

MATHS

BOOKS - VK JAISWAL ENGLISH

FUNCTION

Single Choice Problems

1. Range of the function $f(x) = \log_{\sqrt{2}} \bigl(2 - \log_2 16 \sin^2 x + 1\bigr)$ is:

- A. [0, 1]
- $\texttt{B.}\,(\,-\infty,1]$
- $\mathsf{C}.\,[\,-1,\,1]$
- D. $(-\infty,\infty)$

Answer: B

2. The value of a and b for which $\left|e^{\left|x-b
ight|}-a
ight|=2,\,\,$ has four distinct solutions, are :

A.
$$a\in(-2,\infty),b=0$$

B. $a\in(2,\infty),b=0$
C. $a\in(3,\infty),b\in R$
D. $a\in(2,\infty)b=0$

Answer: C

Watch Video Solution

3. The range of the function : $f(x) = an^{-1}x + rac{1}{2} \sin^{-1}x$

A.
$$(-\pi/2,\pi/2)$$

B. $[-\pi/2,\pi/2] - \{0\}$

C.
$$[-\pi/2,\pi/2]$$

D.
$$(\,-3\pi\,/\,4,\,3\pi\,/\,4)$$

Answer: C

4. Find the number of real ordered pair (s) (x,y) for which :

 $16^{x^2+y}+16^{x+y^2}=1$

A. 0

B. 1

C. 2

D. 3

Answer: B

5. The range of values of 'a' such that $\left(rac{1}{2}
ight)^{|x|}=x^2-a$ is satisfied for

maximum number of values of 'x'

A. $(-\infty, -1)$ B. $(-\infty, \infty)$ C. (-1, 1)D. $(-1, \infty)$

Answer: D

Watch Video Solution

6. For a real number x let [x] denoutes the greatest interger less than or equal to x, let $f\colon R o R$ be defined by $f(x)=2x+[x]+\sin\cos x,$ then f is :

A. One-one but not onto

B. onto but not one-one

- C. Both one-one and onto
- D. Neither one-one nor onto

Answer: A

Watch Video Solution

7. The maximum value of
$$\sec^{-1}\left(rac{7-5ig(x^2+3ig)}{2(x^2+2)}
ight)$$
 is:

A.
$$\frac{5\pi}{6}$$

B. $\frac{5\pi}{12}$
C. $\frac{7\pi}{12}$
D. $\frac{2\pi}{3}$

۲

Answer: D

8. Number of ordered pair (a,b) the set $A = \{1, 2, 3, 4, 5\}$ so that the functon $f(x) = \frac{x^3}{3} + \frac{a}{2}x^2 + bx + 10$ is an injective mapping $\forall x \in R$: A. `13 B. 14 C. 15 D. 16

Answer: C

Watch Video Solution

9. let A be the greatest value of the function $f(x) = \log_x[x]$, (where [.] denotes gratest integer function) and B be the least value of the function $g(x) = |\sin x| + |\cos x|$, then :

A. A > B

 $\mathsf{B.}\, A < B$

 $\mathsf{C}.\, A=B$

D.2A + B = 4

Answer: C

10. Let $A=[a,\infty)$ denotes domain, then $f\colon [a,\infty) o B,\, f(x)=2x^3+6$ will have an inverse for then smallest real values of a, if:

A. $a=1,B=[5,\infty)$

B. $a = 2, B = [10, \infty)$

$$\mathsf{C}.\,a=0,B=[6,\infty)$$

D.
$$a=\,-1,B=[1,\infty)$$

Answer: A

11. Solution of the inequation $\{x\}(\{x\}-1)(\{x\}+2)\geq 0$

where $\{.\}$ denots fractin part function) is :

A. $x\in(\,-2,1)$

B. $x \in I$ (I denote set of integers)

 $\mathsf{C}.\,x\in[0,1)$

D. $x\in [-2,0)$

Answer: B

Watch Video Solution

12. Let f(x), g(x) be two real valued functions then the function $h(x) = 2 \max \{f(x) - g((x), 0\} \text{ is equal to }:$

A.
$$f(x) - g(x) - |g(x) - f(x)|$$

B. $f(x) + g(x) - |g(x) - f(x)|$

C.
$$f(x)-g(x)+|g(x)-f(x)|$$

D. $f(x)+g(x)+|g(x)-f(x)|$

Answer: C

Watch Video Solution

13. Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation the set $A = \{1, 2, 3, 4\}$. The relation R is (a). a function (b). reflexive (c). not symmetric (d). transitive

