XeF_2 - Linear shape

Answer: A

Watch Video Solution

- **92.** Amongst NO_3^- , AsO_3^{3-} , CO_3^{2-} , ClO_3^- , SO_3^{2-} and BO_3^{3-} , the non-planar species are :
 - A. $CO_3^{2-}, SO_3^{2-}, BO_3^{3-}$
 - ${\rm B.}\, AsO_3^{3\,-}, ClO_3^{-}, SO_3^{2\,-}$
 - $\mathsf{C.}\,NO_3^-,CO_3^{2-},BO_3^{3-}$
 - D. $SO_3^{2-}, NO_3^-, BO_3^{3-}$

Answer: B

93. The geometry of ammonia molecule can be best described as :

A. Nitrogen at one vetex of a regular tetrahedron, the other three vertices being occupied by three hydrogens

B. Nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens

C. Nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens

D. Nitrogen at the junction of a T, three open ends being occupied by three hydrogens

Answer: B

Watch Video Solution

94. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?

- A. Trigonal planar
- B. See-saw
- C. Linear
- D. T-shpaed

Answer: A

- **95.** Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is falese:
- $\left(I\right)$ The order of repulsion between different pair of electron is

$$I_p - I_p > I_p - b_p > b_p - b_p$$

- (II) In general, as the number o flone pair of electron on central atom
- increases, value of bond angle from normal bond angle also increases
- (III) The number of lone pair on O in H_2O is 2 while on N in NH_3 is 1
- (IV) The structures of xenon fluorides and xenon oxyfluorides could not be explained on the basis of VSEPR theory

B. TFTF C. TFT T D. TF F F **Answer: B** Watch Video Solution 96. Which species is planar? A. $CO_3^{2\,-}$ B. $SO_3^{2\,-}$ $\operatorname{C.}ClO_3^ \mathrm{D.}\,BF_4^{\,-}$ **Answer: A** Watch Video Solution

A. T T TF

97. What is the geometry of the	IBr_2^- ion ?
--	-----------------

- A. Linear
- B. Bent shape with bond angle of about 90°
- C. Bent shape with bond angle of about 109°
- D. Bent shape with bond angle of about 120°

Answer: A

Watch Video Solution

98. Molecular shape of $ClF_3,\, l_3^-$ and XeO_3 respectively are

- A. Trigonal planar
- B. Trigonal pyramidal
- C. T-shaped

D. Tetrahedral	
Answer: C	
Watch Video Solution	

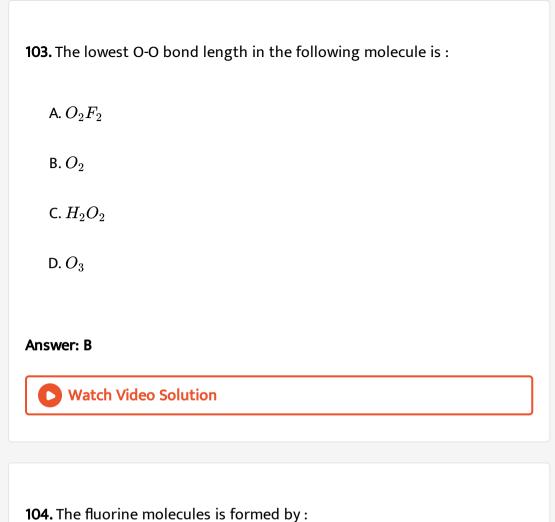
- **99.** Which species has the same shape as NH_3 ?

 - A. $SO_3^{2\,-}$ B. $CO_3^{2\,-}$
 - $\mathsf{C.}\,NO_3^-$
 - D. SO_3

Answer: A

100. According to VSEPR theory, in which species do all the atoms lie in the same plane ?

- 1. CH_3^+ 2. CH_3^-
 - A. 1 only
 - B. 2 only
 - C. both 1 and 2
 - D. neither 1 nor 2


Answer: A

101. Which of the following species / molecules does not have same number of bond pairs and lone pairs ?

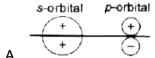
- A. OCN^-
- $\operatorname{B.}H_2O$

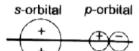
C. $C_2H_2Cl_2$
D. O_3
Answer: D
Watch Video Solution
102. Least stable hydride is
A. stannane
B. silane
C. plumbane
D. germane
Answer: C
Watch Video Solution

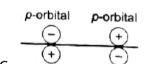
A. p-p orbitals (sideways overlap)

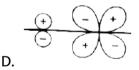
C. sp-sp orbitals

D. s-s orbitals


B. p-p orbitals (end -to -end overlap)


Answer: B




Watch Video Solution

105. Which of the following leads to bonding?

Answer: B

106. Which of the following overlaps is incorrect (assuming Z-axis is internucler axis)?

$$(A)2P_y+2p_y
ightarrow\pi$$
- Bond formation $(B)2p_x+2p_x
ightarrow\sigma$ - Bond formation

(C)
$$33d_{xy}+3dp_{xy}
ightarrow\pi$$
- Bond formation $(D)2s+2p_y
ightarrow\pi$ - Bond formation

(E)
$$3d_{xy}+3d_{xy}
ightarrow \delta$$
- Bond formation $(F)2p_x+2p_x
ightarrow \sigma$ -Bond formation

Answer: D

107. Which of the following overlapping is not present in XeO_3 molecule ?

A. sp^3+p_x

B. sp^3+p_y

C. $d_{xy} + p_x$

D. $sp^3 + s$

Answer: D

Watch Video Solution

108. How many sigma bonds are in a molecule of diethyl ether, $C_2H_5OC_2H_5$?

A. 14

B. 12

C. 8

Answer: A

Watch Video Solution

109. The lattice energies of KF, KCl, KBr and KI follow the order:

A.
$$KF > KCl > KBr > KI$$

$$B.\,KI > KBr > KCl > KF$$

$$\mathsf{C}.\,KF > KCl > KI > KBr$$

D.
$$KI > KBr > KF > KCl$$

Answer: A

110. Which set of compounds in the following pair of ionic compounds

has the higher lattice energy?

(i) KCl or MgO (ii) LiF or LiBr (iii) Mg_3N_2 or NaCl

A. $KCl, LiBr, Mg_3N_2$

B. $MgO, LiBr, Mg_3N_2$

 $\mathsf{C}.\,MgO,\,LiF,\,NaCl$

D. MgO, LiF, Mg_3N_2

Answer: D

111. The incorrect order of lattice energy is :

A. $AlF_3>MgF_2$

B. $Li_3N > Li_2O$

 $\mathsf{C.}\, NaCl > LiF$

Answer: C

Watch Video Solution

- 112. Which ionic compound has the largest amount of lattice energy?
 - A. NaF
 - B. AlF_3
 - $\mathsf{C.}\,AlN$
 - $\mathsf{D.}\, MgF_2$

Answer: C

113. Which of the following compounds has the samallest bond angle in its molecule? A. OH_2 B. SH_2 $\mathsf{C}.\,NH_3$ D. SO_2 **Answer: B Watch Video Solution** 114. Maximum bond angle is present in: A. BBr_3 $B.\,BCl_3$ $\mathsf{C}.\,BF_3$

D. none of these

Answer: D

Watch Video Solution

115. The correct order of H-M-H bonds angle is:

A.
$$NH_3 < PH_3 < SbH_3 < BiH_3$$

B.
$$AsH_3 < SbH_3 < PH_3 < NH_3$$

C.
$$NH_3 < PH_3 < BiH_3 < SbH_3$$

D.
$$BiH_3 < SbH_3 < AsH_3 < PH_3$$

Answer: D

Watch Video Solution

116. The correct increasing order of adjacent bond angle among $BF_3,\,PF_3$ and ClF_3 :

A. $BF_3 < PF_3 < ClF_3$

 $\mathsf{B.}\,PF_3 < BF_3 < ClF_3$

C. $ClF_3 < PF_3 < BF_3$

D. $BF_3 = PF_3 = ClF_3$

Watch Video Solution

Answer: C

is in:

A. O_3

 $\mathrm{B.}\,I_3^{\,-}$

 $\mathsf{C}.\,NO_2^-$

D. PH_3

Answer: D

117. Among the following species, the least angle around the central atom

118. Compare the H-N-H bond angle in the following species.

$$NH_{3},NH_{4}^{\ +},NH_{2}^{\ -}$$

A.
$$NH_2^{\,-}>NH_3>NH_4^{\,+}$$

$${\tt B.}\, N{H_4^{\,+}} > N{H_3} > N{H_2^{\,-}}$$

C.
$$NH_3>NH_2^{\,-}>NH_4^{\,+}$$

D.
$$NH_3 > NH_4^{\ +} > NH_2^{\ -}$$

Answer: B

Watch Video Solution

119. The H-C-H bond angle in $CH_4is109.5\,^\circ$, due to lone pair repulsion, the

H-O-H angle in H_2O will :

A. remain the same

B. increase
C. decrease
D. become 180°
Answer: C
Watch Video Solution
120. The molecule having the largest bond angle is :
A. H_2O
B. H_2S
C. H_2Se

 $\mathsf{D.}\,H_2Te$

Watch Video Solution

Answer: A

121. The compound MX_4 is tetrahedral. The number of $\angle XMX$ angles in the compound is :

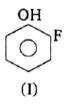
- A. three
- B. four
- C. five
- D. six

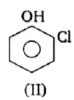
Answer: D

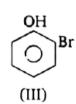
Watch Video Solution

122. Which of the following is the correct order for increasing bond angle ?

- A. $Nh_3 < PH_3 < AsH_3 < SbH_3$
 - $\mathsf{B.}\,H_2O < OF_2 < Cl_2O$
 - C. $H_2 Te^+ < H_3 Se^+ < H_3 S^+ < H_3 O^+$


D. $BF_3 < BCl_3 < BBr_3 < BI_3$


Answer: C



Watch Video Solution

123. The correct order of boiling point is:

A.
$$I>II>III$$

B.
$$III > II > I$$

C.
$$II > I > III$$

D.
$$III > I > II$$

Answer: B

124. Which of the following is not true about H_2O molecule?

A. The molecule has $\mu=0$

B. The molecule can act as a base

C. Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group

D. The molecule has a bent shape

Answer: A

Watch Video Solution

125. The boiling points at atmospheric pressure of $HF,\,H_2S,\,NH_3$ can be arranged in the following order :

A.
$$HF>NH_3>H_2S$$

B.
$$HF > H_2S > NH_3$$

C.
$$HF < H_2S < NH_3$$

D. $HF < NH_3 < H_2S$

Answer: A

Watch Video Solution

126. The correct order of strength of H- bond in the following compound :

A.
$$H_2O>H_2O_2>HF>H_2S$$

$${\rm B.}\,HF>H_{2}O_{2}>H_{2}O_{2}>H_{2}S$$

$$\mathsf{C}.\,HF>H_2O>H_2S>H_2O_2$$

D.
$$HF>H_2O>H_2O_2>H_2S$$

Answer: D

127. Which compound has electrovalent, covalent, co-ordinate as well as

hydrogen bond?

A. $\left[Cu(H_2O)_4\right]SO_4$. H_2O

B. $[Zn(H_2O)_6]SO_4$. H_2O

C. $\left[Fe(H_2O)_6\right]SO_4$. H_2O

D. $\left[Fe(H_2O)_6\right]Cl_3$

Answer: A

128. Which statement is correct?

A. m.p. of $H_2O,\,NH_3$ are maximum in their respective group due to

intermolecular H-Bonding

B. b.p. of CH_4 out of $CH_4,\,SiH_4,\,GeH_4$ and SnH_4 is least due to

weak intermolecular force of attraction

C. formic acid forms dimer by H-bonding

D. all are correct

Answer: D

Watch Video Solution

129. Which of the following molecules are expected to exhibit intermolecular H-bonding ?

(I) Acetic acid ((II) o-nitrophenol (III) m-nitrophenol (IV)o-boric acid

Select correct alternate :

A. I, II, III

B. I,II,IV

C. I,III,IV

D. II,III,IV

Answer: C

n.

Watch Video Solution

130. Which of the following compounds can form H-bonding with each other?

- A. CH_3COOH and H_2O
- B. Phenol and CH_4
- C. CHF_3 and acetone
- D. PH_3 and HF

Answer: A

Watch Video Solution

131. BF_3 and NF_3 both are covalent compounds but NF_3 is polar whereas BF_3 is non-polar. This is because :

A. Nitrogen atom is smaller than boron atom

B. N-F bond is more polar than B-F bond

C. NF_3 is pyramidal whereas BF_3 is planar triangular

D. BF_3 is electron deficient whereas NF_3 is not

Answer: C

Watch Video Solution

132. Dipole moment of NF_3 is smaller than :

A. NH_3

 $\mathsf{B.}\,CO_2$

 $\mathsf{C}.\,BF_3$

D. CCl_4

Answer: A

133. Which of the following molecules will have polar bonds but zero dipole moment?

- A. O_2
- $\mathsf{B.}\,CHCl_3$
- C. CF_4
- D. none of these

Answer: C

Watch Video Solution

134. Which has maximum dipole moment?

В.

D.

Answer: B

A. XeO_A B. SF_4 $\mathsf{C}.\,XeF_4$ D. CF_4 **Answer: C Watch Video Solution 136.** H_2O has net dipole moment while BeF_2 has zero dipole moment because A. F is more electronegativity than oxygen B. Be is more electronegativity than oxygen C. H_2O molecule is linear and BeF_2 is bent D. BeF_2 molecule is linear and H_2O is bent Answer: D

137. Correct set of species with zero dipole moment is:

- (i) CO_2 $(ii)COCl_2$ $(iii)CH_2Cl_2$ $(iv)BCl_3$
 - A. I and iv
 - B. ii and iv
 - C. iii and iv
 - D. I, iii and iv

Answer: A

Watch Video Solution

138. Which pair of molecules are polar species?

- A. CO_2 and H_2O
- $B.BF_3$ and PCl_3

C. SO_2 and SCl_2 D. CS_2 and SO_3

Answer: C

Watch Video Solution

139. In which molecule does the chlorine atom has positive partial charge

?

A. HCl

B. BrCl

 $\mathsf{C}.\,Ocl_2$

 $\mathsf{D.}\,SCl_2$

Answer: C

140. Which of the following attraction is strongest?
A. (CI):::::(H—CI)
B. CHCl ₃ ::::CHCl ₃
$C.$ CCl_4 $EEEEE$ H_2O
D. CITHER H ₂ O
Answer: D
Watch Video Solution
141. Which is distilled first ?
141. Which is distilled first ? A. Liquid H_2
A. Liquid H_2
A. Liquid H_2 B. Liquid CO_2

Answer: A

Watch Video Solution

142. The molecular size of Icl and Br_2 is approximately same, but b.p. of Icl is about $40\,^\circ\,C$ higher than that of Br_2 . It is because :

A. Icl bond is stronger than Br-Br bond

B. IE of iodine < IE of bromine

C. Icl is polar while Br_2 is nonpolar

D. I has larger size than Br

Answer: C

Watch Video Solution

143. Which of the following order of molecular force of attraction among given species is incorect ?

A.
$$HI > HBr > Cl_2$$

D. $OH_2 > O(CH_3)_2 > OBr_2$

Watch Video Solution

solubility in water?

A. H_2

B. N_2

 $C. CH_4$

D. HCl

Answer: D

Answer: D

B. $CH_3Cl > CCl_4 > CH_4$

C. n-pentane > iso-pentane > neo-pentane

144. Which gas should not be collected over water because of its high

145. Low melting point is expected for a solid:

A. Ionic solid

B. Metallic solid

C. Molecular solid

D. Covalent solid

Answer: C

146. Which substance has the strongest London dispersion forces?

A. SiH_4

B. CH_4

C. SnH_4

D. GeH_4
nswer: C
Watch Video Solution
47. Which of the following compounds has the lowest boiling point?
A. HF
B. HCl
C. HBr
D. HI

Answer: B

View Text Solution

148. When the substances Si, KCl, CH_3OH and C_2H_6 are arranged in order of increasing melting point, what is the correct order?

