

MATHS

BOOKS - VK JAISWAL ENGLISH

CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

Exercise Single Choice Problems

1. Let 'f' be a fifferentiable real valued function satisfying $f(x+2y)=f(x)+f(2y)+6xy(x+2y)\,orall x,\,y\in R.$ Then

 $f'(0), f(1), f'(2).\ldots$ are in

A. AP

B. GP

C. HP

D. None of these

Answer: A

Watch Video Solution

- **2.** Find the number of points of non-differentiability for $f(x) = \max{\{||x|-1|,1/2\}}.$
 - A. 4
 - B. 3
 - C. 2
 - D. 5

Answer: D

Watch Video Solution

3. Number of points of discontinuity of $f(x)-\left\{\frac{x}{5}\right\}+\left[\frac{x}{2}\right]$ in $x\in[0,100]$ is/are (where [.] denotes greatest integer function and {.}

denotes fractionalpart function)

A. 50

B. 51

C. 52

D. 61

Answer: A

Watch Video Solution

4. If f(x) has isolated point of discontinuity at x=a such that |f(x)| is continuous at x=a then :

A. $\lim_{x o a} f(x)$ doesn not exist

B. $\lim_{x o a} f(x) + f(a) = 0$

 $\mathsf{C}.\,f(a) = 0$

D. None of these

Answer: B

Watch Video Solution

5. If f(x) is a thrice differentiable function such that $\lim_{x o 0} rac{f(4x) - 3f(3x) + 3f(2x) - f(x)}{x^3} = 12$ then the value of f'(0)

A. 0

equais to:

B. 1

C. 12

D. None of these

Answer: C

$$y=rac{1}{(1+ an heta)^{\sin heta-\cos heta}+(\cot heta)^{\cos heta-\cot heta}}+rac{1}{(1+ an heta)^{\cos heta-\sin heta}+(\cot heta)^{\cos heta-\cot heta}}$$
 then $rac{dy}{dx}$ at $heta=rac{\pi}{3}$ is

7. Let $f'(x) = \sin(x^2)$ and $y = f(x^2 + 1)$ then $\frac{dy}{dx}$ at x = 1 is

A. 0

B. 1

C. $\sqrt{3}$

A. $2\sin 2$

 $B.2\cos 2$

 $C. 2 \sin 4$

D. None of these

- Answer: A

Answer: C

Watch Video Solution

8. If
$$f(x) = |\sin x - |\cos x|$$
 | , then $f'\left(\frac{7\pi}{6}\right) =$

A.
$$\frac{\sqrt{3}+1}{2}$$

B.
$$\dfrac{1-\sqrt{3}}{2}$$
 $\sqrt{3}-1$

C.
$$\frac{\sqrt{3}-1}{2}$$
 D.
$$\frac{-1-\sqrt{3}}{2}$$

2

Answer: C

Watch Video Solution

9. If $2\sin x.\cos y=1,\,\, ext{then}\,\,rac{d^2y}{dx^2}at\Bigl(rac{\pi}{4},rac{\pi}{4}\Bigr)$ is

$$A. - 4$$

$$B. - 2$$

$$\mathsf{C.}-6$$

Answer: A

Watch Video Solution

10. f is a differentiable function such that
$$x=f(t^2), y=f(t^3)$$
 and $f'(1) \neq 0$ if $\left(\frac{d^2y}{dx^2}\right)$

A.
$$\frac{3}{4} \left(\frac{f''(1) + f(1)}{(f'(1))^2} \right)$$

B.
$$\frac{3}{4} \left(\frac{f(1). \ f'(1) - f'(1)}{f(f'(1))^2} \right)$$
C. $\frac{4}{3} \frac{f'(1)}{(f'(1))^2}$

D.
$$\frac{4}{3} \left(\frac{f'(1)f''(1) - f'(1)}{(f'(1))^2} \right)$$

Answer: A

Watch Video Solution

11. Let
$$f(x)=egin{cases} ax+1 & ext{if} & x<1\ 3 & ext{if} & x=1\, If f(x) ext{ is continuous at } x=1\ bx^2+1 & ext{if} & x>1 \end{cases}$$

then (a-b) is equal to:

D. 4

Answer: A

Watch Video Calution

12.
$$y = 1 + \frac{\alpha}{\left(\frac{1}{x} - \alpha\right)} + \frac{\beta/x}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)} + \frac{\gamma/x^2}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)},$$

find
$$\frac{dy}{dx}$$

B.
$$\frac{y}{x} \bigg(\frac{\alpha}{1/x - \alpha} \bigg)$$
C. $y \bigg(\frac{\alpha}{1/x - \alpha} \bigg)$

$$\begin{aligned} & \text{B.} \ \frac{y}{x} \bigg(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \bigg) \\ & \text{C.} \ y \bigg(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \bigg) \\ & \text{D.} \ y \bigg(\frac{\alpha/x}{1/x - \alpha} + \frac{\beta/x}{1/x - \beta} + \frac{\gamma/x}{1/x - \gamma} \bigg) \end{aligned}$$

A. $y \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \right)$

Answer: B

Watch Video Solution

- **13.** If $f(x)=\sqrt{rac{1+\sin^{-1}x}{1-\tan^{-1}x}}, ext{ then f (0) is equal to :}$
 - A. 4
 - B. 3
 - - D. 1

C. 2

Answer: D

Watch Video Solution

14. Let $f(x) = \begin{cases} \sin^2 x, & ext{x is rational} \\ -\sin^2 x, & ext{x is irrational} \end{cases}$, then set of points, where f

A.
$$\left\{(2n+1)rac{\pi}{2}\in I
ight\}$$

B. a null set

(x) is continuous, is:

C. $\{n\pi, n \in I\}$

D. set of all rational numbers

Answer: C

Watch Video Solution

15. The number of values of x in $(0,2\pi)$ where the function $f(x) = rac{ an x + \cot x}{2} - \left| rac{ an x - \cot x}{2}
ight|$ continuous but non-derivable :

B. 4

C. 0

D. 1

Answer: B

Watch Video Solution

equal to

A. 1 for x>2

B. 1 for 2 < x < 3

16. If f(x)=|x-1| and g(x)=f(f(f(x))), then for x>2, $g^{\prime}(x)$ is

 $\mathsf{C.} - 1 \, \mathsf{for} \, 2 < x < 3$

D.-1 for x>3

Answer: C

17. If f(x) is continuous function $\forall x \in R$ and the range of $f(x)is(2,\sqrt{26})$ and $g(x)=\left[\frac{f(x)}{c}\right]$ is continuous $\forall x \in R$, then find the least positive integral value of c, where [.] denotes the greatest integer function.

A. 3

B. 5

C. 6

D. 7

Answer: C

C.
$$\frac{1}{2}$$

A. $-\frac{1}{9}$

 $\mathsf{B.}-\frac{2}{27}$

c. $\frac{2}{27}$

D. $\frac{1}{9}$

Answer: B

g'(-4):

A.-2

B. 2

Watch Video Solution

19. Let $f(x) = x^3 + 4x^2 + 6x$ and g(x) be inverse then the value of

20. If
$$f(x)=2+|x|-|x-1|-|x+1|,$$
 $f'\Bigl(rac{1}{2}\Bigr)+f'\Bigl(rac{3}{2}\Bigr)+f'\Bigl(rac{5}{2}\Bigr)$ is equal to:

then

$$\mathsf{D.}-2$$

Answer: D

Watch Video Solution

21. If $f(x) = \cos \left(x^2 - 4[x]\right), 0 < x < 1,$ (whre [.] denotes greatest

integer function) then $f'\left(\frac{\sqrt{\pi}}{2}\right)$ is equal to:

D. $\sqrt{\frac{\pi}{4}}$

Answer: A

Watch Video Solution

 $\frac{d^2(g(x))}{dx^2}$ is equal to:

$$\frac{d^{2}(g(x))}{dx^{2}}$$
 is equal to

$$dx^2$$

A.
$$\frac{1}{1+\left(g(x)\right)^5}$$

$$\dfrac{1}{+\left(g(x)
ight)^{5}}$$

B.
$$\frac{g'(x)}{1 + (g(x))^5}$$

22. Let g (x) be then inverse of f (x) such that $f'(x) = \frac{1}{1+r^5}$, then

$$1+\left(g(x)
ight)^5$$
 C. $f(g(x))^4(1+g(x))^5\Big)$

D.
$$1 + (g(x))^5$$

Answer: C

23. Let
$$f(x)=\left\{egin{array}{ll} \min\ (x,x^2) & x\geq 0 \\ \max\ (2x,x-1) & x<0 \end{array}
ight.$$
 then which of the following

is not true?

