



# MATHS

# **BOOKS - VK JAISWAL ENGLISH**

# AREA UNDER CURVES

**Exercise Single Choice Problems** 

1. The area enclosed by the curve

[x+3y]=[x-2] where  $x\in[3,4]$  is :

(where[.] denotes greatest integer function)

A. 
$$\frac{2}{3}$$
  
B.  $\frac{1}{3}$   
C.  $\frac{1}{4}$ 

**D**. 1

# Answer: B Watch Video Solution

**2.** The area of region(s) enclosed by the curve  $y=x^2$  and  $y=\sqrt{|x|}$  is

A. 
$$\frac{1}{3}$$
  
B.  $\frac{2}{3}$   
C.  $\frac{4}{3}$   
D.  $\frac{16}{3}$ 

### Answer: B



3. Find the area enclosed by the figure described by the equation  $x^4+1=2x^2+y^2.$ 

A. 2

B. 
$$\frac{16}{3}$$
  
C.  $\frac{8}{3}$   
D.  $\frac{4}{3}$ 

### Answer: C

Watch Video Solution

**4.** The area defined by  $|y| \leq e^{|x|} - rac{1}{2}$  in cartesian co-ordinate system, is :

A.  $(2-2\ln 2)$ 

B.  $(4 - \ln 2)$ 

 $\mathsf{C.}\left(2-\ln 2\right)$ 

D.  $(2 - 2 \ln 2)$ 

### Answer: D

5. For each positive integer  $n > a, A_n$  represents the area of the region restricted to the following two inequalities :  $\frac{x^2}{n^2} + y^2$  and  $x^2 + \frac{y^2}{n^2} < 1$ . Find  $\lim_{n \to \infty} A_n$ .

A. 4

- B. 1
- C. 2

D. 3

### Answer: A



6. Find the ratio in which the area bounded by the curves  $y^2 = 12xandx^2 = 12y$  is divided by the line x = 3.

A. 7:15

B. 15:49

C. 1:3

D. 17: 49

Answer: B

Watch Video Solution

7. The value of positive real parameter 'a' such that area of region blunded by parabolas  $y = x - ax^2$ ,  $ay = x^2$  attains its maximum value is equal to :

A. 
$$\frac{1}{2}$$
  
B. 2  
C.  $\frac{1}{3}$ 

**D**. 1

### Answer: D



**8.** For 0 < r < 1, let  $n_r$  denotes the line that is normal to the curve  $y = x^r$  at the point (1, 1) Let  $S_r$  denotes the region in the first quadrant bounded by the curve  $y = x^r$ , the x-axis and the line  $n_r$ ' Then the value of r the minimizes the area of  $S_r$  is :

A. 
$$\frac{1}{\sqrt{2}}$$
  
B.  $\sqrt{2} - 1$   
C.  $\frac{\sqrt{2} - 1}{2}$   
D.  $\sqrt{2} - \frac{1}{2}$ 

### Answer: B

**9.** The area bounded by  $|x|=1-y^2 \, ext{ and } |x|+|y|=1$  is:

A. 
$$\frac{1}{3}$$
  
B.  $\frac{1}{2}$   
C.  $\frac{2}{3}$   
D. 1

### Answer: C

Watch Video Solution

**10.** Point A lies on curve  $y = e^{-x^2}$  and has the coordinates  $(x, e^{-x^2})$ where x > 0 Point B has coordinates (x,o) If 'O' is the origin, then the maximum area of  $\Delta AOB$  is :

A. 
$$\frac{1}{\sqrt{8}e}$$
  
B. 
$$\frac{1}{\sqrt{4}e}$$
  
C. 
$$\frac{1}{\sqrt{2}e}$$

D. 
$$\frac{1}{\sqrt{e}}$$

### Answer: A





A. 
$$\frac{1}{\sqrt{3}}$$
  
B.  $\frac{1}{2}$   
C. 1

D. 
$$\frac{1}{3}$$

Answer: D

12. Let  $f(x) = x^3 - 3x^2 + 3x + 1$  and g be the inverse of it , then area bounded by the curve y = g(x) wirth x-axis between x = 1 to x = 2 is (in square units):



### Answer: B



13. Area bounded by  $x^2y^2 + y^4 - x^2 - 5y^2 + 4 = 0$  is equal to :

A. 
$$rac{4\pi}{2}+\sqrt{2}$$
  
B.  $rac{4\pi}{3}-\sqrt{2}$ 

$$\mathsf{C}.\,\frac{4\pi}{3}-\sqrt{2}$$

D. none of these

Answer: C

Watch Video Solution

14. Let  $f(x): R^+ \to R^+$  is an invertible function such that f'(x) > 0 and  $f(x) > 0 \forall x \in [1, 5]$ . If f(1) = 1 and f(5) = 5 and area under the curve y = f(x) on x-axis from  $x = 1 \to x = 5is8$  sq. units, then area bounded by  $y = f^{-1}(x)$  on x-axis from  $x = 1 \to x = 5$  is