A. Si, KCl, CH_3OH , C_2H_6

B. CH_3OH , C_2H_6 , Si, KCl

 $\mathsf{C}.\ KCl,\ Si,\ C_2H_6,\ CH_3OH$

D. C_2H_6 , CH_3OH , KCl, Si

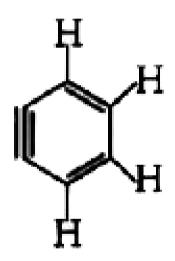
Answer: D

Watch Video Solution

149. Which substance has the highest melting point?

A. CO

 $B.CO_2$


 $\mathsf{C}.\,SiO_2$

D. P_2O_5

Watch Video Solution

150. How many sp^2 and sp-hybridised carbon atoms are present respectively in the following compound?

- A. 4,2
- B. 6,0
- C. 3,3
- D. 5,1

Answer: B

Watch Video Solution

151. Which one of the following is the correct set with respect to molecule, hybridization and shape?

- A. $BeCl_2$, sp^2 , linear
- B. $BeCl_2, sp^2$, triangular planar
- C. BCl_3, sp^2 , triangular planar
- D. BCl_3 , sp^3 , tetrahedral

Answer: C

Watch Video Solution

152. The hybridization of the central atom in ICl_2^+ is :

A. dsp^2 B. sp $\mathsf{C.}\,sp^2$ D. sp^3 **Answer: D Watch Video Solution** 153. The state of hybridization of the central atom is not the same as in the others: A. B in BF_3 B. O in $H_3O^{\,+}$ C. N in NH_3 D. P in PCl_3 **Answer: A**

154. The number of sp^2 -s sigma bonds in benzene are :

A. 3

B. 6

C. 12

D. none of these

Answer: B

A. NH_3 combines with $H^{\,+}$

B. H_3BO_3 combines with OH^-

155. The hybridization of the central atom will change when:

C. NH_3 forms $NH_2^{\,-}$

D. H_2O combines with H^+

Answer: B

Watch Video Solution

156. $CH_3 - CH_2 - CH = CH_2$ has hybridisation :

A. sp, sp, sp^2 , sp^2

 $\mathsf{B}.\,sp^3,\,sp^3,\,sp^2,\,sp$

 $C. sp^3, sp^3, sp^2, sp^2$

 $\mathsf{D}.\,sp^3,\,sp^2,\,sp^2,\,sp$

Answer: C

157. What is the state of hybridisation of Xe in cationic part of solid XeF_6 ?

A. sp^3d^3

 $\mathsf{C}.\,sp^3d$

 $\mathsf{D.}\, sp^3$

Answer: B

Watch Video Solution

158. During the complete combustion of methane CH_4 , what change in hybridisation does the carbon atom undergo?

A. sp^3 to sp

 $B. sp^3$ to sp^2

 $\mathsf{C}.\,sp^2$ to sp

D.
$$sp^2$$
 to sp^3

Answer: A

Watch Video Solution

159. The hybridisation of central iodine atom in IF_5, I_3^- and I_3^+ are respectively:

A.
$$sp^3d^2,\,sp^3d,\,sp^3$$

$$\mathrm{B.}\,sp^3d,\,sp^3d,\,sp^3$$

$$\mathsf{C.}\, sp^3d^2, sp^3d^2, sp^3$$

D.
$$sp^3d,\,sp^3d^2,\,sp^3$$

Answer: A

160. In which of the following combination hybridisation of central atom

(*) does not change?

A.
$$H_2O+\overset{*}{C}O_2$$

в. $H_3 \overset{*}{B} O_3 + OH^-$

C.
$$BF_3 + \overset{*}{N}H_3$$

D. none of these

Answer: C

Watch Video Solution

161. Which of the following species used both axial set of d-orbitals in hybridisation of central atom ?

A.
$$PBr_4^+$$

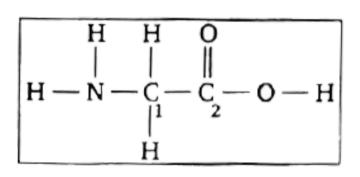
$$\mathsf{B.}\,PCl_4^-$$

$$\operatorname{C.}ICl_4^-$$

D. none of these

Answer: C

Watch Video Solution


- **162.** Which bonds are formed by a carbon atom with sp^2 -hybridisation ?
 - A. 4π -bonds
 - B. $2\pi\text{-bonds}$ and $2\sigma\text{-bonds}$
 - C. 1π -bonds and 3σ -bonds
 - D. 4σ -bonds

Answer: C

163. What are the hybridisation of the carbon atoms labeled C_1 and C_2 ,

respectively in glycine?

- B. $egin{array}{ccc} C_1 & C_2 \ sp^2 & sp^3 \end{array}$
- C. $rac{C_1}{sp^3}$ $rac{C_2}{sp^2}$

Answer: C

164. The H-O-H bond angles in H_3O^+ are approximately 107° . The orbitals used by oxygen in these bonds are best described as :

A. p-orbitals

B. sp-hybrid orbitals

C. sp^2 -hybrid orbital

D. sp^3 -hybrid orbital

Answer: D

Watch Video Solution

165. Which pair of elements can form multiple bond with itself and oxygen?

A. F,N

B. N, Cl

C. N,P

D	$N \subset$
υ.	11,0

Answer: D

Watch Video Solution

- **166.** Which of the following is a covalent compound?
 - A. Al_2O_3
 - B. AlF_3
 - $\mathsf{C}.\,AlCl_3$
 - D. $Al_2(SO_4)_3$

Answer: C

Watch Video Solution

167. Which of the following is an example of super octet molecule?

A. ClF_3 B. PCl_5 $\mathsf{C}.\,IF_7$ D. All the three **Answer: D** Watch Video Solution 168. Which of the following molecule is theoretically not possible? A. SF_4 $B.OF_2$ $\mathsf{C}.\,OF_4$ D. O_2F_2 **Answer: C Watch Video Solution**

169. The phosphate of a metal has the formula $MHPO_4$. The formula of its chloride would be :

A. MCl

 $\mathsf{B.}\,MCl_2$

 $\mathsf{C.}\,MCl_3$

D. M_2Cl_3

Answer: B

Watch Video Solution

170. The compound that has the higest ionic character associated with the X-Cl bond is :

A. PCl_5

B. BCl_3

 $\mathsf{C}.\,CCl_4$

D. $SiCl_4$

Answer: D

Watch Video Solution

171. The bond having the highest bond energy is :

A. C=C

 $\operatorname{B.} C = S$

 $\operatorname{C.} C = O$

 $\operatorname{D.} P = N$

Answer: C

172. Which of the following species in neither hypervalent nor hypovalent ? A. ClO_4^- B. BF_3 $\mathsf{C.}\,SO_4^{2\,-}$ D. CO_3^{2-} **Answer: D Watch Video Solution**

173. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons ?

- A. $BF_4^{\,-}$
- B. NCl_3
- $\mathsf{C}.\,PCl_4^+$

Answer: D

Watch Video Solution

174. Which atom can have more than eight valence electrons when it is forming covalent bonds ?

A. H

B. N

C. F

D. Cl

Answer: D

175. Which bond is expected to be the least polar?	
A. O-F	
B. P-F	
C. Si-N	
D. B-F	
Answer: A	
Watch Video Solution	
176. Which set contains only covalently bonded molecules ?	
A. $BCl_3,SiCl_4,PCl_3$	
B. NH_4Br,N_2H_4,HBr	
C. I_2,H_2S,NaI	
D. Al,O_3,As_4	

Answer: A

Watch Video Solution

177. Which molecule does not exist?

- A. OF_2
- B. OF_4
- $\mathsf{C}.\,SF_2$
- D. SF_4

Answer: B

Watch Video Solution

178. Solid NaCl is a bad conductor of electricity because:

A. in solid NaCl there are no ions

- B. solid NaCl is covalent
- C. in solid NaCl there is no mobility of ions
- D. in solid NaCl there are no electrons

Answer: C

Watch Video Solution

- **179.** An ionic compound $A^{\,+}B^{\,-}$ is most likely to be formed when :
 - A. the ionization energy of A high and electron affinity of B is low
 - B. the ionization energy of A is low and electron affinity of B is high
 - C. both, the ionization energy of A and electron affinity of B are high
 - D. both, the ionization energy of A and electron affinity of B are low

Answer: B

180. A compound contains three elements A, B and C, if the oxidation of

A= +2, B=+5 and C= -2, the possible formula of the compound is :

- A. $A_3(B_4C)_2$
- $\mathsf{B.}\,A_3(BC_4)_2$
- $\mathsf{C.}\,A_2(BC_3)_2$
- D. ABC_2

Answer: B

Watch Video Solution

181. Which pair of atoms form strongest ionic bond?

- A. Al and As
- B. Al and N
- C. Al and Se
- D. Al and O

Answer: D

Watch Video Solution

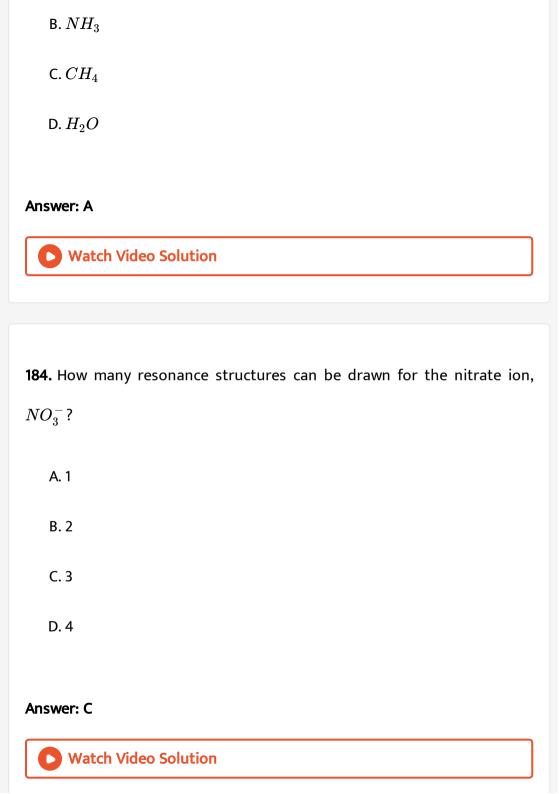
182. The corrrect order of C-O bond length among $CO,\,CO_3^{2-},\,CO_2$ is

A.
$$CO_3^{2-} < CO_2 < CO$$

$${\rm B.}\, CO_2 < CO_3^{2\,-} < CO$$

$$\mathsf{C.}\,CO < CO_3^{2\,-} < CO_2$$

$${\rm D.}\, CO < CO_2 < CO_3^{2\,-}$$


Answer: A

Watch Video Solution

183. Resonance structures can be written for .

A. O_3

185. Among given species identify the isostructural pairs :

- A. $[NF_3 \text{ and } BF_3]$
- B. $\left[BF_4^{-} \text{ and } NH_4^{+}\right]$
- C. $[BCl_3 \text{ and } BrCl_3]$
- D. $\left[NH_3 \text{ and } NO_3^-\right]$

Answer: B

Watch Video Solution

186. 0.01 mole H_3PO_x is completely neutralised by 0.56 gram of KOH hence :

- A. x=3 and given acid is dibasic
- B. x=2 and given acid is monobasic
- C. x=3 and given acid is monobasic

D. x=4 and given acid forms three series of salt

Answer: B

Watch Video Solution

- 187. Phosphorus pentachloride in the solid exists as:
 - A. PCl_5
 - $\operatorname{B.}\operatorname{PCl}_{4}^{+}\operatorname{Cl}^{-}$
 - $\operatorname{C.}\operatorname{PCl}_4^+\operatorname{PCl}_6^-$
 - D. PCl_5 . Cl_2

Answer: C

Watch Video Solution

188. The ratio of $\sigma-$ bond and $\pi-$ bond in tetracryano ethylene is :

A. 2:1 B. 1:1 C. 1:2 D. none of these **Answer: B** Watch Video Solution **189.** The bonds present in $N_2 O_5$ are . A. only ionic B. only covalent C. covalent and co-ordinate D. covalent and ionic **Answer: C** Watch Video Solution

190. The pair of species with similar shape is

- A. PCl_3, NH_3
- B. CF_4 , SF_4
- $\mathsf{C}.\,PbCl_2,\,CO_2$
- D. PF_5, IF_5

Answer: A

Watch Video Solution

191. Which of the following statements is correct in the context of the allene molecule, C_3H_4 ?

- A. The central carbon is sp hybridized
- B. The terminal carbon atoms are sp^2 hybridized

C. The planes containing the CH_2 groups are mutually perpendicular to permit the formations two separate $\pi\text{-bonds}$

Answer: D

D. all are correct

Watch Video Solution

192. Number of S-S bond is $H_2S_nO_6$:

A. n

B. (n-1)

C. (n-2)

D. (n+1)

Answer: B

193. How many S-S bonds, S-O-S bonds, σ -bonds, π -bonds are present in trimer of sulphur trioxide ?

194. Number of identical Cr-O bonds in dichromate ion $Cr_2O_7^{2-}$ is :

- A. 0,3,16,2
- B. 0,3,12,6
- C. 0,6,12,16
- D. 0,4,12,6

Answer: B

- - A. 4
 - B. 6
 - C. 7
 - D. 8

Answer: B

Watch Video Solution

- **195.** The nodal plane in the π -bond of ethene is located in:
 - A. the molecular plane
 - B. a plane parallel to the molecular plane
 - C. a plane perpendicular to the molecular plane which bisects the
 - carbon-carbon σ bond at right angle
 - D. a plane perpendicular to the molecular plane which contains the carbon-carbon bond

Answer: A

A.
$$NO_3^-$$
 , $CO_3^{2\,-}$

B. $SO_3,\,NO_3^-$

 $\mathsf{C.}\,ClO_3^-\,,\,CO_3^{2\,-}$

D. CO_3^{2-} , ClO_3^-

Answer: A

Watch Video Solution

197. In the electronic structure of H_2SO_4 , the total number of unshared electrons is

A. 20

B. 16

C. 12

D. 8

Answer: B

198. Which of the following xenon compound has the same number of lone pairs as in I_3^- ?

- A. XeO_4
- B. XeF_4
- C. XeF_2
- D. XeO_3

Answer: C

Watch Video Solution

199. The shape of $XeF_3^{\,+}$ is :

A. Trigonal planar

B. Pyramidal

C. Bent T-shpae	
D. See-saw	
Answer: C	
Watch Video Solution	
200. Which of the following shape are not possible for possible value of n in XeF_n molecule ?	
A. Linear	
B. Square planar	
C. Trigonal planar	
D. Capped octahedral	
Answer: C	
Watch Video Solution	

A. ICl_2^-

B. C_2H_2

 $\mathsf{C}.\,XeF_2$

D. $GeCl_2$

Answer: D

Watch Video Solution

202. Which statement is true about the most stable Lewis structure for

 CS_2 ?