A. f (x) is not differentiable at x=0

B. f (x) is not differentiable are exactly two points

C. f (x) is continous everywhere

D. f (x) is strictly increasing $\, orall \, x \in R$

Answer: B

24. if
$$f(x) = \lim_{x \to \infty} \left(\prod_{i=1}^n \cos \left(\frac{x}{2^i} \right) \right)$$
 then f '(x) is equal to:

A.
$$\frac{\sin x}{x}$$

B.
$$\frac{x}{\sin x}$$

$$\mathsf{C.}\,\frac{x\cos-\sin x}{x^2}$$

$$\mathsf{D.}\;\frac{\sin x-x\cos x}{\sin^2 x}$$

Answer: C

Watch Video Solution

25. Let
$$f(x)=egin{cases} rac{1- an x}{4x-\pi} & x
eq rac{\pi}{4}, x \in \left[0,rac{\pi}{2}
ight), ext{ If f (x) is continuous in} \ \lambda & x=rac{\pi}{4}, \end{array}$$

$$\left[0, \frac{\pi}{2}\right)$$
 then λ is equal to:

B.
$$\frac{1}{2}$$

$$\mathsf{C.} - \frac{1}{2}$$

$$D. -1$$

Answer: C

26. Let
$$f(x)=\left\{egin{array}{ll} e^{rac{1}{x^2}}\sinrac{1}{x} & x
eq 0 \ \lambda & x=rac{\pi}{4} \end{array}, then f'(0)
ight.$$

A. 1

B. - 1

C. 0

D. Does not exist

Answer: C

Watch Video Solution

27. Let f be a differentiable function satisfying $f'(x)=2f(x)+10\, orall x\in R$ and f(0)=0, then the number of real roots of the equation $f(x)+5\sec^2 x=0\, \mathrm{ln}\, (0,2\pi)$ is:

A. 0

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

28. If
$$f(x)=egin{cases} rac{\sin{\{\cos{x}\}}}{x-rac{\pi}{2}} & x
eq rac{\pi}{2} \\ 1 & x = rac{\pi}{2} \end{cases}$$
, where {k} represents the fractional

park of k, then:

A. f (x) is continous at
$$x=rac{\pi}{2}$$

B.
$$\lim_{x \to \frac{\pi}{2}} f(x)$$
 does not exist

C.
$$\lim_{x o \frac{\pi}{2}} f(x)$$
 exists, but f is not continuous at $x = \frac{\pi}{2}$

D.
$$\lim_{x \to \frac{\pi}{2}} f(x) = 1$$

Answer: B

29. Let f (x) be a polynomial in x. The second derivative of $f(e^x)$ w.r.t. x is :

A.
$$f^{\prime\prime}(e^x)e^x+f(e^x)$$

$$\mathsf{B.}\,f^{\prime\prime}(e^x)e^{2x}+f^{\prime}(e^x)e^{2n}$$

C.
$$f''(e^x)e^x + f'(e^x)e^{2x}$$

D.
$$f^{\prime\prime}(e^x)e^{2x}+e^xf^{\prime}(e^x)$$

Answer: D

Watch Video Solution

30. If $e^{f(x)} = \log x$ and g(x) is the inverse function of f(x), then g'(x) is

A.
$$e^x + x$$

B.
$$e^{e^{e^x}}e^{e^x}$$

C.
$$e^{e^x+z}$$

$$\mathsf{D.}\,e^{e^x}$$

Answer: C

Watch Video Solution

31. If y=f(x) is differentiable $\forall x\in R,$ then

A. y = |f(x)| is differentiable $\, orall \, x \in R$

B. $y=f^2(x)$ is not-differentiable for atleast one ${\sf x}$

C. y = f(x)|f(x)| is non-differentiable for atleast one x

D. $y = |f(x)|^3$ is differentiable $Ax \in R$

Answer: D

Watch Video Solution

32. If $f(x) = (x-1)^4(x-2)^3(x-3)^2$ then the value of f'(1) + f''(2) + f''(3) is:

B. 1

C. 2

D. 6

Answer: A

Watch Video Solution

- **33.** Indicate all correct alternatives: if $f(x)=rac{x}{2}-1$, then on the interval $[0, \pi]$:
 - A. $\tan(f(x))$ and $\frac{1}{f(x)}$ are both continous
 - B. tan(f(x)) and $\frac{1}{f(x)}$ are both discontinuous
 - C. tna(f(x)) and $f^{-1}(x)$ are both continous
 - D. an f(x) is continous but $f^{-1}(x)$ is not

Answer: C

34. Let f (x)=
$$\begin{cases} \frac{\left(e^{\frac{1}{x-2}-3}\right)}{\frac{1}{3^{x-2}}+1} & x>2\\ \frac{b\sin\left\{-x\right\}}{\left\{-x\right\}} & x<2\\ c & x=2 \end{cases}, \text{ where } \{.\} \text{ denotes fraction part}$$

function, is continuous at x=2, then b+c=

C. 2

B. 1

D. 4

Answer: A

Watch Video Solution

35. Let $f(x)=rac{e^{ an x}-e^x+\ln(\sec x+\tan x)-x}{\tan x-x}$ be a continous function at x=0. The value of f(0) equals:

A.
$$\frac{1}{2}$$

3.
$$\frac{2}{3}$$

$$\mathsf{C.}\ \frac{3}{2}$$

Answer: C

36. Let
$$f(x)=egin{cases} (1+ax)^{1/x} & x<0 \ & \frac{(x+c)^{1/3}-1}{(x+1)^{1/2}-1} & x>0 \end{cases}$$
, is continous at $x=0$, then $3(e^a+b+c)$ is equal to:

- A. 3
- B. 6
- C. 7
- D. 8

Answer: C

Watch Video Solution

- **37.** If $\sqrt{x+y}+\sqrt{y-x}=5, ext{ then } rac{d^2y}{dx^2}=$
 - $\mathsf{A.}\,\frac{2}{5}$
 - $\mathsf{B.}\;\frac{4}{25}$
 - $\mathsf{C.}\ \frac{2}{25}$
 - D. $\frac{1}{25}$

Answer: C

Watch Video Solution

38. If $f(x) = x^2 + x^4 + \log x$ and g is the inverse of f, then g'(2) is:

A. 8

B.
$$\frac{1}{8}$$

D. $\frac{1}{4}$

Answer: B

Watch Video Solution

39. The number of points at which the function,

not

- $f(x)=\left\{egin{array}{ll} \minig\{|x|,x^2ig\} \ \minig(2x-1,x^2ig\} \end{array}
 ight.$ if $x\in(-\infty,1)$ otherwise
 - differentiable is:
 - A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: B

40. If
$$f(x)$$
 is a function such that $f(x)+f^{\prime\prime}(x)=0$ and $g(x)=(f(x))^2+(f^{\prime}(x))^2$ and $g(3)=8,$ then $g(8)=$

C. 5

B. 3

D. 8

Answer: D

41. Let
$$f$$
 is twice differentiable on R such that $f(0)=1,\,f'\,'(0)=0$ and $f'(0)=-1,$ then

for any fixed n, the value of $\frac{d}{dx}f$ (n)(x) equals:

42. Let $f_1(x)=e^x$ and $f_{n+1}(x)=e^{f_n(\,x\,)}$ for any $n\geq 1,$ $n\in N.$ Then

 $a\in R, \ \lim_{x o\infty}\ \left(f\!\left(rac{a}{\sqrt{x}}
ight)
ight)^x=$

A. $e^{\,-\,e^2}$

 $\mathbf{R} \ \boldsymbol{e}^{\frac{a^2}{4}}$

 $C. e^{\frac{a^2}{2}}$

D. $e^{\,-\,2a^2}$

A. $f_n(x)$

B.
$$f_n(x)f_{n-1}(x)\ldots f_2(x)f_2(x)$$

C.
$$f_n(x) f_{n-1}(x)$$

D.
$$f_n(x)f_{n-1}(x).\ldots.f_2(x)f_1(x)e^x$$

Answer: B

Watch Video Solution

43. If $y= an^{-1}igg(rac{x^{1/3}-a^{1/3}}{1+x^{1/3}a^{1/3}}igg), x>0, a>0, then rac{dy}{dx}$ is:

A.
$$\frac{1}{x^{2/3}(1+x^{2/3})}$$

B.
$$\dfrac{3}{x^{2/3}ig(1+x^{2/3}ig)}$$

C.
$$\frac{1}{3x^{2/3}(1+x^{2/3})}$$

D.
$$\frac{1}{3x^{1/3}(1+x^{2/3})}$$

Answer: C

44. The value of
$$k+f(0)$$
 so that $f(x)=\left\{egin{array}{l} rac{\sin{(4k-1)\,x}}{3x},&x<0\\ rac{\tan{(4k+1)\,x}}{5x},&0< x<rac{\pi}{2}\\ 1,&x=0 \end{array}
ight.$

can be made continous at x=0 is:

Answer: B

45. If
$$y= an^{-1}igg(rac{x}{1+\sqrt{1-x^2}}igg), |x|\leq 1,$$
 then $rac{dy}{dx}atigg(rac{1}{2}igg)$ is:

A.
$$\frac{1}{\sqrt{3}}$$

C.
$$\frac{\sqrt{3}}{2}$$
D. $\frac{2}{\sqrt{3}}$

Answer: A

Watch Video Solution

- **46.** Let $f(x) = rac{e^x x \cos x x \log_e(1+x)x}{x^2}, x
 eq 0 If f(x)$ is continous at
- x=0, then f (0) is equal to:
 - A. 0

 - B. 1
 - C. -1
 - D. 2

Answer: A

47. A function $f(x)=\max{(\sin{x},\cos{x},1-\cos{x})}$ is non-derivable for n values of $x\in[0,2\pi]$. Then the vaue of n is:

A. 2

B. 1

C. 3

D. 4

Answer: C

Watch Video Solution

48. Let g be the inverse function of a differentiable function f and $G(x)=\frac{1}{g(x)}.$ If f(4)=2 and $f'(4)=\frac{1}{16},$ then the value of $(G'(2))^2$ equals to:

A. 1

B. 4

C. 16

D. 64

Answer: A

Watch Video Solution

49. If $f(x)=\max \left(x^4,x^2,\frac{1}{81}\right) \forall x\in [0,\infty),$ then the sum of square of reciprocal of all the values of x where f (x) is non-differentiable, is equal to:

A. 1

B. 81

C. 82

D. $\frac{82}{81}$

Answer: C

50. If f(x) is derivable at x=2 such that f(2)=2 and f'(2)=4, then the value of $\lim_{h\to 0} \frac{1}{h^2} \bigl(\ln f\bigl(2+h^2\bigr) - \ln f\bigl(2-h^2\bigr)\bigr)$ is equal to

A. 1

B. 2

C. 3

D. 4

Answer: D

Watch Video Solution

51. Let $f(x)=ig(x^2-3x+2ig)ig|ig[x^3-6x^2+11x-6ig)ig|+ig|\sin\Bigl(x+rac{\pi}{4}\Bigr)ig|.$

Number of points at which the function f (x) is non-differentiable in

A. 5

 $[0, 2\pi]$, is:

- B. 4
- C. 3
- D. 2

Answer: C

Watch Video Solution

- A. 28

then h'(1) is equal to:

- B. 24
- C. 32
- D. 18

Answer: C

Watch Video Solution

53. If $f(x)=rac{(x+1)^7\sqrt{1+x^2}}{\left(x^2-x+1
ight)^6},$ then the value of f'(0) is equal to:

54. Statement.1 : The function $f(x) = \lim_{n o \infty} \ rac{\log_e(1+x) - x^{2n}\sin(2x)}{1+x^{2n}}$

- A. 10
- B. 11
- C. 13
- D. 15

Answer: C

Watch Video Solution

is discontinuous at x=1

Statement.2: $L.~H.~L.~=R.~H.~L.~\neq f(1)$.

A. Statent:1 is ture, Statement:2 is true and Statement:2 is correct

explanation for Statement-1

B. Statement-1 is true, Statement-2 is true and Statement-2 is not the correct explanation for Statemetn-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement-2 is true

Answer: C

55. If $f(x) = \begin{bmatrix} x & \text{if x is rational} \\ 1-x & \text{if x is irrational} \end{bmatrix}$, then number of points

for $x \in R, ext{ where } y = f(f(x)) ext{ discontinous is:}$

A. 0

B. 1

C. 2

D. Infinitely many

Answer: A

Watch Video Solution

56. Number of points where $f(x)=\left\{egin{array}{ll} \max\left(\mid x^2-x-2,x^2-3x
ight) & x\geq 0 \\ \max\left(\ln(-x),e^x
ight) & x<0 \end{array}
ight.$ is non-differentiable will be:

A. 1

B. 2

C. 3

D. None of these

Answer: C

lf

the function

 $f(x)=-4e^{rac{1-x}{2}}+1+x+rac{x^2}{2}+rac{x^3}{3} \ ext{ and } g(x)=f^{-1}(x), \ ext{ then the}$ value of $g'\Big(rac{-7}{6}\Big)$ equals :

- A. $\frac{1}{5}$
- $\mathsf{B.}-\frac{1}{5}$
- $\mathsf{C.}\,\frac{6}{7}$
- D. $-\frac{6}{7}$

Answer: A

Watch Video Solution

58. Find k, if possible, so that

$$f(x)=egin{bmatrix} rac{\ln{(2-\cos{2x})}}{\ln^2{(1+\sin{3x})}} & x<0 \ k & x=0 ext{ is continious at } x=0. \ rac{e^{\sin{2x}-1}}{\ln{(1+ an{9x})}} & x>0 \end{cases}$$

A. $\frac{2}{3}$

B. $\frac{1}{9}$

 $C. \frac{2}{9}$

D. not possible

Answer: C

Watch Video Solution

59. A function is represented parametrically by the equations
$$x=rac{1+t}{t^3}; y=rac{3}{2t^2}+rac{2}{t}\dot{T}henthevalue of \left|rac{dy}{dx}-x\left(rac{dy}{dx}
ight)^3
ight|$$
 is______

- A. 2
- В. О
- **C.** 1

D.-2

Answer: C

60. If
$$y^{-2} = 1 + 2\sqrt{2}\cos 2x$$
, then :

$$rac{d^2y}{dx^2}=yig(py^2+1ig)ig(qy^2-1ig)$$
 then the vlaue of $(p+q)$ equals to:

- A. 7
- B. 8
- C. 9
- D. 10

Answer: D

Watch Video Solution

61. If $y^{-2} = 1 + 2\sqrt{2}\cos 2x$, then :

$$rac{d^2y}{dx^2}=yig(py^2+1ig)ig(qy^2-1ig)$$
 then the vlaue of $(p+q)$ equals to:

- **A.** 7
- B. 8

C. 9

D. 15

Answer: B

Watch Video Solution

- **62.** Let $f: R \to R$ is not identically zero, differentiable function and satisfy the equals d(xy) = f(x)f(y) and f(x+z) + f(x) + f(a), then f(5) =
 - A. 3
 - B. 5
 - C. 10
 - D. 15

Answer: B

63. If
$$y \left(x+\sqrt{1+x^2}\right)^n$$
 then $\left(1+x^2\right) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is:

64. Let $g(x)=f\Big(x-\sqrt{1-x^2}\Big)$ and $f'(x)=1-x^2$ then g'(x) equal

A.
$$n^2y$$

B.
$$y^{\,-\,n^2}$$

$$\mathsf{C}.-y$$

D.
$$2x^2y$$

Answer: A

Watch Video Solution

A.
$$1-x^2$$

to:

B.
$$\sqrt{1-x^2}$$

C.
$$2x\Big(x+\sqrt{x-x^2}\Big)$$

D.
$$2x\left(x-\sqrt{1-x^2}\right)$$

Answer: C

Watch Video Solution

- **65.** Let $f(x) = \lim_{n o \infty} rac{\log(2+x) x^{2n} \sin x}{1 + x^{2n}}.$ then
 - A. f (x) is continuous at x=1
 - B. $\lim_{x o 1} f(x) = \log, 3$
 - C. $\lim_{x
 ightarrow 1^+} f(x) = -\sin 1$
 - D. $\lim_{x\, o\,1^+}\,f(x)$ does not exist

Answer: C

66. Let f(x+y) = f(x)f(y) for all x and y, and f(5) = 2, f'(0) = 3,

then f'(5) is equal to:

A. 3

B. 1

C.-6

D. 6

Answer: C

67. Let
$$f(x) \lim_{x o \infty} \ \frac{\log, (2+x) - x^{2x} \sin x}{1 + x^{2n}}$$
 then:

A. f (x) continuous at
$$x=1$$

B.
$$\lim_{x o 1^-} f(x) = \log_e 3$$

C.
$$\lim_{x o 1^+} f(x) = -\sin 1$$

D. $\lim_{x \to 1^-} f(x)$ does not exist

Answer: C

Watch Video Solution

68. If
$$f(x)=\left\{egin{array}{ll} rac{x-e^x+1-(1-\cos2x)}{x^2} & x
eq0 \ k & x=0 \end{array}
ight.$$
 is continous at $x=0$ then

which of the following statement is false?