A. 12

B. 16

C. 18

D. 20

### Answer: B

**15.** A circle centered at origin and having radius  $\pi$  units is divided by

the curve  $y = \sin x$  in two parts. Then area of the upper part equals to

: (a)
$$\frac{\pi^2}{2}$$
 (b) $\frac{\pi^3}{4}$  (c) $\frac{\pi^3}{2}$  (d) $\frac{\pi^3}{8}$ 

A. 
$$\frac{\pi^2}{2}$$
  
B.  $\frac{\pi^3}{4}$   
C.  $\frac{\pi^3}{2}$   
D.  $\frac{\pi^3}{8}$ 

### Answer: C

# Watch Video Solution

16. The area of the loop formed by  $y^2=xig(1-x^3ig)$  dx is:

A. 
$$\int_0^1 \sqrt{x-x^4} dx$$

B. 
$$2\int_0^1 \sqrt{x-x^4}dx$$
  
C.  $\int_{-1}^1 \sqrt{x-x^4}dx$   
D.  $4\int_0^{1/2} \sqrt{x-x^4}dx$ 



17. If  $f(x) = \min \left[x^2, \sin \frac{x}{2}, (x - 2\pi)^2\right]$ , the area bounded by the curve y = f(x), x-axis, x = 0 and  $x = 2\pi$  is given by Note:  $x_1$  is the point of intersection of the curves  $x^2$  and  $\sin \frac{x}{2}, x_2$  is the point of intersection of the curves  $\sin \frac{x}{2}$  and  $(x - 2\pi)^2$ 

A.

$$egin{aligned} &\int_{0}^{x_{1}} \left( \sin rac{x}{2} 
ight) dx + \int_{x_{1}}^{\pi} x^{2} dx + \int_{\pi}^{x_{2}} (x - 2\pi)^{2} dx + \int_{x_{2}}^{2\pi} \left( \sin rac{x}{2} 
ight) dx \ & \mathsf{B}. \int_{0}^{x_{1}} x^{2} dx + \int_{x_{1}}^{x_{3}} \left( \sin rac{x}{2} 
ight) dx + \int_{x_{2}}^{2\pi} (x - 2\pi)^{2} dx, & ext{where} \ & x_{1} \in \left( 0, rac{\pi}{3} 
ight) ext{ and } x_{2} \in \left( rac{5\pi}{3}, 2\pi 
ight) \end{aligned}$$

$$egin{aligned} \mathsf{C}. & \int_{0}^{x_{1}} x^{2} dx + \int_{x_{1}}^{x_{2}} \sin\Bigl(rac{x}{2}\Bigr) dx + \int_{x_{2}}^{2\pi} (x-2\pi)^{2} dx, & ext{where} \ & x_{1} \in \Bigl(rac{\pi}{3}, rac{\pi}{2}\Bigr) ext{ and } x_{2} \in \Bigl(rac{3\pi}{2}, 2\pi\Bigr) \ & \mathsf{D}. \int_{0}^{x_{1}} x^{2} dx + \int_{x_{1}}^{x_{2}} \sin\Bigl(rac{x}{2}\Bigr) dx + \int_{x_{2}}^{2\pi} (x-2\pi)^{2} dx, & ext{where} \ & x_{1} \in \Bigl(rac{\pi}{2}, rac{2\pi}{3}\Bigr) ext{ and } x_{2} \in (\pi, 2\pi) \end{aligned}$$



$$|x|+|y|\geq 2 \,\, ext{and}\,\, y^2=4igg(1-rac{x^2}{9}igg)$$
 is :

A.  $(6\pi-4)$  sq. units

- B.  $(6\pi-8)$  se. units
- C.  $(3\pi-4)$  se. units
- D.  $(3\pi 2)$  sq. units

Watch Video Solution

Exercise One Or More Than One Answer Is Are Correct

**1.** Let f (x) be a polynomial function of degree 3 where a < b < c and f(a) = f(b) = f(c). If the graph of f (x) is as shown, which of the following statements are INCORRECT? (Where c > |a|)



