©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK JAISWAL ENGLISH

CIRCLE

Exercise 1 Single Choice Problems

1. The locus of mid-points of the chords of the circle $x^{2}-2 x+y^{2}-2 y+1=0$ which are of unit length is :
A. $(x-1)^{2}+(y-1)^{2}=\frac{3}{4}$
B. $(x-1)^{2}+(y-1)^{2}=2$
C. $(x-1)^{2}+(y-1)^{2}=\frac{1}{4}$
D. $(x-1)^{2}+(y-1)^{2}=\frac{2}{3}$
2. The length of a common internal tangent to two circles is 5 and a common external tangent is 15 , then the product of the radii of the two circles is :
A. 25
B. 50
C. 75
D. 30

Answer: B

- Watch Video Solution

3. A circle with center $(2,2)$ touches the coordinate axes and a straight line $A B$ where A and B ie on direction of coordinate axes such that the lies
between and the line $A B$ be the origin then the locus of circumcenter of $\triangle O A B$ will be:
A. $x y=x+y+\sqrt{x^{2}+y^{2}}$
B. $x y=x+y-\sqrt{x^{2}+y^{2}}$
C. $x y+x+y=\sqrt{x^{2}+y^{2}}$
D. $x y+x+y+\sqrt{x^{2}+y^{2}}=0$

Answer: A

- Watch Video Solution

4. Length of chord of contact of point $(4,4)$ with respect to the circle $x^{2}+y^{2}-2 x-2 y-7=0$ is :
A. $\frac{3}{\sqrt{2}}$
B. $3 \sqrt{2}$
C. 3
D. 6

Answer: B

- Watch Video Solution

5. Let P, Q, R, S be the feet of the perpendiculars drawn from a point $(1,1)$ upon the lines $x+4 y=12, x-4 y+4=0$ and their angle bisectors respectively, then equation of the circle which passes through $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ is :
A. $x^{2}+y^{2}-5 x+3 y-6=0$
B. $x^{2}+y^{2}-5 x-3 y+6=0$
C. $x^{2}+y^{2}-5 x-3 y-6=0$
D. None of these

Answer: B

- Watch Video Solution

6. From a point ' P ' on the line $3 x+y+4=0$, which is nearest to the circle $x^{2}+y^{2}-12 y+35=0$, trangents are drawn to given circle. The area of quadrilateral PACB (where ' C ' is the center of circle and PA \& BP are the tangents.) is :
A. 8
B. $\sqrt{110}$
C. $\sqrt{19}$
D. None of these

Answer: C

- Watch Video Solution

7. The line $2 x-y+1=0$ is tangent to the circle at the point $(2,5)$ and the centre of circles lies on $x-2 y=4$. The radius of the circle is :
A. $3 \sqrt{5}$
B. $5 \sqrt{3}$
C. $2 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: A

- Watch Video Solution

8. If $A(\cos \alpha, \sin \alpha), B(\sin \alpha,-\cos \alpha), C(1,2)$ are the vertices of a triangle, then as α varies the locus of centroid of the $\triangle A B C$ is a circle whose radius is:
A. $\frac{2 \sqrt{2}}{3}$
B. $\sqrt{\frac{4}{3}}$
C. $\frac{2}{3}$
D. $\sqrt{\frac{2}{9}}$

Answer: D
9. Tangents drawn to circle $(x-1)^{2}+(y-1)^{2}=5$ at point P meets the line $2 x+y+6=0$ at Q on the x axis. Length PQ is equal to
A. $\sqrt{12}$
B. $\sqrt{10}$
C. 4
D. $\sqrt{15}$

Answer: A

- Watch Video Solution

10. $A B C D$ is square in which A lies on positive y-axis and B lies on the positive x-axis. If D is the point $(12,17)$, then co-ordinate of C is
A. $(17,12)$
B. $(17,5)$
C. $(17,16)$
D. $(15,3)$

Answer: B

- Watch Video Solution

11. Statement-1: The lines $y=m x+1-m$ for all values of m is a normal to the circle $x^{2}+y^{2}-2 x-2 y=0$.

Statement-2: The line L passes through the centre of the circle.
A. Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
C. Statement-1 is true, statement-2 is false.
D. Statement-1 is false, statement-2 is true.