A.
$$k=rac{-5}{2}$$

$$\mathtt{B.}\left\{ k\right\} =\frac{1}{2}$$

$$\mathsf{C}.\left[k\right] = \, -\, 2$$

$$\operatorname{D.}[k]\{k\} = \frac{-3}{2}$$

Answer: C

69. Let $f(x) = \left|\left|x^2 - 10x + 21\right| - p\right|$, then the exhausive set of values

of for which f (x) has exactly 6 points of non-derivability, is:

A. $(4, \infty)$

B.(0,4)

C. [0, 4]

D. (-4, 4)

Answer: B

Watch Video Solution

70. If $f(x)=\sqrt{rac{1+\sin^{-1}x}{1- an^{-1}x}}, ext{ then } f'(0)$ is equal to:

A. 4

B. 3

C. 2

Answer: D

Watch Video Solution

- For $t\in(0,1), Let x=\sqrt{2^{\sin^{-1}(t)}}$ and $y=\sqrt{2^{\cos^{-1}(t)}}$ then
- $1+\left(rac{dy}{dx}
 ight)^2$ equals :

A.
$$\dfrac{x}{y^2}$$

B.
$$rac{y^2}{x^2}$$

C.
$$\dfrac{x^2+y^2}{y^2}$$
D. $\dfrac{x^2+y^2}{x^2}$

D.
$$\frac{x^2 + y^2}{x^2}$$

Answer: D

72. Let f(x) = -1 + |x-2| and g(x) = 1 - |x| then set of all possible value (s) of for which (fog) (x) is discontinuous is:

A.
$$\{0, 1, 2\}$$

B.
$$\{0, 2\}$$

D. an empty set

Answer: D

Watch Video Solution

73. If $f(x) = [x] \tan(\pi x)$ then f'(k') is equal to $(k \in \text{ and } [.]]$ denotes greatest integer function):

A.
$$(k-1)\pi(-1)^k$$

B.
$$k\pi$$

C.
$$k\pi(-1)^{k+1}$$

D.
$$(k-1)\pi(-1)^{k-1}$$

Answer: B

Watch Video Solution

74. If
$$f(x)=egin{bmatrix} rac{ae^{\sin x}+be^{-\sin x}-c}{x^2} & x
eq 0 \ 2 & x=0 \end{bmatrix}$$
 is continous at $x=0,\,$ then:

A.
$$a=b=c$$

$$\mathsf{B.}\,a=2b=3c$$

$$\mathsf{C.}\, a = b = 2c$$

D.
$$2a=2b=c$$

Answer: D

75. If
$$\tan x \cot y = \sec \alpha$$
 where α is constant $\alpha \in \Big(-\frac{\pi}{2}, \frac{\pi}{2}\Big) then \frac{d^2y}{dx^2} at\Big(\frac{\pi}{4}, \frac{\pi}{4}\Big)$ equal to:

and

- A. 0
- B. 1
- C. 2

D. 3

Answer: A

If y=(x-3)(x-2)(x-1) imes (x+1)(x+2)(x+3), then

- $rac{d^2y}{dx^2}atx=1$ is:
 - A. -101
 - B. 48
 - C. 56

Answer: C

Watch Video Solution

77. Leg f(x+y)=f(x)+f(y)f or $all x,y\in R,$ $f(x) iscont\in ueat x=0, show that f(x)$ is continuous at all x.

If

- A. all natural numbers only
- B. all integers only
- C. all rational numbers only
- D. all real numbers

Answer: D

78. If

 $f(x) = 3x^9 - 2x^4 + 2x^3 - 3x^2 + x + \cos x + 5$ and $g(x) = f^{-1}(x)$, then the value of g'(6) equals:

A. 1

B. $\frac{1}{2}$

C. 2

D. 3

Answer: A

Watch Video Solution

79. about to only mathematics

A.
$$\frac{d'f'' - f'g''}{(g')^2}$$
B. $\frac{g'f'' - f'g''}{(g')^3}$
C. $\frac{fg'' - g'f''}{(g')^3}$

D. None of these

Answer: B

Watch Video Solution

80. Let

$$f(x) = egin{bmatrix} x+1 & x<0 \ (x-1) & x\geq 0 \end{bmatrix}$$
 and $g(x) = egin{bmatrix} x+1 & x<0 \ (x-1)^2 & x\geq 0 \end{bmatrix}$ then

the number of points where g(f(x)) is not differentiable.

A. 0

B. 1

C. 2

D. None of these

Answer: C

81. $f(x)=[\sin x]+[\cos x]$, $x \in [0,2\pi]$, where [.] denotes the greatest integer function. Total number of point where f(x) is non-differentiable is equal to

A. 2

B. 3

C. 4

D. 5

Answer: D

Watch Video Solution

82. Let
$$f(x) = \cos x, g(x) = \left\{ egin{array}{ll} \min{\{f(t):0 \leq t \leq x\}}, & x \in [0,\pi] \\ (\sin x) - 1, & x > \pi \end{array}
ight.$$

Then

A. g (x) is discontinuous at $x=\pi$

B. g(x) is continous for $x \in [0,\infty)$

C. g(x) is differentiable at $x=\pi$

D. g(x) is differentiable for $x \in [0,\infty)$

Answer: B

Watch Video Solution

- **83.** If $f(x)=(4+x)^n, n\in N$ and f'(0) represents then r^{th} derivative of f(x)atx=0, then the value of $\sum_{r=0}^{\infty}\frac{f'(0)}{r!}$ is equal to :
 - A. 2^n
 - $B.3^n$
 - $\mathsf{C.}\,5^n$
 - D. 4^n

Answer: C

84. Let
$$f(x)=\left\{egin{array}{ll} rac{x}{1+|x|},&|x|\geq 1\ rac{x}{1-|x|},&|x|<1 \end{array}
ight.$$
 then domain of $f'(x)$ is:

A.
$$(-\infty,\infty)$$

B.
$$(-\infty,\infty)-\{-1,0,1\}$$

C.
$$(-\infty,\infty)-\{-1,1\}$$

D.
$$(-\infty,\infty)-\{0\}$$

Answer: C

85. If the function
$$f(x)=-4e^{rac{1-x}{2}}+1+x+rac{x^2}{2}+rac{x^3}{3} ext{ and } g(x)=f^{-1}(x),$$
 then the

value of
$$g'\left(\frac{-7}{6}\right)$$
 equals :

$$\mathsf{B.}-\frac{1}{5}$$

$$c. \frac{6}{7}$$

$$d. -\frac{6}{7}$$

Answer: A

Watch Video Solution

- 86. The number of points at which the function $f(x) = (x-|x|)^2(1-x+|x|)^2$ is not differentiable in the interval (-3, 4) is
 - A. Zero
 - B. One
 - C. Two
 - D. Three

Answer: A

87. If
$$f(x)=\sqrt{rac{1+\sin^{-1}x}{1-\tan^{-1}x}}, ext{ then } f'(0)$$
 is equal to:

A. 4

B. 3

C. 2

D. 1

Answer: D

Watch Video Solution

88. Use the following table and the fact that f(x) is invertible and differentiable everywhere to find $\left(f^{-1}(3)\right)$:

$$x \quad f(x) \quad f'(x)$$

A. 0

C.
$$\frac{1}{10}$$

Answer: B

Watch Video Solution

89. Let $f(x)=\left\{egin{array}{ll} x^n\Big(\sin\frac{1}{x},\Big) & x
eq 0 \\ 0, & x=0 \end{array}
ight.$ Such that f (x) is continuous at x=0, f'(0) is real and finite, and $\lim_{x o 0^+} f'(x)$ does not exist. The holds

true for which of the following values of n?

- A. 0
- B. 1
- C. 2
- D. 3

Exercise One Or More Than One Answer Is Are Correct

1. If
$$f(x)= an^{-1}ig(sgnig(x^2-\lambda x+1ig)ig)$$
 has exactly one point of discontinuity, then the value of λ can be:

B. - 1

C. 2

D.-2

Answer: C::D

$${f 2.}\, f(x) = egin{cases} 2(x+1) & x \leq -1 \ \sqrt{1-x^2} & -1 < x < 1 ext{, then:} \ |||x|-1|-1| & x \geq 1 \end{cases}$$

A. f (x) is non-differential at exactly three points

B. f (x) is continous in $(-\infty, 1]$

C. f(x) is differentiable in $(-\infty, -1]$

D.f (x) is finite type of discontinuity at x=1, but continous at

$$x = -1$$

Answer: A::C::D

Watch Video Solution

3. Let
$$f(x)=egin{bmatrix} rac{x\left(3e^{1/x}+4
ight)}{2-e^{1/x}} & (x
eq 0) \ x=0 \end{bmatrix} x
eq rac{1}{\ln 2}$$
 which of the

following statement (s) is/are correct?