- A. There are no lone pairs in molecule
- B. All bonds are double bonds
- C. The central atom does not have an octet of electrons

D. A sulfur atom must be the central atom for the structure to be

stable

Answer: B

Watch Video Solution

203. SbF_5 reacts with XeF_4 and XeF_6 to form ionic compounds

 $\left[XeF_{3}^{\,+}
ight]\left[SbF_{6}^{\,-}
ight] ext{ and } \left[XeF_{5}^{\,+}
ight]\left[SbF_{6}^{\,-}\,$ `then $mo \leq c \underline{a} r s hape of$

 $[XeF_(3)^(+)]ion \text{ and } [XeF_(5)^(+)] ion respectively:$

- A. Square pyramidal, T-shpaed
- B. Bent-T-shape, square pyramidal
- C. See-saw, square pyramidal
- D. Square pyramidal, see -saw

Answer: B

204. In which of the following species maximum atom can lie in same plane?

- A. XeF_2O_2
- $\mathsf{B.}\,PCl_5$
- C. $AsH_4^{\ +}$
- D. XeF_4

Answer: D

Watch Video Solution

205. Correct statement regarding molecules SF_4 , CF_4 and XeF_4 are :

- A. 2,0 and 1 lone pairs of central atom respectively
- B. 1,0 and 1 lone pairs of central atom respectively
- C. 0,0 and 2 lone pairs of central atom respectively

D. 1,0 and 2 lone pairs of central atom respectively

Answer: D

Watch Video Solution

206. The geometrical arrangement of orbitals and shape of I_3^- are respectively:

- A. trigonal bipyramidal geometry, linear shape
- B. hexagonal geometry, T-shape
- C. triangular planar geometry, triangular shape
- D. tetrahedral geometry, pyramidal shape

Answer: A

- **207.** Which of the following statements is incorrect for PCl_5 ?
 - A. Its three P-Cl bond lengths are equal
 - B. It involves sp^3 d hybridization
 - C. It has an regular geometry
 - D. Its shpae is trigonal bipyramidal

Answer: C

- **208.** Molecular shapes of $SF_4,\,CF_4,\,XeF_4$ are
 - A. the same with 2,0 and 1 lone pair of electrons respectively
 - B. the same with 1,1 and 1 lone pair of electrons respectively
 - C. the same with 0m1 and 2 lone pair of electrons respectively
 - D. the same with 1,0 and 2 lone pair of electrons respectively

Answer: D

Watch Video Solution

209. The structure of the noble gas compound XeF_4 is :

- A. square planar
- B. distorted tetrahedral
- C. tetrahedral
- D. octahedral

Answer: A

Watch Video Solution

210. The molecule exhibiting maximum number of non-bonding electron pairs (l.p.) around the central atom is :

Answer: C Watch Video Solution 211. Which is the following pairs of species have identical shapes? A. NO_2^+ and $NO_2^ B. PCl_5 \text{ and } BrF_5$ $\mathsf{C}.\,XeF_4$ and ICl_4^- D. $TeCl_4$ and XeO_4 **Answer: C Watch Video Solution**

A. $XeOF_4$

B. XeO_2F_2

 $\mathsf{C}.\,XeF_3^{\,+}$

D. XeO_3

212. The shapes of XeF_4 , XeF_5^- and $SnCl_2$ are :

- A. octahedral, trigonal bipyramidal and bent
- B. square pyramidal, pentagonal planar and linear
- C. square planar, pentagonal planar and angular
- D. see-saw, T-shaped and linear

Answer: C

Watch Video Solution

213. Which is not correctly matched?

- A. XeO_3 -Trigonal bipyramidal
- B. ClF_3 bent T-shape
- C. $XeOF_4$ Square pyramidal

D. XeF_2 - Linear shape

Answer: A

Watch Video Solution

214. Amongst NO_3^- , AsO_3^{3-} , CO_3^{2-} , ClO_3^- , SO_3^{2-} and BO_3^{3-} , the non-planar species are :

A.
$$CO_3^{2-}, SO_3^{2-}, BO_3^{3-}$$

$${\rm B.}\, AsO_3^{3\,-}\,, ClO_3^{-}\,, SO_3^{2\,-}$$

$$\mathsf{C.}\,NO_3^-,CO_3^{2-},BO_3^{3-}$$

D.
$$SO_3^{2-}, NO_3^-, BO_3^{3-}$$

Answer: B

215. The geometry of ammonia molecule can be best described as:

A. Nitrogen at one vetex of a regular tetrahedron, the other three vertices being occupied by three hydrogens

B. Nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens

C. Nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens

D. Nitrogen at the junction of a T, three open ends being occupied by three hydrogens

Answer: B

Watch Video Solution

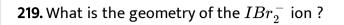
216. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?

- A. Trigonal planar
- B. See-saw
- C. Linear
- D. T-shpaed

Answer: A

Watch Video Solution

- **217.** Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is falese:
- $\left(I\right)$ The order of repulsion between different pair of electron is


$$I_p - I_p > I_p - b_p > b_p - b_p$$

be explained on the basis of VSEPR theory

- (II) In general, as the number o flone pair of electron on central atom
- increases, value of bond angle from normal bond angle also increases
- (III) The number of lone pair on O in H_2O is 2 while on N in NH_3 is 1
- $\left(IV
 ight)$ The structures of xenon fluorides and xenon oxyfluorides could not

B. TFTF C. TFT T D. TF F F **Answer: B** Watch Video Solution 218. Which species is planar? A. $CO_3^{2\,-}$ B. $SO_3^{2\,-}$ $\operatorname{C.}ClO_3^ \mathrm{D.}\,BF_4^{\,-}$ **Answer: A** Watch Video Solution

A. T T TF

- A. Linear
- B. Bent shape with bond angle of about 90°
- C. Bent shape with bond angle of about 109°
- D. Bent shape with bond angle of about 120°

Answer: A

Watch Video Solution

220. What is the shape of the ClF_3 molecule?

- A. Trigonal planar
- B. Trigonal pyramidal
- C. T-shaped

D. Tetrahedral	
Answer: C	
Watch Video Solution	
221. Which species below has the same general shape as NH_3 ?	
A. SO_3^{2-}	

 $\operatorname{B.}CO_3^{2\,-}$

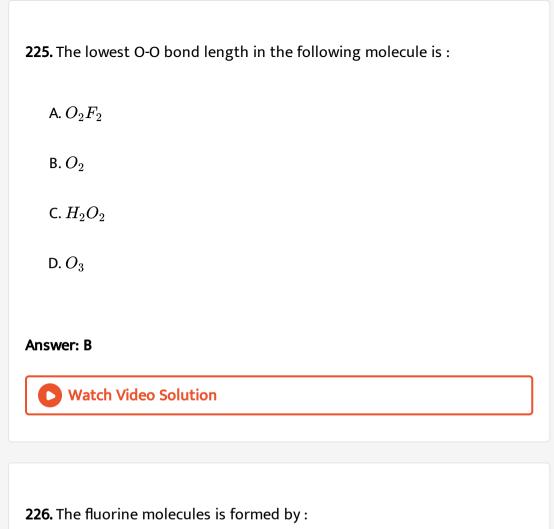
 $\mathsf{C.}\,NO_3^-$

D. SO_3

Answer: A

222. According to VSEPR theory, in which species do all the atoms lie in the same plane ?

- $1. \ CH_3^{\ +} \qquad \ 2. \ CH_3^{\ -}$
 - A. 1 only
 - B. 2 only
 - C. both 1 and 2
 - D. neither 1 nor 2


Answer: A

223. Which of the following species / molecules does not have same number of bond pairs and lone pairs ?

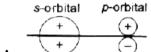
- A. OCN^-
- B. H_2O

C. $C_2H_2Cl_2$
D. O_3
Answer: D
Watch Video Solution
224. Least stable hydride is
A. stannane
B. silane
C. plumbane
D. germane
Answer: C
Watch Video Solution

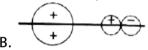
A. p-p orbitals (sideways overlap)

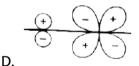
C. sp-sp orbitals

D. s-s orbitals


B. p-p orbitals (end -to -end overlap)

Answer: B




Watch Video Solution

227. Which of the following leads to bonding?

s-orbital p-orbital

Answer: B

228. Which of the following overlaps is incorrect (assuming Z-axis is internucler axis)?

$$(A)2P_y+2p_y
ightarrow\pi$$
- Bond formation $(B)2p_x+2p_x
ightarrow\sigma$ - Bond formation

(C) $3d_{xy}+3d_{xy}
ightarrow\pi$ - Bond formation $(D)2s+2p_y
ightarrow\pi$ - Bond

(E) $3d_{xy}+3d_{xy}
ightarrow \delta$ - Bond formation

C. B,E

B. C,F

D. B,C,D

Answer: D

?

Watch Video Solution

229. Which of the following overlapping is not present in XeO_3 molecule

A.
$$sp^3+p_x$$

B.
$$sp^3+p_y$$

C.
$$d_{xz}+p_x$$

D.
$$sp^3+s$$

Answer: D

Watch Video Solution

230. How many sigma bonds are in a molecule of diethyl ether, $C_2H_5OC_2H_5$?

- A. 14
- B. 12

C. 8

D. 16

Answer: A

231. The lattice energies of KF, KCl, KBr and KI follow the order:

A.
$$KF > KCl > KBr > KI$$

$$\mathsf{C}.\,KF > KCl > KI > KBr$$

D.
$$KI > KBr > KF > KCl$$

Answer: A

Watch Video Solution

232. Which set of compounds in the following pair of ionic compounds

has the higher lattice energy?

(i)
$$KCl$$
 or MgO (ii) LiF or $LiBr$ (iii) Mg_3N_2 or $NaCl$

A. KCl, LiBr, Mg_2N_2

B. MgO, LiBr, Mg_3N_2

C. MgO, LiF, NaCl

D. MgO, LiF, Mg_3N_2

Answer: D

Watch Video Solution

233. The incorrect order of lattice energy is:

A. $AlF_3 > MgF_2$

B. $Li_3N > Li_2O$

C. NaCl > LiF

D. TiC > ScN

Answer: C

234. Which ionic compound has the largest amount of lattice energy?
A. NaF
B. AlF_3
C.AlN
D. MgF_2
Answer: C
Watch Video Solution
235. Which of the following compounds has the smallest bond angle?
235. Which of the following compounds has the smallest bond angle? A. OH_2
A. OH_2
A. OH_2 B. SH_2

Answer: B

Watch Video Solution

236. Maximum bond angle is present in case of

- A. BBr_3
- B. BCl_3
- $\mathsf{C}.\,BF_3$
- D. none of these

Answer: D

Watch Video Solution

237. The correct order of H-M-H bonds angle is :

A. $NH_3 < PH_3 < SbH_3 < BiH_3$

B. $AsH_3 < SbH_3 < PH_3 < NH_3$

 $\mathsf{C.}\,NH_3 < PH_3 < BiH_3 < SbH_3$

D. $BiH_3 < SbH_3 < AsH_3 < PH_3$

Answer: D

Watch Video Solution

follow the order

A. $BF_3 < PF_3 < ClF_3$

238. The correct increasing bound angle among BF_3 , PF_3 and CIF_3

 $B. \, PF_3 < BF_3 < ClF_3$

C. $ClF_3 < PF_3 < BF_3$

 $\mathsf{D.}\,BF_3=PF_3=ClF_3$

Answer: C

239. Among the following species, the least angle around the central atom is in :

- A. O_3
- $\mathrm{B.}\,I_3^{\,-}$
- $\mathsf{C.}\,NO_2^-$
- D. PH_3

Answer: D

240. The bond angles of $NH_3,\,NH_4^{\,+}$ and $NH_2^{\,-}$ are in the order

- A. $NH_2^{\,-}>NH_3>NH_4^{\,+}$
- B. $NH_4^{\,+} > NH_3 > NH_2^{\,-}$
- C. $NH_3>NH_2^{\,-}>NH_4^{\,+}$

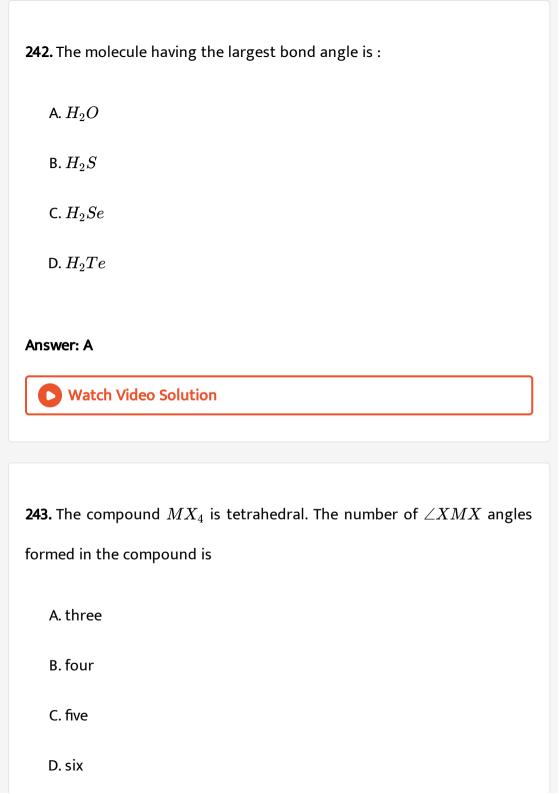
D.
$$NH_3>N{H_4^{\,+}}>N{H_2^{\,-}}$$

Answer: B

Watch Video Solution

241. The H-C-H bond angle in $CH_4is109.5^\circ$, due to lone pair repulsion, the H-O-H angle in H_2O will :

A. remain the same


B. increase

C. decrease

D. become 180°

Answer: C

Answer: D

Watch Video Solution

244. The O-N-O bond angle in the nitrite ion, NO_2^- , is closest to :

- A. N_2O
- $\mathrm{B.}\,NO_2^{\,+}$
- $\mathsf{C.}\,NO_2^-$
- D. NO_3^-

Answer: B

?

Watch Video Solution

245. Which of the following is the correct order for increasing bond angle

A. $Nh_3 < PH_3 < AsH_3 < SbH_3$

 $\mathsf{B.}\,H_2O < OF_2 < Cl_2O$

C. $H_2 Te^+ < H_3 Se^+ < H_3 S^+ < H_3 O^+$

D. $BF_3 < BCl_3 < BBr_3 < BI_3$

Answer: C

View Text Solution

1. O-N-O bond angle is maximum in :

A. N_2O

 $B.NO_2^+$

 $\mathsf{C}.\,NO_2^-$

D. NO_3^-

Answer: B

Watch Video Solution

Level 2

- 1. The incorrect order of boiling point is:
 - A. $H_2O>CH_3OH$
 - $\mathsf{B.}\,N(CH_3)_3>NH(CH_3)_2$
 - $\mathsf{C.}\,H_3PO_4>Me_3PO_4$
 - D. $CH_3N_3>HN_3$

Answer: B,D

Watch Video Solution

2. Iodine molecules are held in the crystals lattice by ____

A. London forces B. dipole-dipole interactions C. covalent bonds D. coulombic force Answer: A **Watch Video Solution 3.** At room temperature, CO_2 is a gas while SiO_2 is a solid because A. CO_2 is a linear molecule, while SiO_2 is angular B. van der Waals's forces are very strong in SiO_2 C. CO_2 is covalent, while SiO_2 is ionic D. Si cannot form stable bonds with O, hence Si has to form a 3D lattice

Answer: D

4. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom,

$$sp < sp^2 < sp^3$$

- (i) Electrongativity (ii) Bond angle between same hybrid orbitals
- (iii) Size (iv) Energy level

A. ii, iii and iv

B. iii, iv

C. ii and iv

D. I, ii, iii and iv

Answer: B

- **5.** Which is correct statement?
- As the s-character of a hybrid orbital decreases
- (I) The bond angle decreases (II) The bond strength increases
- (III) The bond length increases (IV) Size of orbitals increases
 - A. I, III and IV
 - B. II, III and IV
 - C. I and II
 - D. all are correct

Answer: A

- **6.** Which of the following is incorrectly match?
 - A. $\dfrac{ ext{Hybridisation}}{sp^3d}$ Geometry Orbitals use $s+p_x+p_y+p_s+d_{s^2}$

Orbitals use Hybridisation Geometry sp^3d^3 Pentagonal bipyramidal $s + p_x + p_y + p_s + d_{x^2}$

C.