- Watch Video Solution

12. If points A and B are $(1,0)$ and $(0,1)$, respectively, and point C is on the circle $x^{2}+y^{2}=1$, then the locus of the orthocentre of triangle $A B C$ is $x^{2}+y^{2}=4 x^{2}+y^{2}-x-y=0 x^{2}+y^{2}-2 x-2 y+1=0$ $x^{2}+y^{2}+2 x-2 y+1=0$
A. $x^{2}+y^{2}-2 x-2 y+1=0$
B. $x^{2}+y^{2}-x-y=0$
C. $x^{2}+y^{2}=4$
D. $x^{2}+y^{2}+2 x-2 y+1=0$

Answer: A

- Watch Video Solution

13. Equation of a circle passing through $(1,2)$ and $(2,1)$ and for which line $x+y=2$ is a diameter, is :
A. $x^{2}+y^{2}+2 x+2 y-11=0$
B. $x^{2}+y^{2}-2 x-2 y-1=0$
C. $x^{2}+y^{2}-2 x-2 y+1=0$
D. None of these

Answer: C

- Watch Video Solution

14. In Figure, $A B C$ is an equilateral triangle inscribed in a circle of radius 4 cm with centre O. Find the area of the shaded region.
A. $12 \mathrm{~cm}^{2}$
B. $9 \sqrt{3} \mathrm{~cm}^{2}$
C. $8 \sqrt{3} \mathrm{~cm}^{2}$
D. $12 \sqrt{3} \mathrm{~cm}^{2}$

Answer: D

- Watch Video Solution

15. Let all the points on the curve $x^{2}+y^{2}-10 x=0$ are reflected about the line $y=x+3$. The locus of the reflected points is in the form $x^{2}+y^{2}+g x+f y+c=0$. The value of $(g+f+c)$ is equal to :
A. 28
B. -28
C. 38
D. -38

Answer: C

- Watch Video Solution

16. The shortest distance from the line $3 x+4 y=25$ to the circle $x^{2}+y^{2}=6 x-8 y$ is equal to :
A. $7 / 5$
B. $9 / 5$
C. $11 / 5$
D. $32 / 5$

Answer: A

- Watch Video Solution

17. In the xy-plane, the length of the shortest path from $(0,0)$ to $(12,16)$ that does not go inside the circle $(x-6)^{2}+(y-8)^{2}=25$ is
$10 \sqrt{3}$
$10 \sqrt{5}$
$10 \sqrt{3}+\frac{5 \pi}{3}$
$10+5 \pi$
A. $10 \sqrt{3}$
B. $10 \sqrt{5}$
C. $10 \sqrt{3}+\frac{5 \pi}{3}$
D. $10+5 \pi$

Answer: C

- Watch Video Solution

18. A circle is inscribed in an equilateral triangle with side lengths 6 unit. Another circle is drawn inside the triangle (but outside the first circle), tangent to the first circle and two of the sides of the triangle. The radius of the smaller circle is :
A. $1 / \sqrt{3}$
B. $2 / 3$
C. $1 / 2$
D. 1

D Watch Video Solution

19. The equation of the tangent to the circle $x^{2}+y^{2}-4 x=0$ which is perpendicular to the normal drawn through the origin can be :
A. $x=1$
B. $x=2$
C. $x+y=2$
D. $x=4$

Answer: D

D Watch Video Solution

20. The equation of the line parallel to the line $3 x+4 y=0$ and touching the circle $x^{2}+y^{2}=9$ in the first quadrant is:
A. $3 x+4 y=15$
B. $3 x+4 y=45$
C. $3 x+4 y=9$
D. $3 x+4 y=12$

Answer: A

- Watch Video Solution

21. The centres of the three
$x^{2}+y^{2}-10 x+9=0, x^{2}+y^{2}-6 x+2 y+1=0, x^{2}+y^{2}-9 x-4 y+$
A. lie on the straight line $x-2 y=5$
B. lie on circle $x^{2}+y^{2}=25$
C. do not lie on straight line
D. lie on circle $x^{2}+y^{2}+x+y-17=0$
22. The equation of the diameter of the circle $x^{2}+y^{2}+2 x-4 y$ that is parallel $3 x+5 y=4$ is :
A. $3 x+5 y=-7$
B. $3 x+5 y=7$
C. $3 x+5 y=9$
D. $3 x+5 y=1$

