

MATHS

BOOKS - VK JAISWAL ENGLISH

APPLICATION OF DERIVATIVES

Exercise Single Choice Problems

1. The difference between the maximum and minimum value of the function $f(x)=3\sin^4x-\cos^6c$ is :

A.
$$\frac{3}{2}$$

B. $\frac{5}{2}$
C. 3
D. 4

Answer: D

2. A function y = f(x) has a second-order derivative f''(x) = 6(x - 1). It its graph passes through the point (2,1) and at that point tangent to the graph is y = 3x - 5, then the value of f(0) is 1 (b) -1 (c) 2 (d) 0

- A. $(x-1)^2$
- $\mathsf{B.}\left(x-1\right)^3$
- $C.(x+1)^{3}$
- D. $(x + 1)^2$

Answer: B

3. If the subnormal at any point on the curve $y=3^{1-k}$. x^k is of constant

length the k equals to :

A.
$$\frac{1}{2}$$

B. 1
C. 2

Answer: A

D. 0

Watch Video Solution

4. If $x^5 - 5qx + 4r$ is divisible by $(x - c)^2$ then which of the following must hold true

A. q=r

 $\mathsf{B}.\,q+r=0$

 ${\sf C}.\,q^5+r=0$

D. $q^5=r^4$

Answer: C

5. A spherical iron ball 10cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50cm^3/m \in$. When the thickness of ice is 5cm, then find the rate at which the thickness of ice decreases.

A.
$$\frac{1}{36\pi}cm / \min$$

B. $\frac{1}{18\pi}cm / \min$
C. $\frac{1}{54\pi}cm / \min$
D. $\frac{5}{6\pi}cm / \min$

Answer: B

6. If $f(x) = \frac{(x-1)(x-2)}{(x-3)(x-4)}$, then number of local extremas for g(x), where g(x) = f(|x|): (a) 3 (b) 4 (c) 5 (d) none of these

A. 3

B. 4

C. 5

D. None of these

Answer: C

7. Two straight roads OA and OB intersect at an angle 60° . A car approaches O from A, where OA = 700m at a uniform of 20 m/s, Simultaneously, a runner starts running from O towards B at a uniform speed of 5 m/s. The time after start when the car and the runner are closest is:

A. 10 sec

B. 15 sec

C. 20 sec

D. 30 sec

Answer: D

Watch Video Solution

8. Let
$$f(x)=egin{cases} a-3x&-2\leq x<0\ 4x\pm 3&0\leq x<1 \end{cases}$$
, if $f(x)$ has smallest

valueat x = 0, then range of a, is

A. $(-\infty,3)$

 $\mathsf{B.}\,(\,-\infty,\,3]$

 $\mathsf{C}.\left(3,\infty
ight)$

D. $[3,\infty)$

Answer: D

9. If
$$f(x) = \begin{cases} \begin{pmatrix} 3+|x-k| & x \leq k \\ a^2-2+rac{ an(x-k)}{x-k} & x > k \end{pmatrix}$$
 has minimum at x=k,then
(a) $|a| \leq 2$ (b) $|a| < 2$ (c) $|a| > 2$ (d) $|a| \geq 2$
A. $a \in R$
B. $|a| < 2$

- $\mathsf{C}.\left|a\right|>2$
- $\mathsf{D.1} < |a| < 2$

Answer: C

Watch Video Solution

10. For certain curve y=f(x) satisfying $\displaystyle rac{d^2y}{dx^2}=6x-4,\,f(x)$ has local minimum value 5 when x=1

Global maximum value of y=f(x) for $x\in [0,2]$ is

A.	_	2
в.	2	

C. 12

 $\mathsf{D.}-12$

Answer: B

Watch Video Solution

11. The tangent to $y = ax^2 + bx + \frac{7}{2}at(1, 2)$ is parallel to the normal at the point (-2, 2) on the curve $y = x^2 + 6x + 10$. Then the value of $\frac{a}{2} - b$ is:

A. 2

B. 0

C. 3

D. 1

Answer: C

12. If (a,b) be the point on the curve $9y^2 = x^3$ where normal to the curve make equal intercepts with the axis, then the value of (a + b) is:

B. $\frac{10}{3}$ C. $\frac{20}{3}$

A. 0

D. None of these

Answer: C

13. The curve y = f(x) satisfies $\frac{d^2y}{dx^2} = 6x - 4$ and f(x) has a local minimum value 5 when x = 1. Then f'(0) is equal to :

A. 1

B. 0

C. 5

D. None of these

Answer: C

Watch Video Solution

14. Let A be the point where the curve $5\alpha^2x^3 + 10\alpha x^2 + x + 2y - 4 = 0 (\alpha \in R, \alpha \neq 0)$ meets the y-axis, then the equation of tangent to the curve at the point where normal at A meets the curve again, is:

A. $x-\alpha y+2lpha=0$ B. lpha x+y-2=0C. 2x-y+2=0D. x+2y-4=0

Answer: C

15. The difference between the greatest and least value of the functions,

$$f(x) = \cos x + rac{1}{2}\cos 2x - rac{1}{3}\cos 3x$$
 is
A. $rac{11}{5}$
B. $rac{13}{6}$
C. $rac{9}{4}$
D. $rac{7}{3}$

Answer: C

16. The x co-ordinate of the point on the curve $y=\sqrt{x}$ which is closest to

the point (2,1) is :

A.
$$\frac{2 + \sqrt{3}}{2}$$

B. $\frac{1 + \sqrt{2}}{2}$
C. $\frac{-1 + \sqrt{3}}{2}$

Answer: A

_

D. 1

17. The tangent at a point P on the curve
$$y = \ln\left(rac{2+\sqrt{4-x^2}}{2-\sqrt{4-x^2}}
ight) - \sqrt{4-x^2}$$
 meets the y-axis at T, then PT^2

equals to :

A. 2

B. 4

C. 8

D. 16

Answer: B

18. Let
$$f(x) = \int_{x^2}^{x^3} \frac{dt}{\ln t}$$
 for

x > 1 and $g(x) = \int_{1}^{\infty} (2t^2 - \ln t) f(t) dt(x > 1)$, then: (a) g is increasing on $(1, \infty)$ (b) g is decreasing on $(1, \infty)$ (c) g is increasing on (1, 2) and decreasing on $(2, \infty)$ (d) g is decreasing on (1, 2) and increasing on $(2, \infty)$

- A. g is increasing on $(1,\infty)$
- B.g is decreasing on $(1,\infty)$
- C. g is increasing on (1, 20 and decreasing on (2, 00)
- D. g is decreasing on (1,2) and increasing on $(2,\infty)$

Answer: A

19. Let $f(x) = x^3 + 6x^2 + ax + 2$, if (-3, -1) is the largest possible interval for which f(x) is decreasing function, then a =

A. 3 B. 9 C. -2

D. 1

Answer: B

Watch Video Solution

20. Let
$$f(x) = an^{-1} \left(rac{1-x}{1+x}
ight)$$
. Then difference of the greatest and

least value of f(x) on [0, 1] is:

A. $\pi/2$

B. $\pi/4$

 $\mathsf{C.}\,\pi$

D. $\pi/3$

Answer: B

21. The number of integral values of a for which $f(x) = x^3 + (a+2)x^2 + 3ax + 5$ is monotonic in $\forall x \in R$. A. 2 B. 4 C. 6

D. 7

Answer: B

22. The number of critical points of

$$f(x) = \left(\int_0^x \left(\cos^2 t - \sqrt[3]{t}\right) dt\right) + \frac{3}{4}x^{4/3} - \frac{x+1}{2} \text{ in } (0, 6\pi] \text{ is:}$$
A. 10
B. 8
C. 6
D. 12

Answer: D

23. Let
$$f(x) = \min\left(\frac{1}{2} - \frac{3x^2}{4}, \frac{5x^2}{4}\right)$$
 for $0 \le x \le 1$, then maximum value of f (x) is:

B.
$$\frac{5}{64}$$

C. $\frac{5}{4}$

D.
$$\frac{5}{16}$$

Answer: D

Watch Video Solution

24. Let
$$f(x) = egin{cases} 2 - |x^2 + 5x + 6| & x
eq -2 \ b^2 + 1 & x = -2 \end{cases}$$

Has relative maximum at x = -2, then complete set of values b can take is:

A. $|b| \geq 1$

B. |b| < 1

 $\mathsf{C}.\,b>1$

 $\mathsf{D}.\, b < 1$

Answer: A

25. Let for function $f(x) = egin{bmatrix} \cos^{-1}x & -1 \leq x \leq 0 \ mx+c & 0 < x \leq 1 \ \end{pmatrix}$ Lagrange's

mean value theorem is applicable in [-1,1] then ordered pair (m,c) is:

A.
$$\left(1, -\frac{\pi}{2}\right)$$

B. $\left(1, \frac{\pi}{2}\right)$
C. $\left(-1, -\frac{\pi}{2}\right)$
D. $\left(-1, \frac{\pi}{2}\right)$

Answer: D

Watch Video Solution

26. Tangents ar drawn to $y = \cos x$ from origin then points of contact for

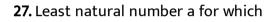
these tangents will always lie on :

A.
$$rac{1}{x^2} = rac{1}{y^2} + 1$$

B. $rac{1}{x^2} = rac{1}{y^2} - 2$
C. $rac{1}{y^2} = rac{1}{x^2} + 1$

$$\mathsf{D}.\,\frac{1}{y^2}=\frac{1}{x^2}-2$$

Answer: C



 $x+ax^{-2}>2,\,orall x\in(0,\infty)$ is

A. 1

B. 2

C. 5

D. None of these

Answer: B

28. Angle between the tangents to the curve $y = x^2 - 5x + 6$ at points (2, 0), and (3, 0) is:

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

Watch Video Solution

29. Difference between the greatest and least values opf the function

 $f(x)=\int_{0}^{x}\left(\cos^{2}t+\cos t+2
ight)$ dt in the interval $[0,2\pi]$ is $K\pi,$ then K is

equal to:

A. 1

B. 3

C. 5

D. None of these

Answer: C

Watch Video Solution

30. The range of the function
$$f(\theta) = \frac{\sin \theta}{\theta} + \frac{\theta}{\tan \theta}, \theta \in \left(0, \frac{\pi}{2}\right)$$
 is equal to :

A.
$$(0, \infty)$$

B. $\left(\frac{1}{\pi}, 2\right)$
C. $(2, \infty 0$
D. $\left(\frac{2}{\pi}, 2\right)$

Answer: D

31. Number of integers in the range of c so that the equation $x^3 - 3x + x = 0$ has all its roots real and distinct is:

A. 2

B. 3

C. 4

D. 5

Answer: B

Watch Video Solution

32. Let $f(x)=\int e^x(x-1)(x-2)dx$. Then f decreases in the interval $(-\infty,\ -2)$ (b) $-2,\ -1)$ (1,2) (d) $(2,\ +\infty)$

A. $(2,\infty)$

B. (-2, -1)

C.(1,2)

D.
$$(-\infty,1)ii(2,\infty)$$

Answer: C

Watch Video Solution

33. If the cubic polymomial $y = ax^3 + bx^2 + cx + d(a, b, c, d \in R)$ has only one critical point in its entire domain and ac = 2, then the value of |b| is:

- A. $\sqrt{2}$ B. $\sqrt{3}$
- C. $\sqrt{5}$
- D. $\sqrt{6}$

Answer: D

34. On the curve
$$y = rac{1}{1+x^2}$$
, the point at which $\left|rac{dy}{dx}
ight|$ is greatest in the

first quadrant is :

A.
$$\left(\frac{1}{2}, \frac{4}{5}\right)$$

B. $\left(1, \frac{1}{4}\right)$
C. $\left(\frac{1}{\sqrt{2}}, \frac{2}{3}\right)$
D. $\left(\frac{1}{\sqrt{3}}, \frac{3}{4}\right)$

Answer: D

Watch Video Solution

35. If
$$f(x)=2x,$$
 $g(x)=3\sin x-x\cos x,$ $then$ for $x\in \left(0,rac{\pi}{2}
ight)$:

A.
$$f(x) > g(x)$$

$$\mathsf{B}.\, f(x) < g(x)$$

C. f(x) = g(x) has exactly one real root.

D. f(x) = g(x) has exactly two real roots

Answer: A

36. let
$$f(x) = \sin^{-1} \left(rac{2g(x)}{1+{g(x)}^2}
ight)$$
, then which are correct ?

(i) f (x) is decreasing if g(x) is increasig and ert g(x) > 1

(ii) f(x) is an increasing function if g(x) is increasing and $|g(x)| \leq 1$

(iii) f (x) is decreasing function if f(x) is decreasing and |g(x)|>1

A. (i) and (iii)

B. (i) and (ii)

C. (i) (ii) and (iii)

D. (iii)

Answer: B

37. The graph of function y = f(x) has a unique tangent at $(e^a, 0)$ through which the graph passes, then $rac{\log(1+7f(x))-\sin(f(x))}{3f(x)}$ equals lim $x \rightarrow e^a$ A. 1 B. 3 C. 2 D. 7 Answer: C

38. Let f(x) be a function such that $f'(x) = \log_{1/3}(\log_3(\sin x + a))$. The complete set of values of 'a' for which f(x) is strictly decreasing for all real values of x is:

A. $[4,\infty)$

B.[3, 4]