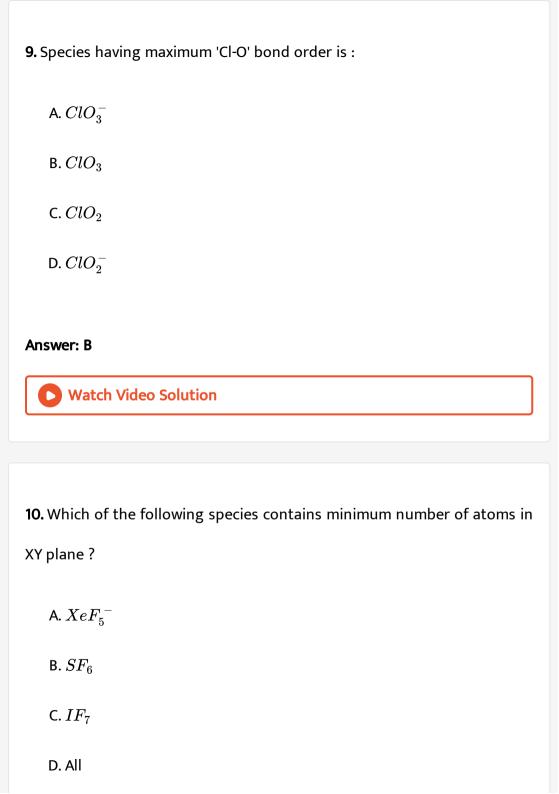
Hybridisation Geometry Orbitals use sp^3d^2 Capped octahedral $s + p_x + p_y + p_s + d_{x^2-y^2} + d$ Orbitals use Hybridisation Geometry D. sp^3

Tetrahedral $s + p_x + p_y + p_s$

Answer: C

- **7.** The ionic bond X^+Y^- are formed when :
- (I) electron affinity of Y is high (II) ionization energy of X is low
- (III) lattice energy of XY is high (IV) lattice energy of XY is low
- Choose the correct code:
- A. I and II
 - B. I and III
 - C. I, II and III

Answer: C



Watch Video Solution

- **8.** In the Born-Haber cycle for the formation of solid common salt (NaCl), the largest contribution comes from :
 - A. the low ionization potential of Na
 - B. the high electron affinity of Cl
 - C. the low ΔH_{vap} of Na(s)
 - D. the lattice energy

Answer: D

Answer: B

Watch Video Solution

11. The molecule ML_x is planar with 7 pairs of electrons around M in the valence shell. The value of x is :

- A. 6
- B. 5
- C. 4
- D. 3

Answer: B

Watch Video Solution

12. Choose the correct option for the collowing molecule in view of chemical bonding :

$$_{CI}^{H}$$
 c=c=c< $_{CI}^{CI}$

A. non-planar

B.
$$\mu \neq 0$$

C. both a and b

D.
$$\mu=0$$

Answer: D

- **13.** Which of the following statement is correct about I_3^+ and I_3^- molecular ions ?
 - A. Number of lone pairs at central atoms are same in both molecular ions
 - B. Hybridization of central atoms in both ions are same

C. Both are polar species
D. Both are planar species
Answer: D
Watch Video Solution
14. In which of the following molecular shape d_{z^2} orbital must not be
involved in bonding ?
A. Pentagonal planar B. Trigonal planar
C. Linear
D. Square planar
Answer: B
Watch Video Solution

15. The correct statement regarding SO_2 molecule is :

A. two $p\pi-d\pi$ bonds

B. molecule has 2 lone pair, 2σ bonds and 2π bonds

C. two $p\pi-p\pi$ bonds

D. one $p\pi-p\pi$ and one $p\pi-d\pi$ bond

Answer: D

Watch Video Solution

16. A molecule XY_2 contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is

A. square pyramidal

B. linear

C. Trigonal planar

D. unpredictable

Answer: C

Watch Video Solution

17. In which of the following pairs, both the species have the same hybridisation?

 $SF_4, XeF_4 = (II)I_3^-, XeF_2 = (III)ICI_4^-, SiCl_4 = (IV)ClO_3^-, PO_4^3$

(I)

A. I,II

B. II, III

C. II, IV

D. I,II,III

Answer: C

18. Which of the following possess two lone pair of electrons on the central atom and square planar in shape ?

- (I) SF_4 $(II)XeO_4$ $(III)XeF_4$ $(IV)ICl_4^-$
 - A. I,III
 - B. II,IV
 - C. III, IV
 - D. All

Answer: C

19. Select pair of compounds in which both have different hybridization but have same molecular geometry:

- A. BF_3 , BrF_3
- $\operatorname{B.}ICl_{2}^{\Theta},BeCl_{2}$

 $\mathsf{C}.\,BCl_3,\,PCl_3$

 $\mathsf{D.}\,PCl_3,\,NCl_3$

Answer: B

Watch Video Solution

20. The species having no $p\pi-p\pi$ bond but its bond order equal to that of O_2^-

A. ClO_3^-

 ${\sf B.}\,PO_4^{3\,-}$

 $\mathsf{C.}\,SO_4^{2\,-}$

D. XeO_3

Answer: D

21. Which of the following fact is directly explained by the statement oxygen is a smaller atom than sulphur ?

A. H_2O boils at a much higher temperature than H_2S

B. $H_2{\cal O}$ undergoes intermolecular hydrogen bonding

 $\operatorname{C.}H_2O$ is liquid and H_2S is gas at room temperature

D. S-H bond is longer than O-H bond

Answer: D

Watch Video Solution

22. Which of the following compound has maximum "C-C" single bond length?

A. CH_2CHCCH

B. HC C C CH

C. CH_3CHCH_2

D. $CH_2CHCHCH_2$

Answer: C

Watch Video Solution

23. If two different non-axial d-orbitals having 'xz' nodal plane form π -bond by overlapping each other, then internuclear axis will be :

A. x

В. у

C. z

D. They don't form π -bond

Answer: D

24. Assuming pure 2s and 2p orbitals of carbon are used in forming CH_4 molecule, which of the following statement is false ?

A. Three C-H bonds will be at right angle

B. One C-H bond will be weaker than other three C-H bonds

C. The shape of molecule will be tetrahedral

D. The angle of C-H bond formed by s-s overlapping will be uncertain with respect to other three bonds.

Answer: C

Watch Video Solution

25. The strength of bonds by 2s -2s, 2p2p and 2p-2s overlap has the order

A.
$$s-s>p-p>p-s$$

B.
$$s-s>p-p$$

$$\mathsf{C.}\ p-p>p-s>s-s$$

D.
$$p - p > s - s > p - s$$

Answer: C

Watch Video Solution

- **26.** Which of the following statement is not correct for sigma and pibonds formed between two carbon atoms ?
 - A. Sigma-bond is stronger than a π -bond
 - B. Bond energies of sigma and π -bonds are of the order of 264 kJ /
 - mol and 347 kJ / mol
 - C. Free rotation of surrounding atoms about a sigma -bond is allowed
 - but not in case of a π -bond
 - D. Sigma-bond determines the direction between carbon atoms but a π -bond has no primary effect in this regard

Answer: B

27. Assuming the bond direction to the z-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding?

(I) s-orbital of A and p_x orbital of B (II) s-orbital of A and p_z orbital of B

(III) p_{u} -orbital of A and p_{z} orbital of B (IV) s-orbital of both (A) and (B)

A. I and IV

B. I and II

C. III and IV

D. II and IV

Answer: D

Watch Video Solution

28. Which of the following orbital (s) cannot form δ -bond ?

A. d_{xy}

 $B.d_{z^2}$

C. $d_{x^2-y^2}$

D. d_{yz}

Answer: B

Watch Video Solution

29. Incorrect statement is:

A. $AlF_3 > MgO > MgF_2$: Lattice energy

B. Li>Na>Al>Mg : Electron afinity

C. $SF_6 > PF_5 > SiF_4$: Lewis acidic character

D. $SiCl_4 > SiBr_4 > SiI_4$: Decreasing order of electronegativity of Si

Answer: C

30. Which of the following set contains species having same angle around the central atom ?

- A. SF_4 , CH_4 , NH_3
- B. NF_3 , BCl_3 , NH_3
- $\mathsf{C}.\,BF_3,\,NF_3,\,AlCl_3$
- D. BF_3 , BCl_3 , BBr_3

Answer: D

Watch Video Solution

31. Which of the following compound has the smallest (X-A-X) bond angle in each series repectively.

- $(A) \ OsF_2, OsCl_2, OsBr_2$
- $(B)\ SbCl_3, SbBr_3, SbI_3$
- $(C) \ Pl_3, AsI_3, SbI_3$

A. OSF_2 , $SbCl_3$ and PI_3

 $B. OSBr_2, SbI_3 \text{ and } PI_3$

D. OSF_2 , $SbCl_3$ and SbI_3

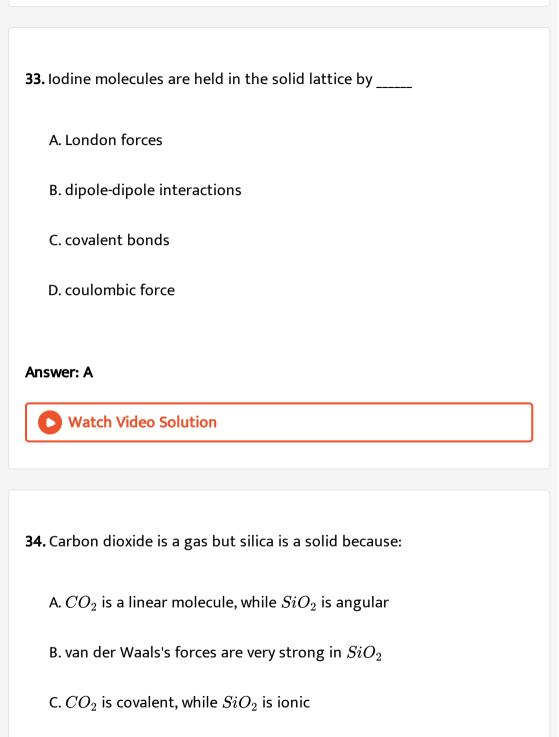
 $C. OSF_2, SbI_3 \text{ and } PI_3$

Watch Video Solution

Answer: D

A. $H_2O > CH_3OH$

32. The incorrect order of boiling point is:


C. $H_3PO_4 > Mg_3PO_4$

B. $N(CH_3)_3 > NH(CH_3)_2$

D. $CH_3N_3 > HN_3$

Answer: D

D. Si cannot form stable bonds with O, hence Si has to form a 3D

Answer: D

lattice

Watch Video Solution

35. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom, $sp < sp^2 < sp^3$

(i) Electrongativity (ii) Bond angle between same hybrid orbitals

(iii) Size (iv) Energy level

A. ii, iii and iv

B. iii, iv

C. ii and iv

D. I, ii, iii and iv

Answer: B

36. Which is correct statement?

As the s-character of a hybrid orbital decreases

(I) The bond angle decreases (II) The bond strength increases

(III) The bond length increases (IV) Size of orbitals increases

A. I, III and IV

B. II, III and IV

C. I and II

D. all are correct

Answer: A

Watch Video Solution

37. Which of the following is incorrectly matched?

Answer: C Watch Video Solution

Hybridisation Geometry D. Tetrahedral $s + p_x + p_y + p_s$ sp^3

 sp^3d

 sp^3d^3

 sp^3d^2

B.

C.

Hybridisation Geometry

Hybridisation Geometry

Hybridisation Geometry

Capped octahedral $s + p_x + p_y + p_s + d_{x^2 - y^2} + d$

Orbitals use

Trigonal bipyramidal $s + p_x + p_y + p_s + d_{s^2}$

Orbitals use

Pentagonal bipyramidal $s + p_x + p_y + p_s + d_{x^2}$

Orbitals use

Orbitals use

38. The ionic bond X^+Y^- are formed when :

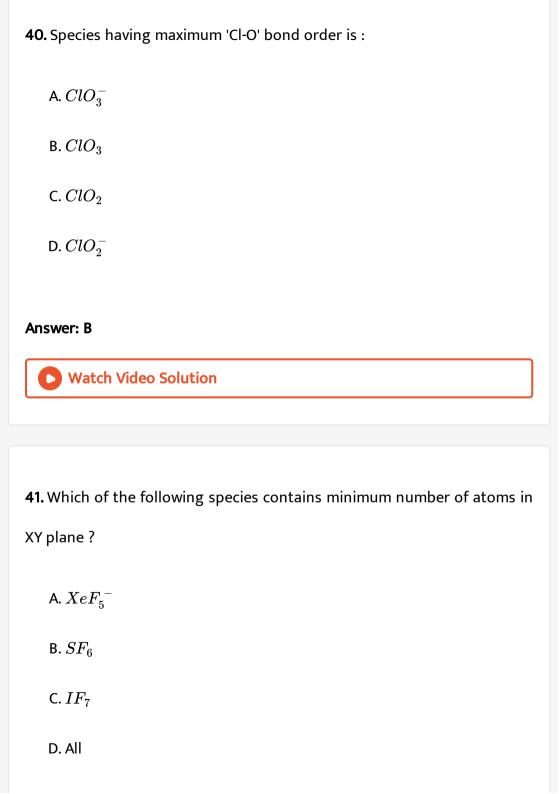
(I) electron affinity of Y is high (II) ionization energy of X is low

(III) lattice energy of XY is high (IV) lattice energy of XY is low

A. I and II

B. I and III

Choose the correct code:


C. I, II and III
D. All
Answer: C
Watch Video Solution
39. In the Born-Haber cycle for the fo
the largest contribution comes from

39. In the Born-Haber cycle for the formation of solid common salt (NaCl), the largest contribution comes from :

- A. the low ionization potential of Na
- B. the high electron affinity of Cl
- C. the low $\Delta H_{
 m vap}$ of Na(s)
- D. the lattice energy

Answer: D

Answer: B

Watch Video Solution

42. The molecule ML_x is planar with 7 pairs of electrons around M in the valence shell. The value of x is :

A. 6

B. 5

C. 4

D. 3

Answer: B

Watch Video Solution

43. Choose the correct option for the collowing molecule in view of chemical bonding :

$$\frac{H}{CI}$$
 c=c=c< $\frac{CI}{H}$

A. non-planar

B.
$$\mu \neq 0$$

C. both a and b

D.
$$\mu=0$$

Answer: D

ions

Watch Video Solution

44. Which of the following statement is correct about I_3^+ and I_3^- molecular ions ?

A. Number of lone pairs at central atoms are same in both molecular

B. Hybridization of central atoms in both ions are same

C. Both are polar species
D. Both are planar species
Answer: D
Watch Video Solution
45. In which of the following molecular shape d_{z^2} orbital must not be
involved in bonding ?
A. Pentagonal planar
B. Trigonal planar
C. Linear
D. Square planar
Answer: B
Watch Video Solution

46. The correct statement regarding SO_2 molecule is :

A. two $p\pi-d\pi$ bonds

B. molecule has 2 lone pair, 2σ bonds and 2π bonds

C. two $p\pi-p\pi$ bonds

D. one $p\pi-p\pi$ and one $p\pi-d\pi$ bond

Answer: D

Watch Video Solution

47. A molecule XY_2 contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is

A. square pyramidal

B. linear

C. Trigonal planar

D. unpredictable

Answer: C

Watch Video Solution

48. In which of the following pairs, both the species have the same hybridisation?

 $SF_4, XeF_4 = (II)I_3^-, XeF_2 = (III)ICI_4^-, SiCl_4 = (IV)ClO_3^-, PO_4^3$

(I)

A. I,II

B. II, III C. II, IV

D. I,II,III

Answer: C

49. Which of the following possess two lone pair of electrons on the central atom and square planar in shape ?

- (I) SF_4 $(II)XeO_4$ $(III)XeF_4$ $(IV)ICl_4^-$
 - A. I,III
 - B. II,IV
 - C. III, IV
 - D. All

Answer: C

50. Select pair of compounds in which both have different hybridization but have same molecular geometry :

- A. BF_3 , BrF_3
- $\operatorname{B.}ICl_{2}^{\Theta},BeCl_{2}$

 $\mathsf{C}.\,BCl_3,\,PCl_3$

 $\mathsf{D}.\,PCl_3,\,NCl_3$

Answer: B

Watch Video Solution

51. The species having no $p\pi-p\pi$ bond but its bond order equal to that

of O_2^-

A. ClO_3^-

 ${\sf B.}\,PO_4^{3\,-}$

 $\mathsf{C.}\,SO_4^{2\,-}$

 $\operatorname{D.}XeO_3$

Answer: D

52. Which of the following fact is directly explained by the statement oxygen is a smaller atom than sulphur ?

- A. H_2O boils at a much higher temperature than H_2S
- B. $H_2{\cal O}$ undergoes intermolecular hydrogen bonding
- ${\sf C.}\ H_2O$ is liquid and H_2S is gas at room temperature
- D. S-H bond is longer than O-H bond

Answer: D

Watch Video Solution

53. Which of the following compound has maximum "C-C" single bond length?

A. CH_2CHCCH

B. HC C C CH

C. CH_3CHCH_2

D. $CH_2CHCHCH_2$

Answer: C

Watch Video Solution

54. If two different non-axial d-orbitals having 'xz' nodal plane form π -bond by overlapping each other, then internuclear axis will be :

A. x

В. у

C. z

D. They don't form π -bond

Answer: D

55. Assuming pure 2s and 2p orbitals of carbon are used in forming CH_4 molecule, which of the following statement is false ?

A. Three C-H bonds will be at right angle

B. One C-H bond will be weaker than other three C-H bonds

C. The shape of molecule will be tetrahedral

D. The angle of C-H bond formed by s-s overlapping will be uncertain with respect to other three bonds.

Answer: C

Watch Video Solution

56. Which of the following is correct order of σ - bond strength ?

I. 2s-2s

II. 2s-2p

III. 2p-2p

IV. 3s-3s

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\, s-s>p-s>p-p$$

$$\mathsf{C.}\ p-p>p-s>s-s$$

$$\mathsf{D}.\, p-p>s-s>p-s$$

Answer: C

Watch Video Solution

57. Which of the following statements in incorrect for sigma and π -bonds formed between two carbon atoms ?

A. Sigma-bond is stronger than a π -bond

B. Bond energies of sigma and π -bonds are of the order of 264 kJ / mol and 347 kJ / mol

C. Free rotation of surrounding atoms about a sigma -bond is allowed

but not in case of a π -bond

D. Sigma-bond determines the direction between carbon atoms but a π -bond has no primary effect in this regard

Answer: B

Watch Video Solution

58. Assuming the bond direction to the z-axis, which of the overlapping of atomic orbitals of two atom (A) and (B) will result in bonding?

