

India's Number 1 Education App

CHEMISTRY

BOOKS - VK JAISWAL ENGLISH

TYPES OF REACTIONS

LEVEL 1

1.
$$Pb(NO_3)_2 + 2NaOH \rightarrow Pb(OH)_2 \downarrow + 2NaNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: A

$$2. Zn(OH)_2 \downarrow + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: B

- **3.** $2Na\left[Al(OH)_4\right] + CO_2 \rightarrow 2Al(OH)_3 \downarrow + Na_2CO_3$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: a

Watch Video Solution

- **4.** $CuSO_4 + 2NaOH(excess)$ → $Cu(OH)_2$ ↓ $+ Na_2SO_4$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: A

Watch Video Solution

5. $Fe(OH)_3$ ↓ + NaOH(excess) → No reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: d

Watch Video Solution

6. $Mg(OH)_2 \downarrow + 2HCl \rightarrow MgCl_2 + 2H_2O$

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

7.
$$Mn(NO_3)_2 + 2NaOH \rightarrow Mn(OH)_2 \downarrow + 2NaNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

- **8.** $CH_3COOAg \downarrow + HNO_3 \rightarrow AgNO_3 + CH_3COOH$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: b

Watch Video Solution

- **9.** $Hg(NO_3)_2 + NH_3(\text{soln.}) \rightarrow MgO \cdot HgNH_2NO_3 \downarrow$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: a

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

Watch Video Solution

- **11.** $CaC_2O_4 \downarrow + CH_3COOH \rightarrow$ No reaction
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: d

12.
$$BaC_2O_4$$
 ↓ + $2AcOH$ → $Ba(AcO)_2 + H_2C_2O_4$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

13.
$$Fe(CN)_2 \downarrow + 4KCN \rightarrow K_4 [Fe(CN)_6]$$

- A. For precipitate formation reaction
- B. For precipitate elimination reaction
- C. For precipitate exchange reaction

Answer: b

Watch Video Solution

- **14.** $SrC_2O_4 \downarrow + 2HCl \rightarrow SrCl_2 + H_2C_2O_4$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: b

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

Watch Video Solution

16.
$$CaSO_3$$
 ↓ $+SO_2 + H_2O \rightarrow Ca(HSO_3)_2$

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

17.
$$K_4[Fe(CN)_6] + ZnSO_4 \rightarrow Zn_2[Fe(CN)_6] \downarrow$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

18. 3*PbS* ↓ + 8*HNO*₃(*dil.*) → 3*Pb*
$$\left(NO_3\right)_2$$
 + 3*S* + 2*NO* ↑

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction

Answer: b

Watch Video Solution

- **19.** $K_4[Fe(CN)_6] + 2CuSO_4 \rightarrow Cu_2[Fe(CN)_6] \downarrow$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: a

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

Watch Video Solution

21.
$$AgCl \downarrow + 2KCN \rightarrow K \left[Ag(CN)_2 \right] + KCl$$

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

22.
$$HgS \downarrow + Na_2S \Leftrightarrow Na_2[HgS_2]$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

23.
$$CuSO_4 + 2KCN \rightarrow CuCN \downarrow + (CN)_2 \uparrow + K_2SO_4$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction

Answer: a

Watch Video Solution

- **24.** $FeS \downarrow + 2HCl \rightarrow FeCl_2 + H_2S \uparrow$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: b

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

26.
$$2AgF + MgCl_2 \rightarrow MgF_2 \downarrow + 2AgCl \downarrow$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

$$27. Pb \left(NO_3\right)_2 + 2KI \rightarrow PbI_2 \downarrow + 2KNO_3$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

28.
$$PbCl_2 \downarrow + \text{hot water } \rightarrow Pb^{2+}(aq.) + 2Cl^{-}(aq.)$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction

Answer: b

Watch Video Solution

29.
$$HgI_2 \downarrow + KI \Leftrightarrow K_2[HgI_4]$$

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

31. $CuSO_4 + 2KI \rightarrow CuI + \frac{1}{2}I_2 + K_2SO_4$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

32.
$$KNO_2 + AgF \rightarrow AgNO_2 \downarrow + KF$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

- **33.** $BaSO_4 \downarrow + Na_2CO_3 \rightarrow BaCO_3 \downarrow + Na_2SO_4$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: c

Watch Video Solution

- **34.** $FeCl_3 + Na_3PO_4 \rightarrow FePO_4 \downarrow + 3NaCl$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: a

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: d

Watch Video Solution

B. For precipitate dissolution reaction

A. For precipitate formation reaction

36. $2AgNO_3 + Na_2C_2O_4 \rightarrow Ag_2C_2O_4 \downarrow + 2NaNO_3$

C. For precipitate exchange reaction

D. For no reaction

Answer: a

37.
$$2BaCrO_4 \downarrow + 4HCl \rightarrow 2BaCl_2 + H_2Cr_2 + H_2O$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

- **38.** $PbCrO_4 \downarrow + 4NaOH(excess) \rightarrow Na_2[Pb(OH)_4]$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: b

Watch Video Solution

- **39.** $BaCrO_4 \downarrow + CH_3COOH(excess) \rightarrow No reaction$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: d

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: c

Watch Video Solution

41.
$$Ba(NO_3)_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaNO_3$$

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

42.
$$Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

- **43.** $SrCrO_4$ ↓ + 2AcOH(excess) → $Sr(ArO)_2$ → No dissolution
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: b

Watch Video Solution

- **44.** $MCrO_4 \downarrow \left(M^{2+} = Ba^{2+}Pb^{2+}\right) + AcOH \rightarrow \text{No dissolution}$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: d

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

46.
$$CaSO_4 + Pb(NO_3)_2 \rightarrow PbSO_4 \downarrow + Ca(NO_3)_2$$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

47.
$$Hg_2(NO_3)_2 + NH_3(\text{solution}) \rightarrow Hg \downarrow + HgO \cdot NH_2NO_3 \downarrow$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

- **48.** $BaCO_3 \downarrow + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: b

Watch Video Solution

- **49.** $AlCl_3 + 3NaOH \rightarrow Al(OH)_3 \downarrow + 3NaCl$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: a

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

Watch Video Solution

51. $ZnS \downarrow + 2HCl \rightarrow ZnCl_2 + H_2S \uparrow$

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

A. For precipitate formation formation reaction

D. For no reaction

Answer: b

$$52. NiCl2 + 2dmg \rightarrow Ni(dmg)2$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

- **53.** $CaCl_2 + Na_2SO_4 \rightarrow No reaction$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

Answer: d

Watch Video Solution

- **54.** $BaCO_3 \downarrow + 2AcOH \rightarrow Ba(AcO)_2 + CO_2 \uparrow + H_2O$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: b

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

56. $Ba(AcO)_2 + K_2CrO_4 \rightarrow BaCrO_4 \downarrow + 2AcOK$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

57.
$$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 \downarrow + 3NaNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

58.
$$Ag_2CO_3$$
 ↓ + 2 HCl → $AgCl$ ↓ + CO_2 ↑ + H_2O

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction

Answer: c

Watch Video Solution

- **59.** $BaSO_3 \downarrow + H_2SO_4 \rightarrow BaSO_4 \downarrow + SO_2 \uparrow + H_2O$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: c

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: d

Watch Video Solution

61.
$$Sr(AcO)_2 + Ag_2SO_4 \rightarrow 2AcOAg \downarrow + SrSO_4 \downarrow$$

B. For precipitate dissolution reaction

A. For precipitate formation formation reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

62.
$$Ca(OH)_2 + 2FH \rightarrow CaF_2 \downarrow + 2H_2O$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

63.
$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + 2H_2O$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

- **64.** $CaSO_3 \downarrow H_2SO_4 \rightarrow CaSO_4 + SO_2 \uparrow H_2O$
 - A. For precipitate formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: b

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

66. $Na_2SO_3 + BaCl_2 \rightarrow BaSO_3 \downarrow + 2NaCl$

B. For precipitate dissolution reaction

A. For precipitate formation formation reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

67.
$$Pb(AcO)_2 + H_2S \rightarrow PbS \downarrow + 2AcOH$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

- **68.** $NaCl + AbNO_3 \rightarrow AgCl \downarrow + NaO_3$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

- **69.** $HgI_2 \downarrow + 2HI \rightarrow K_2[HgI_4]$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: b

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: d

Watch Video Solution

71.
$$PbO_2 \downarrow + HNO_3(Conc.) \rightarrow Pb(NO_3)_2 + H_2O + [O]$$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

72.
$$K_2 \left[Cd(CN)_4 \right] + H_2S \rightarrow CdS \downarrow + 2KCN + 2HCN$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

73.
$$Pb(AcO)_2 + Na_2CrO_4 \rightarrow PbCrO_4 \downarrow + 2AcONa$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

- **74.** $NaBr + AgNO_3 \rightarrow AgBr \downarrow + NaNO_3$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: a

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and other one with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

76. $SO_2 + H_2O \rightarrow H_2SO_3$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

77.
$$BF_3 + H_2O \rightarrow H_3BO_3 + H[BF_4]$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

79. $H_4 P_2 O + H_2 O \rightarrow H_3 PO_3$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

80. $\underline{C}O + H_2O \rightarrow \text{No reaction}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **82.** $H_4P_2O_6 + H_2O \rightarrow H_3PO_3 + H_3PO_4$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix
 - C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.
 - D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

Watch Video Solution

83.
$$\underline{B}Cl_3 + H_2O \rightarrow H_3BO_3 + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

85. $\underline{C}O_2 + H_2O \rightarrow H_2CO_3$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Watch Video Solution

86. $\underline{C}l_2O + H_2O \rightarrow HClO$

A. the product is oxy acid with -ic suffix.

B. the product is oxy acid with -ous suffix

C. the product are two oxy acids one with -ic suffix and otherone with -

D. the product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **88.** $CCl_4 + H_2O \rightarrow \text{No reaction}$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix
 - C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.
 - D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

89. $\underline{C}IF_5 + H_2O \rightarrow HClO_3 + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

91. $\underline{C}lO_2 + H_2O \rightarrow HClO_2 + HClO_3$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

Watch Video Solution

92. $H_4P_2O_8 + H_2O \rightarrow H_3PO_4 + H_2O_2$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

- **94.** $\underline{B}rF_5 + H_2O \rightarrow HBrO_3 + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix
 - C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.
 - D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Watch Video Solution

95. $\underline{N}O + H_2O \rightarrow \text{No reaction}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Watch Video Solution

97. $H\underline{N}O_4 + H_2O \rightarrow HNO_3 + H_2O_2$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Watch Video Solution

98. $NCl_3 + 3H_2O \rightarrow NH_3 + 3HOCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

100. $N_2O_3 + H_2O \rightarrow HNO_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

101. $\underline{C}l_2O_7 + H_2O \rightarrow HClO_4$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Watch Video Solution

103. $\underline{S}iF_4 + H_2O \rightarrow H_4SiO_4 + HF$

- A. the product is oxy acid with -ic suffix.
- B. the product is oxy acid with -ous suffix
- C. the product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. the product is not oxy acid, neither with -ic suffix nor with -ous

suffix

Answer: a

Watch Video Solution

104. $\underline{I}Cl_3 + H_2O \rightarrow HIO_2 + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

105.
$$N_2O_4 + H_2O \rightarrow HNO_3 + HNO_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

106.
$$I_2O_5 + H_2O \rightarrow HIO_3$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

107. $H_2 \underline{S}O_5 + H_2 O \rightarrow H_2 SO_4 + H_2 O_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

108.
$$SiCl_A + H_2O \rightarrow H_ASiO_A + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **109.** $\underline{C}rO_2Cl_2 + 2H_2O \rightarrow H_2CrO_4 + 2HCl$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

110. $N_2O_5 + H_2O \rightarrow HNO_3$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

111.
$$\underline{P}Cl_3 + H_2O \rightarrow H_3PO_3 + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **112.** $\underline{C}lF_3 + H_2O \rightarrow HClO_2 + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

113. $SiO_2 + H_2O \rightarrow No reaction$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

114.
$$H_4B_2O_5 + H_2O \rightarrow 2H_3BO_3$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **115.** $H_4S_2O_6 + H_2O \rightarrow H_2SO_3 + H_2SO_4$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

Watch Video Solution

116. $\underline{P}Cl_5 + H_2O \rightarrow H_3PO_4 + 5HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

117.
$$ClF + H_2O \rightarrow HOCl + HF$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **118.** $P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

119. $H_4 B_2 O_6 + H_2 O \rightarrow H_3 B O_3 + H_2 O_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

120.
$$H_6Si_2O_7 + H_2O \rightarrow H_4SiO_4$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **121.** $\underline{S}F_4 + H_2O \rightarrow H_2SO_3 + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

122. $BrF + H_2O \rightarrow HBrO + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

123.
$$H_2S_2O_7 + H_2O \rightarrow H_2SO_4$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **124.** $H_2S_2O_8 + H_2O \rightarrow H_2SO_4 + H_2O_2$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

125. $\underline{S}F_6 + H_2O \rightarrow \text{No reaction}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

126.
$$\underline{I}Cl + H_2O \rightarrow HIO + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **127.** $\underline{I}Cl + H_2O \rightarrow HIO + HCl$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

128. $P_4O_{10} + H_2O \rightarrow H_3PO_4$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

129.
$$POCl_3 + H_2O \rightarrow H_3PO_4 + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **130.** $\underline{I}OF_5 + H_2O \rightarrow HIO_4 + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

131. $P_A + H_2O \rightarrow \text{No reaction}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

132.
$$Na\underline{H} + H_2O \rightarrow NaoH + H_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

- **133.** $B_2H_6 + H_2O \rightarrow H_3BO_3 + H_2$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

134. $Cl_2 + H_2O \rightarrow HOCl + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

135. $S_{\underline{a}} + H_2O \rightarrow \text{No reaction.}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

136. $\underline{SOCl}_2 + H_2O \rightarrow H_2SO_3 + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

137. $SO_2Cl_2 + H_2O \rightarrow H_2SO_4 + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

138.
$$SiH_4 + H_2O \rightarrow H_4SiO_4 + H_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

- **139.** $I_2 + H_2O \rightarrow \text{No reaction}$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

140. $\underline{S}OF_4 + H_2O \rightarrow H_2SO_4 + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

141.
$$F_2 + H_2O \rightarrow HF + O_2$$
 (Ozonide oxygen)

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

142.
$$C(s) + O_2(g) \stackrel{\Delta}{\to} CO_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

Watch Video Solution

143. $3Mg(s) + N_2(g) \rightarrow Mg_3N_2$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

144.
$$NaH(s) + H_2O \rightarrow NaOH + H_2 \uparrow$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

- **145.** $CuSO_4(aq.) + Zn(s) \rightarrow ZnSO_4 + Cu \uparrow$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

146. $Na(s) + H_2O(l) \rightarrow NaOH + H_2$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

147.
$$Ca(s) + H_2O(l) \rightarrow Ca(OH)_2 + H_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

warm

148.
$$Mg(s) + H_2O(l) \rightarrow Mg(OH)_2 + H_2$$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

149.
$$Fe(s) + H_2O(l) \rightarrow Fe_3O_4 + H_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

150.
$$Zn(s) + 2HCl \rightarrow ZnCl_2 + H_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

152. $Fe(s) + 2HCl \rightarrow FeCl_2 + H_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

153.
$$Cl_2(g) + KI(aq.) \rightarrow KCl + I_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

154.
$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

155. P_4 + $NaOH \rightarrow PH_3 \uparrow + NaH_2PO_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

156. $S_8 + NaOH \rightarrow Na_2S + Na_2S_2O_3$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

158. $I_2 + NaOH \rightarrow NaI + NaOI$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

159. $Pb_3O_4 + HCl(dil.)$ → $PbCl_2$ \checkmark + $Cl_2 + H_2O$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

161.
$$PbO_2 + HCl(dil.) \xrightarrow{warm} PbCl_2 \downarrow + Cl_2 \uparrow + H_2O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

decomposition redox reaction.

- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal

Watch Video Solution

162.
$$Cr_2O_7^{2^-} + H^+ + SO_3^{2^-} \rightarrow Cr^{3^+}(aq.) + SO_4^{2^-}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

163.
$$MnO_4^- + H^+ + Br^- \rightarrow Mn^{3+}(aq.) + Br_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

164.
$$Fe^{2+}(aq.) + Cr_2O_7^{2-} + H^+ \rightarrow Fe^{3+}(aq.) + Cr^{3+}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

165.
$$I_2 + S_2 O_3^{2-} \rightarrow I^- + S_4 O_6^{2-}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

167.
$$CuO + H_2 \rightarrow Cu \downarrow + H_2O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

168.
$$H_3PO_2 + AgNO_2 \rightarrow Ag ↓ + H_3PO_4 + NO$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

$170. NaNO_3 \rightarrow NaNO_2 + O_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

171.
$$N_2O_3 \to NO + NO_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

173.
$$XeF_4 + H_2O \rightarrow Xe + XeO_3 + HF + O_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

174.
$$XO + I_2O_5(s) \rightarrow CO_2 + I_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

176.
$$MnO_2 + 2KOH + \frac{1}{2}O_2 \rightarrow K_2MnO_4 + H(2)O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

177.
$$K_2MnO_4 + H^+$$
 → $KMnO_4 + MnO_2$ ↓

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

179.
$$K_2Cr_2O_7 \stackrel{\Delta}{\to} K_2CrO_4 + Cr_2O_3 + O_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

decomposition redox reaction.

- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal

Watch Video Solution

180.
$$(NH_4)_2 Cr_2 O_7 \stackrel{\Delta}{\to} N_2 + Cr_2 O_3 + H_2 O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

182.
$$Ba(N_3)_2 \stackrel{\Delta}{\rightarrow} Ba + N_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

decomposition redox reaction.

- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal

Watch Video Solution

High temp. $N_2 + O_2 \rightarrow NO$ -Heat.

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: cd

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

$\begin{array}{c} \Delta \\ \mathbf{185.} \ NH_4NO_3 \rightarrow N_2O + H_2O \end{array}$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

186.
$$NaNO_3 + FeSO_4 + H_2SO_4 \rightarrow \left[Fe \left(H_2O \right)_5 NO \right] SO_4 (Ring complex)$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

188.
$$Pb(NO_3)_2 \stackrel{\Delta}{\rightarrow} PbO + NO_2 + O_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

189.
$$P_4$$
 + $6Cl_2$ $\xrightarrow{\Delta}$ PCl_3

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: cd

190.
$$P_4$$
 + $10Cl_2 \xrightarrow{\Delta} PCl_5$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

$$\begin{array}{c} \Delta \\ \textbf{191.} \, Ag + PCl_5 \rightarrow AgCl + PCl_3 \end{array}$$

- A. For disproportionation reaction.
- ${\bf B.} \ {\bf For} \ {\bf comproportionation} \ {\bf reaction}.$
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

$$\begin{array}{c} \Delta \\ \textbf{192.} \ Sn + PCl_5 \rightarrow SnCl_4 + PCl_3 \end{array}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

194. Red P+Alkali $\rightarrow Na_4P_2O_6 + P_2H_4$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

195.
$$H_3PO_3 \xrightarrow{\Delta} H_3PO_4 + PH_3$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: ad

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

197.
$$Na_2S + H_2SO_4$$
(Conc.) → $S \downarrow + SO_2 + Na_2SO_4$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

198. $MnO_2 + NaCl + H_2SO_4(Conc.) \rightarrow MnSO_4 + Cl_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

200.
$$NaI + H_2SO_4(Conc.) \rightarrow Na_2SO_4 + SO_2 \uparrow + I_2 \uparrow$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

201. $NaI + MnO_2 + H_2SO_4(Conc.) \rightarrow MnSO_4 + I_2 \uparrow$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

203. $Na_2C_2O_4 + H_2SO_4(Conc.) \rightarrow Na_2SO_4 + CO + CO_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

204.
$$3PbS \downarrow + 8HNO_3(dil.) \rightarrow 3Pb(NO_3)_2 + 3S + 2NO \uparrow$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

206. $CuSO_{\Delta} + Zn(s) \rightarrow ZnSO_{\Delta} + Cu$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

207.
$$Zn(OH)_2 \downarrow + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

Watch Video Solution

208. $Mn(OH)_2 + H_2SO_4 \rightarrow MnSO_4 + 2H_2O$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

209. $2AgNO_3 + 2NaOH \rightarrow Ag_2O \downarrow + 2NaNO_3 + H_2O$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: a

210.
$$Cr(OH)_3 \downarrow + NH_3(Excess) \rightarrow \left[Cr(NH_3)_6\right]^{3+}$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

211.
$$CuSO_4 + NH_3(excess) \rightarrow \left[Cu(NH_3)_4 \right]^{2+}$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

212.
$$NiCl_2 + NH_3(excess) \rightarrow \left[Ni(NH_3)_6\right]^{2+}$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

213.
$$FeCl_3 + NH_3(excess) \rightarrow Fe(OH)_3 \downarrow$$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: a

Watch Video Solution

214. $Na_2[Zn(OH)_4] + 4HCl \rightarrow ZnCl_2 + NaCl + H_2O$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

215.
$$\left[Cr(NH_3)_6 \right]^{3+} + 6HCl \rightarrow Cr^{3+}(aq) + 6NH_4Cl$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

216. $2KCN + Pb(NO_3)_2 \rightarrow Pb(CN)_2 \downarrow + 2KNO_3$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

217.
$$4KCN + Fe(CN)_2 \downarrow \rightarrow K_4 [Fe(CN)_6]$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: b

Watch Video Solution

218.
$$3KCN + Fe(CN)_3 \downarrow \rightarrow K_3[Fe(CN)_6]$$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

219. $CuSO_4 + KCN(excess) \rightarrow K_3 \left[Cu(CN)_4 \right] + \frac{1}{2} (CN)_2$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

220.
$$K_3[Fe(CN)_6] + FeCl_3 \rightarrow Fe[Fe(CN)_6] \downarrow$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

221.
$$K_3[Fe(CN)_6] + FeCl_3 \rightarrow Fe[Fe(CN)_6] \downarrow$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: a

Watch Video Solution

222.
$$KI + BiI_2 \downarrow \rightarrow K[BiI_4]$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

223.
$$2KI + HgI_2 \downarrow \rightarrow K_2[HgI_4]$$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

224. $KI + AgNO_3 \rightarrow AgI \downarrow$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: a

225. $2KI + FeCl_2 \rightarrow \text{No reaction}.$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

226.
$$2KI + CuSO_4 \rightarrow CuI + \frac{1}{2}I_2 + K_2SO_4$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Watch Video Solution

227.
$$BaCO_3 \downarrow + CO_2 + H_2O \rightarrow Ba(HCO_3)_2$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

Watch Video Solution

228.
$$Ba(OH)_2 + CO_2 \rightarrow BaCO_3 \downarrow + H_2O$$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

229. $BaSO_3 \downarrow + SO_2 + H_2O \rightarrow Ba(HSO_3)_2$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

230.
$$Ba(OH)_2 + SO_2 \rightarrow BaSO_3 \downarrow + H_2O$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

231. $Na_2CO_3 + PbSO_4 \rightarrow PbCO_3 \downarrow + Na_2SO_4$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

232. $Na_2CO_3 + Pb(NO_3)_2 \rightarrow PbCO_3 \downarrow + NaNO_3$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: d

Watch Video Solution

233. $Na_2CO_3 + KNO_3 \rightarrow No reaction$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

Watch Video Solution

234. $Na_2CO_3 + AgNO_3 \rightarrow Ag_2CO_3 \downarrow + NaNO_3$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: d

235.
$$Na_3PO_4 + Fe_2(SO_4)_3 \rightarrow FePO_4 \downarrow + Na_2SO_4$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

236. $NiCl_2(\text{solution}) + NaNO_3(\text{solution}) \rightarrow \text{No reaction}$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

237. $CuSO_4(\text{solution}) + ZnCl_2(\text{solution}) \rightarrow \text{No reaction}$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: b

Watch Video Solution

238.
$$FeSO_4 + Na_2S \rightarrow FeS \downarrow$$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

239. $AlCl_3 + Na_3PO_4 \rightarrow AlPO_4 \downarrow$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: d

240. $CrCl_3(solution) + ZnSO_4(Solution) \rightarrow No reaction$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

241. $Na_2CrO_4 + HCl \rightarrow H_2Cr_2O_7 + Na_2SO_4$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Watch Video Solution

242.
$$K_2Cr_2O_7 + NaoH \rightarrow CrO_4^2$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

243. $Na_2CrO_4 + AgF \rightarrow Ag_2CrO_4 \downarrow + NaF$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

244. $KMnO_4 + NaNO_3 \rightarrow No reaction$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: b

245.
$$MnSO_4 + Sr(NO_3)_2 \rightarrow SrSO_4 \downarrow$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

246. $ZnSO_4$ (solution) + $MgCl_2$ (solution) \rightarrow No reaction

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

Watch Video Solution

247. $AgNO_3$ (solution) + NaF(solution) \rightarrow No reaction.

