©゙doubtnut

MATHS

BOOKS - VK JAISWAL ENGLISH

ELLIPSE

Exercise 1 Single Choice Problems

1. If $C F$ be the perpendicular from the centre C
of the ellipse $\frac{x^{2}}{12}+\frac{y^{2}}{8}=1$, on the tangent at any point P and G is the point where the
normal at P meets the major axis, then the
value of $(C F \cdot P G)$ equals to :
A. 5
B. 6
C. 8
D. None of these

Answer: C
(Watch Video Solution
2. The minimum length of intercept on any
tangent to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ cut by the circle $x^{2}+y^{2}=25$ is :
A. 8
B. 9
C. 2
D. 11

Answer: A

D Watch Video Solution

3. Find a point on the curve $x^{2}+2 y^{2}=6$ whose distance from the line $x+y=7$, is minimum.
A. $(2,3)$
B. $(2,1)$
C. $(1,0)$
D. None of these

Answer: B

D Watch Video Solution
4. If lines $2 x+3 y=10$ and $2 x-3 y=10$ are tangents at the extremities of a latus rectum of an ellipse, whose centre is origin, then the length of the latus rectum is:

$$
\begin{aligned}
& \text { A. } \frac{110}{27} \\
& \text { B. } \frac{98}{27} \\
& \text { C. } \frac{100}{27} \\
& \text { D. } \frac{120}{27}
\end{aligned}
$$

Answer: C

5. Prove that the area bounded by the circle $x^{2}+y^{2}=a^{2}$ and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to the area of another ellipse having semi-axis $a-b$ and $b, a>b$.
A. $a+b$ and b
B. $a-b$ and a
C. a and b
D. None of these

Answer: B

D Watch Video Solution

6. If F_{1} and F_{2} are the feet of the perpendiculars from the foci $S_{1} a n d S_{2}$ of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ on the tangent at any point P on the ellipse, then prove that $S_{1} F_{1}+S_{2} F_{2} \geq 8$.
A. $S_{1} F_{1}+S_{2} F_{2} \geq 2$
B. $S_{1} F_{1}+S_{2} F_{2} \geq 3$
C. $S_{1} F_{1}+S_{2} F_{2} \geq 6$

$$
\text { D. } S_{1} F_{1}+S_{2} F_{2} \geq 8
$$

Answer: D

D Watch Video Solution

7.

Consider
the
ellipse
$\frac{x^{2}}{f\left(k^{2}+2 k+5\right)}+\frac{y^{2}}{f(k+11)}=1$. If $f(x)$ is
a positive decr4easing function, then the set
of values of k for which the major axis is the $\mathrm{x}-$ axis is $(-3,2)$. the set of values of k for
which the major axis is the y-axis is $(-\infty, 2)$.
the set of values of k for which the major axis
is the y-axis is $(-\infty,-3) \cup(2, \infty)$ the set of values of k for which the major axis is the y -
axis is $(-3,-\infty$,
A. $k \in(-7,-5)$
B. $k \in(-5,-3)$
C. $k \in(-3,2)$
D. None of these

Answer: C
8. If area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ inscribed in a square of side length $5 \sqrt{2}$ is A,
then $\frac{A}{\pi}$ equals to :
A. 12
B. 10
C. 8
D. 11

- Watch Video Solution

9. Any chord of the conic $x^{2}+y^{2}+x y=1$ passing through origin is bisected at a point (p, q), then $(p+q+12)$ equals to :
A. 13
B. 14
C. 11
D. 12
10. Tangents are drawn from the point $(4,2)$ to
the curve $x^{2}+9 y^{2}=9$, the tangent of angle between the tangents:

$$
\begin{aligned}
& \text { A. } \frac{3 \sqrt{3}}{5 \sqrt{17}} \\
& \text { B. } \frac{\sqrt{43}}{10} \\
& \text { C. } \frac{\sqrt{43}}{5} \\
& \text { D. } \sqrt{\frac{3}{17}}
\end{aligned}
$$

- Watch Video Solution

Exercise 2 Comprehension Type Problems

1. An ellipse hase semi-major of length 2 and semi-minor axis of length 1 . It slides between
the coordinates axes in the first quadrant while mantaining contact with both x-axis and y-axis. The locus of the centre of the ellipse is

$$
\text { A. } x^{2}+y^{2}=3
$$

$$
\text { B. } x^{2}+y^{2}=5
$$

$$
\begin{aligned}
& \text { C. }(x-2)^{2}+(y-1)^{2}=5 \\
& \text { D. }(x-2)^{2}+(y-1)^{2}=3
\end{aligned}
$$

Answer: B

D Watch Video Solution

2. An ellipse hase semi-major of length 2 and semi-minor axis of length 1 . It slides between
the coordinates axes in the first quadrant while mantaining contact with both x-axis and y-axis. The locus of the centre of the ellipse is
A. $x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}=16$
B. $x^{2}+y^{2}+\frac{1}{x^{2}}-\frac{1}{y^{2}}=2 \sqrt{3}+4$
C. $x^{2}+y^{2}-\frac{1}{x^{2}}-\frac{1}{y^{2}}=2 \sqrt{3}+4$
D. $x^{2}-y^{2}+\frac{1}{x^{2}}-\frac{1}{y^{2}}=2 \sqrt{3}+4$

Answer: A

D Watch Video Solution

3. A coplanar beam of ligth emerging from a point source has the equation
$\lambda x-y+2(1+a \lambda)-0, \lambda \in R$. The rays of
the beam strike an elliptical surface and get reflected. The reflected rays form another convergent beam having eqution
$\mu x-y+2(1-\mu)=0, \mu \in R$. Further, it is
found that the foot of the perpendicular from
the point $(2,2)$ upon any tangent to the ellipse
lies on the circle $x^{2}+y^{2}-4 y-5=0$

The eccentricity of the ellipse of is equal to

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{2}{3}
\end{aligned}
$$

D. $\frac{1}{2}$

Answer: C

D Watch Video Solution

4. A coplanar beam of ligth emerging from a point source has the equation
$\lambda x-y+2(1+a \lambda)-0, \lambda \in R$. The rays of
the beam strike an elliptical surface and get reflected. The reflected rays form another convergent beam having eqution
$\mu x-y+2(1-\mu)=0, \mu \in R$. Further, it is
found that the foot of the perpendicular from
the point $(2,2)$ upon any tangent to the ellipse
lies on the circle $x^{2}+y^{2}-4 y-5=0$

The eccentricity of the ellipse of is equal to
A. $4 \sqrt{5}$
B. $\sqrt{5}$
C. $3 \sqrt{5}$
D. $2 \sqrt{5}$

Answer: D
5. A coplanar beam of ligth emerging from a point source has the equation
$\lambda x-y+2(1+a \lambda)-0, \lambda \in R$. The rays of
the beam strike an elliptical surface and get reflected. The reflected rays form another convergent beam having eqution $\mu x-y+2(1-\mu)=0, \mu \in R$. Further, it is
found that the foot of the perpendicular from
the point $(2,2)$ upon any tangent to the ellipse
lies on the circle $x^{2}+y^{2}-4 y-5=0$

The eccentricity of the ellipse of is equal to
A. 6
B. 3
C. $\sqrt{5}$
D. $2 \sqrt{5}$

Answer: A

D Watch Video Solution

1. For the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Let O be centre and S and S^{\prime} be the foci. For any point P on the ellipse the value of $P S . P S^{\prime} d^{2}$ (where d is the distance of O from the tangent at P) is equal to

D Watch Video Solution

2. Number of perpendicular tangents that can
be drawn on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ from point $(6,7)$ is

Watch Video Solution