(III) p_{y} -orbital of A and p_{z} orbital of B (IV) s-orbital of both (A) and (B)

(I) s-orbital of A and p_x orbital of B (II) s-orbital of A and p_z orbital of B

A. I and IV

C. III and IV

B. I and II

D. II and IV

Answer: D

59. Which of the following orbital can not form π as well as δ -Bond ?

- A. d_{xy}
- $B.d_{z^2}$
- C. $d_{x^2-y^2}$
- D. d_{yz}

Answer: B

Watch Video Solution

60. Incorrect statement is :

- A. $AlF_3>MgO>MgF_2$: Lattice energy
- B. Li>Na>Al>Mg : Electron afinity
- C. $SF_6 > PF_5 > SiF_4$: Lewis acidic character

D. $SiCl_4 > SiBr_4 > SiI_4$: Decreasing order of electronegativity of Si

Answer: C

Watch Video Solution

61. Which of the following set contains species having same angle around the central atom ?

A. SF_4, CH_4, NH_3

B. NF_3 , BCl_3 , NH_3

 $\mathsf{C}.\,BF_3,\,NF_3,\,AlCl_3$

D. BF_3 , BCl_3 , BBr_3

Answer: D

62. Which of the following compound has the smallest bond angle (X-A-X)

in each series respectively?

- (A) OSF_2 $OSCl_2$ $OSBr_2$
- $(B)SbCl_3 \qquad SbBr_3 \qquad SbI_3$
- (C) PI_3 AsI_3 SbI_3
 - A. OSF_2 , $SbCl_3$ and PI_3
 - $B. OSBr_2, SbI_3 \text{ and } PI_3$
 - $C. OSF_2, SbI_3 \text{ and } PI_3$
 - D. OSF_2 , $SbCl_3$ and SbI_3

Answer: D

Watch Video Solution

Level 3 (Passive 1)

Which of the following statement is false?

A. $SbF_4^{\,-}$ and SF_4 are isostructural

B. In IOF_5 the hybridization of central atom is sp^3d^2

C. Double bond(s) in SOF_4 and XeO_3F_2 , is / are occupying equatorial position(s) of their respective geometry

D. none of these

Answer: D

Which of the following does not represent the isostructural pair?

- A. SF_5^- and IF_5
- $B. ClO_2F_3$ and SOF_4
- C. SeF_3^+ and XeO_3^-
- D. None

Answer: D

Select the incorrect statement with respect to SO_2Cl_2 molecule :

A. It gives H_2SO_4 and HCl on hydrolysis at room temperature

B. It has two $d\pi-p\pi$ bonds between S and O bonded atoms

C. It is a polar molecule

D. None

Answer: D

Which of the following statement is false?

A. $SbF_4^{\,-} \;\; {
m and} \;\; SF_4$ are isostructural

B. In IOF_5 the hybridization of central atom is sp^3d^2

C. Double bond(s) in SOF_4 and XeO_3F_2 , is / are occupying equatorial position(s) of their respective geometry

D. none of these

Answer: D

Which of the following does not represent the isostructural pair?

- A. SF_5^- and IF_5
- $B. ClO_2F_3$ and SOF_4
- C. SeF_3^+ and XeO_3
- D. None

Answer: D

Select the incorrect statement with respect to SO_2Cl_2 molecule :

A. It gives H_2SO_4 and HCl on hydrolysis at room temperature

B. It has two $d\pi-p\pi$ bonds between S and O bonded atoms

C. It is a polar molecule

D. None

Answer: D

1. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: Which of the following set of orbitals does not produce nobal plane in xz-plane?

A.
$$d_{yz}+d_{yz}$$

B.
$$d_{xy}+d_{xy}$$

$$\mathsf{C}.\,p_{u}+d_{xu}$$

D. none of these

Answer: D

View Text Solution

2. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-

filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z-axis):

A.
$$p_y+d_{x^2-y^2}$$

B.
$$p_z + d_{uz}$$

$$\mathsf{C}.\,s + d_{xz}$$

D.
$$d_{xy}+d_{xy}$$

Answer: D

3. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond:

If $F_2C_1=C_2$ part of $F_2C_1=C_2=C_3=C_4F_2$ lies in yz-plane, then incorrect statment is :

A. Nodal plane of π -bond between C_1 and C_2 lies in yz-plane, formed by sideways overlapping of p_x -orbitals

B. Nodal plane of π -bond between C_2 and C_3 lies in xz-plane, formed by sideways overlapping of p_y -orbitals

C. Nodal plane of π - bond between C_3 and C_4 lies in yz-plane, formed by sideways overlapping of p_y -orbitals

D. Nodal plane of π -bond between C_2 and C_3 lies in xy-plane, formed by sideways overlapping of p_x - orbitals

Answer: C

4. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-

filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond : Which of the following set of orbitals does not produce nobal plane in xz-plane ?

A.
$$d_{yz}+d_{yz}$$

B.
$$d_{xy}+d_{xy}$$

$$\mathsf{C}.\,p_{u}+d_{xu}$$

D. none of these

Answer: D

5. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond:

The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z-axis):

A.
$$p_y+d_{x^2-y^2}$$

B.
$$p_z + d_{yz}$$

$$\mathsf{C}.\,s + d_{xz}$$

$$\mathsf{D}.\,d_{xy}+d_{xy}$$

Answer: D

View Text Solution

6. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond:

If $F_2C_1=C_2$ part of $F_2C_1=C_2=C_3=C_4F_2$ lies in yz-plane, then incorrect statment is :

A. Nodal plane of π -bond between C_1 and C_2 lies in yz-plane, formed

by sideways overlapping of p_x -orbitals

by sideways overlapping of p_y -orbitals

B. Nodal plane of π -bond between C_2 and C_3 lies in xz-plane, formed by sideways overlapping of p_y -orbitals

C. Nodal plane of π - bond between C_3 and C_4 lies in yz-plane, formed

D. Nodal plane of π -bond between C_2 and C_3 lies in xy-plane, formed by sideways overlapping of p_x - orbitals

Answer: C

Level 3 (Passive 3)

1. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is $\,\leq \,2.5.$

In which of the following option, covalent bond is having maximum s% character?

- A. S-H bond in $H_2 S$
- B. P-H bond in PH_3
- C. N-H bond in NH_3
- D. All have equal s% character

Answer: C

2. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

Select incorrect statement regarding P_4 molecule.

- A. Each P atom is ioined with three P-atoms
- B. P_4 molecule contains total 12 bond angles
- C. Lone pair of each P atom is present in almost pure s-orbital
- D. Lone pair of each P atom present in hybrid orbital

Answer: D

Watch Video Solution

3. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

The hybridisation of atomic orbitals of central atom "Xe" in XeO_4, XeO_2F_2 and $XeOF_4$ respectively.

- A. $sp^3,\,sp^3d^2,\,sp^3d^2$
- $\mathsf{B}.\,sp^3d,\,sp^3d,\,sp^3d^2$

$$\mathsf{C.}\, sp^3, sp^3d^2, sp^3d$$

D.
$$sp^{3}$$
, $sp^{3}d$, $sp^{3}d^{2}$

Answer: D

Watch Video Solution

4. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

In which of the following option, covalent bond is having maximum s% character?

A. S-H bond in H_2S

B. P-H bond in PH_3

C. N-H bond in NH_3

D. All have equal s% character

Answer: C

Watch Video Solution

- 5. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 . Select incorrect statement regarding P_4 molecule.
 - A. Each P atom is ioined with three P-atoms
 - B. P_4 molecule contains total 12 bond angles
 - C. Lone pair of each P atom is present in almost pure s-orbital
 - D. Lone pair of each P atom present in hybrid orbital

Answer: D

6. If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90° , if the substituent's electronegativity value is ≤ 2.5 .

The hybridisation of atomic orbitals of central atom "Xe" in XeO_4, XeO_2F_2 and $XeOF_4$ respectively.

- A. sp^3, sp^3d^2, sp^3d^2
- $\mathsf{B.}\, sp^3d,\, sp^3d,\, sp^3d^2$
- $\mathsf{C.}\, sp^3, sp^3d^2, sp^3d$
- D. sp^3, sp^3d, sp^3d^2

Answer: D

Watch Video Solution

Level 3 (Passive 4)

1. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital combination does not form π -bond ?

- A. $p_x + p_x$ sideways overlapping
- B. $d_{x^2-y^2}+p_y$ sideways overlapping
- C. $d_{xy}+d_{xy}$ sideways overlapping
- D. $d_{yz}+p_y$ sideways overlapping

Answer: B

Watch Video Solution

2. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one

having one unpaired electron with opposite spin.

Which of the following orbital cannot form δ -bond ?

- A. $d_{x^2-y^2}$ orbital
- B. d_{xy} orbital
- C. d_{z^2} orbital
- D. d_{zx} orbital

Answer: C

Watch Video Solution

3. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following combination of orbitals does not from any type of covalent bond (if z-axis is molecular axis)?

A.
$$p_s + p_z$$

B.
$$p_y+p_y$$

$$\mathsf{C}.\,s+p_y$$

$$\mathsf{D}.\,s+s$$

Answer: C

Watch Video Solution

4. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following orbital cannot form δ -bond ?

A.
$$d_{x^2-y^2}$$
 orbital

B.
$$d_{xy}$$
 orbital

C.
$$d_{x^2}$$
 orbital

D. d_{zx} orbital

Answer: C

Watch Video Solution

5. According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

Which of the following combination of orbitals does not from any type of covalent bond (if z-axis is molecular axis)?

A. p_s+p_z

B. $p_y + p_y$

 $\mathsf{C.}\,s + p_y$

 $\mathsf{D}.\,s+s$

Level 3 (Passive 5)

- 1. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

 Select the correct code for the following repulsion orders, according to VSEPR theory:
- (I) lone pair -lone pair > lone pair-bond pair
- (II) lone pair-bond pair > bond pair -bond pair
- (III) lone pair -lone pair > bond pair-bond pair
- (IV) lone pair bond pair > lone pair-lone pair
 - A. I,II and III
 - B. II and IV

C. I,II and IV

D. All

Answer: A

Watch Video Solution

2. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which molecule has both shape and geometry identical?

$$(I)SnCl_2$$
 $(II)NH_3$ $(III)PCl_5$ $(IV)SF_6$

A. I, III and IV

B. II,III and IV

C. III and IV

Answer: C

Watch Video Solution

3. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which is not the electron geometry of covalent molecules?

- A. Pentagonal bipyramidal
- B. Octahedral
- C. Hexagonal
- D. Tetrahedral

Answer: C

4. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Select the correct code for the following repulsion orders, according to VSEPR theory:

- (I) lone pair -lone pair > lone pair-bond pair
- (II) lone pair-bond pair > bond pair -bond pair
- (III) lone pair -lone pair > bond pair-bond pair
- (IV) lone pair bond pair > lone pair-lone pair
 - A. I,II and III
 - B. II and IV
 - C. I,II and IV
 - D. All

Answer: A

5. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm. Which molecule has both shape and geometry identical?

 $(I)SnCl_2$ $(II)NH_3$ $(III)PCl_5$ $(IV)SF_6$

A. I, III and IV

B. II,III and IV

C. III and IV

D. All

Answer: C

6. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Which is not the electron geometry of covalent molecules?

A. Pentagonal bipyramidal

B. Octahedral

C. Hexagonal

D. Tetrahedral

Answer: C

1. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In sp^3d^2 hybridisation, which sets of d-orbitals is involved ?

- A. $d_{x^2-y^2},\, d_{z^2}$
- B. $d_{z^2},\,d_{xy}$
- C. $d_{xy},\,d_{yz}$
- D. $d_{x^2-y^2}, d_{xy}$

Answer: A

- **2.** The d orbitals involved in sp^3d^3 hybridization are ?
 - A. $d_{x^2-y^2}, d_{z^2}, d_{xy}$

B.
$$d_{xy}, d_{yz}, d_{zx}$$

C.
$$d_{x^2-y^2}, d_{xy}, d_{xz}$$

D.
$$d_{x^2}, d_{yz}, d_{zx}$$

Answer: A

Watch Video Solution

3. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Molecule having trigonal bipyramidal geometry and $sp^3{\rm d}$ hybridisation, dorbitals involved is :

- A. d_{xy}
- B. d_{yz}
- C. $d_{x^2-y^2}$

D. d_{z^2}

Answer: D

Watch Video Solution

4. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Which of the following orbitals can not undergo hybridisation amongst themselves.

- (I) 3d, 4s (II) 3d, 4d
- (III) 3d, 4s&4p (IV)3s, 3p&4s
 - A. only II
 - B. II and III
 - C. I, II and IV
 - D. II and IV

Answer: D

Watch Video Solution

5. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In sp^3d^2 hybridisation, which sets of d-orbitals is involved ?

- A. $d_{x^2-y^2},\, d_{s^2}$
- B. d_{z^2}, d_{xy}
- $\mathsf{C}.\,d_{xy},\,d_{yz}$
- D. $d_{x^2-y^2},\,d_{xy}$

Answer: A

6. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

In sp^3d^3 hybridisation, which orbitals are involved ?

- A. $d_{x^2-y^2}, d_{z^2}, d_{xy}$
- B. d_{xy}, d_{yz}, d_{zx}
- C. $d_{x^2-y^2}, d_{xy}, d_{xz}$
- D. d_{x^2}, d_{uz}, d_{zx}

Answer: A

Watch Video Solution

7. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2},\,d_{s^2}$ and $d_{xy},\,d_{zx}$ form two different sets of orbitals and orbitals of appropriate set is involved in the

hybridisation.

Molecule having trigonal bipyramidal geometry and $sp^3{\rm d}$ hybridisation, dorbitals involved is :

A. d_{xy}

B. d_{yz}

C. $d_{x^2-y^2}$

D. d_{z^2}

Answer: D

Watch Video Solution

8. When hybridisation involving d-orbitals are considered then all the five d-orbitals are not degenerate, rather $d_{x^2-y^2}$, d_{s^2} and d_{xy} , d_{zx} form two different sets of orbitals and orbitals of appropriate set is involved in the hybridisation.

Which of the following orbitals can not undergo hybridisation amongst themselves.

C. I, II and IV

D. II and IV

Answer: D

Watch Video Solution

Level 3 (Passive 7)

1. Ionic bond is defined as the electrostatic force of attraction holding the

oppositely charged ions. Ionic compounds are mostly crystalline solid

having high melting and boiling points, electrical conductivity in moleten

state, solubility in water etc. Covalent bond is defined as the force which

binds atoms of same or different elements by mutual sharing of electrons

(I) 3d, 4s (II) 3d, 4d

A. only II

B. II and III

(III) 3d, 4s&4p (IV) 3s, 3p&4s

in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The valence electrons are involved in formation of covalent bonds is /are called:

A. non-bonding electrons

B. lone pairs

C. unshared pairs

D. none of these

Answer: D

Watch Video Solution

2. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which

binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called :

- A. Ionisation energy
- B. Solvation energy
- C. Lattice energy
- D. Hydration energy

Answer: C

Watch Video Solution

3. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten

state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

Which of the following is arranged order of increasing boiling point?

A.
$$H_2O < CCl_4 < CS_2 < CO_2$$

$$\mathsf{B.}\,CO_2 < CS_2 < CCl_4 < H_2O$$

C.
$$CS_2 < H_2O < CO_2 < CCl_4$$

D.
$$CCl_4 < H_2O < CO_2 < CS_2$$

Answer: B

Watch Video Solution

4. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten

state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The valence electrons are involved in formation of covalent bonds is /are called:

A. non-bonding electrons

B. lone pairs

C. unshared pairs

D. none of these

Answer: D

Watch Video Solution

5. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid

having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called :

- A. Ionisation energy
- B. Solvation energy
- C. Lattice energy
- D. Hydration energy

Answer: C

6. Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in moleten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

Which of the following is arranged order of increasing boiling point?