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: c

Watch Video Solution

248. $(NH_4)_2 SO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + 2NH_3 \uparrow$

A. For coloured ppt./Black ppt

- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Watch Video Solution

- **249.** $\left(NH_4\right)_2 SO_4 + Sr(OH)_2 \rightarrow SrSO_4 \downarrow + 2NH_3 \uparrow$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution
 - D. For white ppt.

Answer: d

250.
$$Pb(NO_3)_2 + 2NaOH \rightarrow Pb(OH)_2 \downarrow + 2NaNO_3$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

251.
$$Zn(OH)_2 \downarrow + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

252.
$$2Na\left[Al(OH)_4\right] + CO_2 \rightarrow 2Al(OH)_3 \downarrow + Na_2CO_3$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

Watch Video Solution

253.
$$CuSO_4 + 2NaOH(excess) \rightarrow Cu(OH)_2 \downarrow + Na_2SO_4$$

A. For precipitate formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

254. $Fe(OH)_3$ ↓ + NaOH(excess) → No reaction

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: d

255.
$$Mg(OH)_2 \downarrow + 2HCl \rightarrow MgCl_2 + 2H_2O$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

256. $Mn(NO_3)_2 + 2NaOH \rightarrow Mn(OH)_2 \downarrow + 2NaNO_3$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

257. $CH_3COOAg \downarrow + HNO_3 \rightarrow AgNO_3 + CH_3COOH$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

258.
$$Hg(NO_3)_2 + NH_3(\text{soln.}) \rightarrow MgO \cdot HgNH_2NO_3 \downarrow$$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

259.
$$Cu(OH)_2 \downarrow + 4NH_3(\text{soln.}) \rightarrow \left[Cu(NH_3)_4 \right]^{2+} + 2OH^{-1}$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

260. CaC_2O_4 ↓ + CH_3COOH → No reaction

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: d

Watch Video Solution

261. $BaC_2O_4 \downarrow + 2AcOH \rightarrow Ba(AcO)_2 + H_2C_2O_4$

A. For precipitate formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Watch Video Solution

262.
$$Fe(CN)_2 \downarrow + 4KCN \rightarrow K_4 [Fe(CN)_6]$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

263.
$$SrC_2O_4 \downarrow + 2HCl \rightarrow SrCl_2 + H_2C_2O_4$$

A. For precipitate formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

264. $Fe(CN)_2 \downarrow + KCN \rightarrow K_3 Fe(CN)_6$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

265.
$$CaSO_3 \downarrow + SO_2 + H_2O \rightarrow Ca(HSO_3)_2$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

266.
$$K_4[Fe(CN)_6] + 2ZnSO_4 \rightarrow Zn_2[Fe(CN)_6] \downarrow + 2K_2SO_4$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

267. 3*PbS* ↓ + 8*HNO*₃(*dil.*) → 3*Pb*(
$$NO_3$$
)₂ + 3*S* + 2*NO* ↑

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

268.
$$K_4[Fe(CN)_6] + 2CuSO_4 \rightarrow Cu_2[Fe(CN)_6] \downarrow + 2K_2SO_4$$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

269. $MnS \downarrow + 2HCl \rightarrow MnCl_2 + H_2S \uparrow$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

270.
$$AgCl \downarrow + 2KCN \rightarrow K \left[Ag(CN)_2 \right] + KCl$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

271.
$$HgS \downarrow + Na_2S \Leftrightarrow Na_2[HgS_2]$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

272.
$$CuSO_4 + 2KCN \rightarrow CuCN \downarrow + (CN)_2 \uparrow + K_2SO_4$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

Watch Video Solution

273. FeS
$$\downarrow$$
 + 2HCl \rightarrow FeCl₂ + H₂S \uparrow

A. For precipitate formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

274. $Cd(CN)_2 \downarrow + 2KCN \rightarrow K_2 \left[Cd(CN)_4 \right]$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

275.
$$2AgF + MgCl_2 \rightarrow MgF_2 \downarrow + 2AgCl \downarrow$$

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

276.
$$Pb(NO_3)_2 + 2KI \rightarrow PbI_2 \downarrow + 2KNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

277.
$$PbCl_2 \downarrow + \text{hot water} \rightarrow Pb^2(aq.) + 2Cl^{-}(aq.)$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

278.
$$HgI_2 \downarrow + KI \Leftrightarrow K_2[HgI_4]$$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

279.
$$AgI \downarrow + 2Na_2S_2O_3 \rightarrow Na_3 \left[Ag(S_2O_3)_2 \right] + NaI$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

280.
$$CuSO_4 + 2KI \rightarrow CuI + \frac{1}{2}I_2 + K_2SO_4$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

281. $KNO_2 + AgF \rightarrow AgNO_2 \downarrow + KF$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

282. $BaSO_4 \downarrow + Na_2CO_3 \rightarrow BaCO_3 \downarrow + Na_2SO_4$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: c

Watch Video Solution

283. $FeCl_3 + Na_3PO_4 \rightarrow FePO_4 \downarrow + 3NaCl$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

284. $BaSO_4$ ↓ + dil. HCl (excess) → No reaction

- A. For precipitate formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: d

285.
$$2AgNO_3 + Na_2C_2O_4 \rightarrow Ag_2C_2O_4 \downarrow + 2NaNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

286. 2BaCrO₄ ↓ + 4HCl → 2BaCl₂ + H_2 Cr₂O₇ + H_2 O

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

287. $PbCrO_4 \downarrow + 4NaOH(excess) \rightarrow Na_2[Pb(OH)_4] + Na_2CrO_4$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

Watch Video Solution

288. $BaCrO_4$ ↓ + $CH_3COOH(excess)$ → No reaction

A. For precipitate formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: d

Watch Video Solution

289. $PbCl_2 \downarrow + H_2SO_4 \Leftrightarrow PbSO_4 \downarrow + 2HCL$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: c

290.
$$Ba(NO_3)_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

291.
$$Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

292. $SrCrO_4 \downarrow + 2AcOH(excess) \rightarrow Sr(ArO)_2 \rightarrow No dissolution$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: b

Watch Video Solution

293. $MCrO_4 \downarrow \left(M^{2+} = Ba^{2+}Pb^{2+}\right) + AcOH \rightarrow \text{No dissolution}$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: d

Watch Video Solution

294. $CaCl_2 + Na_2C_2O_4 \rightarrow CaC_2O_4 \downarrow + 2NaCl$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

295.
$$CaSO_4 + Pb(NO_3)_2 \rightarrow PbSO_4 \downarrow + Ca(NO_3)_2$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

296.
$$Hg(NO_3)_2 + NH_3(\text{soln.}) \rightarrow MgO \cdot HgNH_2NO_3 \downarrow$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

297.
$$BaCO_3 \downarrow + 2HCl \rightarrow BaCl_2 + CO_2 \uparrow + H_2O$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

298. $AlCl_3 + 3NaOH \rightarrow Al(OH)_3 \downarrow + 3NaCl$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

299.
$$BaCO_3 \downarrow + CO_2 + H_2O \rightarrow Ba(HCO_3)_2$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

300.
$$ZnS \downarrow + 2HCl \rightarrow ZnCl_2 + H_2S \uparrow$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

$301. NiCl₂ + 2dmg \rightarrow Ni(dmg)₂$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

302. `CaCl_(2)+Na_(2)SO_(4)toCaSO_(4)↓+2NaCl

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: d

Watch Video Solution

303. $BaCO_3 \downarrow + 2AcOH \rightarrow Ba(AcO)_2 + CO_2 \uparrow + H_2O$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

304. $Na_2S_2O_3 + BaCl_2 \rightarrow BaS_2O_3 \downarrow + 2NaCl$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

305.
$$Ba(AcO)_2 + K_2CrO_4 \rightarrow BaCrO_4 \downarrow + 2AcOK$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

306.
$$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 \downarrow + 3NaNO_3$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

307. $Ag_2CO_3 \downarrow + 2HCl \rightarrow AgCl \downarrow + CO_2 \uparrow + H_2O$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: c

Watch Video Solution

308.
$$BaSO_3 \downarrow + H_2SO_4 \rightarrow BaSO_4 \downarrow + SO_2 \uparrow + H_2O$$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: c

Watch Video Solution

- **309.** HgS ↓ + HNO_3 (conc.) → No dissolution.
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: d

310.
$$Sr(ACO)_2 + Ag_2SO_4 \rightarrow 2AcOAg \downarrow + SrSO_4 \downarrow$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

311. $Ca(OH)_2 + 2FH \rightarrow CaF_2 \downarrow + 2H_2O$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

312. $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + 2H_2O$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

Watch Video Solution

313.
$$CaSO_3 \downarrow H_2SO_4 \rightarrow CaSO_4 + SO_2 \uparrow H_2O$$

A. For precipitate formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

314. $Ca(OH)_2 + SO_2 \rightarrow CaSO_3 \downarrow + H_2O$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

315. $Na_2SO_3 + BaCl_2 \rightarrow BaSO_3 \downarrow + 2NaCl$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

316. $Pb(AcO)_2 + H_2S \rightarrow PbS \downarrow + 2AcOH$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Watch Video Solution

317. $NaCl + AbNO_3 \rightarrow AgCl \downarrow + NaO_3$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

Watch Video Solution

318.
$$HgI_2 \downarrow + 2HI \rightarrow K_2[HgI_4]$$

A. For precipitate formation formation reaction

- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

Watch Video Solution

- **319.** $PbO_2 + HNO_3(dil.) \rightarrow No dissolution.$
 - A. For precipitate formation formation reaction
 - B. For precipitate dissolution reaction
 - C. For precipitate exchange reaction
 - D. For no reaction

Answer: d

320.
$$PbO_2 \downarrow + HNO_3(Conc.) \rightarrow Pb(NO_3)_2 + H_2O + [O]$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: b

321.
$$K_2 \left[Cd(CN)_4 \right] + H_2S \rightarrow CdS \downarrow + 2KCN + 2HCN$$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Watch Video Solution

322. $Pb(AcO)_2 + Na_2CrO_4 \rightarrow PbCrO_4 \downarrow + 2AcONa$

- A. For precipitate formation formation reaction
- B. For precipitate dissolution reaction
- C. For precipitate exchange reaction
- D. For no reaction

Answer: a

Watch Video Solution

323. $NaBr + AgNO_3 \rightarrow AgBr \downarrow + NaNO_3$

A. For precipitate formation formation reaction

B. For precipitate dissolution reaction

C. For precipitate exchange reaction

D. For no reaction

Answer: a

Watch Video Solution

324. $\underline{B}_{2}O_{3} + H_{2}O \rightarrow H_{3}BO_{3} + H_{2}O \Leftrightarrow H[B(OH)_{4}] + H^{+}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

325.
$$\underline{SO}_2 + H_2O \rightarrow H_2SO_3$$

ous suffix.

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

326. $\underline{B}F_3 + H_2O \rightarrow H_3BO_3 + H[BF_4]$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

327. $\underline{T}eF_{6}$ _ (6) + $H_{2}O \rightarrow H_{6}TeO_{6}$ + HF

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

328.
$$H_4P_2O + H_2O \rightarrow H_3PO_3$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **329.** $CO + H_2O \rightarrow \text{No reaction}$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

330. $SO_3 + H_2O \rightarrow H_2SO_4$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

331.
$$H_4P_2O_6 + H_2O \rightarrow H_3PO_3 + H_3PO_4$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

- **332.** $BCl_3 + H_2O \rightarrow H_3BO_3 + HCl$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

333. $\underline{I}F_7 + H_2O \rightarrow HIO_4 + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

334.
$$\underline{SO}_2 + H_2O \rightarrow H_2SO_3$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Watch Video Solution

335. <u>C</u>l₂O + H₂O → HClO

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

336. $H_A P_2 O_7 + H_2 O \rightarrow 2H_3 P O_A$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

337. $CCl_4 + H_2O \rightarrow \text{No reaction}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

338. $\underline{CIF}_5 + H_2O \rightarrow HClO_3 + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

339. $N_2O + H_2O \rightarrow \text{No reaction}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

340.
$$ClO_2 + H_2O \rightarrow HClO_2 + HClO_3$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

- **341.** $H_4P_2O_8 + H_2O \rightarrow H_3PO_4 + H_2O_2$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

342. $NF_3 + H_2O \rightarrow No reaction$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

343.
$$\underline{B}rF_5 + H_2O \rightarrow HBrO_3 + HF$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- **344.** $\underline{N}O + H_2O \rightarrow \text{No reaction}$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

345. $\underline{C}lO_3 + H_2O \rightarrow HClO_3 + HClO_4$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

346.
$$H\underline{N}O_4 + H_2O \rightarrow HNO_3 + H_2O_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- **347.** $\underline{I}F_5 + H_2O \rightarrow HIO_3 + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

348. $\underline{I}F_5 + H_2O \rightarrow HIO_3 + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

349.
$$N_2O_3 + H_2O \rightarrow HNO_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **350.** $Cl_2O_7 + H_2O \rightarrow HClO_4$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

351. $H_3PO_5 + H_2O \rightarrow H_3PO_4 + H_2O_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

352.
$$\underline{S}iF_4 + H_2O \rightarrow H_4SiO_4 + HF$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

353. $\underline{I}Cl_3 + H_2O \rightarrow HIO_2 + HCl$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

354. $N_2O_4 + H_2O \rightarrow HNO_3 + HNO_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

355.
$$I_2O_5 + H_2O \rightarrow HIO_3$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- **356.** $H_2SO_5 + H_2O \rightarrow H_2SO_4 + H_2O_2$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

357. $SiCl_A + H_2O \rightarrow H_ASiO_A + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

358.
$$CrO_2Cl_2 + 2H_2O \rightarrow H_2CrO_4 + 2HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- **359.** $N_2O_5 + H_2O \rightarrow HNO_3$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

360. $PCl_3 + H_2O \rightarrow H_3PO_3 + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

361.
$$ClF_3 + H_2O \rightarrow HClO_2 + HF$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **362.** $SiO_2 + H_2O$ → No reaction
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

363. $H_4B_2O_5 + H_2O \rightarrow 2H_3BO_3$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

364.
$$H_4S_2O_6 + H_2O \rightarrow H_2SO_3 + H_2SO_4$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

Watch Video Solution

365. $PCl_5 + H_2O \rightarrow H_3PO_4 + 5HCl$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

366. $ClF + H_2O \rightarrow HOCl + HF$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

367.
$$H_4B_2O_6 + H_2O \rightarrow H_3BO_3 + H_2O_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **368.** $H_4 B_2 O_6 + H_2 O \rightarrow H_3 B O_3 + H_2 O_2$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

369. $H_6Si_2O_7 + H_2O \rightarrow H_4SiO_4$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

370.
$$\underline{S}F_4 + H_2O \rightarrow H_2SO_3 + HF$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- **371.** $\underline{B}rF + H_2O \rightarrow HBrO + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

372. $H_2S_2O_7 + H_2O \rightarrow H_2SO_A$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

373.
$$H_2S_2O_8 + H_2O \rightarrow H_2SO_4 + H_2O_2$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- **374.** \underline{SF}_6 + H_2O → No reaction
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

375. $ICl + H_2O \rightarrow HIO + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

376.
$$\underline{I}Cl + H_2O \rightarrow HIO + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: c

- **377.** $P_4O_{10} + H_2O \rightarrow H_3PO_4$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

378. $POCl_3 + H_2O \rightarrow H_3PO_4 + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

379.
$$\underline{I}OF_5 + H_2O \rightarrow HIO_4 + HF$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

- **380.** $P_4 + H_2O \rightarrow \text{No reaction}$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch Video Solution

381. $Na\underline{H} + H_2O \rightarrow NaoH + H_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with - ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

Watch video Solution

382.
$$B_2H_6 + H_2O \rightarrow H_3BO_3 + H_2$$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with -ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

383. $Cl_2 + H_2O \rightarrow HOCl + HCl$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

Watch Video Solution

384. $S_{\underline{a}} + H_2O \rightarrow \text{No reaction.}$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

385.
$$\underline{S}Ocl_2 + H_2O \rightarrow H_2SO_3 + HCl$$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: b

- $\mathbf{386.}\,\underline{SO}_2Cl_2 + H_2O \rightarrow H_2SO_4 + HCl$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

387. $SiH_4 + H_2O \rightarrow H_4SiO_4 + H_2$

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

388. $I_2 + H_2O \rightarrow \text{No reaction}$

- A. If product is oxy acid with -ic suffix.
- B. If product is oxy acid with -ous suffix
- C. If product are two oxy acids one with -ic suffix and otherone with -
- D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

- **389.** $\underline{S}OF_4 + H_2O \rightarrow H_2SO_4 + HF$
 - A. If product is oxy acid with -ic suffix.
 - B. If product is oxy acid with -ous suffix

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: a

Watch Video Solution

390. $F_2 + H_2O \rightarrow HF + O_2$ (Ozonide oxygen)

A. If product is oxy acid with -ic suffix.

B. If product is oxy acid with -ous suffix

C. If product are two oxy acids one with -ic suffix and otherone with ous suffix.

D. If product is not oxy acid, neither with -ic suffix nor with -ous suffix

Answer: d

391.
$$C(s) + O_2(g) \stackrel{\Delta}{\rightarrow} CO_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

392.
$$3Mg(s) + N_2(g) \xrightarrow{\Delta} Mg_3N_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

Watch Video Solution

393. $Na\underline{H} + H_2O \rightarrow NaoH + H_2$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: bc

vateri video Solution

394.
$$CuSO_4(aq.) + Zn(s) \rightarrow ZnSO_4 + Cu \downarrow$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

395.
$$Na(s) + H_2O(l) \rightarrow NaOH + H_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

396.
$$Ca(s) + H_2O(l) \rightarrow Ca(OH)_2 + H_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Marah Malan Galantan

warm

397.
$$Mg(s) + H_2O(l) \rightarrow Mg(OH)_2 + H_2$$
↑

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

398.
$$Fe(s) + H_2O(l) \rightarrow Fe_3O_4 + H_2$$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

399.
$$Zn(s) + 2HCl \rightarrow ZnCl_2 + H_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

400.
$$Mg(s) + 2HCl \rightarrow MgCl_2 + H_2$$

- A. For disproportionation reaction.
- $\hbox{\bf B. For comproportionation reaction.}\\$
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

- **401.** $Fe(s) + 2HCl \rightarrow FeCl_2 + H_2$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

402. $Cl_2(g) + KI(aq.) \rightarrow KCl + I_2$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

403.
$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: ad

404.
$$P_4$$
 + $NaOH \rightarrow PH_3 \uparrow + NaH_2PO_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

405. $S_8 + NaOH \rightarrow Na_2S + Na_2S_2O_3$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

406.
$$Cl_2 + NaoH \rightarrow NaCl + NaOCl$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

- **407.** $I_2 + NaOH \rightarrow NaI + NaOI$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

408.
$$Pb_3O_4 + HCl(dil.) \rightarrow PbCl_2 + Cl_2 + H_2O$$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Maria Mala a Calairian

409.
$$Pb_3O_4 + HNO_3(dil.) \rightarrow Pb(NO_3)_2 + PbO_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

410.
$$PbO_2 + HCl(dil.) \rightarrow PbCl_2 \downarrow + Cl_2 \uparrow + H_2O$$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

411.
$$Cr_2O_7^{2-} + H^+ + SO_3^{2-} \rightarrow Cr^{3+}(aq.) + SO_4^{2-}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

412.
$$MnO_4^- + H^+ + Br^- \rightarrow Mn^{3+}(aq.) + Br_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

413.
$$Fe^{2+}(aq.) + Cr_2O_7^{2-} + H^+ \rightarrow Fe^{3+}(aq.) + Cr^{3+}$$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

414.
$$I_2 + S_2 O_3^{2-} \rightarrow I^- + S_4 O_6^{2-}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

415.
$$Cu^{2+}(aq) + 2I^{-} \rightarrow CuI + \frac{1}{2}I_{2}$$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

416.
$$CuO + H_2 \rightarrow Cu \downarrow + H_2O$$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

- **417.** $H_3PO_2 + AgNO_2 \rightarrow Ag \downarrow + H_3PO_4 + NO$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.
 - C. For either intermolecular redox reaction or displacement reaction
 - D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

418.
$$H_3PO_2 + CuSO_4 \rightarrow Cu \downarrow + H_3PO_4 + HNO_3$$

- A. For disproportionation reaction.
- ${\bf B.}\ {\bf For\ comproportionation\ reaction.}$
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

419. $NaNO_3 \rightarrow NaNO_2 + O_2$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

Watch Video Solution

R.T. **420.** $N_2O_3 \rightarrow NO + NO_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: ad

421.
$$Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2$$
 or $Ca(OCl)Cl$

- A. For disproportionation reaction.
- $\hbox{\bf B. For comproportionation reaction.}\\$
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

- **422.** $XeF_4 + H_2O \rightarrow Xe + XeO_3 + HF + O_2$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

423. $CO + I_2O_5(s) \rightarrow CO_2 + I_2$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

424.
$$FeCr_2O_4 + Na_2CO_3 + O_2 \rightarrow Fe_2O_3 \downarrow + Na_2CrO_4$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

425.
$$MnO_2 + 2KOH + \frac{1}{2}O_2 \rightarrow K_2MnO_4 + H_2O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

- **426.** $K_2MnO_4 + H^+ \rightarrow KMnO_4 + MnO_2 \downarrow$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.
 - C. For either intermolecular redox reaction or displacement reaction
 - D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

427.
$$KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$$

A. For disproportionation reaction.

 ${\bf B.} \ {\bf For} \ {\bf comproportionation} \ {\bf reaction}.$

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

- **428.** $K_2Cr_2O_7 \xrightarrow{\Delta} K_2CrO_4 + Cr_2O_3 + O_2$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

Watch Video Solution

429.
$$\left(NH_4\right)_2 Cr_2 O_7 \stackrel{\Delta}{\rightarrow} N_2 \stackrel{\uparrow}{\downarrow} + Cr_2 O_3 \stackrel{\downarrow}{\downarrow} + H_2 O \stackrel{\uparrow}{\uparrow}$$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

430.
$$NH_4Cl + NaNO_2 \xrightarrow{\Delta} N_2 \uparrow + NaCl + H_2O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: b

Watch Video Solution

431.
$$Ba(N_3)_2 \stackrel{\Delta}{\rightarrow} Ba + N_2$$

A. For disproportionation reaction.

- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

432.
$$N_2$$
 + O_2 \rightarrow NO -Heat.