Answer: B

- Watch Video Solution

23. There are 2 circles passing through points $A(-1,2)$ and $B(2,3)$ having radius $\sqrt{5}$. Then the length of intercept on axis of the circle intersecting x-axis is :
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

24. A square OABC is formed by line pairs $x y=0$ and $x y+1=x+y$ where 'O' is the origin. A circle with centre C_{1} inside the square is drawn to touch the line pair $x y=0$ and another circle with centre C_{2} and radius twice that of C_{1}, is drawn to touch the circle C_{1} and the other line pair. the radius of the circle with centre C_{1} is :
A. $\frac{\sqrt{2}}{\sqrt{3}(\sqrt{2}+1)}$
B. $\frac{2 \sqrt{2}}{3(\sqrt{2}+1)}$
C. $\frac{\sqrt{2}}{3(\sqrt{2}+1)}$
D. $\frac{\sqrt{2}+1}{3 \sqrt{2}}$

Answer: C

- Watch Video Solution

25. The equation of the circle circumscribing the triangle formed by the points (3, 4), (1,4) and (3,2) is:
A. $8 x^{2}+8 y^{2}-16 x-13 y=0$
B. $x^{2}+y^{2}-4 x-8 y+19=0$
C. $x^{2}+y^{2}-4 x-6 y+11=0$
D. $x^{2}+y^{2}-6 x-6 y+17=0$

Answer: C

26. The equation of the tangent to circle $x^{2}+y^{2}+2 g x+2 f y=0$ at origin is :
A. $f x+g y=0$
B. $g x+f y=0$
C. $x=0$
D. $y=0$

Answer: B

- Watch Video Solution

27. The line $y=x$ is a tangent at $(0,0)$ to a circle of radius unity. The center of the circle is
A. either $\left(-\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{1}{2},-\frac{1}{2}\right)$
B. either $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right.$ or $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
C. either $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right.$ or $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
D. either $(1,0)$ or $(-1,0)$

Answer: C

- Watch Video Solution

28. The circles $x^{2}+y^{2}+6 x+6 y=0$ and $x^{2}+y^{2}-12 x-12 y=0$:
A. cut orthogonally
B. touch each other internally
C. intersect in two points
D. touch each other externally

Answer: D

- Watch Video Solution

29. In a triangle $A B C$, right angled at A, on the leg $A C$ as diameter, a semicircle is described. If a chord joins A with the point of intersection D of the hypotenuse and the semicircle, then the length of $A C$ is equal to
$\frac{A B \dot{A} D}{\sqrt{A B^{2}+A D^{2}}}$ (b) $\frac{A \dot{B} \dot{A} D}{A B+A D} \sqrt{A B \dot{A} D}$ (d) $\frac{A B \dot{A} D}{\sqrt{A B^{2}-A D^{2}}}$
A. $\frac{A B \cdot A B}{\sqrt{A B^{2}+A B^{2}}}$
B. $\frac{A B \cdot A D}{A B+A D}$
C. $\sqrt{A B \cdot A D}$
D. $\frac{A B \cdot A D}{\sqrt{A B^{2}-A D^{2}}}$

Answer: D

- Watch Video Solution

30. Radical centre of the circles drawn on the sides as a diameter of triangle formed by \quad the
$3 x-4 y+6=0, x-y+2=0$ and $4 x+3 y-17=0$ is :
A. $(3,2)$
B. $(3,-2)$
C. $(2,-3)$
D. $(2,3)$

Answer: D

D Watch Video Solution

31. Statement-1: A circle can be inscribed in a quadrilateral whose sides are

$$
3 x-4 y=0,3 x-4 y=5,3 x+4 y=0 \text { and } 3 x+4 y=7
$$

Statement-2: A circle can be inscribed in a parallelogram if and only if it is a rhombus (a) statement- 1 is true, statement-2 is true and statement-2 is correct explanation for Statement-1. (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1. (c) Statement-1 is true, statement-2 is false. d) Statement-1 is false, statement-2 is true
A. Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
C. Statement-1 is true, statement-2 is false.
D. Statement-1 is false, statement-2 is true.