A. f (x) is continous atx = 0

B. f(x) is non-dervable at x=0

C. $f'(0^+) = -3$

D. $f'(0^-)$ does not exist

Answer: A::B::C

Watch Video Solution

- **4.** Let $|f(x)| \leq \sin^2 x, \ \forall x \in R$, then
 - A. f (x) is continous at x=0
 - B. f (x) is differentiable at x=0
 - C. f(x) is continous but not differentiable at x=0
 - D. f(0) = 0

Answer: A::B::D

Watch Video Solution

5. Let
$$f(x)=egin{bmatrix} rac{a\left(1-x\sin x
ight)+b\cos x+5}{x^2} & x<0 \ \left(1+\left(rac{dx+dx^3}{dx^2}
ight)
ight)^{rac{1}{x}} & x>0 \ \end{pmatrix}$$

If f is continous at x=0 then correct statement (s) is/are:

A.
$$a + c = -1$$

B. b + x = -4

C. a + b = -5

D. c + d = an irrational number

Answer: A::B::C::D

Watch Video Solution

6. If f(x) = |||x|-2|+p| have more than 3 points non-derivability then

the value of p can be:

A. 0

B. - 1

 $\mathsf{C.}-2$

D. 2

Answer: B::C

7. Identify the options having correct statement:

A.
$$f(x) = {}^3\sqrt{x^2|x|} - 1|x|$$
 is nowhere non-differentiable

B.
$$\lim_{x o \infty} \; (x+5) an^{-1}(x+1) \Big) - ig((x+1) an^{-1}(x+1)ig) = 2\pi$$

C.
$$f(x) = \sin\Bigl(\ln\Bigl(x+\sqrt{x^2+1}\Bigr)\Bigr)$$
 is an odd function

D.
$$f(x)=rac{4-x^2}{4x-x^3}$$
 is discontinous at exactly one point

Answer: A::B::C

8. A twice differentiable function f(x) is denined for all real numbers and satisfies following conditions the

:

$$f(0)=2,\,f^{\,\prime}(0)=\,-\,5\, ext{ and }\,f^{\,\prime\,\prime}(0)=3.$$
 The function g(x) is defined by

$$g(x)=e^{ax}+f(x)\,orall\,x\in R$$
, where 'a' is any constant. If $g^{\,\prime}(0)+g^{\,\prime\,\,\prime}(0)=0$. Then the value/values of a is/are

A. 1

B. - 1

C. 2

D.-2

Answer: A::D

Watch Video Solution

9. If $f(x) = |\sin x|$, then

A. differentiable everwhere

B. not differentiable at $x=n\pi n,\ \in I$

C. not diffentiable at x=0

D. continous at x=0

Answer: A::D

10. Let [] donots the greatest integer function and $f(x) = \left[an^2 x
ight],$

then

A. $\lim_{x o 0} f(x)$ does not exist

B. f (x) is continuous at x=0

C. f (x) is not differentiable at x=0

D. f'(0) = 0

Answer: B::D

Watch Video Solution

11. Let $f\!:\!R o R$ be a function, such that $|f(x)|\leq x^{4n}, n\in N\,orall\,n\in R$

then f(x) is:

A. discontinous at x=0

B. continous at x=0

C. non-differentiable at x=0

D. differentiable at x=0

Answer: B::D

Watch Video Solution

12. Let f(x) = [x] and g(x) = 0 when x is an integer and $g(x) = x^2$ when x is not an integer ([] is ghe greatest integer function) then:

- A. $\lim_{x o 1} g(x)$ exists, but g (x) is not continous at x=1
- B. $\lim_{x o 1} f(x)$ does not exist
- C. g(g(x)) is continous for all x
- D. d(g(x)) is continous for all x

Answer: A::B

13. let the function f be defined by $f(x)=\left\{egin{array}{ll} p+qx+x^2,& x<2\\ 2px+3qx^2,& x\geq 2 \end{array}
ight.$

Then:

A. f (x) is continous in R if
$$3p+10q=4$$

B. f (x) is differentiable in R if
$$p=q=rac{4}{13}$$

C. If
$$p=\,-\,2,\,q=1,\,$$
 then f(x) is continuos in R

D. f (x) is differentiable in R if
$$1p+11q=4$$

Answer: A::B::C

14. Let
$$f(x) = |2x-9| + |2x+9|$$
. Which of the following are true ?

A. f (x) is not differerntiable at
$$x=rac{9}{2}$$

B. f (x) is not differentiable at
$$x=rac{-9}{2}$$

C. f (x) is not diffentiable at
$$x=0$$

D. f (x) is differentiable at
$$x=\dfrac{-9}{2},0,\dfrac{9}{2}$$

Watch Video Solution

15. Let $f(x) = \max \left(x, x^2 x^3\right) \in -2 \leq x \leq 2$. Then:

A. f (x) is continous in $-2 \leq x \leq 2$

B. f(x) is not differentiable at x=1

C.
$$f(\,-1)+f\Bigl(rac{3}{2}\Bigr)=rac{35}{8}$$

D.
$$f(\,-1)f'\!\left(rac{3}{2}
ight)=rac{-35}{4}$$

Answer: A::B::C

Watch Video Solution

16. If f(x) be a differentiable function satisfying $f(y)f\Big(rac{x}{y}\Big)=f(x)\ orall\ , xy\in R, y
eq 0 \ ext{and}\ f(1)
eq 0, f(1)=3, ext{ then}$

A. sgn (f(x)) is non-differentiable at exactly one point

B.
$$\lim_{x \to 0} \frac{x^2(\cos x - 1)}{f(x)} = 0$$

C. f(x) = x has 3 solutions

D. $f(f(x)) - f^3(x) = 0$ has infinitely many solutions

Answer: A::B::C::D

Watch Video Solution

17. Let $f(x)=\left(x^2-3x+2\right)\left(x^2+3x+2\right)$ and α,β,γ satisfy $\alpha<\beta\gamma$ are the roots of f'(x)=0 then which of the following is/are correct ([.] denots greatest integer function)?

A.
$$[lpha]=-2$$

$$\mathrm{B.}\left[\beta\right]=\ -1$$

C.
$$[\beta]0$$

D.
$$[lpha]=1$$

Answer: A::C

Watch Video Solution

18. let the function f be defined by $f(x)=egin{cases} p+qx+x^2,&x<2\ 2px+3qx^2,&x\geq 2 \end{cases},$

Then:

A. f (x) is continous in R if 3p+10q=4

B. f(x) is differentiable in R is $p=q=rac{4}{13}$

C. If p=-2, q=1, then f(x) is continous in R

D. f (x) is differentiable in R is 2p+11q=4

Answer: A::B::C

Watch Video Solution

19. Let $y=e^xs\in x^3+(tanx)^x\dot{F}\in d\dfrac{dy}{dx}$.

A.

$$e^{x\sin\left(x^3
ight)}\left[3x^3\cos\left(x^3
ight)+\sin\left(x^3
ight)
ight]+(\tan x)^x[\ln an x+2x\cos ec 2x]$$

В.

$$e^{x\sin\left(x^3
ight)}\left[x^3\cos\!\left(x^3
ight)+\sin\!\left(x^3
ight)
ight]+(\tan x)^x[\ln\tan x+2x\cos ec 2x]$$

C.
$$e^{x\sin\left(x^3
ight)}\left[x^3\sin\!\left(x^3
ight)+\sin\!\left(x^3
ight)
ight]+(\tan x)^x[\ln\tan x+2\cos ec2x]$$

$$\mathsf{D.}\,e^{x\sin\left(x^3\right)}\left[3x^3\cos\!\left(x^3\right)+\sin\!\left(x^3\right)\right]+\left(\tan x\right)^x\!\left[\ln\tan x+\frac{x\sec^2}{\tan x}\right]$$

Answer: A::D

Watch Video Solution

20. Let

$$f(x) = x + (1-x)x^3 + (1-x)ig(1-x^2ig)x^3 + + (1-x)ig(1-x^2ig).$$

then:

A.
$$f(x) = -\prod_{r=1}^n (1-n^r)$$

B.
$$f(x)=1-\prod_{r=1}^n\left(1-x^r
ight)$$

C.
$$\dfrac{ab}{\lambda}=3$$

Answer: A::B::C::D

A. a + b = -3

B. a - b = 1

21. Let $f(x)=egin{bmatrix} x^2+a & 0\leq x<1 \ 2x+b & 1< x<2 \end{bmatrix}$ and $g(x)=egin{bmatrix} 3x+b & 0\leq x<1 \ x^3 & 1< x<2 \end{bmatrix}$ If derivative of f(x) w.r.t. g(x)atx = 1 exists and is equal to λ , then

C. $f(x)=f(x)igg(\prod_{r=1}^nrac{rx^{r-1}}{(1-x^r)}igg)$

D. $f'(x) = f(x) \Biggl(\Biggl(\prod_{r=1}^n rac{rx^{r-4}}{(1-x^r)} \Biggr)$

Answer: B::C

- **Watch Video Solution**

22. If
$$f(x)=egin{bmatrix} rac{\sin{\left[x^2
ight]\pi}}{x^2-3x+8}+ax^3+b & 0\leq x\leq 1 \ 2\cos{\pi}x+\tan^{-1}x & 1< x\leq 2 \end{bmatrix}$$
 is differentiable in

[0,2] then: ([.] denotes greatest integer function)

A.
$$a=rac{1}{3}$$
B. $a=rac{1}{6}$

c.
$$b = \frac{\pi}{4} - \frac{13}{6}$$

D.
$$b=rac{\pi}{4}-rac{7}{3}$$

Answer: B::C

Watch Video Solution

23. If
$$f(x) = egin{cases} 1+x & 0 \leq x \leq 2 \\ 3x-2 & 2 < x \leq 3 \end{cases}$$
, then $f(f(x))$ is not differentiable

at:

A.
$$x = 1$$

$$B. x = 2$$

 $C. x = \frac{5}{2}$

D. x = 3

Watch Video Solution

f(x) = (x+1)(x+2)(x+3)....(x+100) and g(x) = f(x)f''(x) - f(x)

Let

Let n be the numbers of real roots of
$$g(x)=0$$
, then:

24.