 $\mathsf{C}.\,(\,-\infty,\,4)$

D. $[2,\infty)$

Answer: A

Watch Video Solution

39. If
$$f(x) = a \ln|x| + bx^2 + x$$
 has extremas at $x = 1$ and $x = 3$ then:

A.
$$a = \frac{3}{4}, b = -\frac{1}{8}$$

B. $a = \frac{3}{4}, b = \frac{1}{8}$
C. $a = -\frac{3}{4}, b = -\frac{1}{8}$
D. $a = -\frac{3}{4}, b = \frac{1}{8}$

Answer: C

40. Let
$$f(x)=egin{cases} 1+\sin x, & x<0\ x^2-x+1, & x\geq 0 \end{cases}$$
 then:

A. f has a local maximum at x=0

B. f has a local minimum at x=0

C. f is increasing everywhere

D. f is decreasing everywhere

Answer: A

Watch Video Solution

41. If m and n are positive integers and

$$f(x)=\int_1^x {(t-a)}^{2n}{(t-a)}^{2m+1}dt, a
eq b, then$$

A. x = b is a point of local minimum

B. x = b is a point of local maximum

C. x = a is a point of local minimum

D. x = a is a point of local maximum

Answer: A

42. For any $real\theta$, the maximum value of $\cos^2(\cos\theta) + \sin^2(\sin\theta)$ is

A. 1

 $\mathsf{B.1} + \sin^2 1$

- $\mathsf{C.1} + \cos^2 1$
- D. Does not exist

Answer: B

43. If the tangent at P of the curve $y^2 = x^3$ intersects the curve again at Q and the straight line OP, OQ have inclinations a,b where O is origin, then $\left(\frac{\tan \alpha}{\tan \beta}\right)$ has the value, equals to:

$$A. - 1$$

 $\mathsf{B.}-2$

C. 2

D. $\sqrt{2}$

Answer: B

Watch Video Solution

44. If x+4y=14 is a normal to the curve $y^2=lpha x^3-eta$ at (2,3), then the value of lpha+eta is 9 (b) -5 (c) 7 (d) -7

A. 9

B.-5

C. 7

 $\mathsf{D.}-7$

Answer: A

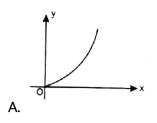
45. The tangent to the curve $y = e^{kx}$ at a point (0,1) meets the x-axis at (a,0), where $a \in [-2, -1]$. Then $k \in$ (a) $\left[-\frac{1}{2}, 0\right]$ (b) $\left[-1, -\frac{1}{2}\right]$ [0, 1] (d) $\left[\frac{1}{2}, 1\right]$ A. $\left[-\frac{1}{2}, 0\right]$ B. $\left[-1-\frac{1}{2}\right]$ C. [0, 1]D. $\left[\frac{1}{2}, 1\right]$

Answer: D

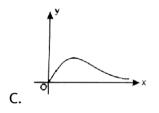
Watch Video Solution

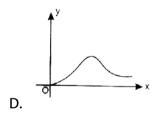
46. Which of the following graph represent the function $f(x) = \int_0^{\sqrt{x}} e^{rac{u^2}{x}}$

du, for x > 0 and f(0) = o









Answer: B

47. Let f(x) = (x - a)(x - b)(x - c) be a ral vlued function where $a < bc(a, b, c \in R)$ such that $f''(\alpha) = 0$. Then if $\alpha \in (c_1, c_2)$, which one of the following is correct ?

A. $lpha < c_1 < b \, ext{ and } \, b < c_2 < c$

 $\texttt{B.}\, \alpha < c_1, c_2 < b$

 $\mathsf{C}.\, b < c_1, c_2 < c$

D. None of these

Answer: A

Watch Video Solution

48. $f(x) = x^6 - x - 1, x \in [1, 2]$. Consider the following statements :

A. f is increasing on [1, 2]

B. f has a root in [1, 2]

C. f is decreasing on [1, 2]

D. f has no root in [1, 2]

Answer: A

49. Which one of the following curves is the orthogonal trajectory of straight lines passing through a fixed point (a,b) ?

k

A.
$$x - a = k(y - b)$$

B. $(x - a)(y - b) = k$
C. $(x - a)^2 = k(y - b)$
D. $(x - a)^2 + (y - b)^2 =$

Answer: D

50. The function $f(x) = \sin^3 x - m \sin x$ is defined on open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and if assumes only 1 maximum value and only 1 minimum value on this interval. Then, which one of the must be correct? (a) 0 < m < 3 (b) -3 < m < 0 (c) m > 3 (d) m < -3A. 0 < m < 3B. -3 < m < 0C. m > 3D. m < -3

Answer: A

Watch Video Solution

51. The greatest of the numbers $1, 2^{1/2}, 4^{1/4}, 5^{1/5}, 6^{1/6}$, and $7^{1/7}$ is:

A. $2^{1/2}$

B. $3^{1/3}$

C. $7^{1/7}$

D. $6^{1/6}$

Answer: B

52. Let I be the line through (0,0) an tangent to the curve $y = x^3 + x + 16$. Then the slope of I equal to :

A. 10

B. 11

C. 17

D. 13

Answer: D

53. The slope of the tangent at the point of inflection of $y = x^3 - 3x^2 + 6x + 2009$ is equal to :

A. 2

B. 3

C. 1

D. 4

Answer: B

Watch Video Solution

54. If f(x) is a differentiable real valued function satisfying $f''(x) - 3f'(x) > 3 \forall x \ge 0$ and f'(0) = -1, then $f(x) + x \forall x > 0$ is

A. strictly increasing

B. strictly decreasing

C. non monotonic

D. data insufficient

Answer: A

Watch Video Solution

55. If the line joining the points (0, 3) and (5, -2) is a tangent to the curve $y = \frac{C}{x+1}$, then the value of C is (a) 1 (b) -2 (c) 4 (d) none of these A. 2 B. 3 C. 4

D. 5

Answer: C

56.	Find	the	number	of	solutions	to	$\log_e {\sin x} = -x^2 + 2x$	in
[$\frac{\pi}{2}, \frac{3}{2}$	$\left[\frac{\pi}{2}\right]$.						
A	. 2							
В	. 4							
C	. 6							
D	. 8							

Answer: B

57. Find the values of a for whch $\sin^{\cdot}(-1)x = |x - a|$ will have at least

one solution.

A. [-1,1]B. $\left[-rac{\pi}{2},rac{\pi}{2}
ight]$

C.
$$\left[1-rac{\pi}{2},1+rac{\pi}{2}
ight]$$

D. $\left[rac{\pi}{2}-1,rac{\pi}{2}+1
ight]$

Answer: C

Watch Video Solution

58. For any real number b, let f (b) denotes the maximum of $\left|\sin x + rac{2}{3+\sin x} + b\right| orall imes x \in R$. Then the minimum value of $f(b) \ orall b \in R$ is:

A.
$$\frac{1}{2}$$

B. $\frac{3}{4}$
C. $\frac{1}{4}$

D. 1

Answer: B

59. Which of the following are correct

A.
$$x^4+2x^2-6x+2=0$$
 has exactly four real solution

B. $x^3 + 5x + 1 = 0$ has exactly three real solutions

C. $x^n + ax + b = 0$ where n is an even natural number has atmost

two real solution a, b, in R.

D. $x^3 - 3x + c = 0, x > 0$ has two real solutin for $x \in (0, 1)$

Answer: C

Watch Video Solution

60. For any real number b, let f (b) denotes the maximum of $\left|\sin x + rac{2}{3+\sin x} + b\right| orall imes x \in R$. Then the minimum value of $f(b) \ orall b \in R$ is:

A.
$$rac{1}{2}$$

B.
$$\frac{3}{4}$$

C. $\frac{1}{4}$
D. 1

Answer: B

Watch Video Solution

61. Find the coordinates of the point on the curve $y=rac{x}{1+x^2}$ where the

tangent to the curve has the greatest slope.