Answer: D

- Watch Video Solution

32. If $x=3$ is the chord of contact of the circle $x^{2}+y^{2}=81$, then the equation of the corresponding pair of tangents, is :
A. $x^{2}-8 y^{2}+54 x+729=0$
B. $x^{2}-8 y^{2}-54 x+729=0$
C. $x^{2}-8 y^{2}-54 x-729=0$
D. $x^{2}-8 y^{2}=729$

Answer: B

- Watch Video Solution

33. The shortest distance from the line $3 x+4 y=25$ to the circle $x^{2}+y^{2}=6 x-8 y$ is equal to :
A. $\frac{7}{3}$
B. $\frac{9}{5}$
C. $\frac{11}{5}$
D. $\frac{7}{5}$

Answer: D

D Watch Video Solution

34. The circle with equation $x^{2}+y^{2}=1$ intersects the line $y=7 x+5$ at two distinct points A and B. Let C be the point at which the positive x axis intersects the circle. The angle $A C B$ is
A. $\tan ^{-1} \frac{4}{3}$
B. $\cot ^{-1}(-1)$
C. $\tan ^{-1} 1$
D. $\cot ^{-1} \frac{4}{3}$

Answer: C

- Watch Video Solution

35. The abscissa of the two points A and B are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of the equation $x^{2}+2 p x-q^{2}=0$. Find the equation of the circle with AB as diameter. Also, find its radius.
A. $\sqrt{a^{2}+b^{2}+p^{2}+q^{2}}$
B. $\sqrt{a^{2}+p^{2}}$
C. $\sqrt{b^{2}+q^{2}}$
D. $\sqrt{a^{2}+b^{2}+p^{2}+1}$

Answer: A

- Watch Video Solution

36. Let C be the circle of unit radius centred at the origin. If two positive numbers x_{1} and x_{2} are such that the line passing through $\left(x_{1},-1\right)$ and $\left(x_{2}, 1\right)$ is tangent to C then
A. $x_{1} x_{2}=1$
B. $x_{1} x_{2}=-1$
C. $x_{1}+x_{2}=1$
D. $4 x_{1} x_{2}=1$

- Watch Video Solution

37. A circle bisects the circumference of the circle $x^{2}+y^{2}+2 y-3=0$ and touches the line $x=y$ at the point $(1,1)$. Its radius is :
A. $\frac{3}{\sqrt{2}}$
B. $\frac{9}{\sqrt{2}}$
C. $4 \sqrt{2}$
D. $3 \sqrt{2}$

Answer: B

- Watch Video Solution

38. about to only mathematics
A. $\sqrt{g^{2}+f^{2}}$
B. $\frac{\sqrt{g^{2}+f^{2}-c}}{2}$
C. $\frac{g^{2}+f^{2}-c}{2 \sqrt{g^{2}+f^{2}}}$
D. $\frac{\sqrt{g^{2}+f^{2}+c}}{2 \sqrt{g^{2}+f^{2}}}$

Answer: C

- Watch Video Solution

39. If the tangents $A B$ and $A Q$ are drawn from the point $A(3,-1)$ to the circle $x^{2}+y^{2}-3 x+2 y-7=0$ and C is the centre of circle, then the area of quadrilateral APCQ is :
A. 9
B. 4
C. 2
D. non-existent

Answer: D

- Watch Video Solution

40. Number of integral value(s) of k for which no tangent can be drawn from the point $(k, k+2)$ to the circle $x^{2}+y^{2}=4$ is:
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

41. If the length of the normal for each point on a curve is equal to the radius vector, then the curve (a) is a circle passing through origin (b) is a
circle having centre at origin and radius 0 (c) is a circle having centre on x-axis and touching y-axis (iv) is a circle having centre on y-axis and touching x-axis
A. is a circle passing through origin
B. is a circle having centre at origin and radius gt 0
C. is a circle having centre on x-axis and touching y-axis
D. is a circle having centre on y-axis and touching x-axis