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

433. $N_2 + 3H_2 \rightarrow NH_3$

A. For disproportionation reaction.

B. For comproportionation reaction.

C. For either intermolecular redox reaction or displacement reaction

D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

434.
$$NH_4NO_3 \rightarrow N_2O + H_2O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: bd

Watch Video Solution

435.
$$NaNO_3 + FeSO_4 + H_2SO_4 \rightarrow \left[Fe \left(H_2O \right)_5 NO \right] SO_4 (Ring complex)$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

decomposition redox reaction.

- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal

Watch Video Solution

436.
$$NO + NO_2 \rightarrow N_2O_3$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: bd

437.
$$Pb(NO_3)_2 \stackrel{\Delta}{\rightarrow} PbO + NO_2 + O_2$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

438.
$$P_4$$
 + $6Cl_2$ $\xrightarrow{\Delta}$ PCl_3

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

439.
$$P_4 + 10Cl_2 \xrightarrow{\Delta} PCl_5$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: cd

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

441.
$$Sn + PCl_5 \rightarrow SnCl_4 + PCl_3$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

$$\begin{array}{c} \Delta \\ \textbf{442.} \ PCl_5 \rightarrow PCl_3 + Cl_2 \end{array}$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

444.
$$H_3PO_3 \stackrel{\Delta}{\rightarrow} H_3PO_4 + PH_3$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

decomposition redox reaction.

- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal

Answer: ad

Watch Video Solution

$$\mathbf{445.} \, Se_2Cl_2 \, \xrightarrow{\Delta} \, SeCl_4 + Se$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: ad

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

- **447.** $MnO_2 + NaCl + H_2SO_4(Conc.) \rightarrow MnSO_4 + Cl_2 \uparrow$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.
 - C. For either intermolecular redox reaction or displacement reaction
 - D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Watch Video Solution

448. $NaBr + MnO_2 + H_2SO_4(Conc.) \rightarrow MnSO_4 + Br_2$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

- **450.** $NaI + MnO_2 + H_2SO_4(Conc.) \rightarrow MnSO_4 + I_2 \uparrow$
 - A. For disproportionation reaction.
 - B. For comproportionation reaction.
 - C. For either intermolecular redox reaction or displacement reaction
 - D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

451.
$$NaNO_3 + H_2SO_4(Conc.) \rightarrow Na_2SO_4 + NO_2 \uparrow + O_2 \uparrow$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: d

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: a

Watch Video Solution

453.
$$3PbS + 8HNO_3(Dil.) \rightarrow 3Pb(NO_3)_2 + 3S \downarrow + 2NO + 4H_2O$$

- A. For disproportionation reaction.
- B. For comproportionation reaction.

decomposition redox reaction.

- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal

Answer: c

Watch Video Solution

454. $S + HNO_3(Dil.) \rightarrow H_2SO_4 + NO \uparrow$

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

- A. For disproportionation reaction.
- B. For comproportionation reaction.
- C. For either intermolecular redox reaction or displacement reaction
- D. For either thermal combination redox reaction or thermal decomposition redox reaction.

Answer: c

Watch Video Solution

456. $2NaOH + Zn(OH)_2$ ↓ → $Na_2ZnO_2 + 2H_2O$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

457.
$$Mn(OH)_2 + H_2SO_4 \rightarrow MnSO_4 + 2H_2O$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: b

Watch Video Solution

- - A. For coloured ppt./Black ppt

458. $2AgNO_3 + 2NaOH → Ag_2O ↓ + 2NaNO_3 + H_2O$

- B. For coloured solution.
- C. for clear/colourless solution

Answer: a

Watch Video Solution

459.
$$Cr(OH)_3 \downarrow + NH_3(Excess) \rightarrow \left[Cr(NH_3)_6\right]^{3+}$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

461. $NiCl_2 + NH_3(excess) \rightarrow \left[Ni\left(NH_3\right)_6\right]^{2+}$

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

vateri video Solution

462.
$$FeCl_3 + NH_3(excess) \rightarrow Fe(OH)_3 \downarrow$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: a

- **463.** $Na_2 \left[Zn(OH)_4 \right] + 4HCl \rightarrow ZnCl_2 + NaCl + H_2O$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution

Answer: c

Watch Video Solution

464.
$$\left[Cr \left(NH_3 \right)_6 \right]^{3+} + 6HCl \rightarrow Cr^{3+}(aq) + 6NH_4Cl$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

B. For coloured solution.

A. For coloured ppt./Black ppt

C. for clear/colourless solution

D. For white ppt.

Answer: d

Watch Video Solution

466.
$$4KCN + Fe(CN)_2 \downarrow \rightarrow K_4 \Big[Fe(CN)_6 \Big]$$

A. For coloured ppt./Black ppt

C. for clear/colourless solution

B. For coloured solution.

D. For white ppt.

Answer: b

467.
$$3KCN + Fe(CN)_3 \downarrow \rightarrow K_3[Fe(CN)_6]$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: b

468.
$$CuSO_4 + KCN(excess) \rightarrow K_3 \left[Cu(CN)_4 \right] + \frac{1}{2} (CN)_2$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution

Answer: c

Watch Video Solution

469.
$$K_3[Fe(CN)_6] + FeCl_3 \rightarrow Fe[Fe(CN)_6] \downarrow$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

B. For coloured solution.

A. For coloured ppt./Black ppt

C. for clear/colourless solution

D. For white ppt.

Answer: a

Watch Video Solution

471. $KI + BiI_2 \downarrow \rightarrow K BiI_4$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

472.
$$2KI + HgI_2 \downarrow \rightarrow K_2[HgI_4]$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

- **473.** $KI + AgNO_3 \rightarrow AgI \downarrow$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution

Answer: a

Watch Video Solution

- **474.** $2KI + FeCl_2$ → No reaction.
 - A. For coloured ppt./Black ppt

B. For coloured solution.

- C. for clear/colourless solution
- D. For white ppt.

Answer: b

A. For coloured ppt./Black ppt

B. For coloured solution.

D. For white ppt.

Watch Video Solution

476. $BaCO_3 \downarrow + CO_2 + H_2O \rightarrow Ba(HCO_3)_2$

A. For coloured ppt./Black ppt

C. for clear/colourless solution

Watch Video Solution

B. For coloured solution.

D. For white ppt.

Answer: c

Answer: d

C. for clear/colourless solution

477.
$$Ba(OH)_2 + CO_2 \rightarrow BaCO_3 \downarrow + H_2O$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: d

478.
$$BaSO_3 \downarrow + SO_2 + H_2O \rightarrow Ba(HSO_3)_2$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution

Answer: c

Watch Video Solution

- **479.** $Ba(OH)_2 + SO_2 \rightarrow BaSO_3 \downarrow + H_2O$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution
 - D. For white ppt.

Answer: d

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

481. $Na_2CO_3 + Pb(NO_3)_2 \rightarrow PbCO_3 \downarrow + NaNO_3$

D. For white ppt.

Watch Video Solution

A. For coloured ppt./Black ppt

C. for clear/colourless solution

Watch Video Solution

B. For coloured solution.

D. For white ppt.

Answer: d

Answer: d

482.
$$Na_2CO_3 + KNO_3 \rightarrow No reaction$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: c

- **483.** $Na_2CO_3 + AgNO_3 \rightarrow Ag_2CO_3 \downarrow + NaNO_3$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution

Answer: d

Watch Video Solution

- **484.** $Na_3PO_4 + Fe_2(SO_4)_3 \rightarrow FePO_4 \downarrow + Na_2SO_4$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution
 - D. For white ppt.

Answer: a

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

Watch Video Solution

486. $CuSO_4(\text{solution}) + ZnCl_2(\text{solution}) \rightarrow \text{No reaction}$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: b

487.
$$FeSO_4 + Na_2S \rightarrow FeS \downarrow$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: a

- **488.** $FeCL_3 + KI \rightarrow Fe^{2+}(aq.) + KI_3$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution

Answer: b

Watch Video Solution

- **489.** $AlCl_3 + Na_3PO_4 \rightarrow AlPO_4 \downarrow$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution
 - D. For white ppt.

Answer: d

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Watch Video Solution

491. $Na_{2}CrO_{4} + HCl \rightarrow H_{2}Cr_{2}O_{7} + Na_{2}SO_{4}$

A. For coloured ppt./Black ppt

C. for clear/colourless solution

Watch Video Solution

B. For coloured solution.

D. For white ppt.

Answer: b

Answer: b

492.
$$K_2Cr_2O_7 + NaoH \rightarrow CrO_4^{2-}$$

- A. For coloured ppt./Black ppt
- B. For coloured solution.
- C. for clear/colourless solution
- D. For white ppt.

Answer: b

- **493.** $Na_2CrO_4 + AgF \rightarrow Ag_2CrO_4 \downarrow + NaF$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution

Answer: a

Watch Video Solution

- **494.** $KMnO_4 + NaNO_3 \rightarrow No reaction$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution
 - D. For white ppt.

Answer: b

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: d

Watch Video Solution

496. $ZnSO_4(solution) + MgCl_2(solution) \rightarrow No reaction$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: c

497. $AgNO_3$ (solution) + NaF(solution) \rightarrow No reaction.

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

D. For white ppt.

Answer: c

Watch Video Solution

498.
$$(NH_4)_2 SO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + 2NH_3 \uparrow$$

A. For coloured ppt./Black ppt

B. For coloured solution.

C. for clear/colourless solution

Answer: d

Watch Video Solution

- **499.** $(PH_4)_2SO_4 + Sr(OH)_2 \rightarrow SrSO_4 \downarrow + 2NH_3 \uparrow$
 - A. For coloured ppt./Black ppt
 - B. For coloured solution.
 - C. for clear/colourless solution
 - D. For white ppt.

Answer: d

1. Which of the following metal nitrate produces gaseous product when reacts with KCN solution?

A.
$$Cu(NO_3)_2$$

$$B.AgNO_3$$

$$C. Cd(NO_3)_2$$

D.
$$Pb(NO_3)_2$$

Answer: A

Watch Video Solution

2. Which of these reaction is correct?

$$A. Cl^- + Br_2 \rightarrow Br^- + Cl_2$$

B. Mohr's salt
$$\rightarrow NH_3 \mid (g)$$

$$SO_3$$

 $C. K_2 Cr_2 O_7$ solution \rightarrow Green colour solution

NaOH

Excess NaOH $D. FeCl_2 \rightarrow (ppt. coloured)$ Soluble complex

Answer: B

Watch Video Solution

- 3. Compound which on heating produces paramagnetic acidic gas?
 - A. $Mg(NO_3)_2$ B. $Fe_2(SO_4)_3$

 - C. FeCO₃
 - D. HgC_2O_4

Answer: A

Watch Video Solution

4. Which compound on heating produces coloured metal oxide finally?

 $A.Al_2(SO_4)_3$

C. $Cu(NO_3)_2$

B. $HgCO_33Hg(OH)_2$

Answer: C

5.

Watch Video Solution

Then salt 'P' in above reaction is:

 $P(\text{Coloured solution}) + BaCl_2 \rightarrow Q \downarrow \text{ (White)} + R(\text{Coloured solution})$

ItBrgt

C. CuSO₄

D. AgNO₃

B. $ZnSO_4$

Answer: C

6. Oxygen gas is not produced from the following decomposition reaction:

A.
$$K_2Cr_2O_7 \xrightarrow{\Delta}$$
B. $Ag_2C_2O_4 \xrightarrow{\Delta}$
C. $Pb(NO_3)_2 \xrightarrow{\Delta}$

Answer: B

7. Consider the following reaction and select incorrect statement about gas (P):

$$Zn + HNO_3(Dilute) \rightarrow Zn(NO_3)_2 + P$$

A. Gives neutral solution in water

B. Contains more O_2 than Air

C. Forms brownn ring with $FeSO_A$ solution

D. None of these

Answer: C

Watch Video Solution

Which of the following ionic/molecular species does not disproportionate in water at room temperature?

A. NO_2

B. *Cu* +

 $C. MnO_4^{2}$

D. Ca(Ocl)Cl

Answer: D

9.	Which	halogen	oxidizes	water	at	room	temperature	but	does	not
undergo disproportionation into it?										

A.
$$F_2$$

B. Cl_2

C. *Br*₂

 $D.I_2$

Answer: A

Watch Video Solution

10. Which of the following combination doen's evolve ${\it Cl}_2$ gas?

A.
$$HCl(aq.) + KMnO_4$$

B.
$$HCl + MnO_2$$

C.
$$HCl + I_2$$

D.
$$HCl + F_2$$

Answer: C

Watch Video Solution

11. Which of the following combination does not liberated NH_3 gas?

A. Heating of NH_4ClO_4

B. Heating of NH₄Cl

 $\mathsf{C.}\left(\mathit{NH}_4\right)_2 CO_{30+\mathit{NaOH}}$

 $\mathsf{D.}\,Li_3N+H_2O$

Answer: A

12. Which of the following compound on heating does not produce metal oxide?

 $A. MgCl_2 \cdot 6H_2O$

 $\mathsf{B.}\, K_2 C r_2 O_7$

C. *K*₂*CO*₃

D. $Cu(NO_3)_2$

Answer: C

13. Select the compound in which HCl is not the product of Hydrolysis:

A. NCl₃

VC1₃

 $B.PCl_3$

C. AsCl₃

D. $BiCl_3$

Answer: A

Watch Video Solution

14. How many moles of $H_2{\cal O}$ are liberated when one mole hydrated ${\it MgCl}_2$

is heated?

A. 6

B. 5

C. 4

D. 3

Answer: B

15. Consider the following sequence of reaction:

$$NH_4Cl(s) + \left(NH_4\right)_2CO_3sol.$$
 CH_3COOH CH_3COOH CH_3COOH CH_3COOH

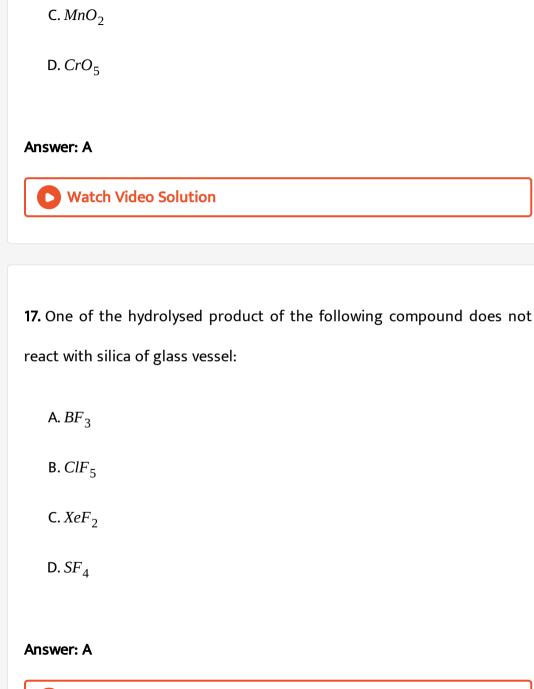
Which of the following cation can form ppt. Q but does not form ppt. 'R'?

$$A. Mg^{2+}(aq.)$$

B. $Ca^{2+}(aq.)$

 $C. Sr^{2+}(aq.)$

D. $Ba^{2+}(aq.)$


Answer: D

Watch Video Solution

16. Which of the following compound does not liberated oxygen gas on warming with conc. H_2SO_4 ?

 $A.SO_3$

Watch Video Solution

 $B.PbO_2$

18.
$$M(Salt) + Dil.$$
 $HCl \rightarrow P \downarrow + N \uparrow$

gas 'N' changes colour of $FeSO_4$ solution into yellow solution then salt M in above reaction is

- A. BaS_2O_3
- $\mathsf{B.}\mathit{Ag}_{2}SO_{3}$
- $C. AgNO_2$
- D. $Pb(NO_3)_2$

Answer: C

Watch Video Solution

Incorrect statement for Q is:

A. Paramagnetic colourless gas

B. It is oxidized to paramagnetic coloured gas by air

C. It combines with $Fe_2(SO_4)_3$

D. It can be also obtained by disproportionation of $H\!N\!O_2$

Answer: C

Watch Video Solution

20. In which of the following redox reaction precipitate is not formed?

A.
$$Cr^{3+}(aq.) + Na_2O_2(Solution) \rightarrow$$

B.
$$Fe^{3+}(aq.) + (NH_4)_2 S \rightarrow$$

$$C. Mn^{2+}(aq.) + H_2O_2 + NH_3(Solution) \rightarrow$$

D.
$$Fe^{2+}(aq.) + Na_2O_2(solution) \rightarrow$$

Answer: A

21. Which metal sulphide is soluble in excess NH_3 solution?

A. ZnS

B. MnS

C. FeS

D. Cr_2S_3

Answer: D

Watch Video Solution

22.
$$I^{-}(aq.) + MnO_{4}^{-}(aq.) \rightarrow X + Mn^{2+}(aq.)$$

Neutral or

 $I^{-}(aq.) + MnO_{4}^{-}(aq.) \rightarrow \text{weakly } OH^{-}Y + MnO_{2}$

 $ZnSO_4$ $MnO_4^-(aq.) + Mn^{2+}(aq.) \rightarrow Z + 4H^+$

Product X, Y and Z are respectively.

 $A. I_2, IO_3^-, MnO_2$

 $B.IO_3$, I_2 , MnO_2

$$C. I_2, IO_3, MnO_4^2$$

D.
$$IO_3^-$$
, I_2 , MnO_4^{2-}

Answer: A

Watch Video Solution

23. $Br_2 + NaOH \rightarrow Y + Z$

If Y gives precipitate with $AgNO_3$, then Z does not undergo reaction with:

A.
$$Cr^{3+}(aq.)$$

B.
$$Fe^{2+}(aq.)$$

$$C.Al^{3+}(aq.)$$

D.
$$Sn^{2+}(aq.)$$

Answer: C

24.
$$(P) \rightarrow (Q)$$
Metallic solid $+(R) \uparrow +(S) \uparrow$
 Δ

$$(X) \rightarrow (Y)$$
amphoteric+ $(R) \uparrow + (S) \uparrow$

P& X are respectively:

$${\sf A.}\, AgNO_3, LiNO_3$$

B.
$$AgNO_3$$
, $Pb(NO_3)_2$

C.
$$Hg_2(NO_3)_2$$
, $Ca(NO_3)_2$

D.
$$NaNO_3$$
, $Zn(NO_3)_2$

Answer: B

Watch Video Solution

25. Iodine is not oxidized to iodic acid/iodicanhydride by:

- A. conc. HNO_3
- B. conc. H_2SO_4
- C. Excess Cl₂ water

Answer: D

Watch Video Solution

- 26. Colourless gas that has oxidising as well as reducing properties:
 - A. CO_2
 - B. *SO*₂
 - **C**. *NO*₂
 - D. *SO*₃

Answer: B

27.
$$Pb + Dil. HNO_3 \rightarrow P + Q \uparrow + H_2O$$

Incorrect statement for Q is:

- A. Paramagnetic colourless gas
- B. It is oxidized to paramagnetic coloured gas by air
- C. It combines with $Fe_2(SO_4)_3$
- D. It is also obtained by disproportionation of HNO_2

Answer: C

Watch Video Solution

28. Which reaction has positive value of ΔG °?

A.
$$F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$$

$$B. Cl_2 + H_2O \rightarrow HCl + HOCl$$

$$C. Br_2 + H_2O \rightarrow HBr + HOBr$$

$$\begin{array}{c} R.T. \\ \text{D.}\, I_2 + H_2O \ \rightarrow \ HI + HOI \end{array}$$

Answer: D

Watch Video Solution

29. Which does not undergo comproportionation reaction?

$$A. H_2S + SO_2 \rightarrow$$

$$C. K_2MnO_4 + H^+(aq.) \rightarrow$$

B. $I^{-}(aq.) + IO_{3}^{-}(aq.) + H^{+}(aq.) \rightarrow$

$$D. MnO_4^- + Mn^{2+}(aq.) \rightarrow$$

Answer: C

Watch Video Solution

30. Select the incorrect match:

A.
$$Fe^{3+} + \left[Fe(CN)_6 \right]^{4-} \rightarrow \text{Blue colour ppt.}$$

B.
$$Fe^{3+} \left[Fe(CN)_6 \right]^{3-} \rightarrow \text{Red brown colouration}$$
C. $Fe^{2+} + \left[Fe(CN)_6 \right]^{3-} \rightarrow \text{Blue colour ppt.}$

D.
$$Fe^{2+} + \left[Fe(CN)_6 \right]^{4-} \rightarrow \text{Red brown colouration}$$

Answer: D

Watch Video Solution

31.
$$Cu^{2+}(aq.) + X^{-}(aq.) \rightarrow CuX \vee + X_{2}$$

$$D. SCN^{-}(aq.)$$

Answer: A

32. In which of the following reaction SO_2 gas is not produced?

33. Which metal gives NH_4NO_3 , when react with dilute HNO_3 acid?

warm

A.
$$S_8$$
 + conc. H_2SO_4 \rightarrow

$$B. S_8 + conc. \quad HNO_3 \rightarrow$$

C.
$$PbS + O_2 \xrightarrow{\Delta}$$

D.
$$FeS_2 + O_2 \rightarrow$$

Answer: B

Watch Video Solution

A. Zn

B. *Pb*

C. Cu

Answer: A

Watch Video Solution

- **34.** Select the salt whose aqueous solution is not green:
 - A. $FeSO_4$
 - $\mathsf{B.}\mathit{CrCl}_3$
 - $C. NiCl_2$
 - D. $MnCl_2$

Answer: D

35. Select the ion exchange reaction, which proceeds to forward direction in aqueous medium:

Aqueous

A.
$$2AgCl + CaF_2 \rightarrow 2AgF + CaCl_2$$

Aqueous

B. $BaSO_4 + 2NaOH \rightarrow Ba(OH)_2 + Na_2SO_4$

Aqueous

$$C. Pb(NO_3)_2 + 2CH_3COONa \rightarrow Pb(OAc)_2 + 2NaNO_3$$

 $\mathsf{D}.\, \mathit{Na}_{2}\mathit{CrO}_{4} + \mathit{BaCl}_{2} \quad \rightarrow \quad \mathit{BaCrO}_{4} + 2\mathit{NaCl}$

Answer: D

36. Which of the following metal hydroxide is not soluble in exces of NH_3 solution?

A.
$$Fe(OH)_2$$

$$C. Cd(OH)_2$$

D. $Cu(OH)_2$

Answer: A

Watch Video Solution

37. Which of the following combination of reagents does not undergo redox reaction in aqueous medium?

$$A. SnCl_2 + HgCl_2$$

$$B. CuSO_4 + KCN$$

$$C.Pb(CH_3COO)_2 + KI$$

$$\mathsf{D.} Ag_2O + SO_2$$

Answer: C

38. $K_4[Fe(CN)_6] + M^{\chi+}(aq.) \rightarrow M_4[Fe(CN)_6]_{\chi} \downarrow$ Coloured precipitate

Which of the following cation does not respond to the above reaction?