A.
$$n < 2$$

 $\mathsf{C.}\,n<100$

B. n > 2

 $\mathsf{D}.\,n>100$

Answer: A::C

25.

is discontinuous at exactly one point, then -

 $f(x) = \{|x| - 3x < 1|x - 2| + ax \geq 1\&g(x) = \{2 - |x|x < 2sgn(x) - bx\}\}$

If

A.
$$a = -3, b = 0$$

C.
$$a=2, b=1$$

B. a = -3, b = -1

D.
$$a = 0, b = 1$$

Answer: A::B::C::D

Watch Video Solution

26. Let f (x) be a continous function in [-1, 1] such that

$$f(x) = egin{bmatrix} rac{\ln{(ax^2+bx+c)}}{x^2} & -1 \leq x < 0 \ 1 & x = 0 & ext{Then which of the following} \ rac{\sin{\left(e^{x^2}-1
ight)}}{x^2} & 0 < x \leq 1 \end{cases}$$

is/are corrent

A.
$$a + b + c = 0$$

$$B. b = a + c$$

$$C. c = 1 + b$$

D.
$$b^2 + c^2 = 1$$

Answer: C::D

Watch Video Solution

27. f (x) is differentiable function satisfying the relationship $f^2(x)+f^2(y)+2(xy-1)=f^2(x+y)\, orall x,\,y\in R$

Also $f(x)>0\, \forall x\in R$ and $f\left(\sqrt{2}\right)=2.$ Then which of the following statement (s) is/are correct about f(x) ?

A.
$$[f(3)]=3([.\,]$$
 denotes greatest integer function)

B.
$$f(\sqrt{7}) = 3$$

C. f(x) is even

D.
$$f'(0) = 0$$

Answer: A::B::C::D

Watch Video Solution

28. The function $f(x) = \left[\sqrt{1-\sqrt{1-x^2}}\right]$, (where [.] denotes greatest integer function):

A. has domain [-1, 1]

B. is discontinous at two points in its domain

C. is discontinous at x=0

D. is discontinous at x=1

Answer: A::B::D

Watch Video Solution

29. A function f(x) satisfies the relation $f(x+y)=f(x)+f(y)+xy(x+y),\ orall x,y\in R.$ If f'(0) = - 1, then

A. f (x) is a polynomial funciton

B. f (x) is an exponetial function

C. f (x) is twice differentiable for all $x \in R$

D. f'(3) = 8

Answer: A::C::D

Watch Video Solution

- **30.** The points of discontinuities of $f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right] \sin\left[\frac{\pi}{6},\pi\right]$ is/are:(where [.] denotes greattest integer function)
 - A. $\frac{\pi}{6}$
 - $\operatorname{B.}\frac{\pi}{3}$
 - $\mathsf{C.}\,\frac{\pi}{2}$

D. π

Answer: B::C

31. Check the continuity of f(x) =
$$\begin{cases} \frac{x^2}{2} & \text{if } 0 \le x \le 1 \\ 2x^2 - 3x + \frac{3}{2} & \text{if } 1 < x \le 2 \end{cases}$$
 at

A.
$$f(x), f'(x)$$
 are continous

B.
$$f'(x)$$
 is continous, $f''(x)$ is not continous

C.
$$f''(x)$$
 is continous

D.
$$f''(x)$$
 is non differentiable

Answer: A::B::D

x = 1

32. If
$$x=\phi(t),y=\psi(t),\ ext{then}\ rac{d^2y}{dx^2}=$$
 A. $rac{\phi'\psi'\,'-\psi'\phi'\,'}{\left(\phi'
ight)^2}$

B.
$$\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^3}$$
C.
$$\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$$
D.
$$\frac{\psi''}{(\phi')^2} - \frac{\psi'\phi''}{(\phi')^3}$$

Answer: B::D

integer function. Then

A. gof is continous for all x

B. gof is not continous for all x

33. f(x)=[x] and $g(x)=\left\{egin{array}{ll} 0,&x\in I\\ x^2,& \mathscr{C}I \end{array}
ight.$ where [.] dentoes the greatest

C. fog is continous everywhere

D. fog is not continous everywhere

Answer: A

34. Let $f\colon R^+ \to R$ defined as $f(x) = e^x + \ln x$ and $g = f^{-1}$ then correct statement (s) is/are:

A.
$$g''(e) = \frac{1-e}{{(1+e)}^3}$$

B.
$$g''(e) \frac{e-1}{(1+e)^3}$$

C.
$$q'(e) = e + 1$$

$$\mathsf{D}.\,g^{\,\prime}(e)=\frac{1}{e+1}$$

Answer: A::D

Watch Video Solution

35. Let
$$f(x)=egin{bmatrix} rac{3x-x^2}{2} & x<2 \ [x-1] & 2\leq x<3 : ext{ then which of the} \ x^2-8x+17 & x\geq 3 \end{bmatrix}$$

following hold(s) good?

A.
$$\lim_{x \to 2} f(x) = 1$$

B. f(x) is differentiable at x=2

C. f(x) is continous at x=2

D. f(x) is discontinous at x=3

Answer: A::C::D

Watch Video Solution

Exercise Comprehension Type Problems

1. Let $f(x) = \lim_{n \to \infty} n^2 \tan \left(\ln \left(\sec \frac{x}{n} \right) \right)$ and $g(x) = \min \left(f(x), \{x\} \right)$

(where {.} denotes fractional part function)

Left derivative of $\phi(x)=e^{\sqrt{2f(x)}}atx=0$ is:

A. 0

B. 1

C. -1

D. Does not exist

Answer: C

Watch Video Solution

(where {.} denotes fractional part function)

2. Let $f(x) = \lim_{n \to \infty} \, n^2 an \Bigl(\ln\Bigl(\secrac{x}{n}\Bigr) \Bigr) \,$ and $\, g(x) = \, \min \, \left(f(x), \{x\} \right) \,$

Number of points in $x \in [\,-1,2]$ at which g (x) is discontinous :

- A. 2
- B. 1
- C. 0
- D. 3

Answer: A

3. Let f(x) and g(x) be two differentiable functions, defined as:

$$f(x) = x^2 + xg'(1) + g''(2)$$
 and $g(x) = f(1)x^2 + xf'(x) + f''(x)$.

The value of f(1) + g(-1) is:

A. 0

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

4. Let f(x) and g(x) be two differentiable functions, defined as:

$$f(x) = x^2 + xg'(1) + g''(2) \ \ ext{and} \ \ g(x) = f(1)x^2 + xf'(x) + f''(x).$$

The number of integers in the domain of the function

$$F(x) = \sqrt{-rac{f(x)}{g(x)} + \sqrt{3-x}}$$
 is:

B. 1

C. 2

D. Infinite

Answer: C

Watch Video Solution

5. Define: $f(x)=ig|x^2-4x+3ig|\ln x+2(x-2)^{1/3}, x>0$ $h(x)=egin{cases} x-1,&x\in Q\ x^2-x-2,&x ot\in Q \end{cases}$

f(x) is non-differentiable at..... points and the sum of corresponding ${\sf x}$ value (s) is

A. 3, 6

B. 2, 3

C. 2, 4

D. 2, 5

Answer: D

Watch Video Solution

6. Define: $f(x) = \left| x^2 - 4x + 3 \right| \ln x + 2(x-2)^{1/3}, x > 0$

$$h(x) = \left\{ egin{array}{ll} x-1, & x \in Q \ x^2-x-2, & x
ot lpha Q \end{array}
ight.$$

h (x) is discontinous at $x = \ldots$

A. $1 + \sqrt{2}$

 $\mathsf{B.}\tan\frac{3\pi}{8}$

 $\mathsf{C.}\tan\frac{7\pi}{8}$

D. $\sqrt{2} - 1$

Answer: D

7. Consider a function defined in [-2,2]

$$f(x)=\begin{cases} \{x\} & -2\leq x<-1\\ |sgnx| & -1\leq x\leq 1\\ \{-x\} & 1< x\leq 2 \end{cases}, \ \ \text{where} \ \ \text{(.)} \ \ \text{denotes the fractional}$$
 part function.