Answer: B

- Watch Video Solution

42. about to only mathematics
A. $(1,0)$
B. $(0,1)$
C. ($0,-1$)
D. $(-1,0)$

Answer: D

- Watch Video Solution

43. A variable circle is drawn to touch the x-axis at the origin. The locus of the pole of the straight line $l x+m y+n=0$ w.r.t the variable circle has the equation:
A. $x(m y-n)-l y^{2}=0$
B. $x(m y+n)-l y^{2}=0$
C. $x(m y-n)+l y^{2}=0$
D. None of these

Answer: A

- Watch Video Solution

44. The minimum length of the chord of the circle $x^{2}+y^{2}+2 x+2 y-7=0$ which is passing through $(1,0)$ is :
A. 2
B. 4
C. $2 \sqrt{2}$
D. $\sqrt{5}$

Answer: B

- Watch Video Solution

45. Three concentric circles of which the biggest is $x^{2}+y^{2}=1$, have their radii in A.P If the line $y=x+1$ cuts all the circles in real and distinct points. The interval in which the common difference of the A.P will lie is:
A. $\left(0, \frac{1}{4}\right)$
B. $\left(0, \frac{1}{2 \sqrt{2}}\right)$
c. $\left(0, \frac{2-\sqrt{2}}{4}\right)$
D. none

Answer: C

- Watch Video Solution

46. The locus of the point of intersection of the two tangents drawn to the circle $x^{2}+y^{2}=a^{2}$ which include are angle α is
A. 2
B. 4
C. 8
D. 16

Answer: C

47. about to only mathematics
A. $x^{2}+y^{2}+x-y+30=0$
B. $x^{2}+y^{2}+2 x-18 y+32=0$
C. $x^{2}+y^{2}+2 x+18 y+32=0$
D. $x^{2}+y^{2}-2 x-22 y+32=0$

Answer: B

- Watch Video Solution

48. Point on the circle $x^{2}+y^{2}-2 x+4 y-4=0$ which is nearest to the line $y=2 x+11$ is :
A. $\left(1-\frac{6}{\sqrt{5}},-2+\frac{3}{\sqrt{5}}\right)$
B. $\left(1+\frac{6}{\sqrt{5}}, 2-\frac{3}{\sqrt{5}}\right)$
C. $\left(1-\frac{6}{\sqrt{5}},-2-\frac{3}{\sqrt{5}}\right)$
D. None of these

- Watch Video Solution

49. A foot of the normal from the point $(4,3)$ to a circle is $(2,1)$ and a diameter of the circle has the equation $2 x-y-2=0$. Then the equation of the circle is:
A. $x^{2}+y^{2}-4 y+2=0$
B. $x^{2}+y^{2}-4 y+1=0$
C. $x^{2}+y^{2}-2 x-1=0$
D. $x^{2}+y^{2}-2 x+1=0$

Answer: C

50. If $\left(a, \frac{1}{a}\right),\left(b \frac{.1}{b}\right),\left(c, \frac{1}{c}\right),\left(d, \frac{1}{d}\right)$ are four distinct points on a circle of radius 4 units then, $a b c d$ is equal to:
A. 4
B. $1 / 4$
C. 1
D. 16

Answer: C

- Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are Correct

1. Number of circle touching both the axes and the line $x+y=4$ is greater than or equal to : (a) 1 (b) 2 (c) 3 (d) 4
B. 2
C. 3
D. 4

Answer: A::B::C::D

- Watch Video Solution

2. Which of the following is/are true ?

The circle $x^{2}+y^{2}-6 x+6 y+9=0$ and the axes are such that:
A. They do not intersect
B. They touch each other
C. Their exterior common tangents are parallel
D. Their interior common tangents are perpendicular

Answer: A::C::D

3. Let ' α ' be a variable parameter, then the length of the chord of the curve :
$\left(x-\sin ^{-1} \alpha\right)\left(x-\cos ^{-1} \alpha\right)+\left(y-\sin ^{-1} \alpha\right)\left(y+\cos ^{-1} \alpha\right)=0$ along the line $x=\frac{\pi}{4}$ can not be equal to :
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: A::B::C

- Watch Video Solution

4. The circle $x^{2}+y^{2}-6 x-10 y+k=0$ does not touch or intersect the coordinate axes, and the point $(1,4)$ is inside the circle. Find the range of value of k.
A. $p<29$
B. $p>25$
C. $p>27$
D. $p<27$