- A. $Cu^{2+}(aq.)$
- B. $Fe^{3+}(aq.)$
- $C. Zn^{2+}(aq.)$
- D. None of these

Answer: C

Watch Video Solution

39. Sodium salt solution $+AgNO_3$ soln. \rightarrow Coloured precipitate.

solution then which of the following anion is present in the salt solution?

If coloured precipitate is soluble in both dil. HNO3 and excess conc. NH3

- A. $S^{2-}(aq.)$
- $B.I^{-}(aq.)$

C.	$PO_4^{3-}(a_0^{3-})$	q.
D.	Br⁻(aq.)

Answer: C

Watch Video Solution

40. Chlorine gas is not produced by heating:

A. SOCl₂

B. $PbCl_{4}$

 $C. FeCl_3$

D. Hg_2Cl_2

Answer: D

41. Which of the following anion does not produce prepitate with $BaCl_2$ solution however gives precipitate with AgNO₃?

A.
$$CO_3^{2-}(aq.)$$

$$C. MnO_{\Lambda}^{-}(aq.)$$

B. $C_2O_4^{2-}(aq.)$

D.
$$S^{2-}(aq.)$$

Answer: D

Watch Video Solution

- **42.** Which of the following compound is completely water soluble?
- A. $BaSO_A$
 - B. $Ba(OH)_2$

 $C.Al(OH)_3$

D. CaF_2

Answer: B

Watch Video Solution

43. Which chemical reaction contains incorrect products?

A.
$$SnSO_4 \rightarrow SnO_2 + SO_3 \uparrow + SO_2 \uparrow$$

$$B.Ag_2C_2O_4 \xrightarrow{\Delta} Ag + CO_2 \uparrow$$

$$C.P_4O_{10}(s) + CaO(s) \stackrel{\Delta}{\rightarrow} Ca_3(PO_4)_2$$

$$D. PbCl_4 \rightarrow PbCl_2 + Cl_2 \uparrow$$

Answer: A

Watch Video Solution

44. Which of the following compound undergoes disproportionation in presence of SO_3 gas?

A.
$$K_2MnO_4$$

$$B. K_2 Cr O_4$$

$$\mathsf{C}.\,I_2$$

D.
$$Mg(NO_3)_2$$

Answer: A

Watch Video Solution

45. Consider the following reaction:

$$K_4 \left[Fe(CN)_6 \right]$$

X(aq.) \rightarrow Chocolate brown ppt.

$$AgNO_3$$

 $X(aq.) \rightarrow \text{White ppt. (insoluble in dil. } HNO_3)$

Then 'X' will be:

A.
$$ZnSO_4$$

B.
$$CuCl_2$$

C.
$$FeSO_4$$

Answer: B

Watch Video Solution

- 46. Which of the following reagent does not oxidize HCl?
 - A. PbO_2
 - B. conc. H_2SO_4
 - $C. MnO_2$
 - $D. K_2 Cr_2 O_7 / H^{-1}$

Answer: B

47. Select correct match:

Anions

- (a) CO_3^{2-} , SO_3^{2-}
- (b) CO₃²⁻, HCO₃
- (c) SO_3^{2-} , SO_4^{2-}

(d) Cl -, Br -

- Separated by reagent
 - BaCl₂
 - CaCl
 - (CH₃COO)₂Pb AgNO,

Watch Video Solution

48. Which of the following compound does not produce green coloured product on thermal decomposition?

- A. $K_2Cr_2O_7$
- B. $KMnO_{\Lambda}$
- $C. (NH_4)_2 Cr_2 O_7$
- D. NH_4NO_3

Answer: D

49. Aqueous solution of $FeSO_4$ does not produce precipitate with:

A. NaOH

 $B. NH_3$ solution

 $C. Na_2CO_3$

D. None of these

Answer: D

Watch Video Solution

50. Comproportionationn occurs between:

A.
$$Cl^{-}(aq.) + ClO^{-}(aq.) + OH^{-}(aq.)$$

 $B. PH_3(g) + H_3PO_4 \text{ acid}$

 $C. Na_2S(aq.) + Na_2SO_3(aq.)$

D. $MnO_4^-(aq.) + Mn^{2+}(aq.) + ZnSO_4(aq.)$

Answer: D

Watch Video Solution

51. Colour of CrO_4^{2-} (aq.) is not changed by

A. dil. HCl

 $B.NH_3$ solution

C. CH₃COOH

 $D.NO_2$ gas

Answer: B

Watch Video Solution

52.
$$Mg_3N_2(s) + H_2O \rightarrow P \downarrow + Q \uparrow$$

Excess 'Q' gas does not form coloured complex with:

$$B.Zn^{2+}(aq.)$$

C. $Cr^{3+}(aq.)$

A. $Ni^{2+}(aq.)$

D. $Cu^{2+}(aq.)$

Answer: B

Watch Video Solution

NaOH solution?

A.
$$Fe^{3+}(aq.) + Zn^{3+}(aq.)$$

53. Which of the following pair of cations can be separated by excess

B. $Mn^{2+}(aq.)$, $Cd^{2+}(aq.)$

 $C. Mq^{2+}(aq.), Hq^{2+}(aq.)$

D. $Al^{3+}(aq.)$, $Cr^{3+}(aq.)$

Answer: A

54. Consider following reaction:

$$Cl_2(g) + H_2O \rightarrow P + Q$$

If molecular weight of P is less than Q then incorrect statement is:

- A. On warming 'P' can form deep red coloured vapours with ${\it CrO}_3$
- B. Q' exhibits bleaching property
- ${\rm C.}\,{\it MnO}_2$ can change 'P' into ${\it Cl}_2$ gas on warming
- D. P' reacts with H_2S gas while 'Q' does not

Answer: D

Watch Video Solution

55. Which of the following reagent can dissolves precipitate of $HgS \downarrow$

A. NH_3 solution

B. conc. HCl

C. conc. HNO_3

D. Na_2S solution

Answer: D

Watch Video Solution

56. Which of the following reaction is incorrect?

$$\mathsf{A.}\ PCl_3 + 3H_2O \ \rightarrow \ H_3PO_3 + 3HCl$$

$$\mathsf{B.}\,\mathit{NCl}_3 + 3H_2O \,\,\rightarrow\,\, \mathit{NH}_3 + 3HOCl$$

$$\mathsf{C.}\,\mathit{SbCl}_3 + 3H_2O \,\rightarrow\, H_2\mathit{SbO}_3 + 3HCl$$

$$D. BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$$

Answer: C

57. Concentrated sodium hydroxiide can separate a mixture of:

- A. Al^{3+} and Cr^{3+}
- B. Cr^{3+} and Fe^{3+}
- $C.Al^{3+}$ and Zn^{2+}
- D. Zn^{2+} and Pb^{2+}

Answer: B

Watch Video Solution

58. Select correct set of species which can't react with water but react with NaOH,

- (i) *NO*₂
- (ii) *P*₄
- (iii) Al
- (iv) I_2

A. Only (iv)

B. (iii) and (iv)

C. (ii), (iii) and (iv)

D. all (i), (ii), (iii) and (iv)

Answer: C

Watch Video Solution

59. Fe(Finely powdered)+HCl(dil.) $\rightarrow P + Q \uparrow$

Compound 'P' does not precipitate with:

 $A. AgNO_3$

 $B. K_3 [Fe(CN)_6]$

 $C. \left(NH_4 \right)_2 S$

 $\mathsf{D.}\,NH_4Cl + NH_4OH$

Answer: D

60. Which combination gives maximum number of products?

A.
$$P_4$$
 + $SOCl_2$

$$\mathsf{B.}\, P_4 + SO_2Cl_2$$

$$C. XeF_4 + H_2O$$

D. $NH_4NO_3 + Zn +$ Excess Excess NaOH

Answer: C

61. $Cu^{2+}(aq.)$ does not undergo redox reaction with solution:

A.
$$\left(NH_4\right)_2 S$$

$$B. Na_2S_2O_3$$

Answer: A

Watch Video Solution

- **62.** Hydrolysis of which of the following compound liberates acidic gas?
 - A. Li₂NH
 - $\mathsf{B.}\mathit{Al}_2S_3$
 - C. CaC_2
 - D. CaNCN

Answer: B

Watch Video Solution

63. The non-metal which does not react with water but reacts with alkali?

A. Boron

B. Bromine

 $C.P_A$

D. Fluorine

Answer: C

Watch Video Solution

- **64.** A very dilute acidic solution of $Cd^{2+} \& Ni^{2+}$ gives only yelllwo ppt. of CdS on passing H_2S , this is due to:
 - A. solubility product $\left(K_{sp}\right)$ of CdS is more than that of NiS.
 - B. Solubility product (K_{sp}) of CdS is less than that of NiS.
 - C. Cd^{2+} belong to II B group while Ni^{2+} belongs to IVth group
 - D. CdS is insoluble in yellow ammonium sulphide (YAS).

Answer: B

65. Thermal decomposition of which of the salt listed below yield a basic and acidic oxides simultaneously?

A. NH_4ClO_4

 $\mathsf{B.}\,\mathit{CaCO}_3$

 $\mathsf{C.}\,\mathit{NanO}_3$

 $D.NH_4NO_2$

Answer: B

Watch Video Solution

66. What are formed products, when aqueous solution of $CuCl_2$ and $\left(NH_4\right)_2S$ are mixed?

A. CuS(aq.) and $NH_4Cl(s)$

67. Which of the following compound does not react with cold and dil. HNO_3 ?

A. PbO

B. PbO_2 C. $FeSO_4$ D. $PbCl_2$

B. CuS(s) and $NH_4Cl(aq.)$

C. CuS(aq.) and $NH_ACl(g)$

D. CuS(s) and $NH_4Cl(s)$

Watch Video Solution

Answer: B

Answer: B

68. The incorrect order of solubility in water is:

A.
$$Ca(OH)_2 < Sr(OH)_2 < Ba(OH)_2$$

$$\mathsf{B.}\, Li_2CO_3 \leq Na_2CO_3 \leq K_2CO_3$$

$$C. CsNO_3 < RbNO_3 < KNO_3$$

D.
$$BeS_2O_3 < MgS_2O_3 < CaS_2O_3$$

Answer: D

Watch Video Solution

69. The correct order of increasing solubility in water is:

A. KF < NaF < LiF

 $B. NaHCO_3 < KHCO_3 < RbHCO_3$

 $\mathsf{C.}\,K_2\mathsf{CO}_3 < \mathit{Na}_2\mathsf{CO}_3 < \mathit{Li}_2\mathsf{CO}_3$

 $D. LiNO_3 < NaNO_3 < KNO_3$

Watch Video Solution

70. Bromine is commercially prepared from sea water by displacement reaction

$$Cl_2 + 2Br^-(aq.) \rightarrow 2Cl^-(aq.) + Br_2$$

 Br_2 gas thus formed is dissolved into solution of $\mathit{Na}_2\mathit{CO}_3$ and then pure

 Br_2 iis obtained by treatment of the solution with :

- A. $Ca(OH)_2$
- B. NaOH
- $C.H_2SO_4$
- D. HI

Answer: C

71. Which of the following metal on burning in moist air does not give
smel of ammonia?
A. Mg
B. Ca
C. K
D. Li
Answer: C
Watch Video Solution
O material reconstruction
72. Gas that can not be collected over water is:
72. Gas that can not be collected over water is:
72. Gas that can not be collected over water is: $A. N_2$

Answer: C

Watch Video Solution

73. Compound having lowest thermal stability is:

- A. $NaHCO_3$
- B. $KHCO_3$
- C. RbHCO₃
- D. CsHCO₃

Answer: A

Watch Video Solution

74. Which of the following statement is incorrect regarding Fe^{2+} and Fe^{3+} cations?

A. Fe^{3+} gives brown colour solution with potassium ferricyanide

B. Fe^{2+} gives blue precipitate with potassium ferricyanide

 $C. Fe^{3+}$ gives red colour solution with potassium thiocyanate

D. Fe^{2+} gives brown colour with ammonium thiocyanate

Answer: D

Watch Video Solution

75. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by

A. Heating NH_4NO_2

B. Heating NH₄NO₃

C. Heating $(NH_4)_2SO_4$

D. Treatment Mg_3N_2 with H_2O

Answer: A

76. Which of the following compound liberates acidic gas during its

A. Ca_3P_2

B.AIN

hydrolysis?

 $C.Al_2S_3$

D. CaH_2

Answer: C

Watch Video Solution

77. Which of the following combination does not evolve Cl_2 gas?

A. $HCl(aq.) + KMnO_4$

B. $HCl + MnO_2$

$$C.HCl + Br_2$$

D.
$$HCl + F_2$$

Answer: C

Watch Video Solution

78. NH₃ gas does not liberate by which of the following combination?

A. Heating of NH_4ClO_4

B. Heating of NH₄Cl

 $C. (NH_4)_2 CO_3 + NaOH$

 $D. Li_3N + H_2O$

Answer: A

79. If salt Q undergoes redox reaction with H_2S in acidic medium then which of the following species can not be possible product?

- A. $MnO_4^{2-}(aq.)$
- $\mathsf{B.}\,\mathcal{S}$
- $C. MnO_2$
- D. both (a) and (c)

Answer: D

Watch Video Solution

Heat
$$Cr_2O_7^{2-}/H^+$$

80. Metal sulphate $(A) \rightarrow \text{oxide}(B) + gas(C) + gas(D) \rightarrow \text{Gree}$

 Na_2O_2

solution \rightarrow *ExcessE*yellow solution

Compound A, B, C, D are E are respectively:

 $\mathsf{A.FeSO}_4, \mathit{Fe}_2\mathsf{O}_3, \mathit{SO}_3, \mathit{SO}_2, \mathit{Na}_2\mathit{CrO}_4$

 $B.Al_2(So_4)_3, Al_2O_3, SO_3, SO_2, Na_2CrO_4$ C. CuSO₄, CuO, SO₃, SO₂, NaCrO₄

D. $ZnSO_A$, ZnO_2 , SO_3 , SO_2 , Na_2CrO_A

81. Which of the following radical does not liberate gas with (Zn+dil. HCl)

Answer: A

Watch Video Solution

on warming?

A. S^{2}

B. SO_3^{2-}

 $C. NO_3^{2-}$

D. CH₃COO -

Answer: C

82. Which of the following cation does not give precipitate with H_2S in neutral medium?

- A. Fe^{3+}
- B. *Cu*²⁺
- C. Bi^{3+}
- D. Ag^+

Answer: A

Watch Video Solution

83. $NaCl(solid) + K_2Cr_2O_7(solid) + conc. H_2SO_4 \rightarrow \text{Reddish brown fumes}$ of 'X'.

The oxidation state of central atom in compound 'X' is:

A. + 6

C. + 2

D. zero

Answer: A

Watch Video Solution

84. Diamagnetic gas neutral towards water is:

A. N_2O

 $B.NO_2$

C. NO

D. N_2O_3

Answer: A

85. Which of the following reagent can be used to separate *AgCl* and *AgI*?

A. dil. HNO_3

B. NH₄OH solution

C. KCN solution

D. $Na_2S_2O_3$ solution

Answer: B

Watch Video Solution

86. When PbO_2 reacts with conc. HNO_3 then evolved gas is:

A. NO_2

 $\mathsf{B.}\,O_2$

 $\mathsf{C.}\,N_2$

 $\mathsf{D}.\,N_2O$

Answer: B

Watch Video Solution

87. In a closed container there is a mixture of SO_2 , CO_2 and O_2 gas, which sequence of reagent can be helpful to separate them ?

- (I) Limewater
- (II) Acidified potassium dichromate
- (III) Alkaline pyragallol.
 - A. (I),(II) and (III)
 - B. (II), (I), (III)
 - C. (III),(II), (I)
 - D. (III), (I), (II)

Answer: B

88. Which salt is colourless? A. $KMnO_{\Lambda}$ B. $BaSO_A$ C. Na2CrO₄ D. CoCl₂ **Answer: B Watch Video Solution** 89. Which of the following Xenon compound does not produce explosive XeO₃ on its complete hydrolysis? A. XeO_2F_2 B. XeF_2 $C. XeF_{4}$ D. XeF_6

Answer: B

Watch Video Solution

90. $FeSO_4.7H_2O$ (Green vitriol) salt on thermal decomposition does not produce:

- $A.SO_2$
- $B.O_2$
- $C.SO_3$
- D. H_2O vapour

Answer: B

Watch Video Solution

 $BaCl_2$ **91.** $X(aq) + Na_2O_2 \rightarrow Y(aq.) \rightarrow Z \downarrow$ Insoluble in dil. HCl

X and Y are different sodium salts, then anion present in the salt (X) is:

A. Hg_2Cl_2 B. FeCl₂ $C. S_2Cl_2$ D. BCl_3

A. $Cr_2O_7^{2-}$

B. $C_2O_4^{2-}$

 $c. SO_3^{2-}$

D. SO_4^{2-}

Answer: C

Watch Video Solution

Watch Video Solution

92. Which of the following chloride does not react with PCl_5 on heating?

Air

KOH

 $P(\text{soln.})(\text{Coloured}) \rightarrow Q(\text{soln.})(\text{Coloured}) \rightarrow R \downarrow (ppt.)$ (Insoluble in both excess NaOH a then P contains:

 $\begin{array}{c|c} Pb\left(CH_3COO\right)_2 \\ \textbf{94.} X_2S_n + water \rightarrow X(OH)_n & + Y \uparrow (Gas) \rightarrow Z \downarrow \text{ (Black ppt.)} \end{array}$

C.
$$Cr^{2+}(aq.)$$

B. $Fe^{2+}(aq.)$

$$D. Ni^{2+}(aq.)$$

Answer: B

Watch Video Solution

Then (X) cation can not be:

A.
$$Fe^{3+}$$

B. Al^{3+}

C. Cr^{3+}

D. Mg^{2+}

Answer: A

Watch Video Solution

95. $X(\text{satl}) + AgNO_3(aq.) \rightarrow Y \downarrow (\text{yellow ppt.})$ (soluble in excess of NH_3 solution)

Salt X, does not contain:

A.
$$PO_4^{3}$$

B. Br⁻

 $C.I^-$

D. AsO_3^{3}

Answer: C

Watch Video Solution

Excess

96. $M^{n+}(aq.) + KI \rightarrow X \downarrow ppt. \rightarrow KI$ ppt. remains insoluble in excess KI solution. Then cation $M^{n+}(aq.)$ can be:

A.
$$Pb^{2+}(aq.)$$

B.
$$Cu^{2+}(aq.)$$

C.
$$Bi^{3+}(aq.)$$

$$D. Hg^{2+}(aq.)$$

Answer: B

Watch Video Solution

97. Aqueous solution of which of the following cation gives precipitate with potash alum?

A. H_2O_2 B. $Sn^{2+}(aq.)$ C. HFD. HBrAnswer: C

Watch Video Solution

98. Colour of acidified $K_2Cr_2O_7$ is not changed by:

Answer: C Watch Video Solution

A. $Cu^{2+}(aq.)$

B. $Zn^{2+}(aq.)$

C. $Ba^{2+}(aq.)$

D. $Ni^{2+}(aq.)$

99. Which of the following metal nitrate produces gaseous product when reacts with KCN solution?

A.
$$Cu(NO_3)_2$$

- $B.AgNO_3$
- C. $Cd(NO_3)_2$ D. $Pb(NO_3)_2$

Answer: A

Watch Video Solution

100. Which of these reaction is correct?

$$A. Cl^- + Br_2 \rightarrow Br^- + Cl_2$$

B. Mohr's salt
$$\rightarrow NH_3 \uparrow (g)$$

 SO_3 $C. K_2 Cr_2 O_7$ solution \rightarrow Green colour solution

NaOH Excess NaOH $D. FeCl_2 \rightarrow (ppt. coloured) \rightarrow$ Soluble complex

Answer: B

Watch Video Solution

101. Compound which on heating produces paramagnetic acidic gas?

- A. $Mg(NO_3)_2$ B. $Fe_2(SO_4)_3$
- $C.FeCO_3$
- D. HgC_2O_4

Answer: A

102. Which compound on heating produces coloured metal oxide finally?

$$A.Al_2(SO_4)_3$$

B. $HgCO_33Hg(OH)_2$

C. $Cu(NO_3)_2$

D. *Ba*(*OH*)₂

Answer: C

103. $P(\text{Coloured solution}) + BaCl_2 \rightarrow Q \downarrow (\text{White}) + R(\text{Coloured solution})$ **ItBrgt**

Then salt 'P' in above reaction is:

A.
$$Na_2CrO_4$$

 ${\sf B.}\, {\it ZnSO}_4$

C. CuSO₄

D. $AgNO_3$

Answer: C

Watch Video Solution

104. Oxygen gas is not produced from the following decomposition reaction:

$$A. K_2 Cr_2 O_7 \xrightarrow{\Delta}$$

$$\text{B.} Ag_2C_2O_4 \overset{\Delta}{\rightarrow}$$

$$C. Pb(NO_3)_2 \stackrel{\Delta}{\rightarrow}$$

$$D. Ag_2CO_3 \rightarrow$$

Answer: B

Watch Video Solution

105. Consider the following reaction and select incorrect statement about gas (P):

$$Zn + HNO_3(Dilute) \rightarrow Zn(NO_3)_2 + P$$

- A. Gives neutral solution in water
- B. Contains more O_2 than Air
- C. Forms brownn ring with $FeSO_4$ solution
- D. None of these