A.
$$H_2O < CCl_4 < CS_2 < CO_2$$

$$\operatorname{B.}CO_2 < CS_2 < CCl_4 < H_2O$$

C.
$$CS_2H_2O < CO_2 < CCl_4$$

D.
$$CCl_4 < H_2O < CO_2 < CS_2$$

Answer: B

Level 3 (Passive 8)

1. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Which of the following ionic compound is having maximum lattice energy

- A. NaF
- B. MgF_2
- $\mathsf{C}.\,AlF_3$
- D. KF

Answer: C

2. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Most hydrated cation is:

- A. $Ce^{4\,+}_{(\,aq\,.\,)}$
- B. $La^{3\,+}_{(\,aq\,.\,)}$
- C. $Ba^{2\,+}_{(\,aq\,.\,)}$
- D. $Cs^+_{(\mathit{aq})}$

Answer: A

Watch Video Solution

3. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved

in water if its hydration energy is more than lattice energy. IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Which of the following ionic compound is having maximum lattice energy

- A. NaF
- B. MqF_2
- $\mathsf{C}.\,AlF_3$
- D.KF

Answer: C

Watch Video Solution

4. When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy . IF hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

Most hydrated cation is:

- A. $Ce_{(aq.)}^{4+}$
- B. $La^{3\,+}_{(\,aq.\,)}$
- C. $Ba^{2\,+}_{(\,aq\,.\,)}$

D. $CS^+_{(aq)}$

Answer: A

Watch Video Solution

Level 3 (Passive 9)

- 1. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types: (i) Sigma bond (σ) (ii) Pi bond (π)
- Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap

about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The correct order of increasing C-O bond length of CO, CO_3^{2-}, CO_2 is :

A.
$$CO_3^{2-} < CO_2 < CO$$

$${\rm B.}\, CO_2 < CO_3^{2-} < CO$$

$${\sf C.}\ CO < CO_3^{2-} < CO_2$$

D.
$$CO < CO_2 < CO_3^{2-}$$

Answer: D

- **2.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic

orbitals overlap sideway then Pi-bond is formed.

Compound having maximum bond angle is:

A. BBr_3

 $\mathsf{B.}\,BCl_3$

 $\mathsf{C.}\,BF_3$

D. none of these

Answer: D

3. A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :

(i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The strength of bonds formed by 2s-2s,2p-2p and 2p-2s overlap has the order:

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\,s-s>p-s>p-p$$

$$\mathsf{C.}\ p-p>p-s>s-s$$

$$\mathsf{D}.\, p-p>s-s>p-s$$

Answer: C

Watch Video Solution

- **4.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic

orbitals overlap sideway then Pi-bond is formed.

The correct order of increasing C-O bond length of CO, CO_3^{2-}, CO_2 is :

A.
$$CO_3^{2-} < CO_2 < CO$$

B.
$$CO_2 < CO_3^{2-} < CO$$

$$\mathsf{C.}\,CO < CO_3^{2\,-} < CO_2$$

D.
$$CO < CO_2 < CO_3^{2-}$$

Answer: D

Watch Video Solution

- **5.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic

orbitals overlap sideway then Pi-bond is formed.

Compound having maximum bond angle is:

- A. BBr_3
- $\operatorname{B.}BCl_3$
- $\mathsf{C.}\,BF_3$
- D. none of these

Answer: D

Watch Video Solution

- **6.** A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types :
- (i) Sigma bond (σ) (ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

The strength of bonds formed by 2s-2s,2p-2p and 2p-2s overlap has the order:

A.
$$s-s>p-p>p-s$$

$$\mathtt{B.}\, s-s>p-s>p-p$$

$$\mathsf{C.}\, p-p>p-s>s-s$$

$$\mathsf{D}.\, p-p>s-s>p-s$$

Answer: C

Watch Video Solution

Level 3 (Passive 10)

1. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

The incorrect order of bond dissociation energy will be:

A.
$$H-H>Cl-Cl>Br-Br$$

$$\mathsf{B.}\,Si-Si>P-P>Cl-Cl$$

$$\mathsf{C.}\,C-C>N-N>O-O$$

$$\mathsf{D}.\,H-Cl>H-Br>H-I$$

Answer: B

Watch Video Solution

2. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following combination of orbitals does not form covalent bond (x-axis is inter nuclear axis):

A.
$$s+p_y$$

B.
$$p_y+p_y$$

C.
$$d_{uz}+d_{uz}$$

D.
$$d_{xy}+d_{xy}$$

Answer: A

Watch Video Solution

3. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following compound does not form $p\pi-p\pi$ bond ?

- A. SO_3
- B. NO_3^-
- $\mathsf{C.}\,SO_4^{2\,-}$
- D. CO_3^{2-}

Answer: C

4. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

The incorrect order of bond dissociation energy will be:

A.
$$H-H>Cl-Cl>Br-Br$$

$$\operatorname{B.}Si-Si>P-P>Cl-Cl$$

$$\mathsf{C}.\,C-C>N-N>O-O$$

D.
$$H-Cl>H-Br>H-I$$

Answer: B

Watch Video Solution

5. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following combination of orbitals does not form covalent bond (x-axis is inter nuclear axis):

- A. $s+p_y$
- B. p_y+p_y
- $\mathsf{C}.\,d_{uz}+d_{uz}$
- D. $d_{xy}+d_{xy}$

Answer: A

Watch Video Solution

6. According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

Which of the following compound does not form $p\pi-p\pi$ bond ?

- A. SO_3
- $\mathrm{B.}\,NO_3^-$

C.
$$SO_4^{2\,-}$$

D.
$$CO_3^{2\,-}$$

Watch Video Solution

Level 3 (Passive 11)

electrons.

II

1. Consider the following elements with their period number and valence

Elements	Period number	Total valence e^{-}
P	2	4

Q	2	6
R	3	7
S	3	3
T	3	6

According to the given informations, answer the following questions :

4

Choose incorrect statement:

3

A. R exhibits maximum covalency among all elements given

- B. Q does not exhibit variable covalency
- C. R exhibits minimum covalency among all elements given
- D. R and S combine each other and form SR_5 type of compound

Answer: D

Watch Video Solution

2. Consider the following elements with their period number and valence electrons.

Elements	Period number	1 ot at varence e
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

Flomenta Deriod number Total realenges

According to the given informations, answer the following questions:

Choose the correct statement:

A. Q has maximum value of electron affinity

- B. R has maximum value of electronegativity
- C. S has maximum atomic size
- D. T and U are same group elements

Watch Video Solution

3. Consider the following elements with their period number and valence electrons.

Elements	Period number	rotar varencee
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

Flomenta Deriod number Total realenges

According to the given informations, answer the following questions:

Choose incorrect statement:

A. SR_3 is a hypovalent compound

- B. UR_4 can act as a Lewis acid
- $\mathsf{C}.\,PQ_2$ can not acts as Lewis acid
- D. $UR_4 > SR_3$: Lewis acidic character

Watch Video Solution

4. Consider the following elements with their period number and valence electrons.

Elements	Period number	1 ot at varence e
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

Flomenta Daried number Total releases

According to the given informations, answer the following questions :

Choose the incorrect statement:

A. R exhibits maximum covalency among all elements given

- B. Q does not exhibit variable covalency
- C. R exhibits minimum covalency among all elements given
- D. R and S combine each other and form SR_5 type of compound

Answer: D

Watch Video Solution

5. Consider the following elements with their period number and valence electrons.

Elements	Period number	Total valencee
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions:

Choose the correct statement:

A. Q has maximum value of electron affinity

- B. R has maximum value of electronegativity
- C. S has maximum atomic size
- D. T and U are same group elements

Watch Video Solution

6. Consider the following elements with their period number and valence electrons.

Elements	Period number	${\rm Total\ valence}{}^-$
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3	4

According to the given informations, answer the following questions:

Choose the incorrect statement:

A. SR_3 is a hypovalent compound

- B. UR_4 can act as a Lewis acid
- C. PQ_2 can not acts as Lewis acid
- D. $UR_4 > SR_3$: Lewis acidic character

Watch Video Solution

Level 3 (Passive 12)

1. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Which of the following is not correctly match between given species and type of overlapping ?

- A. XeO_3 : Three $(d\pi-p\pi)$ bonds
- B. H_2SO_4 : Two $(d\pi-p\pi)$ bonds

- C. SO_3 : Three $(d\pi-p\pi)$ bonds
- D. $HClO_4$: Three $(d\pi-p\pi)$ bonds

Watch Video Solution

2. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Consider the following compounds and select the incorrect statement from the following :

 $NH_3, PH_3, H_2S, SO_2, BF_3, PCl_3, IF_7, P_4, H_2$

- A. Six molecules out of given compounds involves hybridisation
- B. Three molecules are hypervalent compounds
- C. Six molecules out of above compounds are non-planar in structure

D. Two molecules out of given compounds involves $(d\pi-p\pi)$

bonding as well as also involves $(p\pi-p\pi)$ bonding

Answer: C

View Text Solution

3. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Which of the following is not correctly match between given species and type of overlapping ?

A. XeO_3 : Three $(d\pi-p\pi)$ bonds

B. H_2SO_4 : Two $(d\pi-p\pi)$ bonds

C. SO_3 : Three $(d\pi-p\pi)$ bonds

D. $HClO_4$: Three $(d\pi-p\pi)$ bonds

Answer: C

4. Hybridisation involves the mixing of orbitals having comparable energhies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or orbitals.

Consider the following compounds and select the incorrect statement from the following :

$$NH_3, PH_3, H_2S, SO_2, BF_3, PCl_3, IF_7, P_4, H_2$$

A. Six molecules out of given compounds involves hybridisation

B. Three molecules are hypervalent compounds

C. Six molecules out of above compounds are non-planar in structure

D. Two molecules out of given compounds involves $(d\pi-p\pi)$ bonding as well as also involves $(p\pi-p\pi)$ bonding

Answer: C

View Text Solution

ONE OR MORE ANSWERS IS / ARE CORRECT

1. In which of the	following there	is intermolecula	r hydrogen	bonding?

A. Water

B. Ethanol

C. Acetic acid

D. H-F

Answer: A::B::C::D

Watch Video Solution

2. Correct order of decreasing boiling points is :

A.
$$HF>HI>HBr>HCl$$

$$\mathsf{B.}\,H_2O>H_2Te>H_2Se>H_2S$$

C.
$$Br_2>Cl_2>F_2$$

D.
$$CH_4 > GeH_4 > SiH_4$$

Answer: A::B::C

Watch Video Solution

- **3.** In which species the hybrid state of central atom is / are sp^3 d ?
 - A. I_3^-
 - B. SF_4
 - C. PF_5
 - D. IF_5

Answer: A::B::C

Watch Video Solution

4. Select correct statement(s) is /are :

A. In AsH_3 molecule lone pair at central atom is present in almost

pure s-orbital

B. Number of $p\pi-d\pi$ bond in SO_3 and SO_2 are same

C. NF_3 is better Lewis base than NCl_3

D. Stable oxidation state of Lead is +2

Answer: A::D

5. Which of the following species does / do not exist?

A. OF_4

- 4

B. NH_2^-

 $\mathsf{C}.\,NCl_5$

D. $ICl_3^{2\,-}$

Answer: A::C::D

6. Which of the following species is /are superoctet molecule?

A. AlF_3

B. $SiCl_4$

 $\mathsf{C}.\,XeF_2$

D. ICl_3

Answer: C::D

Watch Video Solution

A. $A\sigma$ - bond is weaker than $a\pi$ -bond

B. There are four co-ordinate bonds in the $NH_4^{\,+}$ ions

C. The covalent bond is directional in nature

7. Which of the following statements is incorrect?

D. HF is less polar than HCl

Answer: A::B::D

Watch Video Solution

8. Which of the following species is /are capable of forming a coordinate bond with BF_3 ?

A. PH_3

 ${\rm B.}\,N{H_4^{\,+}}$

C. OH^-

D. $Mg^{2\,+}$

Answer: A::C

- 9. Ionic compounds in geneal do not possess:
 - A. high melting points and non-directional bonds
 - B. high melting points and low-boiling points
 - C. directional bonds and low-boiling points
 - D. high solubilities in polar and non-polar solvents

Answer: B::C::D

- 10. Correct statbility order of metal cation is /are:
 - A. $Pb^{2\,+}\,< Sn^{2\,+}$
 - $\mathsf{B.}\,Pb^{4\,+}\,< Pb^{2\,+}$
 - C. $Sn^{4+} < Sn^{2+}$
 - D. $Pb^{4+} < Sn^{4+}$

Watch Video Solution

11. Consider the following two molecules and according to the given information select correct statement(s) about $AX_2 \ {
m and} \ AY_2$:

where A: 16th group of 3rd period element

X: more electronegative than (A) and same group number of (A) ltbgt Y: Less atomic size than (A) and same period number of (A)

A. The hybridization of central atoms are different in both compounds

- B. The shape of both molecules are same
- C. Both compounds are planar
- D. The X-A-X bond angle is less than Y-A-Y bond angle

Answer: A::B::C

12. Which of the following statements are correct about sulphur hexafluoride?

A. all S-F bonds are equivalent

B. SF_6 is a planar molecule

C. oxidation number of sulphur is the same as number of electrons of sulphu involved in bonding

D. sulphur has acquired the elctronic structure of the gas argon

Answer: A::C

13. If AB_4^n types species are tetrahedral, then which of the following is /are correctly match ?

A. $egin{array}{cccc} A & B & n \\ Xe & O & 0 \end{array}$

 $A \quad B \quad n \\ S_{G} \quad F \quad 0$

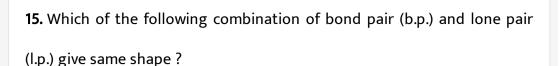
Answer: A::C::D

Watch Video Solution

14. Which of the following statements is correct?

A. ClF_3 molecule is bent T-shape

B. In SF_4 molecule, F-S-F equatorial bond angle is 103° due to Ip-Ip


repulsion

C. In $[ICl_4]^-$ molecular ion, Cl-I-Cl bond angle is 90°

D. In OBr_2 , the bond angle is less than OCl_2

Answer: A::C

(i) 3 b.p.+1 l.p. (ii) 2 b.p.+2 l.p. (iii) 2 b.p.1 l.p. (iv) 2 b.p. + 0 l. p.

(v) 3 b.p. +2 l.p. (vi) 2 b.p.+3 l.p.

A. ii and iii

B. iv and v

C. iv and vi

D. iii and vi

Answer: A::C

Watch Video Solution

16. Select the true statement(s) among the following:

A. Pure overlapping of two d_{xy} orbitals along x-axis results in the formation of π -bond

B. $NO_2^+ > NO_3^- > NO_2^-$ is the correct order of bond angle as well

as N-O bond order

C. $NF_3 < NCl_3 < NBr_3 < NI_3$ is the correct order of Lewis basic character as well as bond angle

D. HF>HCl>HBr>HI is the correct order of dipole moment as well as boiling point

Answer: A::C

17. p_y -orbital can not form π -bond by lateral overlap with :

A. d_{xz} - orbital

B. $d_{x^2-y^2}$ -orbitals

C. d_{xy} -orbital

D. p_z -orbital

Answer: A::B::D

Watch Video Solution

18. Which of the following orbital (s) cannot form δ -bond ?

- A. $d_{x^2-y^2}$ -orbital
- B. d_{xy} -orbital
- C. d_{z^2} -orbital
- D. p_x -orbital

Answer: C::D

Watch Video Solution

19. Select correct statement(s) regarding σ and π bonds :

A. σ - bond lies on the line joining the nuclei of bonded atoms

B. π - electron cloud lies on either side to the line joining the nuclei of

bonded atoms

C. $(2p_\pi-3d_\pi)\pi$ - bond is stronger than $(2p_\pi-3p_\pi)\pi$ - bond.

D. σ -bond has primary effect to decide direction of covalent bond, while π - bond has no primary effect in direction of bond

Answer: A::B::C::D

20. Which of the following statements is / are correct?

A. All carbon to carbon bonds contain a sigma bond and one or more

 π - bonds

B. All carbon to carbon bonds are sigma bonds

C. All oxygen to hydrogen bonds are hydrogen bonds

D. All carbon to hydrogen bonds are sigma bonds

Answer: D

Watch Video Solution

21. Consider the following three orbitals:

Correct statement(s) regarding given information is /are:

- A. Orbitals (i) and (ii) can never form any type of covalent bond
- B. If internuclear axis is x, then combination of (ii) and (iii) orbitals can form $\pi\text{-}$ bond
- C. Orbital (iii) can form δ bond with other orbital having same orientation of lobes
- D. If internuclear axis is 'x', then combination of (i) and (iii) orbitals can form π bond

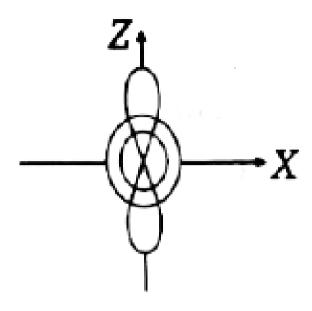
Answer: A::C::D

Watch Video Solution

22. Which of the following combination of orbitals can not form bond. (If x axis in internuclear axis)

A. $s+p_z$

 $\mathsf{B.}\,s+s$


C. $p_z + p_x$

D. $d_{xy}+p_y$

Answer: A::C

23. Consider the following atomic orbitals:

Which of the following statement(s) is /are correct regarding given orbital?