B.
$$\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$$

C. $\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$
D. $\left(1, \frac{1}{2}\right)$

Answer: A

62. Let $f:[0, 2\pi] \to [-3, 3]$ be a given function defined at $f(x) = 3\cos\frac{x}{2}$. The slope of the tangent to the curve $y = f^{-1}(x)$ at the point where the curve crosses the y-axis is:

$$A. -1$$
$$B. -\frac{2}{3}$$
$$C. -\frac{1}{6}$$
$$D. -\frac{1}{3}$$

Answer: B

Watch Video Solution

63. Number of stationary points in $[0, \pi]$ for the function $f(x) = \sin x + \tan x - 2x$ is:

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

64. If a,b,c d $\in R$ such that $rac{a+2c}{b+3d}+rac{4}{3}=0,$ then the equation $ax^3+bx^3+cx+d=0$ has

A. atleast one root in $(\,-1,0)$

B. atleast one root in (0, 1)

C. no root in (-1, 1)

D. no root in (0, 2)

Answer: B

65. If $f'(x)\phi(x)(x-2)^2$. Were $\phi(2) \neq 0$ and $\phi(x)$ is continuous at x = 2 then in the neighbouhood of x = 2

A. f is increasing if $\phi(2) < 0$

B. f is decreasing if $\phi(2)>0$

C. f is neither increasing nor decreasing

D. f is increasin if $\phi(2)>0$

Answer: D

66. If the function $f(x)=x^3-6x^2+ax+b$ defined on [1,3] satisfies Rolles theorem for $c=rac{2\sqrt{3}+1}{\sqrt{3}}$ then find the value of aandb

A.
$$a = -11, b = 5$$

B. a = -11, b = -6

 $\mathsf{C}.\,a=11,b\in R$

D.
$$1 = 22, b = -6$$

Answer: C

Watch Video Solution

67. For which of the following function 9s) Lagrange's mean value theorem is not applicable in [1, 2]?

$$egin{aligned} \mathsf{A}.\,f(x) &= \left\{ egin{aligned} rac{3}{2}-x, & x < rac{3}{2} \ \left(rac{3}{2}-x
ight)^2, & x \geq rac{3}{2} \ \left(rac{3}{2}-x
ight)^2, & x \geq rac{3}{2} \ \mathbf{B}.\,f(x) &= \left\{ egin{aligned} rac{\sin{(x-1)}}{x-1}, & x
eq 1 \ 1, & x = 1 \ 1, & x = 1 \ \end{bmatrix} \ \mathsf{C}.\,f(x) &= (x-1)|x+1| \ \mathsf{D}.\,f(x) &= |x-1| \end{aligned}$$

Answer: A

68. If the curves $rac{x^2}{a^2}+rac{y^2}{4}=1 ext{ and } y^3=16x$ intersect at right angles,

then:

A. $a=\pm 1$

B. $a = \pm \sqrt{3}$

$$\mathsf{C.}\,a=~\pm\sqrt{3}$$

D.
$$a = \pm \sqrt{2}$$

Answer: D

Watch Video Solution

69. If the line $x \cos \alpha + y \sin \alpha = P$ touches the curve $4x^3 = 27ay^2$, then $\frac{P}{a} =$ A. $\cot^2 \alpha \cos \alpha$ B. $\cot^2 \alpha \sin \alpha$ C. $tna^2 \alpha \cos \alpha$ D. $\tan^2 \alpha \sin \alpha$

Answer: A

Exercise One Or More Than Answer Is Are Correct

1. Common tagent (s) to
$$y = x^3$$
 and $x = y^3$ is/are

A.
$$x-y=rac{1}{\sqrt{3}}$$

B. $x-y=-rac{1}{\sqrt{3}}$
C. $x-y=rac{2}{3\sqrt{3}}$
D. $x-y=rac{-2}{3\sqrt{3}}$

Answer: C::D

2. Let f:[0,8] o R be differentiable function such that $f(0)=0,\,f(4)=1,\,f(8)=1,\,$ then which of the following hold(s) good ?

A. There exist some $c_1 \in (0,8)$ where $f(c_1) = rac{1}{4}$ B. There exist some $x \in (0,8)$ where $f'(c) = rac{1}{12}$

C. There exist $c_1,c_2\in [0,8]$ where $8f'(c_1)f(c_2)=1$

D. There exist some lpha,eta=(0,2) such that $\int_0^8 f(t)dt=3ig(lpha^2fig(lpha^3ig)+eta^2ig(eta^3ig)ig)$

Answer: A::C::D

Watch Video Solution

3. If
$$f(x) = egin{cases} \sin^{-1}(\sin x) & x > 0 \ rac{\pi}{2} & x = 0 \ \cos^{-1}(\cos x) & x < 0 \end{cases}$$
 then

A. x=0 is a point of maxima

B. f(x) is continous $\forall x \in R$

C. glolab maximum vlaue of f(x) $orall x \in R$ is π

D. global minimum vlaue of f(x) $orall x \in R$ is 0

Answer: A::C::D

Watch Video Solution

4. A function
$$f: R \to R$$
 is given by $f(x) = \begin{cases} x^4 \Big(2 + \sin rac{1}{x}\Big) & x
eq 0 \\ 0 & x = 0 \end{cases}$

then

A. f has a continous derivative $\, orall \, x \in R$

B. f is a bounded function

C. f has an global minimum at x=0

D. f" is continous $\, orall \, x \in R$

Answer: A::C::D

5. If $f''(x) \mid \leq 1 \, \forall x \in R$, and f(0) = 0 = f'(0), then which of the following can not be true ?

A.
$$f\left(-\frac{1}{2}\right) = \frac{1}{6}$$

B. $f(2) = -4$
C. $f(-2) = 3$
D. $f\left(\frac{1}{2}\right) = \frac{1}{5}$

Answer: A::B::C::D

Watch Video Solution

6. Let $f: [-3,4] \to R$ such that f''(x) > 0 for all $x \in [-,4]$, then which of the following are always true ?

A. f (x) has a relative minimum on $(\,-3,4)$

B. f (x) has a minimum on [3, 4]

C. f (x) has a maximum on $\left[\,-3,4
ight]$

D. if $f(3)=f(4), ext{ then } f(x)$ has a critical point on $[\,-3,4]$

Answer: B::C::D

Watch Video Solution

7. Let f (x) be twice differentialbe function such that f''(x) > 0 in [0, 2].

Then :

A.
$$f(0)+f(2)=2f(x), ext{ for atleast one } c,c\in(0,2)$$

B.
$$f(0) + f(2) < 2f(1)$$

C. f(0) + f(2) > 2f(1)

D.
$$2f(0)+f(2)>3figgl(rac{2}{3}iggr)$$

Answer: C::D

8. Let g(x) be a cubic polnomial having local maximum at x = -1 and g '(x) has a local minimum at x = 1, Ifg(-1) = 10g, (3) = -22, then

A. perpendicular distance between its two horizontal tangents is 12

B. perpendicular distance betweent its two horizontal tangents is 32

C. g(x) = 0 has atleast one real root lying in interval (-2, 0)

D. g(x) = 0, has 3 distinict real roots

Answer: B::D

Watch Video Solution

9. Let S be the set of real values of parameter λ for which

the equation $f(x)=2x^3-3(2+\lambda)x^2+12\lambda x$ has exactly one local maximum and exactly one local minimum.