The total number of points of discontinuity of f(x) for $x \in [-2,2]$ is:

- A. 0
- B. 1
- C. 2
- D. 4

Answer: B

Watch Video Solution

8. Consider a function defined in [-2,2]

$$f(x) = egin{cases} \{x\} & -2 \leq x < -1 \ |sgnx| & -1 \leq x \leq 1 \ \{-x\} & 1 < x \leq 2 \end{cases}$$
 , where {.} denotes the fractional

part function.

The total number of points of discontinuity of f(x) for $x \in [-2,2]$ is:

A. 0

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

9. Consider a function f(x) in $[0,2\pi]$ defined as :

$$f(x) = egin{bmatrix} [\sin x] + [\cos x] & 0 \leq x \leq \pi \ [\sin x] - [\cos x] & \pi < x \leq 2\pi \end{bmatrix}$$

where {.} denotes greatest integer function then.

Number of points where f(x) is non-derivable :

A. 2

B. 3

C. 4

D. 5

Answer: B

Watch Video Solution

10. Consider a function f(x) in $[0,2\pi]$ defined as :

$$f(x) = egin{bmatrix} [\sin x] + [\cos x] & 0 \leq x \leq \pi \ [\sin x] - [\cos x] & \pi < x \leq 2\pi \end{bmatrix}$$

where [.] denotes greatest integer function then.

$$\lim_{x o \left(rac{3\pi}{2}
ight)^+} \,, f(x)$$
 equals

A. 0

B. 1

 $\mathsf{C.}-1$

D. 2

Answer: C

11. Let
$$f(x)=egin{cases} x[x] & 0\leq x<2 \ (x-1) & 2\leq x\leq 3 \end{cases}$$
 where [x]= greatest integer less

than or equal to x, then:

The number of values of x for $x \in [0,3]$ where f(x) is dicontnous is:

- A. 0
- B. 1
- C. 2
- D. 3

Answer: C

Watch Video Solution

12. Let $f(x) = \begin{cases} x[x] & 0 \le x < 2 \\ (x-1) & 2 \le x \le 3 \end{cases}$ where [x]= greatest integer less

than or equal to x, then:

The number of values of x for $x \in [0,3]$ where f(x) is non-differentiable is:

13. Let $f(x)=\left\{egin{array}{ll} x[x] & 0\leq x<2 \\ (x-1) & 2\leq x\leq 3 \end{array}
ight.$ where [x]= greatest integer less

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

than or equal to x, then:

The number of integers in the range of y = f(x) is:

A. 3

B. 4

C. 5

D. 6

Answer: A

Watch Video Solution

14. Let $f \colon R o R$ be a continous and differentiable function such that

f(x+y) = f(x). $F(y) \forall x, y, f(x) \neq 0$ and f(0) = 1 and f'(0) = 2.

Let f(xy)=g(x). G(y) $\forall x,y$ and g'(1)=2. $g(1)\neq =0$

Identify the correct option:

A. $f(2)=e^4$

 $\mathsf{B.}\,f(2)=2e^2$

 $\mathsf{C.}\,f(1)<4$

D. f(3) > 729

Answer: A

15. Let $f\colon R\to R$ be a continous and differentiable function such that f(x+y)=f(x). F(y) $\forall x,y,f(x)\neq 0$ and f(0)=1 and f'(0)=2.

Let g(xy) = g(x). $g(y) \forall x, y$ and g'(1) = 2. $g(1) \neq 0$

Identify the correct option:

A.
$$q(2) = 2$$

B.
$$g(3) = 3$$

$$C. g(3) = 9$$

D.
$$q(3) = 6$$

Answer: C

Watch Video Solution

16. Let $f \colon R o R$ be a continous and differentiable function such that

 $f(x+y) = f(x). \, F(y) \, \forall x, y, f(x) \neq 0 \, \text{ and } \, f(0) = 1 \, \text{ and } \, f'(0) = 2.$

Let g(xy)=g(x). $g(y)\,\forall x,y$ and g'(1)=2. $g(1)\neq=0$

The number of values of x, where f(x)g(x):

A. 0

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

17. $f(x)=rac{\cos^2x}{1+\cos x+\cos^2x}$ and $g(x)=k\tan x+(1-k)\sin x-x$, where $k \in R, g'(x) =$

$$1 + \cos x$$

$$h \in B \quad \alpha'(x)$$

A.
$$\dfrac{(1-\cos x)(f(x)-k)}{\cos x}$$
B. $\dfrac{(1-\cos x)(k-f(x))}{\cos x}$

C.
$$\dfrac{(1-\cos x)(k-f(x))}{f(x)}$$

D.
$$\dfrac{(1-\cos x)(k-f(x))}{\left(f(x)
ight)^2}$$

Answer: C

Watch Video Solution

18. Let $f(x) \frac{\cos^2 x}{1 + \cos + \cos^2 x}$ and $g(x)\lambda \tan x + 1(1 - \lambda)\sin x - x$, where $\lambda \in R \ ext{and} \ x \in [0, \pi/2]$.

$$g^{\,\prime}(x)$$
 equals

A.
$$[1, \infty)$$

B.
$$[0, \infty)$$

$$\mathsf{C}.\left[rac{1}{2},\infty
ight)$$

D.
$$\left[\frac{1}{3},\infty\right)$$

Answer: D

19. Let f and g be two differentiable functins such that:

$$f(x) = g'(1)\sin x + (g''(2) - 1)x$$

$$g(x) = x^2 - f'\Bigl(rac{\pi}{2}\Bigr)x + f'\Bigl(-rac{\pi}{2}\Bigr)$$

The number of solution (s) of the equation f(x)=g(x) is/are :

- A. 1
- B. 2
- C. 3
- D. infinite

Answer: B

Watch Video Solution

20. Let f and g be two differentiable functins such that:

$$f(x) = g'(1)\sin x + (g''(2) - 1)x$$

$$g(x)=x^2-f'\Bigl(rac{\pi}{2}\Bigr)x+f'\Bigl(-rac{\pi}{2}\Bigr)$$

A. $\frac{\pi}{2} + 1$

B. $\frac{\pi}{2}$

 $g(x) = x^2 - f'\left(rac{\pi}{2}
ight)x + f'\left(-rac{\pi}{2}
ight)$

If $\phi(x)=f^{-1}(x)$ then $\phi'\Big(rac{\pi}{2}+1\Big)$ equals to :

21. Let f and g be two differentiable functins such that:
$$f(x) = g'(1) \sin x + (g''(2) - 1)x$$

 $h\Big(rac{\pi}{2}\Big)=1$ then $\left|h\Big(rac{2\pi}{3}\Big)
ight|$ is:

A. $3\sqrt{2}$

B. $2\sqrt{3}$

C. $\sqrt{3}$

D. $\frac{1}{\sqrt{3}}$

If $\int \frac{g(\cos x)}{f(x)-x} dx = \cos x + \ln(h(x)) + C$ where C is constant and

C. 1

D. 0

Answer: C

Watch Video Solution

22. Suppose a function f(x) satisfies the following conditions

$$f(x+y)=rac{f(x)+f(y)}{f+f(x)f(y)}$$
' $orall x,y\in R$ and $f'(0)=1$

Also
$$-1 < f(x) < 1, \forall x \in R$$

f(x) increases in the complete interval:

A.
$$($$
 $-\infty,$ $-1)\cup($ $-1,0)\cup(0,1)\cup(1,\infty)$

B.
$$(-\infty, \infty)$$

C. (
$$-\infty,1)\cup(-1,0)$$

D.
$$(0, 1) \cup (1, \infty)$$

Answer: B

23. Suppose a function f(x) satisfies the following conditions

$$f(x+y)=rac{f(x)+f(y)}{f+f(x)f(y)}$$
 ' $orall x,y\in R$ and $f'(0)=1$

Also
$$-1 < f(x) < 1, \ \forall x \in R$$

The value of the limit $lt_{x o \infty} (f(x))^x$ is:

- A. 0
- B. 1
- C. e
- D. e^2

Answer: B

Watch Video Solution

24. Let f(x) be a polynomial satisfying $\lim_{x o\infty} rac{x^4f(x)}{x^8+1}=3$ f(2)=5, f(3)=10, f(-1)=2, f(-6)=37

The value of $\lim_{x o -6} \, rac{f(x) - x^2 - 1}{3(x+6)}$ equals to:

B.
$$\begin{vmatrix} 6 \\ - \end{vmatrix}$$

 $A.- \mid 6$

D.
$$\frac{\left| -6 \right|}{2}$$

__

Answer: D

Watch Video Solution

Watch Video Solution

25. Let f(x) be a polynomial satisfying $\lim_{x\to\infty}\frac{x^4f(x)}{x^8+1}=3$

number of points of discontinuity of discontinuity of

f(2) = 5, f(3) = 10, f(-1) = 2, f(-6) = 37

 $f(x)=rac{1}{x^2+1-f(x)}$ in $\left[rac{-15}{2},rac{5}{2}
ight]$ equals:

В. 3

A. 4

C. 1

D. 0

Answer: B

Watch Video Solution

26. Consider $f(x) = x^{\ln x}$, and $g(x) = e^2 x$. Let α and β be two values

of x satisfying f(x) = g(x)(lpha < eta)

 $\lim_{x o eta} rac{f(x) - eta^2}{g(x) - eta^2} = l$ then the value of x -l equals to:

A. $4 - e^2$

B. e%(2)-4

C.4-e

D. e-4

Answer: B

27. Consider $f(x)=x^{\ln x}, \ \ ext{and} \ \ g(x)=e^2x.$ Let $lpha \ \ ext{and} \ \ eta$ be two values

of x satisfying
$$f(x) = g(x)(lpha < eta)$$

If
$$h(x)=rac{f(x)}{g(x)}$$
 then $h^{\,\prime}(lpha)$ equals to:

A. e

$$B.-e$$

 $\mathsf{C.}\,3e$

D.-3e

Answer: D

Watch Video Solution

28. Let $f_nx+f_n(y)=rac{x^n+y^n}{x^ny^n}orall x,y\in R-\{0\}.$ where $n\in N$ and $g(x)=\max\left\{f_2(x),f_3(x),rac{1}{2}
ight\}orall x\in R-\{0\}$

The number of values of x for which g(x) is non-differentiable $(x \in R - \{0\})$:

B. 2

C.
$$\sqrt{2}$$

D. 4

Answer: B

Watch Video Solution

29. Let $f_nx+f_n(y)=rac{x^n+y^n}{x^ny^n}orall x,y\in R-\{0\}.$ where $n\in N$ and $g(x) = \; \max \, \left\{ f_2(x), f_3(x), rac{1}{2}
ight\} orall x \in R - \{0\}$

The number of values of x for which g(x) is non-differentiable $(x \in R - \{0\})$:

- A. 3
- B. 4
- C. 5
- D. 1

Answer: A

Watch Video Solution

Exercise Matching Type Problems

1. Let a function $f(x)=[x]\{x\}-|x|$ where $[.],\{.\}$ are greatest integer and fractional part respectively then match the following List-I with List-II.

-	Column-I		Column-II
(A)	f(x) is continuous at x equal to	(P)	3
(B)	$\left \frac{4}{3}\right _{2}^{3} f(x) dx$ is equal to	(Q)	1

(C)	If $g(x) = x - 1$ and if $f(x) = g(x)$ where $x \in (-3, \infty)$, then number of solutions	(R)	4 1999
(D)	If $l = \lim_{x \to 4^+} f(x)$, then $-l$ is equal to	(S)	2

Column-I		Column-II	
(A)	$\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{\frac{2x+1}{2x-1}} =$	(P)	$\frac{1}{2}$
(B)	$\lim_{x \to 0} \frac{\log_{\sec x/2} \cos x}{\log_{\sec x} \cos \frac{x}{2}} =$	(Q)	2
(C)	Let $f(x) = \max(\cos x, x, 2x - 1)$ where $x \ge 0$ then number of points of non-differentiability of $f(x)$ is	(R)	5
(D)	If $f(x) = [2 + 3\sin x]$, $0 < x < \pi$ then number of points at which the function is discontinuous, is	(S)	16

2.

$$f(x) = ax(x-1) + b \hspace{0.1in} x < 1$$

3. The function
$$=x-1$$
 $1 \leq x \leq 3$ $=px^2+qx+2$ $x>3$

- if (i) f (x) is continous for all x
- (ii) f'(1) does not exist
- (iii) f'(x) is continous at x=3, then

_	Column-I	- A	Column-II
(A)	a cannot has value	(P)	1/3
(B)	b has value	(Q)	0
(C)	p has value	(R)	-1
(D)	q has value	(S)	1

Exercise Subjective Type Problems

except x=1 but |f(x)| is differentiable everywhere and f'(x) is continous at x=3 and |a+p+q|=k, then k=

2. If
$$y=\sinig(8\sin^{-1}xig)$$
 then $ig(1-x^2ig)rac{d^2y}{dx^2}-xrac{dy}{dx}={}-ky,$ where k =

3. If
$$y^2=4ax, ext{ then } rac{d^2y}{dx^2}=rac{ka^2}{y^2}, where k^2=$$

4. The number of values of $x,x\in[-2,3]$ where $f(x)=\big[x^2\big]\sin(\pi x)$ is discontinous is (where [.] denotes greatest integer function)

5. If f(x) is continous and differentiable in [-3,9] and $f'(x) \in [-2,8] \, \forall x \in (-3,9)$. Let N be the number of divisors of the greatest possible value of f(9)-f(-3), then find the sum of digits of N.

6. In $f(x)=ig[ig(\cos x^2,\,,x<0ig),\,ig(\sin x^3-ig|x^3-1ig|,\,x\ge0ig)$ then find the number of points where g(x)=f(|x|) is non-differentiable.

7.

 $f(x)=x^2+ax+3 \,\, ext{and}\,\,\, g(x)=x+b \,\, ext{and}\,\,\, F(x)=\lim_{n o\infty}\,\,rac{f(x)+x^{2n}g(x)}{1+x^{2n}}$ If F(x) is continuous at x=-1, then

Consider

Watch Video Solution

8. Let $f(x) = \left\{ egin{array}{ll} 2-x, & -3 \leq x \leq 0 \\ x-2, & 0 < x < 4 \end{array}
ight.$ Then f^{-1} (x) is discontinous at x=

- function, then the value of f'(8) is
 - Watch Video Solution
- **10.** Let f(x)= signum (x) and $g(x)=xig(x^2-10x+21ig),$ then the number of points of discontinuity of f[q(x)] is

9. If $f(x)+2f(1-x)=x^2+2\,orall x\in R$ and f(x) is a differentiable

11. If
$$rac{d^2}{dx^2}igg(rac{\sin^4x+\sin^2x+1}{\sin^2x+sinx+1}igg)=a\sin^2x+b\sin x+c$$
 then the value of $b+c-a$ is

 $f(x) = a\cos(\pi x) + b, f'igg(rac{1}{2}igg) = \pi \ ext{ and } \int_{1/2}^{3/2} f(x) dx = rac{2}{\pi} + 1,$

lpha(x)=f(x)-f(2x) and eta(x)=f(x)-f(4x) and lpha'(1)=5lpha'(2)=5l

Let

then find the value of
$$-\frac{12}{\pi} \left(\frac{\sin^{-1} a}{3} + \cos^{-1} b \right)$$
.

13.

then find the vlaue of $\beta'(1)-10$

14. Let
$$f(x)=-4$$
. $e^{\frac{1-x}{2}}+\frac{x^3}{3}+\frac{x^2}{2}+x+1$ and g be inverse function of f and $h(x)=\frac{a+bx^{3/2}}{x^{5/4}}, h'(5)=0,$ then $\frac{a^2}{5b^2g'\left(\frac{-7}{a}\right)}=$

15. If
$$y=3^{2\sin^{-1}}$$
 then $\left| \dfrac{(x^2-1)y^-+xy'}{y} \right|$ is equal to

g''(o).

17. In $f(x)=ig[ig(\cos x^2,\,,x<0ig),ig(\sin x^3-ig|x^3-1ig|,\,x\ge0ig)$ then find the number of points where g(x)=f(|x|) is non-differentiable.

16. Let $f(x)=x+rac{x^2}{2}+rac{x^3}{3}+rac{x^4}{4}+rac{x^5}{5}$ and let $g(x)=f^{-1}(x)$. Find

18. For the curve
$$\sin x+\sin y=1$$
 lying in first quadrant. If $\lim_{x\to 0}x^{lpha}\frac{d^2y}{dx^2}$ exists and non-zero than $2lpha=$

19. Let
$$f(x)=x an^{-1}ig(x^2ig)+x^4$$
 Let $f^k(x)$ denotes k^{th} derivative of $f(x)$ w.r.t. $x,k\in N.$ If

$$f^{2m}$$
 (0) != 0, m belongs to N, then m =

20. If
$$x=\cos\theta$$
 and $y=\sin^3\theta$, then $\left|\frac{yd^2y}{dx^2}+\left(\frac{dy}{dx}\right)^2\right|at\theta=\frac{\pi}{2}$ is:

$$f(x) = \sqrt{x\sqrt{8x-16}} + \sqrt{x-\sqrt{8x-16}}$$
 is not differentiable is:

- **22.** The number of non differentiability of runction $f(x)=\min\left(|x|,\{x\},\left|x-\frac{3}{2}\right|\right)$ for $x\in(0,2),$ where [.] and {.} denote greatest integer function and fractional part function respectively.
 - Watch Video Solution