- A. It is a gerade atomic orbital
- B. It has zero nodal plane
- C. Circular electron density is present in XY plane
- D. Opposite lobes of orbital have same sign of wave function (ψ)

Answer: A::B::C::D

24. In which of the following there is intermolecular hydrogen bonding?

B. Ethanol

A. Water

C. Acetic acid

D. H-F

Answer: A::B::C::D

Watch Video Solution

A. HF > HI > HBr > HCl

B. $H_2O > H_2Te > H_2Se > H_2S$

25. Correct order of decreasing boiling points is :

C. $Br_2 > Cl_2 > F_2$

D.
$$CH_4 > GeH_4 > SiH_4$$

Answer: A::B::C

Watch Video Solution

- **26.** In which species the hybrid state of central atom is / are sp^3 d?
 - A. I_3^-
 - B. SF_4
 - C. PF_5
 - D. IF_5

Answer: A::B::C

Watch Video Solution

27. Select correct statement(s) is /are :

A. In AsH_3 molecule lone pair at central atom is present in almost

pure s-orbital

B. Number of $p\pi-d\pi$ bond in SO_3 and SO_2 are same

C. NF_3 is better Lewis base than NCl_3

D. Stable oxidation state of Lead is +2

Answer: A::D

28. Which of the following species does / do not exist?

A. OF_4

 $\mathrm{B.}\,NH_2^-$

 $\mathsf{C}.\,NCl_5$

D. ICl_3^{2-}

Answer: A::C::D

29. Which of the following species is /are superoctet molecule?

A. AlF_3

B. $SiCl_4$

C. XeF_2

D. ICl_3

Answer: C::D

A. $A\sigma$ - bond is weaker than $a\pi$ -bond

B. There are four co-ordinate bonds in the $NH_4^{\,+}$ ions

C. The covalent bond is directional in nature

30. Which of the following statements is incorrect?

D. HF is less polar than HCl

Answer: A::B::D

Watch Video Solution

31. Which of the following species is /are capable of forming a coordinate bond with BF_3 ?

A. PH_3

 ${\rm B.}\,NH_4^{\,+}$

C. OH^-

D. $Mg^{2\,+}$

Answer: A::C

- **32.** Ionic compounds in geneal do not possess:
 - A. high melting points and non-directional bonds
 - B. high melting points and low-boiling points
 - C. directional bonds and low-boiling points
 - D. high solubilities in polar and non-polar solvents

Answer: B::C::D

- 33. Correct statbility order of metal cation is /are:
 - A. $Pb^{2\,+}\,< Sn^{2\,+}$
 - $\mathsf{B.}\,Pb^{4\,+}\,< Pb^{2\,+}$
 - C. $Sn^{4+} < Sn^{2+}$
 - D. $Pb^{4+} < Sn^{4+}$

Answer: B::D

Watch Video Solution

34. Consider the following two molecules and according to the given information select correct statement(s) about $AX_2 \ {
m and} \ AY_2$:

where A: 16th group of 3rd period element

X: more electronegative than (A) and same group number of (A) Itbgt Y: Less atomic size than (A) and same period number of (A)

- A. The hybridization of central atoms are different in both compounds
- B. The shape of both molecules are same
- C. Both compounds are planar
- D. The X-A-X bond angle is less than Y-A-Y bond angle

Answer: A::B::C

35. Which of the following statements are correct about sulphur hexafluoride?

A. all S-F bonds are equivalent

B. SF_6 is a planar molecule

C. oxidation number of sulphur is the same as number of electrons of sulphu involved in bonding

D. sulphur has acquired the elctronic structure of the gas argon

Answer: A::C

36. If AB_4^n types species are tetrahedral, then which of the following is /are correctly match ?

- A. $egin{array}{cccc} A & B & n \\ Xe & O & 0 \end{array}$
 - $A \quad B \quad n \\ S_0 \quad F \quad 0$

Answer: A::C::D

A. ClF_3 molecule is bent T-shape

37. Which of the following statements is correct?

B. In SF_4 molecule, F-S-F equatorial bond angle is 103° due to lp-lp

repulsion

C. In $[ICl_4]^-$ molecular ion, Cl-I-Cl bond angle is 90°

D. In OBr_2 , the bond angle is less than OCl_2

Answer: A::C

38. Which of the following combination of bond pair (b.p.) and lone pair (l.p.) give same shape ?

(i) 3 b.p.+1 l.p. (ii) 2 b.p.+2 l.p. (iii) 2 b.p.1 l.p. (iv) 2 b.p. + 0 l. p.

(v) 3 b.p. +2 l.p. (vi) 2 b.p.+3 l.p.

A. ii and iii

B. iv and v

C. iv and vi

D. iii and vi

Answer: A::C

Watch Video Solution

39. Select the true statement(s) among the following:

A. Pure overlapping of two d_{xy} orbitals along x-axis results in the formation of π -bond

B. $NO_2^+ > NO_3^- > NO_2^-$ is the correct order of bond angle as well

as N-O bond order

C. $NF_3 < NCl_3 < NBr_3 < NI_3$ is the correct order of Lewis basic character as well as bond angle

D. HF>HCl>HBr>HI is the correct order of dipole moment as well as boiling point

Answer: A::C

40. p_y -orbital can not form π -bond by lateral overlap with :

A. d_{xz} - orbital

B. $d_{x^2-y^2}$ -orbitals

C. d_{xy} -orbital

D. p_z -orbital

Answer: A::B::D

Watch Video Solution

- **41.** Which of the following orbital (s) cannot form δ -bond ?
 - A. $d_{x^2-y^2}$ -orbitals
 - B. d_{xy} -orbital
 - C. d_{z^2} -orbital
 - D. p_x -orbital

Answer: C::D

- **42.** Select correct statements regarding σ and π -bonds
 - A. σ bond lies on the line joining the nuclei of bonded atoms

B. π - electron cloud lies on either side to the line joining the nuclei of

bonded atoms

C. $(2p_\pi-3d_\pi)\pi$ - bond is stronger than $(2p_\pi-3p_\pi)\pi$ - bond.

while π - bond has no primary effect in direction of bond

D. σ -bond has primary effect to decide direction of covalent bond,

Answer: A::B::C::D

43. Which of the following statements is / are correct?

A. All carbon to carbon bonds contain a sigma bond and one or more

 π - bonds

B. All carbon to carbon bonds are sigma bonds

C. All oxygen to hydrogen bonds are hydrogen bonds

D. All carbon to hydrogen bonds are sigma bonds

Answer: D

Watch Video Solution

44. Consider the following three orbitals:

Correct statement(s) regarding given information is /are:

- A. Orbitals (i) and (ii) can never form any type of covalent bond
- B. If internuclear axis is x, then combination of (ii) and (iii) orbitals can form π bond
- C. Orbital (iii) can form δ bond with other orbital having same orientation of lobes
- D. If internuclear axis is 'x', then combination of (i) and (iii) orbitals can form π bond

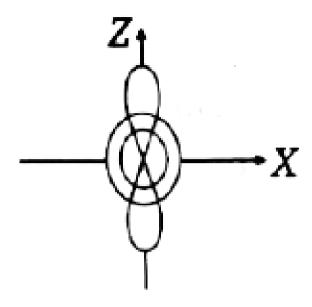
Answer: A::C::D

Watch Video Solution

45. Which of the following combination of orbitals do / does not form bond (if x-axis is internuclear axis) ?

A.
$$s+p_z$$

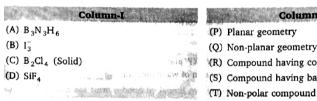
$$\mathsf{B.}\,s+s$$

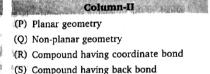

C.
$$p_z+p_x$$

D.
$$d_{xy}+p_y$$

Answer: A::C

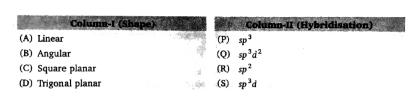
46. Consider the following atomic orbitals :


Which of the following statement(s) is /are correct regarding given orbital?


- A. It is a gerade atomic orbital
- B. It has zero nodal plane
- C. Circular electron density is present in XY plane
- D. Opposite lobes of orbital have same sign of wave function (ψ)

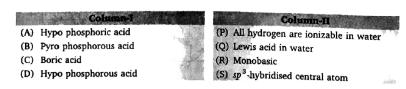
Answer: A::B::C::D

MATCH THE COLUMN

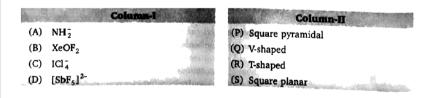

1. Column-Land Column-II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-II.

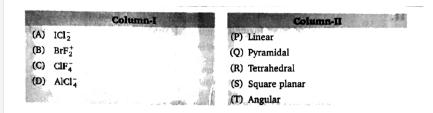
Watch Video Solution

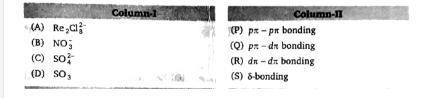

3. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-I	Column-II
(A) SO ₃	(P) Largest bond angle
(B) BeCl ₂	(Q) Lowest bond angle
(C) NH ₃	(R) sp ² -hybridisation
(D) NO ₂	(S) sp ³ -hybridisation


Watch Video Solution

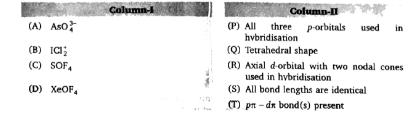
Column-II.

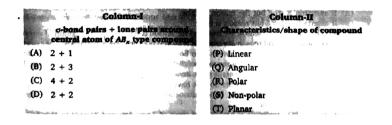

5. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.



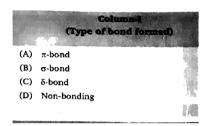
6. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one

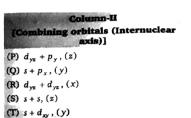
entries of Column-I may have the matching with the same entries of Column-II.



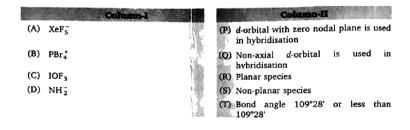

8. Match the refining methods (Column I) with (Column II).

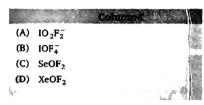
	Column I	Colui	nn II
	(Refining methods)	(Meta	ls)
I.	Liquation	(a)	Zr
II.	Zone Refining	(b)	Ni
III.	Mond Process	(c)	Sn
IV.	Van Arkel Method	(d)	Ga

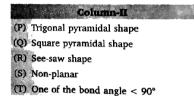




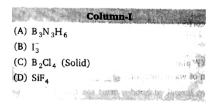
Column-II.




Watch Video Solution

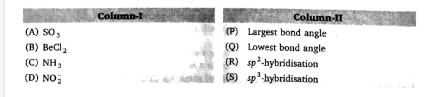

12. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

View Text Solution

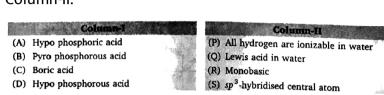


View Text Solution

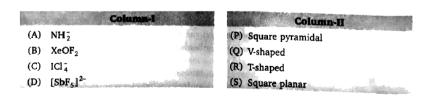
14. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

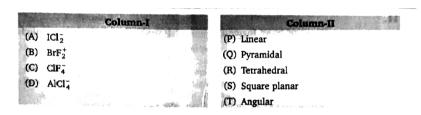

Column-II (P) Planar geometry

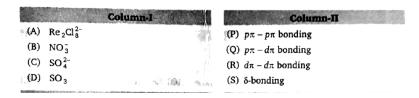
- (O) Non planer seems
- (Q) Non-planar geometry
- (R) Compound having coordinate bond
- (S) Compound having back bond
- (T) Non-polar compound

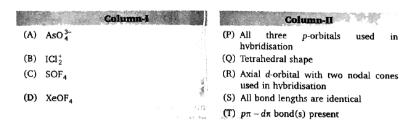


Column-I (Shape)	Column-II (Hybridisation)
(A) Linear	(P) sp ³
(B) Angular	(Q) sp^3d^2
(C) Square planar	(R) sp^2
(D) Trigonal planar	$(S) = sp^3d$

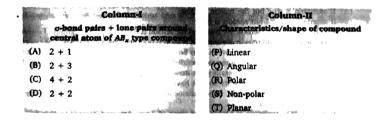


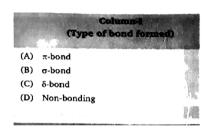


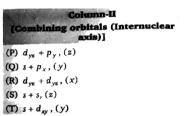




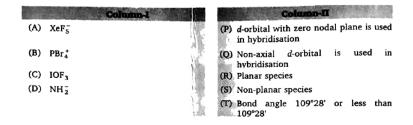
	Column-I (Bond order range)	Column-II (Oxyanions)
(A)	1.0 to 1.30	(P) NO ₃
(B)	1.31 to 1.55	(Q) ClO ₄
(C)	1.56 to 1.70	(R) PO ₄ ³ -
(D)	1.71 to 2.0	(S) ClO ₃
		(T) SO 4

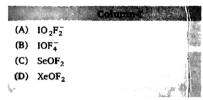

Column-II.

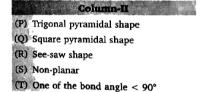



Watch Video Solution

23. Column-I and Column -II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.







ASSERTION-REASON TYPE QUESTIONS

1. Assertion: Multiple bond between two bonded atoms can have more than three bonds.

Reason : Multiple bond between two bonded atoms can not have more than two π -bonds.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- **2.** Assertion : 2^{nd} period elements do not involve in excitation of electron.
- Reason : 2^{nd} period elements do not have vacant 2d-orbitals.
 - A. If assertion is true but the reason is false
 - B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

Watch Video Solution

3. Assertion : In SO_3 molecule bond dissociation energy of all S=O bonds are not equivalent.

Reason : SO_3 molecule is having two types of $2p\pi-3p\pi$ and $2p\pi-3d\pi$ pi-bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

Watch Video Solution

4. Assertion : All diatomic molecules with polar bond have dipole moment.

Reason: Dipole moment is a vector quantity.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct
 - explanation of assertion

Answer: D

5. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases sufficient energy to overcome lattice energy and break hydrogen bonds in water, white covalent bonded compound interact so weakly that even van der walls force between molecule of convalent compounds cannot be broken .

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

Watch Video Solution

6. Assertion : Xe-atom in XeF_2 assumes sp-hybrid state.

Reason : XeF_2 molecule does not follow octet rule.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

7. Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule , the shared electron spend more time on the average near one of the atoms .

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

Watch Video Solution

8. Assertion : CCl_4 is a non-polar molecule.

Reason : CCl_4 has polar bonds.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

- **9.** Assertion : Geometry of ICl_3 is tetrahedral.
- Reason: Its shape is T-shape, due to the presence of two lone pairs.
 - A. assertion is true but the reason is false
 - B. assertion is false but reason is true

C. both assertion and reason are true and the reason is the correct explanation of assertion

D. both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

Watch Video Solution

10. Assertion: The covalency of carbon is four in excited state.

Reason: The four half-filled pure orbitals of carbon form same kind of bonds with an atom as those are with hybridised orbitals.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true

explanation of assertion

C. IF both assertion and reason are true and the reason is the correct

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

Watch Video Solution

11. Assertion : The shape of XeF_4 is square-planar.

Reason: In an octahedral geometry, a single lone pair can occupy any position but a second lone pair will occupy the opposite position to the first lone pair.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct
 - explanation of assertion

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

Answer: C

Watch Video Solution

12. Assertion: Multiple bond between two bonded atoms can have more than three bonds.

Reason: Multiple bond between two bonded atoms can not have more than two π -bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

13. Assertion : 2^{nd} period elements do not involve in excitation of electron.

Reason: 2^{nd} period elements do not have vacant 2d-orbitals.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

14. Assertion : In SO_3 molecule bond dissociation energy of all S=O bonds are not equivalent.

Reason : SO_3 molecule is having two types of $2p\pi-3p\pi$ and $2p\pi-3d\pi$ pi-bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

15. Assertion : PH_4^+ ion is having tetrahedron geometry.

Reason : P-atom is unhybridised in PH_4^+ ion.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

Watch Video Solution

16. Assertion : All diatomic molecules with polar bond have dipole moment.

Reason: Dipole moment is a vector quantity.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: D

Watch Video Solution

17. Assertion: Water is a good solvent for ionic compounds but poor for covalent compounds.

Reason: Hydration energy of ions releases sufficient energy to overcome lattice energy and break hydrogen bonds in water while covalent compounds interact so weakly that even van der Waal's forces between molecules of covalent compounds cannot be broken.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true
- C. IF both assertion and reason are true and the reason is the correct explanation of assertion
- D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

- **18.** Assertion : Xe-atom in XeF_2 assumes sp-hybrid state.
- Reason : XeF_2 molecule does not follow octet rule.
 - A. If assertion is true but the reason is false
 - B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: B

Watch Video Solution

19. Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.