Then,S is a subset of

A. $\lambda \in (-4,\infty)$

B.
$$\lambda \in (\,-\infty,\,0)$$

C. $\lambda \in (\,-3,\,3)$
D. $\lambda \in (1,\,\infty)$

Answer: A::B::C::D

Watch Video Solution

10. The function
$$f(x) = 1 + x \ln \left(x + \sqrt{1 + x^2}
ight) - \sqrt{1 - x^2}$$
 is:

A. strictly increasing $Ax \in (0,1)$

- B. strictly decrreasing $\ orall x \in (\,-1,0)$
- C. strictly decreasing for $x \in (-1,0)$
- D. strictly decreasing for $x \in (0,1)$

Answer: A::C::D

11. Let m and n be positive integers and x, y > 0 and x + y = k, where k is constant. Let $f(x, y) = x^m y^n$, then: (a) f(x, y) is maximum when $x = \frac{mk}{m+n}$ (b) f(x, y) is maximum where x = y (c) maximum value of f(x, y) is $\frac{m^n n^m k^{m+n}}{(m+n)^{m+n}}$ (d) maximum value of f(x, y) is $\frac{k^{m+n} m^m n^n}{(m+n)^{m+n}}$

A. f(x,y) is maximum when $x=rac{mk}{m+n}$

B. f(x, y) is maximum wheere x = y

C. maximum value of $f(x,y)israc{m^nn^mk^{m+n}}{(m+n)^{m+n}}$ D. maximum vlaue of $f(x,y)israc{k^{m+n}m^mn^n}{(m+n)^{m+n}}$

Answer: A::D

Watch Video Solution

12. The staright line which is both tangent and normal to the curve $x = 3t^2, y = 2t^3$ is:

A.
$$y+\sqrt{3}(x-1)=0$$

B.
$$y-\sqrt{3}(x-1)=0$$

C. $y+\sqrt{2}(x-2)=0$
D. $y-\sqrt{2}(x-2)=0$

Answer: C::D

Watch Video Solution

13. A curve is such that the ratio of the subnormal at any point to the sum of its co-ordinates is equal to the ratio of the ordinate of this point to its abscissa. If the curve passes through (1, 0), then possible equation of the curve (s) is:

A.
$$y = x \ln x$$

B. $y = \frac{\ln x}{x}$
C. $y = \frac{2(x-1)}{x^2}$
D. $y = \frac{1-x^2}{2x}$

Answer: A::D

14. A probola of the form $y=ax^2+bx+x(a>0)$ intersects the graph of $f(x)=rac{1}{x^2-4}.$ The number of possible distinct intersection (s) of

these graph can be:

A. 0

B. 2

C. 3

D. 4

Answer: B::C::D

15. Gradient of the line passing through the point (2,8) and touching the curve $y=x^3,\,$ can be:

A. 3

B. 6

C. 9

D. 12

Answer: A::D

> Watch Video Solution

16. The equation $x + \cos x = a$ has exactly one positive root, then:

A. $a \in (0,1)$ B. $a \in (2,3)$ C. $a \in (1,\infty)$

D. $a\in(-\infty,1)$

Answer: B::C

17. Given that f(x) is a non-constant linear function. Then the curves :

A. y = f(x) and $y = f^{-1}(x)$ are orthogonal

B. y = f(x) and $y = f^{-1}(-x)$ are orthogonal

C. y = f(-x) and $y = f^{-1}(x)$ are orthogonal

D.
$$y = f(-x)$$
 and $y = f^{-1}(-x)$ are orthogonal

Answer: B::C

Watch Video Solution

18.
$$d(x) = \int_0^x e^{t^3} ig(t^2-1ig)(t+1ig)^{2011} at(x>0)$$
 then :

A. The number of point iof inflections is atleast 1

B. The number of point of inflectins is 0

C. The number of point of local maxima is 1

D. The number of point of local minima is 1

Answer: A::D

Watch Video Solution

19. Let $f(x) = \sin x + ax + b$. Then which of the following is/are true? (a) f(x) = 0 has only one real root which is positive if a > 1, b < 0. (b) f(x) = 0 has only one real root which is negative if a > 1, b < 0. (c) f(x) = 0 has only one real root which is negative if a > 1, b < 0. (d) none of these

A. only one real root which is positive if a > 1, b < 0

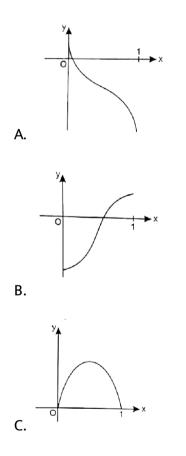
B. only one real root which is negative if a > 1, b > 0

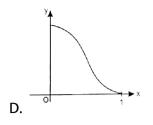
C. only one real root which is negative if a < -1, b < 0

D. only one real root which is positive if a < -1, b < 0

Answer: A::B::C

20. Which of the following graphs represent function whose derivatives have a maximum in the interval (0, 1) ?





Answer: A::B::D

Watch Video Solution

21. Consider
$$f(x) = \sin^5 x - 1, x \in \left[0, \frac{\pi}{2}\right]$$
, which of the following is/are correct ?

A. f is strictly decreasing in
$$\left[0, \frac{\pi}{4}\right]$$

B. f is strictly increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
C. There exist a numbe 'c' in $\left(0, \frac{\pi}{2}\right)$ such that $f(c) = 0$
D. The equation $f(x) = 0$ has only two roots in $\left[0, \frac{\pi}{2}\right]$

Answer: A::B::C::D

22. Let $f(x)=egin{bmatrix} x^{2lpha+1}\ln x & x>0 \ 0 & x=0 \end{bmatrix}$ If f (x) satisfies rolle's theorem in

interval [0, 1], then α can be:

$$A. - \frac{1}{2}$$
$$B. - \frac{1}{3}$$
$$C. - \frac{1}{4}$$
$$D. - 1$$

Answer: B::C

23. Which of the following is/are true for the function $f(x) = \int_0^x \frac{\cot}{t} dt (x > 0) ?$ A.f (x) is monotonically increasing in $\left((4n-1), \frac{\pi}{2}, (4n+1)\frac{\pi}{2}\right) \forall n \in N$ B.f (x) has a local minima at $x = (4n-1)\frac{\pi}{2} \forall n \in N$

C. The point of infection of the curve y = f(x) lie on the curve

 $x \tan x + 1 = 0$

D. Number of critiacal points of y = f(x) in $(0, 10\pi)$ are 19

Answer: A::B::C

Watch Video Solution

24. Let $F(x) = (f(x))^2 + (f'(x))^2$, F(0) = 6, where f (x) is a thrice differentiable function such that $|f(x)| | \le 1 \forall x \in [-1, 1]$, then choose the correct statement (s)