Answer: C

106. Which of the following ionic/molecular species does not disproportionate in water at room temperature?

- **A.** *NO*₂
- B. *Cu* +
- $C. MnO_4^2$
- D. Ca(OCl)Cl

Answer: D

Watch Video Solution

107. Which halogen oxidizes water at room temperature but does not undergo disproportionation into it?

- $A.F_2$
- B. Cl_2
- $C. Br_2$
- $D.I_2$

Answer: A

Watch Video Solution

108. Which of the following combination does not evolve Cl_2 gas?

A. $HCl(aq.) + KMnO_4$

B. $HCl + MnO_2$

 $C.HCl + I_2$

D. $HCl + F_2$

Answer: C

A. Heating of NH_4ClO_4

B. Heating of NH₄Cl

 $\mathsf{C.}\left(\mathit{NH}_4\right)_2 \mathit{CO}_{30+\mathit{NaOH}}$

109. Which of the following combination does not liberated NH_3 gas?

 $D. Li_3N + H_2O$

Answer: A

110. Which of the following compound on heating does not produce metal oxide?

- $\text{A.}\,\textit{MgCl}_2\cdot \textit{6H}_2\textit{O}$
- $\mathsf{B.}\, K_2 C r_2 O_7$
- $C. K_2CO_3$
- D. $Cu(NO_3)_2$

Answer: C

Watch Video Solution

111. Select the compound in which HCl is not the product of Hydrolysis:

- A. NCl_3
- $\mathsf{B.}\mathit{PCl}_3$
- $\mathsf{C}.\mathit{AsCl}_3$

D. $BiCl_3$	
-------------	--

Answer: A

Watch Video Solution

- 112. How many moles of $H_2\mathcal{O}$ are liberated when one mole hydrated $MgCl_2$ is heated?
 - A. 6
 - B. 5
 - C. 4
 - D. 3

Answer: B

113. Consider the following sequence of reaction:

$$NH_4Cl(s) + (NH_4)_2CO_3sol.$$
 CH_3COOH CH_3COOH CH_3COOH CH_3COOH

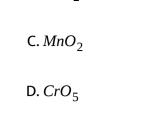
Which of the following cation can form ppt. Q but does not form ppt. 'R'?

$$A. Mg^{2+}(aq.)$$

B. $Ca^{2+}(aq.)$

 $C. Sr^{2+}(aq.)$

D. $Ba^{2+}(aq.)$


Answer: D

Watch Video Solution

114. Which of the following compound does not liberated oxygen gas on warming with conc. H_2SO_4 ?

 $A.SO_3$

 $B.PbO_2$

Answer: A

115. One of the hydrolysed product of the following compound does not react with silica of glass vessel:

A. BF_3

B. ClF₅

 $C. XeF_2$

D. SF_4

Answer: A

116.
$$M(Salt) + Dil. HCl \rightarrow P + Q + H_2O$$

gas 'Q' changes colour of $FeSO_4$ solution into yellow solution then salt M in above reaction is

- A. BaS_2O_3
- $\mathsf{B.}\mathit{Ag}_{2}\mathit{SO}_{3}$
- $\mathsf{C}.\mathit{AgNO}_2$
- D. $Pb(NO_3)_2$

Answer: C

Watch Video Solution

117.
$$Pb + dil.$$
 $HNO_3 \rightarrow P + Q \uparrow + H_2O$

incorrect statement for Q is:

A. Paramagnetic colourless gas

B. It is oxidized to paramagnetic coloured gas by air

C. It combines with $Fe_2(SO_4)_3$

D. It can be also obtained by disproportionation of $H\!N\!O_2$

Answer: C

Watch Video Solution

118. In which of the following redox reaction precipitate is not formed?

A.
$$Cr^{3+}(aq.) + Na_2O_2(Solution) \rightarrow$$

B.
$$Fe^{3+}(aq.) + (NH_4)_2 S \rightarrow$$

C.
$$Mn^{2+}(aq.) + H_2O_2 + NH_3(Solution) \rightarrow$$

D.
$$Fe^{2+}(aq.) + Na_2O_2(solution) \rightarrow$$

Answer: A

119. Which metal sulphide is soluble in excess NH_3 solution?

A. ZnS

B. MnS

C. FeS

D. Cr_2S_3

Answer: D

Watch Video Solution

120.
$$I^{-}(aq.) + MnO_{4}^{-}(aq.) \rightarrow X + Mn^{2+}(aq.)$$

Neutral or

 $I^{-}(aq.) + MnO_{4}^{-}(aq.) \rightarrow \text{weakly } OH^{-}Y + MnO_{2}$

ZnSO₄

 $MnO_4^-(aq.) + Mn^{2+}(aq.) \rightarrow Z + 4H^+$

Product X, Y and Z are respectively.

A. I_2 , IO_3 , MnO_2

 $B.IO_3$, I_2 , MnO_2

$$C. I_2, IO_3, MnO_4^2$$

D.
$$IO_3^-$$
, I_2 , MnO_4^{2-}

Answer: A

Watch Video Solution

121. $Br_2 + NaOH \rightarrow Y + Z$

If Y gives precipitate with $AgNO_3$, then Z does not undergo reaction with:

A.
$$Cr^{3+}(aq.)$$

B.
$$Fe^{2+}(aq.)$$

$$C.Al^{3+}(aq.)$$

$$D. Sn^{2+}(aq.)$$

Answer: C

122.
$$(P) \rightarrow (Q)$$
Metallic solid $+(R) \uparrow + (S) \uparrow$

$$(X) \rightarrow (Y)$$
amphoteric+ $(R) \uparrow + (S) \uparrow$

P& X are respectively:

$$A. AgNO_3, LiNO_3$$

B.
$$AgNO_3$$
, $Pb(NO_3)_2$

$$C. Hg_2(NO_3)_2, Ca(NO_3)_2$$

D.
$$NaNO_3$$
, $Zn(NO_3)_2$

Answer: B

Watch Video Solution

123. Iodine is not oxidized to iodic acid/iodicanhydride by:

- A. conc. HNO_3
- B. conc. H_2SO_4
- C. Excess Cl_2 water

Answer: D

Watch Video Solution

- **124.** Colourless gas that has oxidising as well as reducing properties:
 - A. CO_2
 - B. *SO*₂
 - **C**. *NO*₂
 - D. *SO*₃

Answer: B

$$125. Pb + Dil. HNO_3 \rightarrow P + Q \uparrow + H_2O$$

Incorrect statement for Q is:

- A. Paramagnetic colourless gas
- B. It is oxidized to paramagnetic coloured gas by air
- C. It combines with $Fe_2(SO_4)_3$
- D. It is also obtained by disproportionation of HNO_2

Answer: C

Watch Video Solution

126. Which reaction has positive value of ΔG °?

A.
$$F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$$

$$\mathsf{B.} \ Cl_2 + H_2O \ \rightarrow \ HCl + HOCl$$

$$C. Br_2 + H_2O \rightarrow HBr + HOBr$$

$$\begin{array}{c} R.T. \\ D.I_2 + H_2O \rightarrow HI + HOI \end{array}$$

Answer: D

Watch Video Solution

127. Which does not undergo comproportionation reaction?

$$A. H_2 S + SO_2 \rightarrow$$

$$C. K_2MnO_4 + H^+(aq.) \rightarrow$$

B. $I^{-}(aq.) + IO_{3}^{-}(aq.) + H^{+}(aq.) \rightarrow$

$$D. MnO_4^- + Mn^{2+}(aq.) \rightarrow$$

Answer: C

Watch Video Solution

128. Select the incorrect match:

A.
$$Fe^{3+} + \left[Fe(CN)_6 \right]^{4-} \rightarrow \text{Blue colour ppt.}$$

B.
$$Fe^{3+} \left[Fe(CN)_6 \right]^{3-} \rightarrow \text{Red brown colouration}$$
C. $Fe^{2+} + \left[Fe(CN)_6 \right]^{3-} \rightarrow \text{Blue colour ppt.}$

D.
$$Fe^{2^+} + \left[Fe(CN)_6 \right]^{4^-} \rightarrow \text{Red brown colouration}$$

Answer: D

Watch Video Solution

129.
$$Cu^{2+}(aq.) + X^{-}(aq.) \rightarrow CuX \vee + X_{2}$$

'X' cannot be:

 $B.I^{-}(aq.)$

Answer: A

130. In which of the following reaction SO_2 gas is not produced?

A.
$$S_8$$
 + conc. H_2SO_4 \rightarrow

warm

B.
$$S_8$$
 + conc. $HNO_3 \rightarrow$

$$\begin{array}{c} \Delta \\ \mathsf{C.}\,\mathit{PbS} + O_2 \overset{\Delta}{\rightarrow} \\ \mathsf{D.}\,\mathit{FeS}_2 + O_2 \overset{\Delta}{\rightarrow} \end{array}$$

Answer: B

Watch Video Solution

131. Which metal gives NH_4NO_3 , when react with dilute HNO_3 acid?

A. Zn

 $B.\,Pb$

C. Cu

_	4
υ.	Au

Answer: A

Watch Video Solution

132. Select the salt whose aqueous solution is not green:

A. $FeSO_4$

B. $CrCl_3$

 $C. NiCl_2$

D. MnCl₂

Answer: D

133. Select the ion exchange reaction, which proceeds to forward direction in aqueous medium:

Aqueous

A.
$$2AgCl + CaF_2 \rightarrow 2AgF + CaCl_2$$

Aqueous

B. $BaSO_4 + 2NaOH \rightarrow Ba(OH)_2 + Na_2SO_4$

C. $Pb(NO_3)_2 + 2CH_3COONa \rightarrow Pb(OAc)_2 + 2NaNO_3$

Aqueous

D. $Na_2CrO_4 + BaCl_2 \rightarrow BaCrO_4 + 2NaCl$

Answer: D

134. Which of the following metal hydroxide is not soluble in exces of NH_3 solution?

A.
$$Fe(OH)_2$$

$$C. Cd(OH)_2$$

D. $Cu(OH)_2$

Answer: A

Watch Video Solution

135. Which of the following combination of reagents does not undergo redox reaction in aqueous medium?

$$\mathsf{A.} \, \mathit{SnCl}_2 + \mathit{HgCl}_2$$

$$B. CuSO_4 + KCN$$

$$C.Pb(CH_3COO)_2 + KI$$

$$\mathsf{D.} Ag_2O + SO_2$$

Answer: C

136. $K_4 \left[Fe(CN)_6 \right] + M^{x+}(aq.) \rightarrow M_4 \left[Fe(CN)_6 \right]_{y} \downarrow$ Coloured precipitate

Which of the following cation does not respond to the above reaction?

- A. $Cu^{2+}(aq.)$
- B. $Fe^{3+}(aq.)$
- C. $Zn^{2+}(aq.)$
- D. None of these

Answer: C

Watch Video Solution

137. Sodium salt solution $+AgNO_3$ soln. \rightarrow Coloured precipitate.

solution then which of the following anion is present in the salt solution?

If coloured precipitate is soluble in both dil. HNO3 and excess conc. NH3

- A. $S^{2-}(aq.)$
- $B.I^{-}(aq.)$

$C.PO_4^{3-}(aq.)$
D. Br ⁻ (aq.)

Answer: C

138. Chlorine gas is not produced by heating:

- A. SOCl₂
- B. $PbCl_{4}$
- $C. FeCl_3$
- D. Hg_2Cl_2

Answer: D

139. Which of the following anion does not produce prepitate with $BaCl_2$ solution however gives precipitate with AgNO₃?

A.
$$CO_3^{2-}(aq.)$$

$$C. MnO_{\Lambda}^{-}(aq.)$$

D. $S^{2-}(aq.)$

B. $C_2O_4^{2-}(aq.)$

Answer: D

Watch Video Solution

140. Which of the following compound is completely water soluble?

A. $BaSO_A$

B. $Ba(OH)_2$

 $C.Al(OH)_3$

D. CaF₂

Answer: B

Watch Video Solution

141. Which chemical reaction contains incorrect products?

A.
$$SnSO_4 \rightarrow SnO_2 + SO_3 \uparrow + SO_2 \uparrow$$

$$B.Ag_2C_2O_4 \xrightarrow{\Delta} Ag + CO_2 \uparrow$$

$$C. P_4 O_{10}(s) + CaO(s) \xrightarrow{\Delta} Ca_3 \left(PO_4\right)_2$$

$$D. PbCl_4 \rightarrow PbCl_2 + Cl_2 \uparrow$$

Answer: A

Watch Video Solution

142. Which of the following compound undergoes disproportionation in presence of SO_3 gas?

$$A. K_2 MnO_4$$

$$\mathsf{B.}\, K_2 Cr O_4$$

$$\mathsf{C}.I_2$$

$$\mathsf{D}.\mathit{Mg}\Big(\mathit{NO}_3\Big)_2$$

Answer: A

Watch Video Solution

143. Consider the following reaction:

$$K_4 \left[Fe(CN)_6 \right]$$

$$X(aq.)$$
 \rightarrow Chocolate brown ppt.

$$AgNO_3$$

$$X(aq.) \rightarrow \text{White ppt. (insoluble in dil. } HNO_3)$$

Then 'X' will be:

A.
$$ZnSO_4$$

B.
$$CuCl_2$$

$$C. FeSO_4$$

D. $FeCl_3$

Answer: B

Watch Video Solution

- **144.** Which of the following reagent does not oxidize HCl?
 - A. PbO_2
 - $\operatorname{B.\,conc.} H_2SO_4$
 - $C. MnO_2$
 - $D. K_2 Cr_2 O_7 / H^{-1}$

Answer: B

145. Select correct match:

Anions

- (a) CO_3^{2-} , SO_3^{2-}
- (b) CO₃²⁻, HCO₃
- (c) SO_3^{2-} , SO_4^{2-}
- (d) Cl -, Br -

- Separated by reagent
 - BaCl₂
 - CaCl
 - (CH₃COO)₂Pb
 - AgNO 3

View Text Solution

146. Which of the following compound does not produce green coloured product on thermal decomposition?

- A. $K_2Cr_2O_7$
- B. $KMnO_{\Lambda}$
- $C. \left(NH_4\right)_2 Cr_2 O_7$
- D. NH_4NO_3

Answer: D

147. Aqueous solution of $FeSO_4$ does not produce precipitate with:

A. NaOH

 $\mathbf{B.}\, N\!H_3\, \mathrm{solution}$

 $C. Na_2CO_3$

D. None of these

Answer: D

Watch Video Solution

148. Comproportionationn occurs between:

A.
$$Cl^{-}(aq.) + ClO^{-}(aq.) + OH^{-}(aq.)$$

$$B. PH_3(g) + H_3PO_4 \text{ acid}$$

$$C. Na_2S(aq.) + Na_2SO_3(aq.)$$

D.
$$MNO_4^{2-}(aq.) + Mn^{2+}(aq.) + ZnSO_4(aq.)$$

Answer: D

Watch Video Solution

149. Colour of CrO_4^2 (aq.) is not changed by

A. dil. HCl

 $B.NH_3$ solution

C. CH₃COOH

 $D.NO_2$ gas

Answer: B

Watch Video Solution

150.
$$Mg_3N_2(s) + H_2O \xrightarrow{R.T.} P \downarrow + Q \uparrow$$

Excess 'Q' gas does not form coloured complex with:

$$\mathsf{C.}\,\mathit{Cr}^{3+}(\mathit{aq.}\,)$$

A. $Ni^{2+}(aq.)$

B. $Zn^{2+}(aq.)$

$$D. Cu^{2+}(aq.)$$

Answer: B

Watch Video Solution

NaOH solution?

151. Which of the following pair of cations cann be separated by excess

A.
$$Fe^{3+}(aq.) + Zn^{2+}(aq.)$$

B.
$$Mn^{2+}(aq.)$$
, $Cd^{2+}(aq.)$

C.
$$Mg^{2+}(aq.)$$
, $Mg^{2+}(aq.)$

D.
$$Al^{3+}(aq.), Cr^{3+}(aq.)$$

Answer: A

152. Consider following reaction:

$$Cl_2(g) + H_2O \rightarrow P + Q$$

If molecular weight of P is less than Q then incorrect statement is:

- A. On warming 'P' can form deep red coloured vapours with ${\it CrO}_3$
- B. Q' exhibits bleaching property
- $C. MnO_2$ can change P into Cl_2 gas on warming
- D. P' reacts with H_2S gas while 'Q' does not

Answer: D

Watch Video Solution

153. Which of the following reagent can dissolves precipitate of $HgS \downarrow$

A. NH₃ solution

B. conc. HCl

C. conc. HNO_3

D. Na₂S solution

Answer: D

Watch Video Solution

154. Which of the following reaction is incorrect?

$$\mathsf{A.}\, PCl_3 + 3H_2O \,\rightarrow\, H_3PO_3 + 3HCl$$

$$\mathsf{B.}\,\mathit{NCl}_3 + 3H_2O \,\rightarrow\, \mathit{NH}_3 + 3HOCl$$

$$\mathsf{C.}\,\mathit{SbCl}_3 + 3H_2\mathsf{O} \,\rightarrow\, H_2\mathit{SbO}_3 + 3HCl$$

$$D. BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$$

Answer: C

155. Concentrated sodium hydroxiide can separate a mixture of:

- A. Al^{3+} and Cr^{3+}
- B. Cr^{3+} and Fe^{3+}
- $C.Al^{3+}$ and Zn^{2+}
- D. Zn^{2+} and Pb^{2+}

Answer: B

Watch Video Solution

156. Select correct set of species which can't react with water but react with NaOH,

- (i) *NO*₂
- (ii) *P*₄
- (iii) Al
- (iv) I_2

A. Only (iv)

B. (iii) and (iv)

C. (ii), (iii) and (iv)

D. all (i), (ii), (iii) and (iv)

Answer: C

Watch Video Solution

157. Fe(Finely powdered)++HCl(dil.) $\rightarrow P + Q \uparrow$

Compound 'P' does not precipitate with:

 $A. AgnO_3$

 $B. K_3 [Fe(CN)_6]$

 $C. \left(NH_4 \right)_2 S$

 $\mathsf{D.}\,NH_4Cl + NH_4OH$

Answer: D

158. Which combination gives maximum number of products?

$$A. P_4 + SOCl_2$$

$$B. P_4 + SO_2Cl_2$$

$$C. XeF_4 + H_2O$$

D.
$$NH_4NO_3 + Zn +$$
 Excess Excess NaOH

Answer: C

159. $Cu^{2+}(aq.)$ does not undergo redox reaction with solution:

A.
$$\left(NH_4\right)_2 S$$

$$B. Na_2S_2O_3$$

Answer: A

Watch Video Solution

- 160. Hydrolysis of which of the following compound liberates acidic gas?
 - A. Li₂NH
 - $B.Al_2S_3$
 - $C. CaC_2$
 - D. CaNCN

Answer: B

Watch Video Solution

161. The non-metal which does not react with water but reacts with alkali?

A. Boron

B. Bromine

 $C.P_A$

D. Fluorine

Answer: C

Watch Video Solution

- **162.** A very dilute acidic solution of $Cd^{2+} \& Ni^{2+}$ gives only yelllwo ppt. of CdS on passing H_2S , this is due to:
 - A. solubility product $\left(K_{sp}\right)$ of CdS is more than that of NiS.
 - B. Solubility product (K_{sp}) of CdS is less than that of NiS.
 - C. Cd^{2+} belong to II B group while Ni^{2+} belongs to IVth group
 - D. CdS is insoluble in yellow ammonium sulphide (YAS).

Answer: B

163. Thermal decomposition of which of the salt listed below yield a basic and acidic oxides simultaneously?

- A. NH_4ClO_4
- $\mathsf{B.}\,\mathit{CaCO}_3$
- $C. NanO_3$
- D. NH_4NO_2

Answer: B

Watch Video Solution

164. What are formed products, when aqueous solution of $CuCl_2$ and $\left(NH_4\right)_2$ S are mixed?

A. CuS(aq.) and $NH_4Cl(s)$

165. Which of the following compound does not react with cold and dil. HNO_3 ? A. PbO $B.PbO_2$ $C. FeSO_4$ D. PbCl₂

B. CuS(s) and $NH_4Cl(aq.)$

C. CuS(aq.) and $NH_ACl(g)$

D. CuS(s) and $NH_4Cl(s)$

Watch Video Solution

Answer: B

Answer: B

166. The incorrect order of solubility in water is:

$$A. Ca(OH)_2 < Sr(OH)_2 < Ba(OH)_2$$

$$\mathsf{B.}\, Li_2CO_3 \leq \mathit{Na}_2CO_3 \leq \mathit{K}_2CO_3$$

$$C. CsNO_3 < RbNO_3 < KNO_3$$

$$\mathsf{D}.\,\mathit{BeS}_2\mathsf{O}_3 < \mathit{MgS}_2\mathsf{O}_3 < \mathit{CaS}_2\mathsf{O}_3$$

Answer: D

Watch Video Solution

167. The correct order of increasing solubility in water is:

A. KF < NaF < LiF

 $B. NaHCO_3 < KHCO_3 < RbHCO_3$

 $\mathsf{C.}\,K_2\mathsf{CO}_3 < \mathit{Na}_2\mathsf{CO}_3 < \mathit{Li}_2\mathsf{CO}_3$

 $D. LiNO_3 < NaNO_3 < KNO_3$

Answer: B

Watch Video Solution

168. Bromine is commercially prepared from sea water by displacement reaction

$$Cl_2 + 2Br^-(aq.) \rightarrow 2Cl^-(aq.) + Br_2$$

 Br_2 iis obtained by treatment of the solution with :

 Br_2 gas thus formed is dissolved into solution of $\mathit{Na}_2\mathit{CO}_3$ and then pure

A. *Ca*(*OH*)₂

B. NaOH

 $C.H_2SO_4$

D. HI

Answer: C

169. Which of the following metal on burning in moist air does not give
smell of ammonia?
A. Mg
B. Ca
C. K
D. Li
Answer: C
Watch Video Solution
170. Gas that can not be collected over water is:
170. Gas that can not be collected over water is: $ A. N_2 $
A. N_2

Answer: C

Watch Video Solution

171. Compound having lowest thermal stability is:

- A. NaHCO₃
- B. *KHCO*₃
- C. RbHCO₃
- D. CsHCO₃

Answer: A

Watch Video Solution

172. Which of the following statement is incorrect regarding Fe^{2+} and Fe^{3+} cations?

A. Fe^{3+} gives brown colour solution with potassium ferricyanide

B. Fe^{2+} gives blue precipitate with potassium ferricyanide

 $C. Fe^{3+}$ gives red colour solution with potassium thiocyanate

D. Fe^{2+} gives brown colour with ammonium thiocyanate

Answer: D

Watch Video Solution

173. $(NH_4)_2 Cr_2 O_7$ on heating liberates a gas. The same gas will be obtained by

A. Heating NH_4NO_2

B. Heating NH₄NO₃

C. Heating $(NH_4)_2SO_4$

D. Treatment Mg_3N_2 with H_2O

Answer: A

174. Which of the following compound liberates acidic gas during its

A. Ca_3P_2

B. AlN

hydrolysis?