Reason: In polar covalent molecule, the shared electrons spend more time on the average near one of the atoms.

- A. If assertion is true but the reason is false
- B. If assertion is false but reason is true

explanation of assertion

C. IF both assertion and reason are true and the reason is the correct

D. If both assertion and reason are true but reason is not the correct

Answer: C

Watch Video Solution

explanation of assertion

20. Assertion : CCl_4 is a non-polar molecule.

Reason : CCl_4 has polar bonds.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

explanation of assertion

Answer: D

21. Assertion : Geometry of ICl_3 is tetrahedral.

Reason: Its shape is T-shape, due to the presence of two lone pairs.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

explanation of assertion

Answer: B

22. Assertion: The covalency of carbon is four in excited state.

Reason: The four half-filled pure orbitals of carbon form same kind of bonds with an atom as those are with hybridised orbitals.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: A

Watch Video Solution

23. Assertion : The shape of XeF_4 is square-planar.

Reason : In an octahedral geometry, a single lone pair can occupy any

position but a second lone pair will occupy the opposite position to the first lone pair.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. IF both assertion and reason are true and the reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct explanation of assertion

Answer: C

SUBJECTIVE PROBLEMS

- 1. Consider following compounds A to E:
- (A) XeF_n $(B)XeF_{(n+1)}^{\,+}$ $(C)XeF_{(n+1)}^{\,-}$ $(D)XeF_{(n+2)}$

If value of n is 4, then calculate value of $p \div q$ here, 'p' is total number of bond pair and 'q' is total number of lone pair on central atoms of compounds (A) to (E).

(E) $XeF_{(n+4)}^{2-}$,

Watch Video Solution

2. Consider the following five group (According to modern periodic table) of elements with their increasing order to atomic numbers:

Group $1 \rightarrow A, B, C, D, E$ Group $2 \rightarrow F, G, H, I, J$

the following orders.

Group

IF first and last element of each group belongs to 2nd and 6th period respectively and Z represents to carbonate ion $\left(CO_3^{2-}
ight)$ then consider

13
ightarrow K, L, M, N, O Group 15
ightarrow P, Q, R, S, T Group 17
ightarrow U

 $(i)O^+ > H^{2+}$, Polarising power

(ii) $T^{3\,+}\,>S^{3\,+}\,>R^{3\,+}$, Stability of cation

 $(iii)U^{-}(aq) > V^{-}(aq) > W^{-}(aq) > X^{-}(aq)$, Size

(iv) $JV_2 < IV_2 < GV_2 < LV_3$, Covalent character

- (v) GZ>IZ>JZ , Thermal stability
- (vi) AV>BV>CV>DV>EV , Thermal stability
- (vii) $C_3P>B_3P>A_3P$, Lattice energy
- (viii) $KU_3 < KV_3 < KW_3 < KX_3$, Melting point

Then calculate value of $\left|p-q\right|^2$, here p and q are correct and incorrect orders in the given eight orders respectively.

View Text Solution

3. Consider the following species and find out total number of species which are polar and can act as Lewis acid

 CCl_4 , CO_2 , SO_2 , $AlCl_3$, HCHO, SO_3 , $SiCl_4$, BCl_3 , CF_4

4. Consider the following table regarding interhalogen compounds, XY_n (where Y is more electronegative than X)

	Total number of <i>d</i> -orbitals used in hybridization of central atom	Polarity	Planarity
P_1	1	Polar	Planar
P_2	Q_1	Polar	Non-Planar
P_3	Q_2	Non-Polar	Non-Planar

Thn according to given information calculate value of expression

$$P_2 imes \left(rac{P_3-P_1}{(Q_1+Q_2)}
ight)$$

- **5.** What is covalency of chlorine atom in second excited state?
 - Watch Video Solution

- **6.** Sum of σ and π bonds in NH_4^+ cation is ..
 - Watch Video Solution

- **7.** Calculate the value of X-Y, for $XeOF_4$. (X=Number of σ bond pair and
- Y=Number of lone pair on central atom)

watch video Solution

8. The molecule AB_n is planar with six pairs of electrons around A in the valence shell. The value of n is

9. Calculate value of $\frac{X+Y+Z}{10}$, here X is O-N-O bond angle in NO_3^- Y is O-N-O bond angle in NO_2^+ and Z is F-Xe-F adjacent bond angle in XeF_4 .

10. Calculate x+y+z for H_3PO_3 acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.

11. How many right angle, bond angles are present in TeF_5^- molecular ion ?

12. How may possible $\angle FSeF$ bond angles are present in SeF_4 molecule?

13. In IF_6^- and TeF_5^- , sum of axial d-orbitals which are used in hybridisation in both species.

- 14. Among the following, total no. of planar species is:
- (i) SF_4 $(ii)BrF_3$ $(iii)XeF_2$ $(iv)IF_5$

 $({\rm v})SbF_4^{\;-} \qquad (vi)SF_5^{\;-} \qquad (vii)SeF_3^{\;+} \qquad (viii)CH_3^{\;+}$

(ix) PCl_4^+

Watch Video Solution

15. Calculate the value of "x+y-z" here x,y and z are total number of non-bonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

Watch Video Solution

16. Consider the following table

Total number of electron pairs (l.p. $+\sigma$ -bond)	Total number of lone pairs	Shape
5	<u>P</u>	linear
9	1	see-saw
4	<u>r</u>	Bent shape
s	2	Square planar
5	t	Bent 'T' shape

Then calculate value of "p+q+r-s-t".

17. In phosphorus acid, if X is number of non bonding electron pairs. Y is number of σ -bonds and Z is number of π - bonds. Then, calculate value of $Y \times Z - X$.

Watch Video Solution

18. Calculate the number of $p_\pi - d_\pi$ bond(s) present in SO_4^{2-} :

Watch Video Solution

19. Sum of σ and π bonds in NH_4^+ cation is ..

Watch Video Solution

20. Consider the following orbitals (i) $3p_x$ (ii) $4d_{z^2}$ (iii) $3d_{x^2-y^2}$ (iv) $3d_{yz}$

Then, calculate value of "x+y-z" here ${\sf x}$ is total number of gerade

orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.

21. Calculate value of |x-y|, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.

22. Consider the following compounds:

(i)
$$IF_5$$
 (ii) ClI_4^- (iii) XeO_2F_2 (iv) NH_2^- (v) BCl_3 (vi) $BeCl_2$ (vii) $AsCl_4^+$ (viii)

 $B(OH)_3$ (ix) NO_2^- (x) ClO_2^+

Then, calculate value of "x+y-z", here x, y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively:

23. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also.

 $XeO_{2}F_{2},SnCl_{2},IF_{5},I_{3}^{+},XeO_{4},SO_{2},XeF_{7}^{+},SeF_{4}$

Watch Video Solution

24. Consider the following species

$$NO_3^-, SO_4^{2-}, ClO_3^-, SO_3, PO_4^{3-}, XeO_3, CO_3^{2-}, SO_3^{2-}$$

Then calculate value of |x-y|, where

x: Total number of species which have bond order 1.5 or greater than 1.5

y: Total number of species which have bond order less than 1.5

Watch Video Solution

25. Consider the following orbitals

 $3s,2p_x,4d_{xy},4d_{z^2},3d_{x^2-y^2},3p_y,4s,4p_z$ and find total number of orbital

(s) having even number of nodal plane.

Watch Video Solution

26. For the following molecules:

 $PCl_{5}, BrF_{3}, ICl_{2}^{-}, XeF_{5}^{-}, NO_{3}^{-}, XeO_{2}F_{2}, PCl_{4}^{+}, CH_{3}^{+}$

Calculate the value of $\frac{a+b}{c}$

a = Number of species having sp^3 d-hybridisation

b= Number of species which are planar

c= Number of species which are non-planar

View Text Solution

27. Find out number of transformation among following which involves the change of hybridisation of underlined atom.

(a)

 $H_2 \underline{O} + H^+
ightarrow H_3 \underline{O}^+ \qquad (b) N H_3 + \underline{B} F_3
ightarrow N H_3. \ Under l \in e(B) F_3$

(e) $CH_3-CH_3 \rightarrow CH_2^-+CH_2^+$

(E)
$$XeF_{\left(n+4
ight)}^{2-}$$
 ,

bond pair and 'q' is total number of lone pair on central atoms of compounds (A) to (E).

(A) XeF_n $(B)XeF_{(n+1)}^+$ $(C)XeF_{(n+1)}^ (D)XeF_{(n+2)}$

If value of n is 4, then calculate value of $p \div q$ here, 'p' is total number of

(c) $\underline{X}eF_6
ightarrow \underline{X}eF_5^{\,+} + F^{\,-} \qquad (d) 2\underline{P}Cl_5
ightarrow \underline{P}Cl_4^{\,+} ig) + PCl_6^{\,-}$

Group $17 \rightarrow U$

table) of elements with their increasing order to atomic numbers :

Group 1 o A,B,C,D,E Group2 o F,G,H,I,J

Group I o A, B, C, D, E GroupZ o I', G, II, I, J

 $13
ightarrow K, L, M, N, O \qquad ext{Group15}
ightarrow P, Q, R, S, T$

IF first and last element of each group belongs to 2nd and 6th period respectively and Z represents to carbonate ion $\left(CO_3^{2-}\right)$ then consider the following orders.

- $(i)O^+>H^{2+}$, Polarising power
- (ii) $T^{3\,+} > S^{3\,+} > R^{3\,+}$, Stability of cation
- $(iii)U^{\,-}(aq)>V^{\,-}(aq)>W^{\,-}(aq)>X^{\,-}(aq)$, Size
- (iv) $JV_2 < IV_2 < GV_2 < LV_3$, Covalent character
- (v) GZ>IZ>JZ , Thermal stability
- (vi) AV>BV>CV>DV>EV , Thermal stability
- (vii) $C_3P>B_3P>A_3P$, Lattice energy
- (viii) $KU_3 < KV_3 < KW_3 < KX_3$, Melting point

Then calculate value of $|p-q|^2$, here p and q are correct and incorrect orders in the given eight orders respectively.

30. Consider the following species and find out total number of species which are polar and can act as Lewis acid

 CCl_4 , CO_2 , SO_2 , $AlCl_3$, HCHO, SO_3 , $SiCl_4$, BCl_3 , CF_4

31. Consider the following table regarding interhalogen compounds, XY_n

(where Y is more electronegative than X)

	Total number of <i>d</i> -orbitals used in hybridization of central atom	Polarity	Planarity
P_1	1	Polar	Planar
P_2	Q_1	Polar	Non-Planar
P ₃	Q_2	Non-Polar	Non-Planar

Thn according to given information calculate value of expression

$$P_2 imes \left(rac{P_3-P_1}{(Q_1+Q_2)}
ight.$$

32. What is covalency of chlorine atom in second excited state?

33. Sum of σ and π bonds in NH_4^+ cation is ..

34. Calculate the value of X-Y, for $XeOF_4$. (X=Number of σ bond pair and Y=Number of lone pair on central atom)

Watch Video Solution

35. The molecule ML_x is planar with 6 electron pairs around M in the valence shell. The value of x is :

Watch Video Solution

36. Calculate value of $\frac{X+Y+Z}{10}$, here X is O-N-O bond angle in NO_3^- Y is O-N-O bond angle in NO_2^+ and Z is F-Xe-F adjacent bond angle in XeF_4 .

37. Calculate x+y+z for H_3PO_3 acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.

38. How many right angle, bond angles are present in TeF_5^- molecular ion ?

39. How may possible $\angle FSeF$ bond angles are present in SeF_4 molecule

?

Watch Video Solution

40. In IF_6^- and TeF_5^- , sum of axial d-orbitals which are used in hybridisation in both species.

- **41.** Among the following, total no. of planar species is :
- (i) SF_4 (ii) BrF_3 (iii) XeF_2 (iv) IF_5
- $\label{eq:constraint} \mbox{(v)} SbF_4^{\;-} \qquad (vi) SF_5^{\;-} \qquad (vii) SeF_3^{\;+} \qquad (viii) CH_3^{\;+}$
- (ix) PCl_4^+
 - Watch Video Solution

42. Calculate the value of "x+y-z" here x,y and z are total number of non-bonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

43. Consider the following table

Total number of electron pairs (l.p. $+\sigma$ -bond)	Total number of lone pairs	Shape
5	<u>p</u>	linear
9	1	see-saw
4	<u>r</u>	Bent shape
s	2	Square planar
5	t	Bent 'T' shape

Then calculate value of "p+q+r-s-t".

Watch Video Solution

44. In phosphorus acid, if X is number of non bonding electron pairs. Y is number of σ -bonds and Z is number of π - bonds. Then, calculate value of $Y \times Z - X$.

Watch Video Solution

45. Calculate the number of $p_\pi - d_\pi$ bond(s) present in SO_4^{2-} :

46. Sum of σ and π bonds in NH_4^+ cation is ..

Watch Video Solution

47. Consider the following orbitals (i) $3p_x$ (ii) $4d_{z^2}$ (iii) $3d_{x^2-y^2}$ (iv) $3d_{yz}$ Then, calculate value of "x+y-z" here x is total number of gerade orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.

Watch Video Solution

48. Calculate value of |x-y|, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.

49. Consider the following compounds:

$$(i)IF_5 \hspace{0.5cm} (ii)ClI_4^- \hspace{0.5cm} (iii)XeO_2F_2 \hspace{0.5cm} (iv)NH_2^-$$

$$(v)BCl_3 \hspace{0.5cm} (vi)BeCl_2 \hspace{0.5cm} (vii)AsCl_4^+ \hspace{0.5cm} (viii)B(OH)_3$$

(ix)
$$NO_2^- \qquad (x) ClO_2^+$$

Then calculate value of "x+y-z", here, x,y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

Watch Video Solution

50. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also.

 $XeO_{2}F_{2}, SnCl_{2}, IF_{5}, I_{3}^{+}, XeO_{4}, SO_{2}, XeF_{7}^{+}, SeF_{4}$

$$NO_3^-, SO_4^{2-}, ClO_3^-, SO_3, PO_4^{3-}, XeO_3, CO_3^{2-}, SO_3^{2-}$$

the

following

species

Then calculate value of |x-y|, where

Consider

x: Total number of species which have bond order 1.5 or greater than 1.5

y: Total number of species which have bond order less than 1.5

51.

Watch Video Solution

Consider following 52. the orbitals

 $3s,2p_x,4d_{xy},4d_{z^2},3d_{x^2-y^2},3p_y,4s,4p_z$ and find total number of orbital

(s) having even number of nodal plane.

Watch Video Solution

53. For the following molecules:

 $PCl_{5}, BrF_{3}, ICl_{2}^{-}, XeF_{5}^{-}, NO_{3}^{-}, XeO_{2}F_{2}, PCl_{4}^{+}, CH_{3}^{+}$

Calculate the value of $\frac{a+b}{c}$

a = Number of species having sp^3 d-hybridisation

b= Number of species which are planar

c= Number of species which are non-planar

Watch Video Solution

54. Find out number of transformation among following which involves the change of hybridisation of underlined atom.

(a)

$$H_2 \underline{O} + H^+
ightarrow H_3 \underline{O}^+ \hspace{1cm} (b) N H_3 + \underline{B} F_3
ightarrow N H_3. \ Under l \in e(B) F_3$$

(c)
$$\underline{X}eF_6 o\underline{X}eF_5^{\,+}+F^{\,-}$$
 $(d)2\underline{P}Cl_5 o\underline{P}Cl_4^{\,+}ig)+PCl_6^{\,-}$

(e)
$$\underline{C}H_3-CH_3 o\underline{C}H_3^-+CH_3^+$$