Answer: A::B

- Watch Video Solution

5. The equation of a circle C_{1} is $x^{2}+y^{2}=4$. The locus of the intersection of orthogonal tangents to the circle is the curve C_{2} and the locus of the intersection of perpendicular tangents to the curve C_{2} is the curve C_{3}. Then,
A. C_{2} is a circle
B. C_{1}, C_{2} are circles having different centres
C. C_{1}, C_{2} are circles having same centres
D. area enclosed between C_{1} and C_{2} is 8π

- Watch Video Solution

6. If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y$ (where $p q \neq q$) are bisected by the x-axis, then $p^{2}=q^{2}$ (b) $p^{2}=8 q^{2} p^{2}<8 q^{2}$ (d) $p^{2}>8 q^{2}$
A. $p^{2}=q^{2}$
B. $p^{2}>q^{2}$
C. $p^{2}<8 q^{2}$
D. $p^{2}>8 q^{2}$

Answer: B::D

$a=\max \left\{(x+2)^{2}+(y-3)^{2}\right\}$ and $b=\min \left\{(x+2)^{2}+(y-3)^{2}\right\}$ where x , y satisfying $x^{2}+y^{2}+8 x-10 y-40=0$ then :
A. $a+b=18$
B. $a+b=178$
C. $a-b=4 \sqrt{2}$
D. $a-b=72 \sqrt{2}$

Answer: B::D

- Watch Video Solution

8. The locus of points of intersection of the tangents to $x^{2}+y^{2}=a^{2}$ at the extremeties of a chord of circle $x^{2}+y^{2}=a^{2}$ which touches the circle $x^{2}+y^{2}-2 a x=0$ is/are :
A. $y^{2}=a(a-2 x)$
B. $x^{2}=a(a-2 y)$
C. $x^{2}+y^{2}=(x-a)^{2}$
D. $x^{2}+y^{2}=(y-a)^{2}$

Answer: A::C

- Watch Video Solution

9. A circle passes through the points $(-1,1),(0,6)$ and (5.5). The point(s) on this circle,the tangents at which is/are parallel to the straight line joining the origin to its centre is/are:
A. $(1,-5)$
B. $(5,1)$
C. $(-5,-1)$
D. $(-1,5)$
10. A square is inscribed in the circle $x^{2}+y^{2}-2 x+4 y-93=0$ with its sides parallel to the coordinate axes. The coordinates of its vertices are $(-6,-9),(-6,5),(8,-9),(8,5)$
$(-6,-9),(-6,-5),(8,-9),(8,5)$
$(-6,-9),(-6,5),(8,9),(8,5)$
$(-6,-9),(-6,5),(8,-9),(8,-5)$
A. $(8,5)$
B. $(8,9)$
C. $(-6,5)$
D. $(-6,-9)$

Answer: A::C

- Watch Video Solution

1. Let each of the circles,
$S_{1}=x^{2}+y^{2}+4 y-1=0$,
$S_{2}=x^{2}+y^{2}+6 x+y+8=0$,
$S_{3}=x^{2}+y^{2}-4 x-4 y-37=0$
touches the other two. Let P_{1}, P_{2}, P_{3} be the points of contact of S_{1} and S_{2}, S_{2} and S_{3}, S_{3} and S_{1} respectively and C_{1}, C_{2}, C_{3} be the centres of S_{1}, S_{2}, S_{3} respectively.
Q. The co-ordinates of P_{1} are:
A. $(2,-1)$
B. $(2,1)$
C. $(-2,1)$
D. $(-2,-1)$

Answer: D

2. Let each of the circles
$S_{1} \equiv x^{2}+y^{2}+4 y-1=0$
$S_{1} \equiv x^{2}+y^{2}+6 x+y+8=0$
$S_{3} \equiv x^{2}+y^{2}-4 x-4 y-37=0$
touch the other two. Also, let P_{1}, P_{2} and P_{3} be the points of contact of S_{1} and S_{2}, S_{2} and S_{3}, and S_{3}, respectively, C_{1}, C_{2} and C_{3} are the centres of S_{1}, S_{2} and S_{3} respectively.
The ratio $\frac{\operatorname{area}\left(\Delta P_{1} P_{2} P_{3}\right)}{\operatorname{area}\left(\Delta C_{1} C_{2} C_{3}\right)}$ is equal to
A. 3:2
B. 2: 5
C. 5: 3
D. 2:3