 $C.Al_2S_3$

D. CaH_2

Answer: C

Watch Video Solution

175. Which of the following combination does not evolve ${\it Cl}_2$ gas?

A. $HCl(aq.) + KMnO_4$

B. $HCl + MnO_2$

$$C.HCl + Br_2$$

D.
$$HCl + F_2$$

Answer: C

Watch Video Solution

176. NH_3 gas does not liberate by which of the following combination?

A. Heating of NH_4ClO_4

B. Heating of NH₄Cl

 $C. (NH_4)_2 CO_3 + NaOH$

D. $Li_3N + H_2O$

Answer: A

177. If salt Q undergoes redox reaction with H_2S in acidic medium then which of the following species can not be possible product?

- A. $MnO_4^{2-}(aq.)$
- $\mathsf{B.}\,\mathcal{S}$
- $C. MnO_2$
- D. both (a) and (c)

Answer: D

Watch Video Solution

Heat
$$Cr_2O_7^{2-}/H^+$$

178. Metal sulphate $(A) \rightarrow \text{oxide}(B) + gas(C) + gas(D) \rightarrow \text{Gree}$

 Na_2O_2

solution \rightarrow *ExcessE*yellow solution

Compound A, B, C, D are E are respectively:

$$\mathsf{A.FeSO}_4, \mathit{Fe}_2\mathit{O}_3, \mathit{SO}_3, \mathit{SO}_2, \mathit{Na}_2\mathit{CrO}_4$$

 $B.Al_2(So_4)_3, Al_2O_3, SO_3, SO_2, Na_2CrO_4$ C. CuSO₄, CuO, SO₃, SO₂, NaCrO₄

D. $ZnSO_A$, ZnO_2 , SO_3 , SO_2 , Na_2CrO_A

Answer: A

Watch Video Solution

179. Which of the following radical does not liberate gas with (Zn+dil. HCl)

on warming?

A. S^{2}

B. SO_3^{2-} $C.NO_3^2$

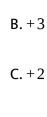
D. CH₃COO -

Answer: C

180. Which of the following cation does not give precipitate with H_2S in neutral medium?

- A. Fe^{3+}
- B. *Cu*²⁺
- C. Bi^{3+}
- D. *Ag* +

Answer: A



Watch Video Solution

181. $NaCl(solid) + K_2Cr_2O_7(solid) + conc. H_2SO_4 \rightarrow \text{Reddish brown fumes}$ of 'X'.

The oxidation state of central atom in compound 'X' is:

A. + 6

D. zero

Answer: A

Watch Video Solution

182. Diamagnetic gas neutral towards water is:

A. N_2O

 $B.NO_2$

C. NO

D. N_2O_3

Answer: A

183. Which of the following reagent can be used to separate AgCl and

184. Which gas is evolved when PbO_2 is treated with conc HNO_3 ?

AgI?

A. dil. HNO_3

B. NH_4OH solution

C. KCN solution

D. $Na_2S_2O_3$ solution

Answer: B

Watch Video Solution

A. *NO*₂

 $\mathsf{B.}\,O_2$

 $\mathsf{C}.\,N_2$

D. N_2O

Answer: B

Watch Video Solution

185. In a closed container there is a mixture of SO_2 , CO_2 and O_2 gas, which sequence of reagent can be helpful to separate them ?

- (I) Limewater
- (II) Acidified potassium dichromate
- (III) Alkaline pyragallol.
 - A. (I),(II) and (III)
 - B. (II), (I), (III)
 - C. (III),(II), (I)
 - D. (III), (I), (II)

Answer: B

186. Which salt is colourless? A. $KMnO_{\Lambda}$ B. $BaSO_A$ C. $NaCrO_4$ D. CoCl₂ **Answer: B Watch Video Solution** 187. Which of the following Xenon compound does not produce explosive XeO₃ on its complete hydrolysis? A. XeO_2F_2 B. XeF_2 $C. XeF_4$ D. XeF_6

Answer: B

Watch Video Solution

188. $FeSO_4.7H_2O$ (Green vitriol) salt on thermal decomposition does not produce:

- $A.SO_2$
- $B.O_2$
- $\mathsf{C}.SO_3$
- $D.H_2O$ vapour

Answer: B

Watch Video Solution

 $BaCl_2$ **189.** $X(aq) + Na_2O_2 \rightarrow Y(aq.) \rightarrow Z \downarrow \text{ Insoluble in dil. HCl}$

X and Y are different sodium salts, then anion present in the salt (X) is:

B. FeCl₂ $C. S_2Cl_2$

D. BCl_3 **Answer: D**

A. Hg_2Cl_2

190. Which of the following chloride does not react with PCl_5 on heating?

Watch Video Solution

A. $Cr_2O_7^{2-}$

B. $C_2O_4^2$

 $c. SO_3^{2-}$

D. SO_4^{2-}

Answer: C

Air KOH $P(\text{soln.})(\text{Coloured}) \rightarrow Q(\text{soln.})(\text{Coloured}) \rightarrow R \downarrow (ppt.)$ (Insoluble in both excess NaOH a

then P contains:

A.
$$Cu^{2+}(aq.)$$

B. $Fe^{2+}(aq.)$

C.
$$Cu^{2+}(aq.)$$

D.
$$Ni^{2+}(aq.)$$

Answer: B

Watch Video Solution

Then (X) cation can not be:

A. Fe^{3+} gives brown colour solution with potassium ferricyanide

 $B.AI^{3+}$

C. Cr^{3+}

D. *Mg*²⁺

Answer: A

Watch Video Solution

193. $X(\text{satl}) + AgNO_3(aq.) \rightarrow Y \downarrow (\text{yellow ppt.})$ (soluble in excess of NH_3 solution)

Salt X, does not contain:

B. Br⁻

A. PO_4^{3}

 $\mathsf{C}.\,I^{\mathsf{-}}$

D. AsO_3^3

Answer: C

Watch Video Solution

Excess

194. $M^{n+}(aq.) + KI \rightarrow X \downarrow ppt. \rightarrow KI$ ppt. remains insoluble in excess KI solution. Then cation $M^{n+}(aq.)$ can be:

A.
$$Pb^{2+}(aq.)$$

B.
$$Cu^{2+}(aq.)$$

C.
$$Bi^{3+}(aq.)$$

D.
$$Hg^{2+}(aq.)$$

Answer: B

Watch Video Solution

195. Aqueous solution of which of the following cation gives precipitate with potash alum?

A. H_2O_2 B. $Sn^{2+}(aq.)$ C. HFD. HBrAnswer: C

Watch Video Solution

Watch Video Solution

196. Colour of acidified $K_2Cr_2O_7$ is not changed by:

A. $Cu^{2+}(aq.)$

B. $Zn^{2+}(aq.)$

 $C. Ba^{2+}(aq.)$

D. $Ni^{2+}(aq.)$

Answer: C

LEVEL 3

$$P(\text{aq.}) \xrightarrow{Zn + \text{dil.HCl}} Q \uparrow \xrightarrow{\text{FeCl}_3} R \downarrow + T$$

$$A \mid R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

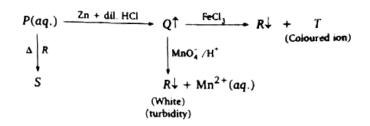
$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

$$\downarrow R \qquad \qquad \downarrow \text{MnO}_{4}^{-} / \text{H}^{+} \qquad \text{ion}$$

1.

Q. Species P and S are respectively:

A.
$$SO_3^{2-}(aq.), S$$


B.
$$SO_3^{2-}(aq.)$$
, $S_2O_3^{2-}(aq.)$

$$C. S_2O_3^{2-}(aq.), SO_3^{2-}(aq.)$$

D. None of these

Answer: B

Q. 'T' cannot be identify by:

A. NH_3 solution

B. NH₄SCN

2.

 $C. (NH_4)_2 S$

D. Excess KCN

Answer: B

View Text Solution

3. Consider three P, Q, R, salts among them P and Q salts have different cations annd also have different coloured polyatomic anion due to charge transfer phenomenon while P and R salts have same cation but have different anions. Salts R decomposes into an acidic gas an a basic

gas.

Q. Salt R can not be:

A. NH_4NO_3

B. $\left(NH_4\right)_2CO_3$ C. $\left(NH_4\right)_2S$

D. $NH_{\Lambda}Cl$

Answer: A

Watch Video Solution

4. Consider three P, Q, R, salts among them P and Q salts have different cations annd also have different coloured polyatomic anion due to charge transfer phenomenon while P and R salts have same cation but have different anions. Salts R decomposes into an acidic gas an a basic gas.

Q. Salt P decomposes on heating into a coloured solid, neutral gas a

neutral vapour, then which of the following can not be the product of salt P after decomposition?

A. N_2

B. Cr_2O_3

 $\mathsf{C}.\,I_2$

 $D.H_2O$

Answer: C

5. Consider three P, Q, R, salts among them P and Q salts have different cations annd also have different coloured polyatomic anion due to charge transfer phenomenon while P and R salts have same cation but have different anions. Salts R decomposes into an acidic gas an a basic gas.

Q. If salt Q underrgoes redox reaction with H_2S in acidic medium then which of the following speies can not be possible product?

A. MnO_4^{2} (aq.)

B. *S*

 $C. MnO_2$

D. Both (a) and (c)

Answer: D

Watch Video Solution

- **6.** Three compound X, Y and Z were taken into three different laboratory vessels annd they are carried out by a chemist in his car. The car caught fire due to short circuit and the chemist came out of the car and noticed following observations:
- Q. Compound X changes into white substnace along with liberation of neutral oxide and then white substnace decomposed into three products among which two are acidic oxides. among these oxides non-polar oxide can undergo polar cyclic polymer on cooling. the compound X will be:

 $A. MgSO_4 \cdot 7H_2O$

B.
$$ZnSO_4 \cdot 7H_2O$$

C.
$$CaSO_4 \cdot 2H_2O$$

D.
$$FeSO_4 \cdot 7H_2O$$

Answer: D

Watch Video Solution

7. Three compound X, Y and Z were taken into three different laboratory vessels annd they are carried out by a chemist in his car. The car caught fire due to short circuit and the chemist came out of the car and noticed following observations:

Q. Compound Y produced two oxides, among these oe oxide turns anhydrous ${\it CuSO}_4$ into blue and other gas slows down fire in the car, then

A. NH_ANO_2

Y is

B. $NaHCO_3$

 $C.MgC_2O_4$

D. NH_4NO_3

Answer: B

Watch Video Solution

8. Three compound X, Y and Z were taken into three different laboratory vessels annd they are carried out by a chemist in his car. The car caught fire due to short circuit and the chemist came out of the car and noticed following observations:

Q. Which of the following compound does not react with cold and dil.

 HNO_3 ?

A. PbO

 $\mathsf{B.}\mathit{PbO}_2$

 $C. FeSO_4$

D. PbCl₂

Answer: B

Watch Video Solution

- **9.** In salts of polyatomic anion, as polarising power of cation increase, thermal stability of the salt decrease and decomposed species may further undergo redox reaction
- Q. Which of the followinng species undergoes non-redox thermal decomposition reaction on heating?

A. $FeSO_4$

 $B. SnSO_4$

 $C.H_2C_2O_4$

D. Na_2HPO_A

Answer: D

10. In salts of polyatomic anion, as polarising power of cation increase, thermal stability of the salt decrease and decomposed species may further undergo redox reaction

Q. Water soluble salt(x) was heated into three products A, B and C and B and C are two different paramagnetic gases. A is red in hot condition, then salt(x) is:

A.
$$Hg(NO_3)_2$$

$$\mathsf{B.}\mathit{FeC}_2O_4$$

$$\mathsf{C.}\,\mathit{ZnSO}_4$$

D.
$$Pb(NO_3)_2$$

Answer: D

Watch Video Solution

11. Dioxygen directly reacts with nearly all metals annot non-metals except some metals (e.g., Au, Pt) and some noble gases and form oxide(s). Oxides

can be simple (e.g., MgO, Al_2O_3) or mixed $\left(Pb_3O_4, Fe_3O_4\right)$. Simple oxides can be classified on the basic of their acidic, basic or amphoteric character. an oxide that combines with water to give an acid is termed acidic oxide (i.e., SO_2 , Cl_2O_7 , CO_2 , N_2O_5). for example, SO_2 combines with water to give H_2SO_3 , an acid.

Gaseous non-metal (A)
$$\xrightarrow{O_2} P \uparrow \xrightarrow{O_2} Q \uparrow \xrightarrow{H_2O} R$$
 (oxy acid) $+ P \uparrow$

Q. If,

Solid non-metal (B) $\xrightarrow{O_2} X \uparrow \xrightarrow{O_2} Y \uparrow \xrightarrow{H_2O} Z$ (oxy acid) + Heat

Then select correct statement with respect to gas 'Q'?

A. Paramagnetic gas

B. Neutral oxide

C. Colourles gas

D. Diatomic gas

Answer: A

12. Dioxygen directly reacts with nearly all metals annoth non-metals except some metals (e.g., Au, Pt) and some noble gases and form oxide(s). Oxides can be simple (e.g., MgO, Al_2O_3) or mixed $\left(Pb_3O_4, Fe_3O_4\right)$. Simple oxides can be classified on the basic of their acidic, basic or amphoteric character. an oxide that combines with water to give an acid is termed acidic oxide (i.e., SO_2 , Cl_2O_7 , CO_2 , N_2O_5). for example, SO_2 combines with water to give H_2SO_3 , an acid.

Gaseous non-metal (A)
$$\xrightarrow[\text{approp. temp}]{0_2} P \uparrow \xrightarrow[\text{room temp}]{0_2} Q \uparrow \xrightarrow[\text{H}_2O]{0} R \text{ (oxy acid)} + P \uparrow$$

Q. If Solid non-metal (B)
$$\frac{o_2}{\text{approp. semp.}} X \uparrow \frac{o_2}{\text{approp. catalyst & semp.}} Y \uparrow \xrightarrow{\text{H.go.}} Z$$
 (oxy acid) + Heat

Then 'X' is

A. NO

B. CO_2

 $\mathsf{C}.SO_2$

 $D.SO_3$

Answer: C

13. Dioxygen directly reacts with nearly all metals annot non-metals except some metals (e.g., Au, Pt) and some noble gases and form oxide(s). Oxides can be simple (e.g., MgO, Al_2O_3) or mixed $\left(Pb_3O_4, Fe_3O_4\right)$. Simple oxides can be classified on the basic of their acidic, basic or amphoteric character. an oxide that combines with water to give an acid is termed acidic oxide (i.e., SO_2 , Cl_2O_7 , CO_2 , N_2O_5). for example, SO_2 combines with water to give H_2SO_3 , an acid.

Gaseous non-metal (A)
$$\xrightarrow{O_2} P \uparrow \xrightarrow{O_2} Q \uparrow \xrightarrow{H \neq O} R$$
 (oxy acid) + $P \uparrow$

Q. If,

Solid non-metal (B) $\xrightarrow{O_2} X \uparrow \xrightarrow{O_2} X \uparrow \xrightarrow{O_2} Y \uparrow \xrightarrow{H \neq O} Z$ (oxy acid) + Heat

Then select incorrect statement with respect to gas 'X'

A. burning sulphur smell

B. Reacts with Cl₂

C. Residue of sulphur with H_2S

D. Does not react with Ca(OCl)Cl

Answer: D

14. Consider the following reactions and answer the following questions.

M(Double salt)+ $NH_{A}Cl(s) + NH_{A}OH \rightarrow No ppt.$

M(double salt)+NaOH solution $\rightarrow N \uparrow + P \downarrow$ (coloured ppt.)

Q. Which of the following pair of cations are present in salt M?

A.
$$PH_A^+$$
, Mg^{2+}

B.
$$NH_{\Lambda}^{+}$$
, Fe^{3+}

$$C.PH_{4}^{+},Zn^{2+}$$

D.
$$NH_4^+$$
 , Fe^{2+}

Answer: D

Watch Video Solution

15. Consider the following reactions and answer the following questions.

M(Double salt)+ $NH_{\Lambda}Cl(s) + NH_{\Lambda}OH \rightarrow No ppt.$

M(double salt)+NaOH solution $\rightarrow N \uparrow + P \downarrow$ (coloured ppt.)

 $Q.P \downarrow + conc. HCl \rightarrow Q(coloured solution)$

Incorrect statement about Q is:

A. It can exist in dimeric form

B. Its aqueous solution is acidic

C. It is used in methylene blue test for H_2S

D. On passing ${\it Cl}_2$ gas colour of aqueous solution of Q changes

Answer: C

Watch Video Solution

16. Consider the following reactions and answer the following questions.

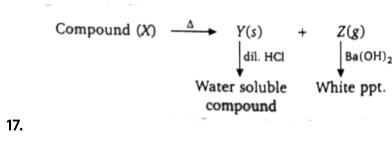
M(Double salt)+ $NH_4Cl(s) + NH_4OH \rightarrow No ppt.$

M(double salt)+NaOH solution $\rightarrow N \uparrow + P \downarrow$ (coloured ppt.)

Q. Reaction does not occur with salt M and gas N:

A. $NaNO_2 + dil. H_2SO_4 + M(salt solution) \rightarrow$

B. $HgI_2 + N \uparrow \rightarrow$


C. M(salt solution)
$$+H_2S \rightarrow$$

D. M (salt solution)+ $Br_2 \rightarrow$

Answer: C

Watch Video Solution

- Q. Compound 'X' is:

A. NaNO₃

- $B. Ag_2C_2O_4$
- $C. PbSO_4$
- D. ZnCO₃

Answer: D

Compound (X)
$$\xrightarrow{\Delta}$$
 $Y(s)$ + $Z(g)$ \downarrow dil. HCl \downarrow Ba(OH)₂

Water soluble compound White ppt.

18.

Q. Incorrect statement 'Y' changes on heating:

A. Colour of 'Y' changes on heating

B. Z' is anhydride of H_2CO_3

C. Y' can react with NaOH

D. Z' does not act as Lewis acid

Answer: D

View Text Solution

19. The unique behaviour of CU, having a positive E° (reduction potential) accounts for its inability to liberate H_2 from acids,. Only oxidising acids (nitric acid and hot concentrated sulphuric acid) react with Cu. The high energy of transform Cu(s) to $Cu^{2+}(aq.)$ is not balanced by its hydration enthalpy.

On the other hand, All Cu(II) halides are known except iodide. in this case,

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI(s) + I_{2}$$

 Cu^{2+} oxidises I^{-} to I_{2} :

However, copper (I) compounds are unstable in aqueous solution annot undergo disproportionation.

$$2Cu^+(aq.) \rightarrow Cu^{2+}(aq.) + Cu$$

The stability of $Cu^{2+}(aq.)$ rather than $Cu^{+}(aq)$ is due to the much more negative Δ_{Hyd} of $Cu^{2+}(aq.)$ than $Cu^{+}(aq.)$

Q. Consider the following transformation:

$$CuSO_A(aq.) + KI(excess) \rightarrow product$$

Select the correct statement:

A. Product contains $\left[Cu(H_2O_4) \right]^{2+}$ ion.

B. Presence of brown colouration in product is due to $I_3^{\text{-}}$ ion

C. Oxidation state of sulphur in reactant and product is different

D. white ppt. of CuI_2 is observed in product

Answer: B

Watch Video Solution

20. The unique behaviour of CU, having a positive E° (reduction potential) accounts for its inability to liberate H_2 from acids,. Only oxidising acids (nitric acid and hot concentrated sulphuric acid) react with Cu. The high energy of transform Cu(s) to $Cu^{2+}(aq.)$ is not balanced by its hydration enthalpy.

On the other hand, All Cu(II) halides are known except iodide. in this case,

 Cu^{2+} oxidises I^- to I_2 :

 $2Cu^{2+} + 4I^{-} \rightarrow 2CuI(s) + I_{2}$

However, copper (I) compounds are unstable in aqueous solution anno undergo disproportionation.

 $2Cu^+(aq.) \rightarrow Cu^{2+}(aq.) + Cu$

The stability of $Cu^{2+}(aq.)$ rather than $Cu^{+}(aq)$ is due to the much more

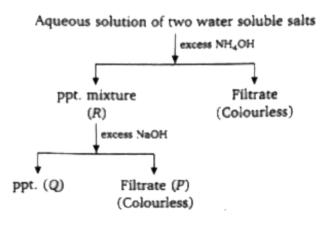
negative Δ_{Hvd} of $Cu^{2+}(aq.)$ than $Cu^{+}(aq.)$

Q. Select the correct chemical change:

A.
$$Cu + Dil$$
. $H_2SO_4 \rightarrow CuSO_4 + H_2(g)$

B.
$$Cu + dil. HNO_3 \rightarrow Cu(NO_3)_2 + N_2O(g)$$

$$C. CuSO_4(aq.) + KCN(excess) \rightarrow K_2[Cu(CN)_4]$$


D.
$$CuSO_4(aq.) + NH_4OH \rightarrow Cu(OH)_2$$

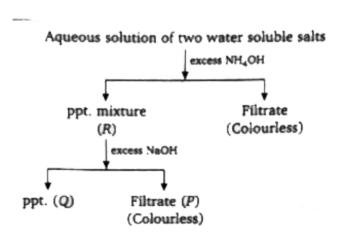
Answer: D

21.

Watch Video Solution

Q. When H_2S gas was passed into filtrate (P), a coloured precipitate was

obtained, then cation present in the filtrate is:


- A. $Zn^{2+}(aq.)$
- B. $Cr^{3+}(aq.)$
- $C.Al^{3+}(aq.)$
- D. $Pb^{2+}(aq.)$

Answer: D

22.

View Text Solution

Q. Precipitate (Q) was treated withdil. HCl and coloured solution was obtained. On passing H_2S gas into this solution no precipitate was

obtained but colour of the solution changes, then cation present in the precipitate (Q) can be identified by:

A. $Na_2S_2O_3$ solution

B. KI + Starch

 $\mathsf{C.}\,K_4\Big[\mathit{Fe}(\mathit{CN})_6\Big]$

D. All

Answer: D

23.