A. there is atleast one point in each of the intervals

- $(-1,0) \, ext{ and } (0,1)$ where $|f'(x)| \leq 2$
- B. there is atleast one point in each of the intervals

 $(\,-1,0)\,\, {
m and}\,\, (0,1)$ where $F(x) \leq 5$

C. there is no poin tof local maxima of F(x) in (-1, 1)

D. for some $c \in (\,-1,1), \, F(c) \geq 6, \, F^{\,\prime}(c) = 0 \, ext{ and } \, f^{\,\prime\,\prime}(c) \leq 0$

Answer: A::B::D

25. Let f(x) =
$$\begin{cases} x^3 + x^2 - 10x & -1 \le x < 0\\ \sin x & 0 \le x < x/2 \text{ then f(x) has}\\ 1 + \cos x & \pi/2 \le x \le x \end{cases}$$

A. locla maximum at
$$x=rac{\pi}{2}$$

- B. local minimum at $x = \frac{\pi}{2}$
- C. absolute maximum at x=0

D. absolute maximum at
$$x=\ -1$$

Answer: A::D

26. Minimum distnace between the curves $y^2 = x - 1$ and $x^2 = x - 1$ and $x^2 = y - 1$ is equal to :

A.
$$\frac{\sqrt{2}}{4}$$

B.
$$\frac{3\sqrt{2}}{4}$$

C.
$$\frac{5\sqrt{2}}{4}$$

D.
$$\frac{7\sqrt{2}}{4}$$

Answer: B

Watch Video Solution

27. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement (s) is/are correct ?

A. When $\lambda \in (0,\infty)$ equation has 2 real and distinct roots

B. When $\lambda, \;\in ig(-\infty,\;-e^2ig)$ equation has 2 real and istinct roots

C. When $\lambda \in (0,\infty)$ equation hs 1 real root

D. When $\lambda \in (\,-e,0)$ equation has no real root

Answer: B::C::D

28. If y = mx + 5 is a tangent to the curve $x^3y^3 = ax^3 + by^3atP(1,2),$

then

A. $a + b = rac{18}{5}$ B. a > bC. a < bD. $a + b = rac{19}{5}$

Answer: A::D

Watch Video Solution

29. If $(f(x)-1)(x^2+x+1)^2-(f(x)+1)(x^4+x^2+1)=0$ $\forall x\in R-\{0\}$ and $f(x)\neq\pm 1$, then which of the following statement (s) is/are correct ?

A.
$$|f(x) \geq 2 \, orall \, x \in R-\{0\}$$

B. f(x) has a local maximum at $x=\,-\,1$

C. f(x) has a local minimum at x=1

$$\mathsf{D}.\int_{-\pi}^{\pi}(\cos x)f(x)dx=0$$

Answer: A::B::C::D

Vatch Video Solution

Exercise Comprehension Type Problems

1. Let
$$y=f(x)$$
 such that

 $xy = x + y + 1, x \in R - \{1\} ext{ and } g(x) = xf(x)$

The minimum value of g(x) is:

A. $3 - \sqrt{2}$

 ${\rm B.}\,3+\sqrt{2}$

C. $3 - 2\sqrt{2}$

D. $3+2\sqrt{2}$

Answer: D

Watch Video Solution

2. Let y = f(x) such that $xy = x + y + 1, x \in R - \{1\}$ and g(x) = xf(x)There exist two values of x, x_1 and x_2 where $g'(x) = \frac{1}{2}$, then $|x_1| + |x_2| =$ A.1 B.2 C.4 D.5

Answer: C

3. Let $f(x) = egin{bmatrix} 1-x & 0 \leq x \leq 1 \ 0 & 1 < x \leq 2 \ (2-x)^2 & 2 < x \leq 3 \end{bmatrix}$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the prependicular from point Q on x-axis meets the curve y = g(x) in point R .Find equation of tangent at to y=g(x) at P .Also the value of g(1) =

- A. 0
- $\mathsf{B}.\,\frac{1}{2}$
- C. 1
- D. 2

Answer: B

 $\textbf{4. Let } f(x) = \begin{bmatrix} 1-x & 0 \leq x \leq 1 \\ 0 & 1 < x \leq 2 \text{ and } g(x) = \int_0^x f(t) dt. \\ \left(2-x\right)^2 & 2 < x \leq 3 \end{bmatrix}$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the prependicular from point Q on x-axis meets the curve y=g(x) in point R .Find equation of tangent at to y=g(x) at P .Also the value of g(1)=

A. 3y = 12x - 1

B. 3y = 12x - 1

C. 12y = 3x - 1

D. 12y = 3x + 1

Answer: C

5. Let $f(x) = egin{bmatrix} 1-x & 0 \leq x \leq 1 \ 0 & 1 < x \leq 2 \ (2-x)^2 & 2 < x \leq 3 \end{bmatrix}$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the prependicular from point Q on x-axis meets the curve y=g(x) in point R .Find equation of tangent at to y=g(x) at P .Also the value of g(1)=

A. $\frac{5}{6}$ B. $\frac{5}{14}$ C. $\frac{5}{7}$ D. $\frac{5}{12}$

Answer: B

6. Let
$$f(x) < 0 \, orall x \in (-\infty,0)$$
 and $f(x) > 0, \, orall x \in (0,\infty)$ also $f(0) = 0,$ Again

 $f'(x) < 0, \, orall x \in (\,-\infty,\,-1) \, ext{ and } \, f'(x) > 0, \, orall x \in (\,-1,\infty) \quad ext{ also}$

f'(-1)=0 given $\lim_{x o -\infty} f(x)=0$ and $\lim_{x o \infty} f(x)=\infty$ and function is twice differentiable.

If $f'(x) < 0 \, orall x \in (0,\infty)$ and f'(0) = 1 then number of solutions of equation $f(x) = x^2$ is : (a) 1 (b) 2 (c) 3 (d) 4

A. 2

B. 3

C. 4

D. None of these

Answer: D

7. Let
$$f(x) < 0 \, orall x \in (-\infty,0)$$
 and $f(x) > 0, \, orall x \in (0,\infty)$ also $f(0) = 0,$ Again

 $f^{\,\prime}(x) < 0, \, orall x \in (\,-\infty,\,-1) \, ext{ and } f^{\,\prime}(x) > 0, \, orall x \in (\,-1,\infty) \quad ext{ also}$

f'(-1)=0 given $\lim_{x o -\infty} f(x)=0$ and $\lim_{x o \infty} f(x)=\infty$ and function is twice differentiable.

If $f'(x) < 0 \, orall x \in (0,\infty)$ and f'(0) = 1 then number of solutions of equation $f(x) = x^2$ is : (a) 1 (b) 2 (c) 3 (d) 4

A. 1

B. 2

C. 3

D. 4

Answer: B

8. Let
$$f(x) < 0 \, \forall x \in (-\infty, 0)$$
 and $f(x) > 0 \, \forall x \in (0, \infty)$ also $f(0) = 0,$ Again

$$f'(x) < 0 \, orall x \in (\,-\infty,\,-1) \, ext{ and } \, f'(x) > 0 \, orall x \in (\,-1,\infty) \,$$
also

f'(-1)=0 given $\lim_{x o -\infty} f(x)=0$ and $\lim_{x o \infty} f(x)=\infty$ and function is twice differentiable.