Answer: B

- Watch Video Solution

3. Let each of the circles,
$S_{1}=x^{2}+y^{2}+4 y-1=0$,
$S_{2}=x^{2}+y^{2}+6 x+y+8=0$,
$S_{3}=x^{2}+y^{2}-4 x-4 y-37=0$
touches the other two. Let P_{1}, P_{2}, P_{3} be the points of contact of S_{1} and S_{2}, S_{2} and S_{3}, S_{3} and S_{1} respectively and C_{1}, C_{2}, C_{3} be the centres of S_{1}, S_{2}, S_{3} respectively.
Q. P_{2} and P_{3} are image of each other with respect to line:
A. $y=x+1$
B. $y=-x$
C. $y=x$
D. $y=-x+2$

Answer: C

4. Let $\mathrm{A}(3,7)$ and $\mathrm{B}(6,5)$ are two points. $C: x^{2}+y^{2}-4 x-6 y-3=0$ is a circle.
Q. The chords in which the circle C cuts the members of the family S of circle passing through A and B are concurrent at:
A. $(2,3)$
B. $\left(2, \frac{23}{3}\right)$
C. $\left(3, \frac{23}{2}\right)$
D. $(3,2)$

Answer: B

- Watch Video Solution

5. Let $\mathrm{A}(3,7)$ and $\mathrm{B}(6,5)$ are two points. $C: x^{2}+y^{2}-4 x-6 y-3=0$ is a circle.
Q. The chords in which the circle C cuts the members of the family S of circle passing through A and B are concurrent at:
A. $x^{2}+y^{2}-5 x-1=0$
B. $x^{2}+y^{2}-5 x+6 y-1=0$
C. $x^{2}+y^{2}-5 x-6 y-1=0$
D. $x^{2}+y^{2}+5 x-6 y-1=0$

Answer: C

- Watch Video Solution

6. Let $\mathrm{A}(3,7)$ and $\mathrm{B}(6,5)$ are two points. $C: x^{2}+y^{2}-4 x-6 y-3=0$ is a circle.
Q. If O is the origin and P is the center of C, then absolute value of difference of the squares of the lengths of the tangents from A and B to the circle C is equal to :
A. $(A B)^{2}$
B. $(O P)^{2}$
C. $\left|(A P)^{2}-(B P)^{2}\right|$
D. $(A P)^{2}+(B P)^{2}$

Answer: C

- Watch Video Solution

7. Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S.
Q. Let $S=\left\{(x, y):(y-x) \leq 0, x+y \geq 0, x^{2}+y^{2} \leq 2\right\}$ then the diameter of S is :
A. 2
B. 4
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: A

8. Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S.
Q.
$S=\{(x, y):(\sqrt{5}-1) x-\sqrt{10+2 \sqrt{5}} y \geq 0,(\sqrt{5}-1) x+\sqrt{10+12 \sqrt{5}} y$ then the diameter of S is :
A. $\frac{3}{2}(\sqrt{5}-1)$
B. $3(\sqrt{5}-1)$
C. $3 \sqrt{2}$
D. 3

Answer: D

- Watch Video Solution

9. t_{1}, t_{2}, t_{3} are lengths of tangents drawn from a point (h, k) to the circles $x^{2}+y^{2}=4, x^{2}+y^{2}-4 x=0$ and $x^{2}+y^{2}-4 y=0 \quad$ respectively further, $t_{1}^{4}=t_{2}^{2} \quad t_{3}^{2}+16$. Locus of the point (h, k) consist of a straight
line L_{1} and a circle C_{1} passing through origin. A circle C_{2}, which is equal to circle C_{1} is drawn touching the line L_{1} and the circle C_{1} externally. Equation of C_{1} is
A. $(1,1)$
B. $(0,0)$
C. $(-1,-1)$
D. $(2,2)$

Answer: B

- Watch Video Solution

10. t_{1}, t_{2}, t_{3} are lengths of tangents drawn from a point (h, k) to the circles $x^{2}+y^{2}=4, x^{2}+y^{2}-4 x=0$ and $x^{2}+y^{2}-4 y=0 \quad$ respectively further, $t_{1}^{4}=t_{2}^{2} \quad t_{3}^{2}+16$. Locus of the point (h, k) consist of a straight line L_{1} and a circle C_{1} passing through origin. A circle C_{2}, which is equal to circle C_{1} is drawn touching the line L_{1} and the circle C_{1} externally.