View Text Solution

$$P(\text{aq.}) \xrightarrow{\text{Zn + dil.HCl}} Q \uparrow \xrightarrow{\text{FeCl}_3} R \downarrow + T$$

$$\downarrow MnO_{4}^{-}/H^{+} \qquad \text{(coloured ion)}$$

$$R \downarrow + Mn^{2+}(\text{aq.})$$

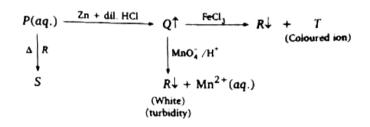
$$\text{(white turbidity)}$$

Q. Species P and S are respectively:

A. SO_3^{2-} (aq.), S

B.
$$SO_3^{2-}(aq.), S_2O_3^{2-}(aq.)$$

$$C. S_2O_3^{2-}(aq.), SO_3^{2-}(aq.)$$


D. None of these

Answer: B

24.

Watch Video Solution

Q. 'T' cannot be identify by:

A. NH_3 solution

 $B.NH_4SCN$

 $C. (NH_4)_2 S$

D. Excess KCN

Answer: B

View Text Solution

25. Consider three P, Q, R, salts among them P and Q salts have different cations annd also have different coloured polyatomic anion due to charge transfer phenomenon while P and R salts have same cation but have different anions. Salts R decomposes into an acidic gas an a basic gas.

Q. Salt R can not be:

- A. NH_4NO_3
- B. $(NH_4)_2CO_3$
- $C. \left(NH_4\right)_2 S$
- D. NH_4Cl

Answer: A

26. Consider three P, Q, R, salts among them P and Q salts have different cations annd also have different coloured polyatomic anion due to charge transfer phenomenon while P and R salts have same cation but have different anions. Salts R decomposes into an acidic gas an a basic gas.

Q. Salt P decomposes on heating into a coloured solid, neutral gas a neutral vapour, then which of the following can not be the product of salt P after decomposition?

A. N_2

B. Cr_2O_3

 $C.I_2$

 $D.H_2O$

Answer: C

27. Consider three P, Q, R, salts among them P and Q salts have different cations annd also have different coloured polyatomic anion due to charge transfer phenomenon while P and R salts have same cation but have different anions. Salts R decomposes into an acidic gas an a basic gas.

Q. If salt Q underrgoes redox reaction with H_2S in acidic medium then which of the following speies can not be possible product?

A. $MnO_4^{2-}(aq.)$

B. *S*

 $C. MnO_2$

D. Both (a) and (c)

Answer: D

Watch Video Solution

vessels annd they are carried out by a chemist in his car. The car caught

28. Three compound X, Y and Z were taken into three different laboratory

fire due to short circuit and the chemist came out of the car and noticed following observations:

Q. Compound X changes into white substnace along with liberation of neutral oxide and then white substnace decomposed into three products among which two are acidic oxides. among these oxides non-polar oxide can undergo polar cyclic polymer on cooling. the compound X will be:

 $A. MgSO_4 \cdot 7H_2O$

B. $ZnSO_4 \cdot 7H_2O$

 $C. CaSO_4 \cdot 2H_2O$

D. $FeSO_4 \cdot 7H_2O$

Answer: D

Watch Video Solution

29. Three compound X, Y and Z were taken into three different laboratory vessels annd they are carried out by a chemist in his car. The car caught fire due to short circuit and the chemist came out of the car and noticed

following observations:

Q. Compound Y produced two oxides, among these oe oxide turns anhydrous ${\it CuSO}_4$ into blue and other gas slows down fire in the car, then Y is

- A. NH_4NO_2
- B. $NaHCO_3$
- $C.MgC_2O_4$
- D. NH_4NO_3

Answer: B

Watch Video Solution

30. Three compound X, Y and Z were taken into three different laboratory vessels annd they are carried out by a chemist in his car. The car caught fire due to short circuit and the chemist came out of the car and noticed following observations:

Q. Which of the following compound does not react with cold and dil.

 HNO_3 ?

A. PbO

B. *PbO*₂

 $\mathsf{C}.\mathit{FeSO}_4$

D. PbCl₂

Answer: B

Watch Video Solution

31. In salts of polyatomic anion, as polarising power of cation increase, thermal stability of the salt decrease and decomposed species may further undergo redox reaction

Q. Which of the followinng species undergoes non-redox thermal decomposition reaction on heating?

A. $FeSO_4$

$$B. SnSO_4$$

$$\mathsf{C.}\,H_2C_2O_4$$

D.
$$Na_2HPO_4$$

Answer: D

Watch Video Solution

32. In salts of polyatomic anion, as polarising power of cation increase, thermal stability of the salt decrease and decomposed species may further undergo redox reaction

Q. Water soluble salt(x) was heated into three products A, B and C and B and C are two different paramagnetic gases. A is red in hot condition, then salt(x) is:

A.
$$Hg(NO_3)_2$$

$$\mathsf{B.}\mathit{FeC}_2O_4$$

$$C. ZnSO_4$$

D.
$$Pb(NO_3)_2$$

Answer: D

Watch Video Solution

33. Dioxygen directly reacts with nearly all metals annot non-metals except some metals (e.g., Au, Pt) and some noble gases and form oxide(s). Oxides can be simple (e.g., MgO, Al_2O_3) or mixed $\left(Pb_3O_4, Fe_3O_4\right)$. Simple oxides can be classified on the basic of their acidic, basic or amphoteric character. an oxide that combines with water to give an acid is termed acidic oxide (i.e., SO_2 , Cl_2O_7 , CO_2 , N_2O_5). for example, SO_2 combines with water to give H_2SO_3 , an acid.

Gaseous non-metal (A)
$$\xrightarrow[\text{approp. temp.}]{0_2} P \uparrow \xrightarrow[\text{room temp.}]{0_2} Q \uparrow \xrightarrow[\text{H}_20]{0} R \text{ (oxy acid)} + P \uparrow$$

Q. If, Solid non-metal (B)
$$\xrightarrow{0_2} X \uparrow \xrightarrow{0_2} Y \uparrow \xrightarrow{H_2O} Z$$
 (oxy acid) + Heat

Then select correct statement with respect to gas 'Q'?

- A. Paramagnetic gas
- B. Neutral oxide

- C. Colourles gas
- D. Diatomic gas

Answer: A

Watch Video Solution

34. Dioxygen directly reacts with nearly all metals annot non-metals except some metals (e.g., Au, Pt) and some noble gases and form oxide(s). Oxides can be simple (e.g., MgO, Al_2O_3) or mixed $\left(Pb_3O_4, Fe_3O_4\right)$. Simple oxides can be classified on the basic of their acidic, basic or amphoteric character. an oxide that combines with water to give an acid is termed acidic oxide (i.e., SO_2 , Cl_2O_7 , CO_2 , N_2O_5). for example, SO_2 combines with water to give H_2SO_3 , an acid.

Gaseous non-metal (A)
$$\xrightarrow{O_2} P \uparrow \xrightarrow{O_2} Q \uparrow \xrightarrow{H_2O} R$$
 (oxy acid) + $P \uparrow$

O. If Solid non-metal (B)
$$\xrightarrow{O_2} X \uparrow \xrightarrow{O_2} Y \uparrow \xrightarrow{H_2O} Z$$
 (oxy acid) + Heat

Then 'X' is

A. NO

- $B.CO_2$
- $C.SO_2$
- $D.SO_3$

Answer: C

Watch Video Solution

35. Dioxygen directly reacts with nearly all metals annoth non-metals except some metals (e.g., Au, Pt) and some noble gases and form oxide(s). Oxides can be simple (e.g., MgO, Al_2O_3) or mixed $\left(Pb_3O_4, Fe_3O_4\right)$. Simple oxides can be classified on the basic of their acidic, basic or amphoteric character. an oxide that combines with water to give an acid is termed acidic oxide (i.e., SO_2 , Cl_2O_7 , CO_2 , N_2O_5). for example, SO_2 combines with water to give H_2SO_3 , an acid.

Gaseous non-metal (A)
$$\xrightarrow{O_2} P \uparrow \xrightarrow{O_2} Q \uparrow \xrightarrow{H_2O} R$$
 (oxy acid) + $P \uparrow$

O. If. Solid non-metal (B) $\xrightarrow{O_2} X \uparrow \xrightarrow{\text{approp. samp}} X \uparrow \xrightarrow{O_2} Y \uparrow \xrightarrow{H_2O} Z$ (oxy acid) + Heat

I. If,
$$Z$$
 (dil.) — $H_2 \uparrow$ Z (conc.) — U U No reaction

Then select incorrect statement with respect to gas 'X'

- A. burning sulphur smell
- B. Reacts with Cl_2
- C. Residue of sulphur with H_2S
- D. Does not react with Ca(OCl)Cl

Answer: D

Watch Video Solution

36. Consider the following reactions and answer the following questions.

M(Double salt)+ $NH_4Cl(s) + NH_4OH \rightarrow No ppt.$

M(double salt)+NaOH solution $\rightarrow N \uparrow + P \downarrow$ (coloured ppt.)

Q. Which of the following pair of cations are present in salt M?

A.
$$PH_4^+$$
, Mg^{2+}

B. NH_{4}^{+} , Fe^{3+}

 $\mathsf{C.}\,PH_{4}^{^{+}}$, $Zn^{2\,^{+}}$

D. NH_{4}^{+} , Fe^{2+}

Answer: D

Watch Video Solution

37. Consider the following reactions and answer the following questions.

M(Double salt)+ $NH_4Cl(s) + NH_4OH \rightarrow No ppt.$

M(double salt)+NaOH solution $\rightarrow N \uparrow + P \downarrow$ (coloured ppt.)

 $Q.P \downarrow + conc. HCl \rightarrow Q(coloured solution)$

Incorrect statement about Q is:

A. It can exist in dimeric form

B. Its aqueous solution is acidic

C. It is used in methylene blue test for H_2S

D. On passing ${\it Cl}_2$ gas colour of aqueous solution of Q changes

Answer: C

Watch Video Solution

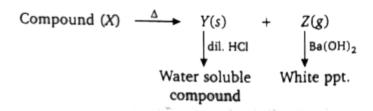
38. Consider the following reactions and answer the following questions.

M(Double salt)+
$$NH_4Cl(s) + NH_4OH \rightarrow No ppt.$$

M(double salt)+
$$NaOH$$
 solution $\rightarrow N \uparrow + P \downarrow$ (coloured ppt.)

Q. Reaction does not occur with salt M and gas N:

A.
$$NaNO_2 + dil. H_2SO_4 + M(salt solution) \rightarrow$$


B.
$$HgI_2 + N \uparrow \rightarrow$$

C. M(salt solution)
$$+H_2S \rightarrow$$

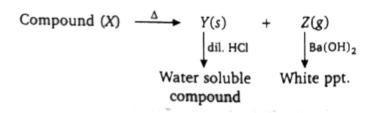
D. M (salt solution)+
$$Br_2 \rightarrow$$

Answer: C

39.

Q. Compound 'X' is:

A. $NaNO_3$


 $\mathsf{B.}\mathit{Ag}_{2}C_{2}O_{4}$

 $\mathsf{C}.\mathit{PbSO}_4$

D. $ZnCO_3$

Answer: D

- Q. Incorrect statement 'Y' changes on heating:
 - A. Colour of 'Y' changes on heating
 - B. Z' is anhydride of H_2CO_3
 - C. Y' can react with NaOH
 - D. Z' does not act as Lewis acid

Answer: D

40.

View Text Solution

41. The unique behaviour of CU, having a positive E° (reduction potential) accounts for its inability to liberate H_2 from acids,. Only oxidising acids (nitric acid and hot concentrated sulphuric acid) react

with Cu. The high energy of transform Cu(s) to $Cu^{2+}(aq.)$ is not balanced

by its hydration enthalpy.

On the other hand, All Cu(II) halides are known except iodide. in this case,

 Cu^{2+} oxidises I^- to I_2 :

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI(s) + I_{2}$$

However, copper (I) compounds are unstable in aqueous solution annot undergo disproportionation.

$$2Cu^+(aq.) \rightarrow Cu^{2+}(aq.) + Cu$$

The stability of $Cu^{2+}(aq.)$ rather than $Cu^{+}(aq)$ is due to the much more negative Δ_{Hyd} of $Cu^{2+}(aq.)$ than $Cu^{+}(aq.)$

Q. Consider the following transformation:

$$CuSO_A(aq.) + KI(excess) \rightarrow product$$

Select the correct statement:

A. Product contains $\left[Cu(H_2O_4)\right]^{2+}$ ion.

B. Presence of brown colouration in product is due to $I_3^{\text{-}}$ ion

C. Oxidation state of sulphur in reactant and product is different

D. white ppt. of CuI_2 is observed in product

Watch Video Solution

42. The unique behaviour of CU, having a positive E° (reduction potential) accounts for its inability to liberate H_2 from acids,. Only oxidising acids (nitric acid and hot concentrated sulphuric acid) react with Cu. The high energy of transform Cu(s) to $Cu^{2+}(aq.)$ is not balanced by its hydration enthalpy.

On the other hand, All Cu(II) halides are known except iodide. in this case, Cu^{2+} oxidises I^- to I_2 :

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI(s) + I_{2}$$

However, copper (I) compounds are unstable in aqueous solution anno undergo disproportionation.

$$2Cu^+(aq.) \rightarrow Cu^{2+}(aq.) + Cu$$

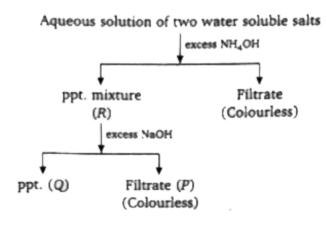
The stability of $Cu^{2+}(aq.)$ rather than $Cu^{+}(aq)$ is due to the much more negative Δ_{Hyd} of $Cu^{2+}(aq.)$ than $Cu^{+}(aq.)$

Q. Select the correct chemical change:

A.
$$Cu + Dil$$
. $H_2SO_4 \rightarrow CuSO_4 + H_2(g)$

B.
$$Cu + dil. HNO_3 \rightarrow Cu(NO_3)_2 + N_2O(g)$$

$$C. CuSO_4(aq.) + KCN(excess) \rightarrow K_2[Cu(CN)_4]$$


D.
$$CuSO_4(aq.) + NH_4OH \rightarrow Cu(OH)_2$$

Answer: D

43.

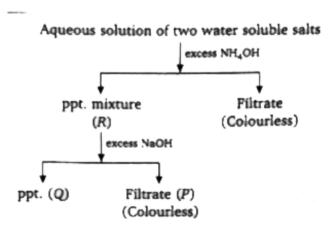
Watch Video Solution

Q. When H_2S gas was passed into filtrate (P), a coloured precipitate was obtained, then cation present in the filtrate is:

A.
$$Zn^{2+}(aq.)$$

B. $Cr^{3+}(aq.)$

 $C.Al^{3+}(aq.)$


D. $Pb^{2+}(aq.)$

Answer: D

44.

View Text Solution

Q. Precipitate (Q) was treated withdil. HCl and coloured solution was obtained. On passing H_2S gas into this solution no precipitate was obtained but colour of the solution changes, then cation present in the precipitate (Q) can be identified by:

- A. $Na_2S_2O_3$ solution
- B. KI + Starch
- $C. K_4 \Big[Fe(CN)_6 \Big]$
- D. All

Answer: D

View Text Solution

ONE OR MORE ANSWERS IS/ARE CORRECT

- **1.** Which of the following combination of species can evolve O_2 ?
- A. PbO_2 + warm conc. H_2SO_4

 - $C. PbO_2 + conc. HNO_3$
 - $D. XeF_2 + H_2O$

B. $NaOH + F_2$

Answer: A::B::C::D

Watch Video Solution

2.
$$SO_2(g) + Cl_2(g) \rightarrow X \rightarrow Y + Z$$

then X, Y and Z can be:

A. SOCl₂

 $\mathsf{B.}\, SO_2Cl_2$

 $C.SO_2$

 $D.PCl_5$

Answer: B::C::D

Watch Video Solution

3. Which of the following nitrate salt solution neither produce ppt. with excess NaOH nor with excess NH_4OH solution?

A. $Al(NO_3)_3$

B. $Zn(NO_3)_2$

C. $Cr(NO_3)_3$

D. $Pb(NO_3)_2$

Watch Video Solution

Answer: B::C

4. Which of the following compound(s) give two acids on dissolution in

 H_2O ?

 $A.P_4O_8$

B. PCl₃

 $C.NO_2$ D. C_3O_2

Answer: A::B::C

$$1:20 \quad H_2O \quad H_2O \quad H_2O$$
5. $Xe + F_2 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow XeO_3$

Select correct option(s) for X, Y, Z and given chemical change:

- A. X, Y and Z are in same oxidation state
- B. All have equal number of lone pair on central atom
- C. All are non-planar
- D. All have equal number of covalent bonds

Answer: A::B::C::D

Watch Video Solution

6. Which of the following sulphide(s) does/do not liberate H_2S on warming with dil. HCI?

A. HgS

B. ZnS

C. FeS

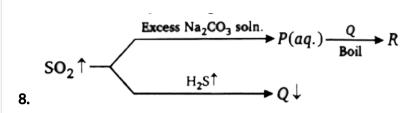
D. CuS

Answer: A::D

Watch Video Solution

7.
$$I_2$$
 + Na_2CO_3 "soln." → $X + Y$

If 'X' gives coloured ppt. with $Pb(CH_3COO)_2$ solution, then 'Y' will respond to which of the following ?


A.
$$Y + H^+(aq.) + H_2S$$

B.
$$Y + Cr_2O_7^{2-}(aq.) + OH^{-}(aq.)$$

C.
$$Y + H^+(aq.) + SO_2$$

D.
$$Y + H^{+}(aq.) + I^{-}(aq.)$$

Answer: A::C::D

Incorrect statement about 'R' is

- A. Antichlor agent
- B. Fixing agent in photography
- C. Forms ppt. with CaCl₂ solution
- D. Reduces $Cu^{2+}(aq)$ cation

Answer: C

Watch Video Solution

9. NO_2 gas evolves on thermal decomposition of which of the following compound(s)?

A.
$$Hg(NO_3)_2$$

B. KNO₃

 $C. N_2O_4$

 $D.N_2O_3$

Answer: A::C::D

Watch Video Solution

10. Which of the following precipitate(s) is/are dissolved to colourless

solution on adding sufficient amount of dilute HCl?

A. CaCO₃

B. $BaCrO_4$

 $C. MgC_2O_4$

D. $BaSO_4$

Answer: A::C

11. Which of the following combination of reagent(s) produce observable change in aqueous medium?

A.
$$Ba(OH)_2$$
 solution+ $SO_2(g)$

 ${\tt B.}\, AgF \, {\sf solution+} NaNO_3 \, {\sf solution}$

C. $Pb(OAc)_2$ soution+ Na_2CO_3 solution

D. $CuCl_2$ solution+ NH_3 (excess)

Answer: A::C::D

Watch Video Solution

12. Which of the following species is/are not liberating oxygen gas on reaction with water at $25 \,^{\circ} C$?

A. Na_2O_2

B. Cl_2

 $\mathsf{C}.P_4$

D. *KO*₂

Answer: B::C

Watch Video Solution

13. Hydrogen gas is not evolved by:

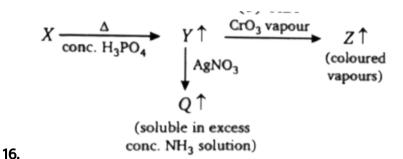
A.
$$Mg + NH_3(liq.)$$

B.
$$B_2H_6 + H_2O$$

$$C. NaNH_2 + H_2O$$

D.
$$Be + H_2O$$

Answer: A::C::D



14. Which of the following metal sulphide does not undergo hydrolysis?
A. Cr_2S_3
$B.Al_2S_3$
C. MgS
D. FeS
Answer: D
Watch Video Solution
15. Which of the following gas is not dried by conc. H_2SO_4 ?
15. Which of the following gas is not dried by conc. H_2SO_4 ?
A. HCl
A. HCl B. HBr

Answer: B::C

Watch Video Solution

Which of the following anion cannot be in X?

A. *F* -

B. Cl

C. Br

 $D.I^-$

Answer: A::D

17. When ozone reacts with an excess of potassium iodide solution buffered with a borate buffer (pH 9.2) iodine is liberated which can be titrated against a standard solution of sodium thiosulphate, this is a quantitative method for estimating O_3 gas. when liberated I_2 and sodium thiosulphate will react, then product is/are:

- A. $S_4O_6^2$
- $B.SO_4^{2}$
- $C. S_2 O_4^{2-}$
- D. S^0

Answer: A

Watch Video Solution

18. In which of the following reactions NH_3 gas evolution occurs?

$$A. NO_3 + Zn + dil. H_2SO_4 \rightarrow$$

 $C.AlN + steam \rightarrow$ D. $CH_3COONH_3 \rightarrow$

B. NH_4^+ salt + $NaOH \rightarrow$

Answer: B::C::D

19. Which of the following compound() during heating undergo redox decomposition reaction?

A. $HgCO_3(s)$

C. $FeCl_3 \cdot 6H_2O(s)$

 $B.Ag_2C_2O_4(s)$

 $D. K_2 Cr_2 O_7(s)$

Answer: A::B::D

20. Which of the following combination of species undergo(es) comproportionation?

$$Zn\frac{\emptyset}{Z}nSO_4$$

A. $MnO_4^-(aq.) + Mn^{2+}(aq.) \rightarrow$

warm

$$B.S + conc.H_2SO_4(excess) \rightarrow$$

$$C.PH_3 + H_3PO_4 \rightarrow$$

$$\mathsf{D.}\,NO(g) + NO_2(g) \,\,\rightarrow\,\,$$

Answer: A::D

Watch Video Solution

21. Which of the following combination of species can evolve O_2 ?

A. PbO_2 + warm conc. H_2SO_4

B. $NaOH + F_2$

$$C. PbO_2 + conc. HNO_3$$

$$D. XeF_2 + H_2O$$

Answer: A::B::C::D

Watch Video Solution

22. $SO_2(g) + Cl_2(g) \rightarrow X \rightarrow Y + Z$

then X, Y and Z can be:

A. SOCl₂

 $B.SO_2Cl_2$

 $C.SO_2$

D. PCl₅

Answer: B::C::D

23. Which of the following nitrate salt solution neither produce ppt. with excess NaOH nor with excess NH₄OH solution?

A.
$$Al(NO_3)_3$$

B. $Zn(NO_3)_2$

B.
$$Zn(NO_3)_2$$

C.
$$Cr(NO_3)_3$$

D.
$$Pb(NO_3)_2$$

Answer: B::C

Watch Video Solution

24. Which of the following compound(s) give two acids on dissolution in

$$H_2O$$
?

$$A. P_4 O_8$$

$$C.NO_2$$

D. C_3O_2

Answer: A::B::C

Watch Video Solution

$$1:20 \ H_2O \ H_2O \ H_2O$$
 25. $Xe + F_2 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow XeO_3$

Select correct option(s) for X, Y, Z and given chemical change:

- A. X, Y and Z are in same oxidation state
- B. All have equal number of lone pair on central atom
- C. All are non-planar
- D. All have equal number of covalent bonds

Answer: A::B::C::D

26. Which of the following sulphide(s) does/do not liberate H_2S on warming with dil. HCl?

A. HqS

B. ZnS

C. FeS

D. CuS

Answer: A::D

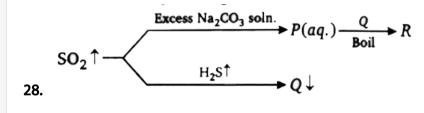
Watch Video Solution

27. I_2 + Na_2CO_3 "soln." \xrightarrow{Hot} X + Y

If 'X' gives coloured ppt. with $Pb(CH_3COO)_2$ solution, then 'Y' will respond to which of the following?