A. 
$$\int_a^c f(x) dx = \int_b^c f(x) dx + \int_c^b f(x) dx$$
  
B.  $\int_a^c f(x) dx < a$ 

C. 
$$\int_a^b f(x)dx < \int_c^b f(x)dx$$
  
D.  $rac{1}{b-a}\int_a^b f(x)dx > rac{1}{c-b}\int_b^c f(x)dx$ 

### Answer: B::C::D



2. 
$$T_n = \sum_{r=2n}^{3n-1} \frac{r}{r^2 + n^2}, S_n = \sum_{r=2n+1}^{3n} \frac{r}{r^2 + n^2},$$
 then

$$orall n \in \{1,2,3...\}$$
:

A. 
$$T_n > rac{1}{2} {
m ln} \, 2$$
  
B.  $S_n < rac{1}{2} {
m ln} \, 2$   
C.  $T_n < rac{1}{2} {
m ln} \, 2$   
D.  $S_n > rac{1}{2} {
m ln} \, 2$ 

### Answer: A::B

3. If a curve  $y = a\sqrt{x} + bx$  passes through point (1, 2) and the area bounded by curve, line x = 4 and x-axis is 8, then : (a) a = 3 (b) b = 3(c) a = -1 (d) b = -1A. a = 3B. b = 3C. a = -1D. b = -1

### Answer: A::D

Watch Video Solution

**4.** Area enclosed by the curves  $y = x^2 + 1$  and a normal drawn to it with gradient -1, is equal to:

A. 
$$\frac{2}{3}$$
  
B.  $\frac{1}{3}$ 

C. 
$$\frac{3}{4}$$
  
D.  $\frac{4}{3}$ 

Answer: D

**O** Watch Video Solution

# Exercise Comprehension Type Problems

1. Let 
$$f: A \to Bf(x) = \frac{x+a}{bx^2 + cx + 2}$$
, where A represent domain set  
and B represent range set of function  $f(x)$  a,b,c  
 $\in R, f(-1) = 0$  and  $y = 1$  is an asymptote of  
 $y = f(x)$  and  $y = g(x)$  is the inverse of  $f(x)$ .

g (0) is equal to :

 $\mathsf{A.}-1$ 

- $\mathsf{B.}-3$
- $C.-rac{5}{2}$

$$\mathsf{D.}-rac{3}{2}$$

### Answer: A

2. Let 
$$f: A \to Bf(x) = \frac{x+a}{bx^2 + cx + 2}$$
, where A represent domain set  
and B represent range set of function  $f(x)$  a,b,c  
 $\in R, f(-1) = 0$  and  $y = 1$  is an asymptote of  
 $y = f(x)$  and  $y = g(x)$  is the inverse of  $f(x)$ .  
Area of region enclosed by asymptotes of curves  
 $y = f(x)$  and  $y = g(x)$  is:

$$A. 2\sqrt{5} + \ln\left(\frac{3-\sqrt{5}}{5+\sqrt{5}}\right)$$
$$B. 2\sqrt{5} + 2\ln\left(\frac{3+\sqrt{5}}{3-\sqrt{5}}\right)$$
$$C. 3\sqrt{5} + 4\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$$
$$D. 3\sqrt{5} + 2\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$$

### Answer: D



**3.** Let 
$$f: A \to Bf(x) = \frac{x+a}{bx^2 + cx + 2}$$
, where A represent domain set  
and B represent range set of function  $f(x)$  a,b,c  
 $\in R, f(-1) = 0$  and  $y = 1$  is an asymptote of  
 $y = f(x)$  and  $y = g(x)$  is the inverse of  $f(x)$ .  
Area of region enclosed by asymptotes of curves  
 $y = f(x)$  and  $y = g(x)$  is:  
A.4  
B.9  
C.12

### Answer: B

D. 25

**4.** For j = 0, 1, 2...n let  $S_j$  be the area of region bounded by the x-axis

and the curve  $ye^x = \sin x$  for  $j\pi \leq x \leq (j+1)\pi$ 

The value of  $\sum_{j=0}^{\infty} S_j$  equals to : A.  $\frac{e^x(1+e^x)}{2(e^\pi-1)}$ B.  $\frac{1+e^\pi}{2(e^\pi-1)}$ C.  $\frac{1+e^\pi}{e^\pi-1}$ D.  $\frac{e^\pi(1+e^\pi)}{(e^\pi-1)}$ 

### Answer: B

## Watch Video Solution

5. For  $j=0,1,2\ldots n$  let  $S_j$  be the area of region bounded by the x-axis

and the curve 
$$ye^x = \sin x$$
 for  $j\pi \leq x \leq (j+1)\pi$ 

The ratio  $\displaystyle rac{S_{2009}}{S_{2010}}$  equals :