The minimum number of points where f'(x) is zero is: (a) 1 (b) 2 (c) 3 (d)

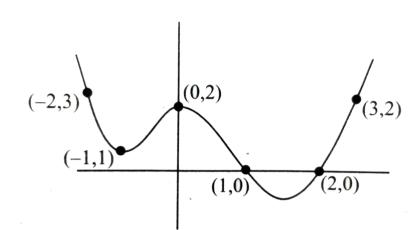
4

-		-	
E	3.	2	
C	-	3	
C).	4	

A. 1

Answer: A

9. In the given figure graph of $y = p(x) = x^4 + ax^3 + bx^2 + cx + d$ is given



The product of all imaginary roots of p(x)=0 is (a) 1 (b) 2 (c) $rac{1}{3}$ (d) $rac{1}{4}$

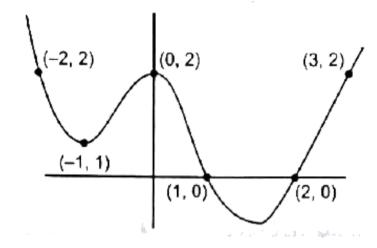
- $\mathsf{A.}-2$
- $\mathsf{B.}-1$
- $\mathsf{C.}-1/2$

D. noen of these

Answer: D

10. In the given figure graph of :

$$y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n$$
 is given.

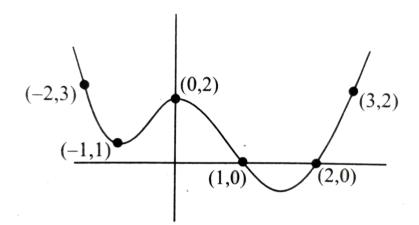


If p(x) + k = 0 has 4 distinct real roots $\alpha, \beta, \gamma, \delta$ then $[\alpha] + [\beta] + [\gamma] + [\delta]$, (where [.] denotes greatest integer function) is equal to:

- $\mathsf{A.}-1$
- $\mathsf{B.}-2$
- C. 0
- D. 1

Answer: A

11. In the given figure graph of $y = p(x) = x^4 + ax^3 + bx^2 + cx + d$ is given



The product of all imaginary roots of p(x)=0 is (a) 1 (b) 2 (c) $rac{1}{3}$ (d) $rac{1}{4}$

A. 1

B. 4

C. 5

D. 6

Answer: B

12. The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1) \text{ and } B(x_2, f(x_2))$ always intersects y-axis at $(0, 2x_1x_2)$. Given that f(1) = -1. then: $\int_0^{1/2} f(x) dx$ is equal to : (a) $\frac{1}{6}$ (b) $\frac{1}{8}$ (c) $\frac{1}{12}$ (d) $\frac{1}{24}$ A. $\frac{1}{6}$ B. $\frac{1}{8}$ C. $\frac{1}{12}$ D. $\frac{1}{24}$

Answer: D

13. The differentiable function y=f(x) has a property that the chord

joining any two points $A(x_1, f(x_1) \text{ and } B(x_2, f(x_2))$ always intersects

y-axis at $(0, 2x_1x_2)$. Given that f(1) = -1. then:

The largest interval in which y = f(x) is monotonically increasing, is : (a)

$$\begin{pmatrix} -\infty, \frac{1}{2} \end{bmatrix} \text{ (b) } \begin{bmatrix} \frac{-1}{2}, \infty \end{pmatrix} \text{ (c) } \begin{pmatrix} -\infty, \frac{1}{4} \end{bmatrix} \text{ (d) } \begin{bmatrix} \frac{-1}{4}, \infty \end{pmatrix}$$

$$\text{A. } \begin{pmatrix} -\infty, \frac{1}{2} \end{bmatrix}$$

$$\text{B. } \begin{bmatrix} \frac{-1}{2}, \infty \end{pmatrix}$$

$$\text{C. } \begin{pmatrix} -\infty, \frac{1}{4} \end{bmatrix}$$

$$\text{D. } \begin{bmatrix} \frac{-1}{4}, \infty \end{pmatrix}$$

Answer: C

Watch Video Solution

14. The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1) \text{ and } B(x_2, f(x_2))$ always intersects y-axis at $(0, 2x_1x_2)$. Given that f(1) = -1. then:

In which of the following intervals, the Rolle's theorem is applicable to the function F(x)=f(x)+x ? (a) [-1,0] (b) [0,1] (c) [-1,1] (d) [0,2]

A. 0 - 1, 0] B. [0, 1]C. [-1, 1]

 $\mathsf{D}.\,[0,\,2]$

Answer: B

Watch Video Solution

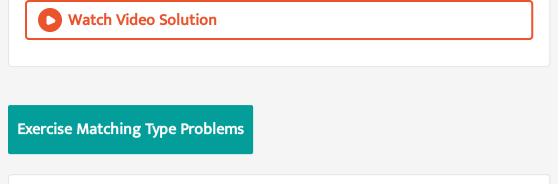
15.
$$Iff(x) = x + \int_0^1 \left(xy^2 + x^2y\right)(f(y))dy$$
, find $f(x)$ if x and y are

independent.

A.
$$\frac{8}{25}$$

B. $\frac{16}{25}$
C. $\frac{14}{25}$
D. $\frac{4}{5}$

Answer: A



1. Column-1 gives pair of curves and column-II gives the angle heta between

the curves at their intersection point.

/	Column-l		Column-II
(A)	$y = \sin x, y = \cos x$	(P)	$\frac{\pi}{4}$
(B)	$x^2 = 4y, y = \frac{8}{x^2 + 4}$	(Q)	$\frac{\pi}{2}$
(C)	$\frac{x^2}{18} + \frac{y^2}{8} = 1, x^2 - y^2 = 5$	(R)	tan ⁻¹ 3
(D)	$xy = 1, x^2 - y^2 = 5$	(\$)	tan ⁻¹ 5
	in and a second second second	(T)	$\tan^{-1}(2\sqrt{2})$

2. Let
$$f(x)=rac{x^3-4}{(x-1)^3}\,orall x
eq 1, g(x)==rac{x^4-2x^2}{4}\,orall x\in R, h(x)rac{x^3+4}{(x+1)^3}\,orall x$$

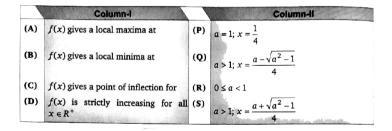
1	Column-l		Column-II
(A)	The number of possible distinct real roots of equation $f(x) = c$ where $c \ge 4$ can be	(P)	0
(B)	The number of possible distinct real roots of equation $g(x) = c$, where $c \ge 0$ can be	(Q)	1
(C)	The number of possible distinct real roots of equation $h(x) = c$, where $c \ge 1$ can be	(R)	2

(D)	The number of possible distinct real roots of equation $g(x) = c$ where $-1 < c < 0$ can be	(\$)	3
	A CONTRACTOR OF A CONTRACTOR O	(T)	4

Watch Video Solution

3. Consider the function
$$f(x) = rac{\ln x}{8} - ax + x^2$$
 and $a \ge 0$ is a real

constant :



4. The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non-zero local minimum and local maximum values at x = -2 and x = 2, respectively. If a is a root of $x^2 - x - 6 = 0$, then find a,b,c and d.