A.
$$Y + H^+(aq.) + H_2S$$

B.
$$Y + Cr_2O_7^{2-}(aq.) + OH^{-}(aq.)$$


C.
$$Y + H^+(aq.) + SO_2$$

D. $Y + H^{+}(aq.) + I^{-}(aq.)$

Answer: A::B::D

Watch Video Solution

Incorrect statement about 'R' is

- A. Antichlor agent
- B. Fixing agent in photography
- C. Forms ppt. with CaCl₂ solution
- D. Reduces $Cu^{2+}(aq)$ cation

Answer: C

29. NO_2 gas evolves on thermal decomposition of which of the following compound(s)?

A.
$$Hg(NO_3)_2$$

 $\mathsf{B.}\mathit{KNO}_3$

 $\mathsf{C.}\,N_2O_4$

D. N_2O_3

Answer: A::C::D

Watch Video Solution

30. Which of the following precipitate(s) is/are dissolved to colourless solution on adding sufficient amount of dilute HCI?

A. $CaCO_3$

 ${\sf B.}\, BaCrO_4$

C.	MgC_2O_4

 $D. BaSO_4$

Answer: A::C

Watch Video Solution

31. Which of the following combination of reagent(s) produce observable change in aqueous medium?

A.
$$Ba(OH)_2$$
 solution+ $SO_2(g)$

B. AgF solution+ $NaNO_3$ solution

C. $Pb(OAc)_2$ soution+ Na_2CO_3 solution

D. CuCl₂ solution+Nh₃ (excess)

Answer: A::C::D

32. Which of the following species is/are not liberating oxygen gas on reaction with water at $25 \,^{\circ} C$?

A. Na_2O_2

B. Cl_2

 $\mathsf{C}.P_4$

D. *KO*₂

Answer: B::C

Watch Video Solution

33. Hydrogen gas is not evolved by:

 $A.Mg + NH_3(liq.)$

 $\mathsf{B.}\,B_2H_6+H_2O$

 $\mathsf{C.}\,\mathit{NaNH}_2 + H_2O$

D. $Be + H_2O$

Answer: A::B::D

Watch Video Solution

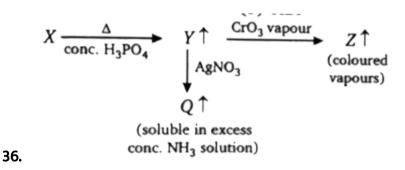
34. Which of the following metal sulphide does not undergo hydrolysis?

- A. Cr_2S_3
- $B.Al_2S_3$
- C. MgS
- D. FeS

Answer: D

Watch Video Solution

35. Which of the following gas is not dried by conc. H_2SO_4 ?


A. HCl

- B. HBr
- $C.H_2S$
- D. *SO*₂

Answer: B::C

Watch Video Solution

Which of the following anion cannot be in X?

- $A.F^{-}$
- B. *Cl*
- C. Br
- $\mathsf{D}.\,I^{\mathsf{-}}$

Watch Video Solution

37. When ozone reacts with an excess of potassium iodide solution buffered with a borate buffer (pH 9.2) iodine is liberated which can be titrated against a standard solution of sodium thiosulphate, this is a quantitative method for estimating O_3 gas. when liberated I_2 and sodium thiosulphate will react, then product is/are:

- A. $S_4O_6^2$
- $B.SO_4^{2}$
- $C. S_2 O_4^{2-}$
- $D.S^0$

Answer: A

38. In which of the following reactions NH_3 gas evolution occurs?

A.
$$NO_3 + Zn + dil. H_2SO_4 \rightarrow$$

B.
$$NH_4^+$$
 salt + $NaOH \rightarrow$

$$C.AlN + steam \rightarrow$$

D.
$$CH_3COONH_3 \rightarrow$$

Answer: B::C::D

Watch Video Solution

39. Which of the following compound() during heating undergo redox decomposition reaction?

A.
$$HgCO_3(s)$$

$$\mathsf{B.}\, Ag_2C_2O_4(s)$$

C.
$$FeCl_3 \cdot 6H_2O(s)$$

$$D. K_2 Cr_2 O_7(s)$$

Watch Video Solution

40. Which of the following combination of species undergo(es) comproportionation?

$$Zn\frac{\emptyset}{Z}nSO_4$$

A. $MnO_4^-(aq.) + Mn^{2+}(aq.) \rightarrow$

varm

$$\mathsf{B.}\,S + conc.\,H_2SO_4(\mathit{excess}) \ \rightarrow$$

$$C.PH_3 + H_3PO_4 \rightarrow$$

cool

$$\mathsf{D.}\,NO(g) + NO_2(g) \,\to\,$$

Answer: A::B

Column-I (Ionic Compounds)

- (A) Hg00 1
- (B) FeSO,
- (C) BeC O.
- (D) AgNO,
- 1.

- Column II (Possible observations on thermal (decomposition)
- (P) Acidic gas evolves
- (Q) Metallic residue is obtained as final product
- (R) Metal cation of salt undergoes redox reaction
- (5) Metallic oxide can be obtained
- (T) Neutral gas is evolved

View Text Solution

- (A) Na 2S 2O 3 + dil. HCl
- (B) ICl₃ + H₂O
- (C) FeCl₃ + H₂S/H⁺
- (D) H₂SO₃ [△]

2.

- (P) Disproportionation reaction
- (Q) Yellow ppt.
- (R) Redox reaction
- (S) One of the product gives white fumes with NH₃

View Text Solution

Column-I (Halide compound)

- (A) PCl₁
- (B) NF₁
- (C) SbCl₃
- (D) BF₃

Column-II

(Characteristics)

- (P) Can act as π-acid ligand (Q) Final hydrolysed product is a proton
- donor oxyacid (R) Can act as classical/normal ligand
- (S) Undergoes partial hydrolysis
- (T) Final hydrolysed product has (pπ-pπ) bond

3.

Column-I (Anions)

- (A) SO 2-
- (B) CO 2
- (C) Cl
- (D) NO 2

4.

Column-II

[Reaction of anion(s) with dil. HCl/conc. H₂SO₄]

- (P) Colourless volatile product is formed
- (Q) Coloured volatile product is formed
- (R) Volatile product forms precipitate with Ba(OH)₂ solution
- (\$) Volatile product forms precipitate with AgNO₃ solution
- (T) Formed volatile product decolourizes MnO₄/H^{*} solution

0

View Text Solution

Co-humn-I

(Reaction with Sult/Radical)

- (A) Zn + dil. H₂SO₄
- (B) dil. HCl
- (C) NaOH (excess)
- (D) KI

5.

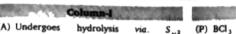
Column-II (Salt/Radical)

- (P) Pb(NO₂)₂
- $(Q) (NH_4)_2S$
- (R) MnO (aq.)
- (S) Hg 24 (aq.)
- (T) Bi 34 (aq.)

Column-I

(Acidic Radicals)

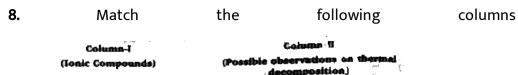
- (A) S2-(aq.)
- (B) SO 3 (aq.)
- (C) NO 2 (aq.)
- (D) S₂O₃² (aq.)


Column-II (Observations)

- (P) Redox reaction with alkaline Br₂
- (Q) Evolution of diamagnetic gas with dil-HCl on warming
- (R) White ppt. with Pb(CH₃COO)₂ and pptremains white even after boiling
- (S) Evolution of gas with (Al + NaOH solution).
- (T) Evolution of same gas with dil. HCl as well as with conc. H₂SO₄ on warming

6.

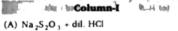
View Text Solution



Column-II

- (A) Undergoes hydrolysis mechanism
- (B) Undergoes hydrolysis
- mechanism (C) Hybridisation of central atom in transi-
- tion state changes during hydrolysis (D) Proton donor oxy acid is formed as final
- hydrolysed product
- (Q) NCl₃ (R) SOF₂
- (S) POCl₃
- (T) CIF₃

7.



- (decomposition) (P) Acidic gas evolves (A) Hg00 1 (Q) Metallic residue is obtained as final (B) FeSO, product
 - (R) Metal cation of salt undergoes redox
 - (5) Metallic oxide can be obtained
 - (T) Neutral gas is evolved

9. Match the following columns

- (B) ICl₃ + H₂O
- (C) FeCl₃ + H₂S/H²

(C) BeC O.

(D) AgNO,

(D) H₂SO₃ →

Column-II

- (P) Disproportionation reaction
- (Q) Yellow ppt. (R) Redox reaction
- (S) One of the product gives white fumes with NH 3

Column-I (Halide compound)

- (A) PCl₁
- (B) NF₃
- (C) SbCl₃
- (D) BF₃

10.

Column-II (Characteristics)

- (P) Can act as π-acid ligand
- (Q) Final hydrolysed product is a proton donor oxyacid
- (R) Can act as classical/normal ligand
- (S) Undergoes partial hydrolysis
- (T) Final hydrolysed product has (pπ-pπ) bond

View Text Solution

(Anions)

- (A) SO₃²
- (B) CO 2-
- (C) Cl
- (D) NO;

Column-II

[Reaction of anion(s) with dil. HCl/conc. H₂SO₄]

- (P) Colourless volatile product is formed
- (Q) Coloured volatile product is formed
- (R) Volatile product forms precipitate with Ba(OH)₂ solution
- (\$) Volatile product forms precipitate with AgNO₃ solution
- (T) Formed volatile product decolourizes MnO₄/H⁺ solution

11.

the

following

columns

Co-humn-I

(Reaction with Sult/Radical)

- (A) Zn + dil. H2SO4
- (B) dil. HCI
- (C) NaOH (excess)
- (D) KI

Column-II (Salt/Radical)

- (P) Pb(NO₂)₂
- (Q) (NH₄)₂S
- (R) MnO (aq.)
- (S) Hg 2 (aq.)
- (T) Bi 3+ (aq.)

Watch Video Solution

Column-I

(Acidic Radicals)

- (A) S2-(aq.)
- (B) SO₃² (aq.)
- (C) NO 2 (aq.)
- (D) S₂O₃²⁻(aq.)

Column-II

(Observations)

- (P) Redox reaction with alkaline Br₂
- (Q) Evolution of diamagnetic gas with dil-HCl on warming
- (R) White ppt. with Pb(CH₃COO)₂ and pptremains white even after boiling
- (S) Evolution of gas with (Al + NaOH solution).
- (T) Evolution of same gas with dil. HCl as well as with conc. H₂SO₄ on warming

13.

- hydrolysis mechanism
- (B) Undergoes hydrolysis (Q) NCl₃ mechanism
- (C) Hybridisation of central atom in transi-(R) SOF₂ tion state changes during hydrolysis
- (D) Proton donor oxy acid is formed as final (S) POCl₃ hydrolysed product
- (T) CIF, 14.

View Text Solution

SUBJECTIVE PROBLEMS

1. Find total number of reagnets which cann produce I_2 from KI solution.

Conc. H_2SO_4 , $Hg(NO_3)_2$ solution, $CuSO_4$ solution, Conc. H_3PO_4 ,

$$K_2Cr_2O_7/H^+$$
, Cl_2 Water, $Pb(CH_3COO)_2$ solution, $Ca(OCl)Cl/H^+$, $NaNO$

Watch Video Solution

2. Find total number of metal cations which are ppted as metal sulphide on passing H_2S gas through metal salt solution.

3. Consider the following reaction $P_A + KOH \rightarrow PH_3 + X$

How many P-H bonds are present in species X?

 $Pb^{2+}(aq.)$, $Mn^{2+}(aq.)$, $Sn^{2+}(aq.)$, $Cr^{3+}(aq.)$, $Mg^{2+}(aq.)$, $Hg^{2+}(aq.)$

Watch Video Solution

Watch Video Solution

$$\left(NH_4\right)_2$$
S, Hi, $Sn^{2+}(aq.)$, $CN^{-}(aq.)$, $NaNO_2$, SO_2 , $Na_2S_2O_3$, SCN^{-}

 $Fe^{2+}(aq.)$ at normal condiitions?

Watch Video Solution

5. Find out number ionic compounds which is/are water insoluble at room temperature

BaSO₄, AgNO₃, PbCO₃, CaCl₂, Mg(OH)₂, KMnO₄, CH₃COOAg, CaCl₃, CaCl₄, Mg(OH)₂, KMnO₄, CH₃COOAg, CaCl₅, Mg(OH)₂, CACl₅, Mg(OH)₂, CACl₅, Mg(OH)₂, M

4. Which of the following species/reagent can reduce $Fe^{3+}(aq.)$ into

6. Find the value of expression |x-y| for following compounds.

where,

x=total number of water insoluble salts.

y=total number of salts, which can liberate non-olar acidic gas during their complete thermal decomposition.

 $BaCO_3$, $PbSO_4$, $AgNO_3$, CaC_2O_4 , $CsHCO_3$, Na_3PO_4 , CH_3COOAg ,

7. Find out total number of coloured compound(s) from following:

 $BaCO_3$, HgO, $PbSO_4$, Ag_2S , HgI_2 , PbO, CdS, $AgNO_2$, $PbCrO_4$

8. Find out total number of cation(s) that produce precipitate with aqueous solution of Na_2CO_3 .

 $Cu^{2+}(aq.), Mg^{2+}(aq.), Fe^{3+}(aq.), Pb^{2+}(aq.), Al^{3+}(aq.), Hg^{2+}(aq.), Zn^{2+}(aq.)$ Watch Video Solution

 $\begin{array}{c} \Delta \\ \mathbf{9.} \, P_4 + SOCl_2 \rightarrow \text{ Products} \end{array}$

Find out total number of non-planar and polar molecules of products in balanced equation for one mole of P_A .

given reaction? $Na_2SO_3 + Na_2S + I_2 \rightarrow \dots + NaI$

10. What is average oxidation state state of sulphur in product formed in

11. find out total number of coloured/black water insoluble compound(s) from following substances:

reactions.

Watch Video Solution

 $PbCl_4$, $Mg(NO_3)_2$, HgC_2O_4 , Ag_2CO_3 , $Pb(CN)_4$, $Al(OH)_3$, $Cu(CN)_2$ Watch Video Solution

13. How many following Ammonium salts will evolve N_2 gas on heating?

14. How many following metals evolve NO (Nitric oxide) gas with dil. HNO₃

12. Find out total number of compounds which on heating undergo redox

 $Ag_{2}O, HgI_{2}, FeS, Ag_{3}PO_{4}, Ba(MnO_{4})_{2}, Na_{2}CrO_{4}, PbI_{2}, AgNO_{2}, Ag_{2}C_{2}O_{4}$

- $(NH_4)_2CO_3, (NH_4)_2Cr_2O_7, NH_4NO_2, NH_4ClO_4, NH_4Cl, (NH_4)_2S, (NH_4)_2C_2C_3$
 - Watch Video Solution

(20%)? Hq, Cu, Pb, Zn, Fe, Al, Aq, Au, Mn **15.** Find number of basic radicals among the following cations, which can form soluble complex on adding excess of $N\!H_4$ solution.

 $Cd^{2+}(aq.), Pb^{2+}(aq.), Ni^{2+}(aq.), Mn^{2+}(aq.), Zn^{2+}(aq.), Ag^{+}(aq.), Hg^{2+}(aq.)$

16. Calculate difference between oxidation state of chromium (Cr) in blue and green coloured chromium species formed during the following given transformation.

17. If hydrolysis of interhalogen compound can be represented by following general reaction:

 $XY_{n_1} \rightarrow n_1HY + HXO_{n_2}$

Watch Video Solution 18. Total number of species that can be oxidzed by acidic permanganate

If given interhalogen compound is polarr and non-planar, then calculate

ion
$$\left(MnO_4^{-}/H^{+}\right)$$
.
 $I^{-}, Fe^{2+}, CO_2, C_2O_4^{2-}, S^{2-}, SO_3^{2-}, NO_2^{2-}, PO_4^{3-}, SO_4^{2-}$

19. How many following metals evolve N_2O gas with dil. HNO_3 (20%)

value of $n_1 + n_2$.

Cr, Cu, Pb, Zn, Fe, Al, Ag, Au, Mn.

20. How many following ammonium salts will evolve NH_3 gas on heating?

 $\left(NH_4\right)_2CO_3$, $\left(NH_4\right)_2Cr_2O_7$, CH_3COONH_4 , NH_4ClO_4 , NH_4Cl , $\left(NH_4\right)_2S$, $\left(NH_4\right)_2S$

21. Find out the number of cation (s) which form(s) black ppt. (soluble in hot and dilute HNO_3) on passing H_2S gas into their salt solution?

 $Mg^{2+}(aq.)Cu^{2+}(aq.), Ba^{2+}(aq.), Fe^{3+}(aq.), Ag^{+}(aq.), Al^{3+}(aq.), Hg^{2+}(aq.),$

 $K_2Cr_2O_7/H^+$, Cl_2 Water, $Pb(CH_3COO)_2$ solution, $Ca(OCl)Cl/H^+$, NaNO

Conc.
$$H_2SO_4$$
, $Hg(NO_3)_2$ solution, $CuSO_4$ solution, Conc. H_3PO_4 ,

22. Find total number of reagnets which cann produce I_2 from KI solution.

23. Find total number of metal cations which are ppted as metal sulphide

on passing H_2S gas through metal salt solution. $Pb^{2+}(aq.)$, $Mn^{2+}(aq.)$, $Sn^{2+}(aq.)$, $Cr^{3+}(aq.)$, $Mg^{2+}(aq.)$, $Hg^{2+}(aq.)$ Watch Video Solution

24. Consider the following reaction $P_A + KOH \rightarrow PH_3 + X$

How many P-H bonds are present in species X?

25. Which of the following species/reagent can reduce $Fe^{3+}(aq.)$ into $Fe^{2+}(aq.)$ at normal condiitions?

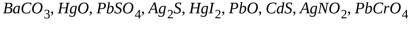
 $(NH_4)_2$ S, Hi, $Sn^{2+}(aq.)$, $CN^-(aq.)$, $NaNO_2$, SO_2 , $Na_2S_2O_3$, SCN^-

26. Find out number ionic compound(s0 which is/are water insoluble at room temperature

 $BaSO_{4}$, $AgNO_{3}$, $PbCO_{3}$, $CaCl_{2}$, $Mg(OH)_{2}$, $KMnO_{4}$, $CH_{3}COOAg$,

27. Find the value of expression |x-y| for following compounds.

where,


x=total number of water insoluble salts.

y=total number of salts, which can liberate non-olar acidic gas during their complete thermal decomposition.

 $BaCO_3$, $PbSO_4$, $AgNO_3$, CaC_2O_4 , $CsHCO_3$, Na_3PO_4 , CH_3COOAg ,

28. Find out total number of coloured compound(s) from following:

Watch Video Solution

aqueous solution of Na_2CO_3 . $Cu^{2+}(aq.), Mg^{2+}(aq.), Fe^{3+}(aq.), Pb^{2+}(aq.), Al^{3+}(aq.), Hg^{2+}(aq.), Zn^{2+}(aq.)$

29. Find out total number of cation(s) that produce precipitate with

30. $P_4 + SOCl_2 \rightarrow Products$

Find out total number of non-planar and polar molecules of products in balanced equation for one mole of P_A .

Watch Video Solution

31. What is average oxidation state state of sulphur in product formed in given reaction?

 $Na_2SO_3 + Na_2S + I_2 \rightarrow \dots + NaI$

from following substances: $Ag_{2}O, HgI_{2}, FeS, Ag_{3}PO_{4}, Ba(MnO_{4})_{2}, Na_{2}CrO_{4}, PbI_{2}, AgNO_{2}, Ag_{2}C_{2}O_{4}$

32. find out total number of coloured/black water insoluble compound(s)

33. Find out total number of compounds which on heating undergo redox reactions.

 $PbCl_4$, $Mg(NO_3)_2$, HgC_2O_4 , Ag_2CO_3 , $Pb(CN)_4$, $Al(OH)_3$, $Cu(CN)_2$

34. How many following ammonium salts will evolve $N\!H_3$ gas on heating?

$$(NH_4)_2CO_3$$
, $(NH_4)_2Cr_2O_7$, CH_3COONH_4 , NH_4CIO_4 , NH_4CI , $(NH_4)_2S$, $(NH_4)_2CIO_4$

35. How many following metals evolve NO (Nitric oxide) gas with dil.

HNO₃ (20%)?

Hg, Cu, Pb, Zn, Fe, Al, Ag, Au, Mn

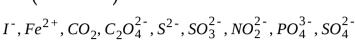
 $Cd^{2+}(aq.), Pb^{2+}(aq.), Ni^{2+}(aq.), Mn^{2+}(aq.), Zn^{2+}(aq.), Ag^{+}(aq.), Hg^{2+}(aq.)$

and green coloured chromium species formed during the following given transformation.

37. Calculate difference between oxidation state of chromium (Cr) in blue

36. Find number of basic radicals among the following cations, which can

form soluble complex on adding excess of NH_A solution.


38. If hydrolysis of interhalogen compound can be represented by following general reaction:

If given interhalogen compound is polarr and non-planar, then calculate value of $n_1 + n_2$.

 $XY_{n_1} \rightarrow n_1HY + HXO_{n_2}$

39. Total number of species that can be oxidzed by acidic permanganate ion $\left(MnO_4^{-}/H^{+}\right)$.

40. How many following metals evolve N_2O gas with dil. HNO_3 (20%) Cr, Cu, Pb, Zn, Fe, Al, Ag, Au, Mn.

41. How many following ammonium salts will evolve NH_3 gas on heating?

 $\left(NH_4\right)_2CO_3$, $\left(NH_4\right)_2Cr_2O_7$, CH_3COONH_4 , NH_4ClO_4 , NH_4Cl , $\left(NH_4\right)_2S$, $\left(NH_4\right)_2CO_3$

42. Find out the number of cation (s) which form(s) black ppt. (soluble in

hot and dilute HNO_3) on passing H_2S gas into their salt solution?

 $Mg^{2+}(aq.)Cu^{2+}(aq.), Ba^{2+}(aq.), Fe^{3+}(aq.), Ag^{+}(aq.), Al^{3+}(aq.), Hg^{2+}(aq.),$