Equation of C_{1} is
A. 2
B. 4
C. 8
D. 16

Answer: C

- Watch Video Solution

Exercise 5 Subjective Type Problems

1. Tangents are drawn to circle $x^{2}+y^{2}=1$ at its iontersection points (distinct) with the circle $x^{2}+y^{2}+(\lambda-3) x+(2 \lambda+2) y+2=0$. The locus of intersection of tangents is a straight line, then the slope of that straight line is .

- Watch Video Solution

2. The radical centre of the three circles is at the origin. The equations of the two of the circles are $x^{2}+y^{2}=1$ and $x^{2}+y^{2}+4 x+4 y-1=0$. If the third circle passes through the points $(1,1)$ and $(-2,1)$, and its radius can be expressed in the form of $\frac{p}{q}$, where p and q are relatively prime positive integers. Find the value of $(p+q)$.

- Watch Video Solution

3. Let $S=\left\{(x, y) \mid x, y \in R, x^{2}+y^{2}-10 x+16=0\right\}$. The largest value of $\frac{y}{x}$ can be put in the form $\frac{m}{n}$ where m, n are relatively prime natural numbers, then $m^{2}+n^{2}=$

- Watch Video Solution

4. If the line $y=2-x$ is tangent to the circle S at the point $\mathrm{P}(1,1)$ and circle S is orthogonal to the circle $x^{2}+y^{2}+2 x+2 y-2=0$, then find the length of tangent drawn from the point $(2,2)$ to circle S.
5. Two circles having radii r_{1} and r_{2} passing through vertex A of a triangle $A B C$. One of the circle touches the side $B C$ at B and other circle touches the side BC at C. If $a=5$ and $A=30^{\circ}$, find $\sqrt{r_{1} r_{2}}$.

- Watch Video Solution

6. A circle S of radius ' a ' is the director circle of another circle S_{1}, S_{1} is the director circle of circle S_{2} and so on. If the sum of the radii of all these circle is 2 , then the value of ' a ' is (a) $2+\sqrt{2}$ (b) $2-\frac{1}{\sqrt{2}}$
$2-\sqrt{2}$ (d) $2+\frac{1}{\sqrt{2}}$

- Watch Video Solution

7. If r_{1} and r_{2} be the maximum and minimum radius of the circle which pass through the point $(4,3)$ and touch the circle $x^{2}+y^{2}=49$, then $\frac{r_{1}}{r_{2}}$ is
8. Let C be the circle $x^{2}+y^{2}-4 x-4 y-1=0$. The number of points common to C and the sides of the rectangle determined by the lines $x=2, x=5, y=-1$ and $y=5$ equal to

- Watch Video Solution

9. Two congruent circles with centered at $(2,3)$ and $(5,6)$ which intersect at right angles, have radius equal to (a) $2 \sqrt{3}$ (b) 3 (c) 4 (d) none of these

- Watch Video Solution

10. The sum of abscissa and ordinate of a point on the circle $x^{2}+y^{2}-4 x+2 y-20=0$ which is nearest to $\left(2, \frac{3}{2}\right)$ is :

- Watch Video Solution

11. AB is any chord of the circle $x^{2}+y^{2}-6 x-8 y-11=0$ which subtends an angle $\frac{\pi}{2}$ at (1,2). If locus of midpoint of $A B$ is a circle $x^{2}+y^{2}-2 a x-2 b y-c=0$, then find the value of $(a+b+c)$.

- Watch Video Solution

12. circles $x^{2}+y^{2}=c$
with
radius
$\sqrt{3}$ and $x^{2}+y^{2}+a x+b y+c=0$ with radius $\sqrt{6}$ intersect at two points A and B . If length of $A B=\sqrt{l}$. Find l.

- Watch Video Solution