Watch Video Solution

	Column-l	9	Column-II
(A)	The ratio of altitude to the radius of the cylinder of maximum volume that can be inscribed in a given sphere is		$\frac{1}{\sqrt{2}}$
(B)	The ratio of radius to the altitude of the cone of the greatest volume which can be inscribed in a given sphere is		$\sqrt{2}$
(C)	The cone circumscribing the sphere of radius 'r' has the maximum volume if its semi vertical angle is θ , then 33 sin θ =	(R)	$\frac{32}{3}$.
(D)	The greatest value of x^3y^4 if $2x + 3y = 7$, $x \ge 0, y \ge 0$ is	(S)	11

5.

Exercise Subjective Type Problems

1. A conical vessel is to be prepared out of a circular sheet of metal of unit radius in order that the vessel has maximum value, the sectorial area that must be removed from the sheet is A_1 and the area of the given sheet is A_2 , then $\frac{A_2}{A_1}$ is equal to

Watch Video Solution

2. On [1, e], then least and greatest vlaues of $f(x) = x^2 \ln x$ are m and M respectively, then $\left[\sqrt{M+m}\right]$ is : (where [] denotes greatest integer function)

Watch Video Solution

3. If $f(x) = \frac{px}{e^x} - \frac{x^2}{2} + x$ is a decreasing function for every $x \le 0$. Find the least value of p^2 .

4. Let $f(x) = \begin{cases} xe^{ax}, & x \leq 0\\ x + ax^2 - x^3, & x > 0 \end{cases}$ where a is a positive constant . The interval in which f'(x) is increasing is $\left[\frac{k}{a}, \frac{a}{l}\right]$, Then k + l is equal to

5. Find sum of all possible values of the real parameter 'b' if the difference between the largest and smallest values of the function $f(x) = x^2 - 2bx + 1$ in the interval [0, 1] is 4.

Watch Video Solution

6. Let '
$$\theta$$
' be the angle in radians between the curves
 $\frac{x^2}{36} + \frac{y^2}{4} = 1$ and $x^2 + y^2 = 12$. If $\theta = \tan^{-1}\left(\frac{a}{\sqrt{3}}\right)$, Find the value

of a.

7. Let set of all possible values of λ such that $f(x)=e^{2x}-(\lambda+1)e^x+2x$ is monotonically increasing for $orall x\in R$ is $(-\infty,k].$ Find the value of k.

Watch Video Solution

8. Let a,b,c and d be non-negative real number such that $a^5 + b^5 \le 1$ and $c^5 + d^5 \le 1$. Find the maximum value of $a^2c^3 + b^2d^3$.

Watch Video Solution

9. There is a point (p,q) on the graph of $f(x) = x^2$ and a point (r,s) on the graph of $g(x) = \frac{-8}{x}$, where g > 0 and r > 0. If the line through (p,q) and (r,s) is also tangent to both the curves at these points, respectively, then the value of p + ris____

10. If $f(x) = \max \mid 2 \sin y - x |$, (where $y \in R$), then find the minimum

value of f(x).

11. Let
$$f(x) = \int_0^x \left((a-1) \left(t^2 + t + 1 \right)^2 - (a+1) \left(t^4 + t^2 + 1 \right) \right) \, \mathrm{dt}.$$

Then the total number of integral values of 'a' for which f'(x) = 0 has no real roots is

Watch Video Solution

12. The numbr of real roots of the equation $x^{2013}+e^{20144x}=0$ is

13. Let the maximum value of expression $y=rac{x^4-x^2}{x^6+2x^3-1}$ for $x>1israc{p}{1},$ where p and 1q are relatively prime natural numbers, then

Watch Video Solution

14. The least positive value of the parameter 'a' for which there exist at least one line that is tangent to the graph of the curve $y = x^3 - ax$, at one point and normal to the graph at another point is $\frac{p}{q}$, where p and q ar relatively prime positive integers. Find product pq.

Watch Video Solution

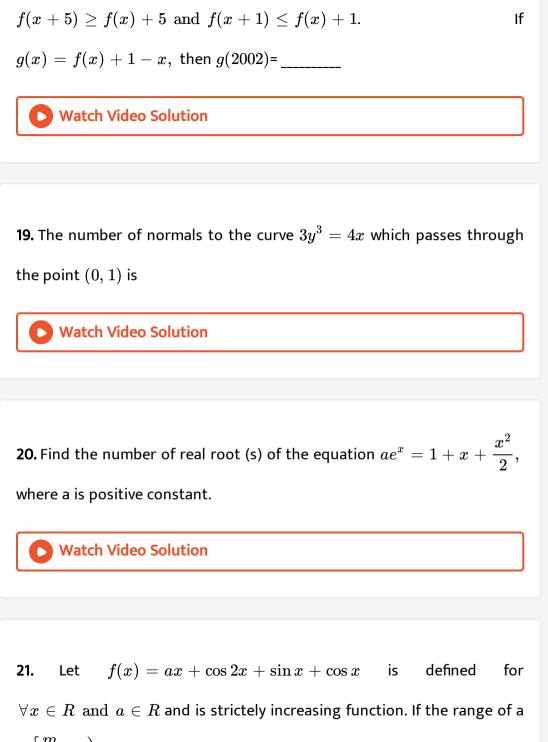
15. Let
$$f(x) = x^2 + 2x - t^2$$
 and $f(x) = 0$ has two root $\alpha(t)$ and $\beta(t)(\alpha < \beta)$ where t is a real parameter. Let $I(t) = \int_{\alpha}^{\beta} f(x)$ dx. If the maximum value of $I(t)$ be λ and $|\lambda| = \frac{p}{q}$ where p and q are relatively prime positive integers. Find the product (pq).

16. A tank contains 100 litres of fresh water. S solution containg 1 gm/litre of salt runs into the tank at the rate of 1 lit/min. The homogenised mixture is pumped out of the tank at the rate of 3 lit/min. If T be the time when the amount of salt in the tank is maximum.

Find [T] (where [.] denotes greatest integer function)

17. If f(x) is continous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \forall x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) - f(-3), then find the sum of digits of N.

18. It is given that f (x) is defined on R satisfying f(1)=1 and for $orall x\in R,$



is $\left[\frac{m}{n},\infty\right)$, then find the minimum value of (m-n).

22. If p_1 and p_2 are the lengths of the perpendiculars from origin on the tangent and normal drawn to the curve $x^{2/3} + y^{2/3} = 6^{2/3}$ respectively. Find the value of $\sqrt{4p_1^2 + p_2^2}$.