A. 
$$e^{-x}$$

B. 
$$(e^x$$
  
C.  $\frac{1}{2}e^x$ 

D. 
$$2e^{\pi}$$

> Watch Video Solution

**6.** For  $j=0,1,2\ldots n$  let  $S_j$  be the area of region bounded by the x-axis

and the curve  $ye^x = \sin x$  for  $j\pi \leq x \leq (j+1)\pi$ 

The value of  $\sum_{j=0}^{\infty} S_j$  equals to : A.  $\frac{e^x(1+e^x)}{2(e^\pi-1)}$ B.  $\frac{1+e^\pi}{2(e^\pi-1)}$ C.  $\frac{1+e^\pi}{e^\pi-1}$ D.  $\frac{e^\pi(1+e^\pi)}{(e^\pi-1)}$ 



# Exercise Matching Type Problems

| 1            | Column-I                                                                                                                                                                                                                                        |      | Column-II |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| (A)          | Area of region formed by points $(x, y)$ satisfying $[x]^2 = [y]^2$ for $0 \le x \le 4$ is equal to (where [ ] denotes greatest integer function)                                                                                               | (P)  | 48        |
| ( <b>B</b> ) | The area of region formed by points $(x, y)$<br>satisfying $x + y \le 6$ , $x^2 + y^2 \le 6y$ and $y^2 \le 8x$ is<br>$\frac{k\pi - 2}{12}$ , then $k =$                                                                                         | (Q)  | 27        |
| (C)          | The area in the first quardant bounded by the curve $y = \sin x$ and the line<br>$\frac{2y-1}{\sqrt{2}-1} = \frac{2}{\pi} (6x - \pi) \operatorname{is} \left[ \frac{\sqrt{3} - \sqrt{2}}{2} - \frac{(\sqrt{2} + 1)\pi}{k} \right]$ , then $k =$ | (R)  | 7         |
| ( <b>D</b> ) | If the area bounded by the graph of $y = xe^{-ax}$<br>( $a > 0$ ) and the abscissa axis is $\frac{1}{9}$ then the value of<br>'a' is equal to                                                                                                   | (\$) | 4         |
|              |                                                                                                                                                                                                                                                 | (T)  | 3         |

# **D** Watch Video Solution

1.

Exercise Subjective Type Problems

1. Let f be a differentiable function satisfying the condition  $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)} (y \neq 0, f(y) \neq 0) \forall x, y \in R \text{ and } f'(1) = 2.$  If the smaller area enclosed by  $y = f(x), x^2 + y^2 = 2$  is A, then findal [A], where [.] represents the greatest integer function.

Watch Video Solution

2. Let f (x) be a function which satisfy the equatio f(xy) = f9x) + f(y)for all x > 0, y > 0 such that f'(1) = 2. Let A be the area of the region bounded by the curves  $y = f(x), y = |x^3 - 6x^2 + 11x - 6|$  and x = 0, then find value of  $\frac{28}{17}A$ .

### Watch Video Solution

3. If the area bounded by circle  $x^2+y^2=4,$  the parabola  $y=x^2+x+1$  and the curve  $y=\Big[\sin^2rac{x}{4}+\cosrac{x}{4}\Big],$  (where []

denotes the greats integer function) and x-axis is  $\left(\sqrt{3} + \frac{2\pi}{3} - \frac{1}{k}\right)$ ,

then the numerical quantitity is should be :

Watch Video Solution

4. Let the function  $f: [-4, 4] \rightarrow [-1, 1]$  be defined implicitly by the equation  $x + 5y - y^5 = 0$  If the area of triangle formed by tangent and normal to f(x)atx = 0 and the line y = 5 is A, find  $\frac{A}{13}$ .

Watch Video Solution

5. Area of the region bounded by  $\left[x
ight]^2=\left[y
ight]^2, ~~ ext{if}~~x\in[1,5]$  , where [ ]

denotes the greatest integer function is:

6. Consider  $y = x^2$  and f(x) where f (x), is a differentiable function

### satisfying

 $f(x+1)+f(z-1)=f(x+z)\,orall x,z\in R\,\, ext{and}\,\,f(0)=0,\,f'(0)=4.$ 

If area bounded by curve  $y=x^2 \, ext{ and } \, y=f(x)$  is  $\Delta, \,$  find the value of

$$\left(\frac{3}{16},\Delta\right)$$

Watch Video Solution

7. The least integer which is greater than or equal to the area of region in x-y plane satisfying  $x^6-x^2+y^2\leq 0$  is:

### Watch Video Solution

**8.** The set of points (x,y) in the plane satisfying  $x^{2/5} + |y| = 1$  form a curve enclosing a region of area  $\frac{p}{q}$  square units, when p and q are relatively prime positive intergers. Find p - q.