A. a function

B. reflexive

C. not symmetric

D. transitive

Answer: C

14. The true set of valued of 'K' for which $\sin^{-1}\left(\frac{1}{1+\sin^2 x}\right) = \frac{k\pi}{6}$ may have a solution is : (a). $\left[\frac{1}{4}, \frac{1}{2}\right]$ (b). [1, 3] (c). $\left[\frac{1}{6}, \frac{1}{2}\right]$ (d). [2, 4]

- A. $\left[\frac{1}{4}, \frac{1}{2}\right]$ B. [1, 3]C. $\left[\frac{1}{6}, \frac{1}{2}\right]$
- $\left\lfloor \frac{1}{6}, \frac{1}{2} \right\rfloor$

D.[2, 4]

Answer: B

15. A real valued function f(x) satisfies the functional equation f(x - y) = f(x)f(y) - f(a - x)f(a + y), where a is a given constant and f(0)=1, f(2a-x) =?

A. -f(x)

 $\mathsf{B.}\,f(x)$

C. f(a) + f(a - x)D. f(-x)

Answer: A

Watch Video Solution

16. Let $g \colon R o R$ be given by g(x) = 3 + 4x if $g^n(x) = ext{ gogogo.....og}$ (x)

n times. Then inverse of $g^n(x)$ is equal to :

A.
$$(x + 1 - 4^n)$$
. 4^{-n}

B. $(x - 1 + 4^n)4^{-n}$

C.
$$(x + 1 + 4^n)4^{-n}$$

D. None of these

Answer: A

17. Let f:D o R bge defined as $:f(x)=rac{x^2+2x+a}{x^2+4x+3a}$ where D and R denote the domain of f and the set of all the real numbers respectively. If

f is surjective mapping. Then the complete range of a is :

A. $0 < a \le 1$ B. $0 < a \le 1$ C. $0 \le a < 1$ D. 0 < a < 1

Answer: D

Watch Video Solution

18. Let $f\colon [2,\,\infty) o X$ be defined by $f(x)=4x-x^2$. Then, f is invertible, if $X=~[2,~\infty)$ (b) $(~-\infty,~2]$ (c) $(~-\infty,~4]$ (d) $[4,~\infty)$

A.
$$2-\sqrt{4-x}$$

B. $2 + \sqrt{4-x}$ C. $-2 + \sqrt{4-x}$ D. $-2 - \sqrt{4-x}$

Answer: A

Watch Video Solution

19. IF $[5\sin x] + [\cos x] + 6 = 0$, then range of $f(x) = \sqrt{3}\cos x + \sin x$ corresponding to solution set of the given equation is: (where [.] denotes greatest integer function)

A.
$$[-2, -1]$$

B. $\left(-\frac{3\sqrt{3}+2}{5}, -1\right)$
C. $[-2, -\sqrt{3})$
D. $\left(-\frac{3\sqrt{3}+4}{5}, -1\right)$

Answer: D

20. If $f: R \to R$ where $f(x) = ax + \cos x$ is an invertible function, then (a). $(-2, -1] \cup [1, 2);$ (b). [-1, 1]; (c). $(-\infty, -1] \cup [1, \infty);$ (d). $(-\infty, -2] \cup [2, \infty).$ A. $(-2, -1] \cup [1, 2)$ B. [-1, 1]C. $(-\infty, -1] \cup [1, \infty)$ D. $(-\infty, -2] \cup [2, \infty)$

Answer: C

21.Therangeof
$$f(x) = [1 + \sin x] + [2 + sin \frac{x}{2}] + [3 + sin \frac{x}{3}] + [n + sin \frac{x}{n}] \forall x \in [3, 3]$$
, where [.] denotes the greatest integer function, is,

$$\left\{ \frac{n+n-2^2}{2}, \frac{n(n+1)}{2} \right\} \left\{ \frac{n(n+1)}{2} \right\} \left\{ \frac{n(n+1)}{2}, \frac{n^2+n+2}{2} \right\}$$

$$\left[\frac{n(n+1)}{2}, \frac{n^2+n+2}{2} \right]$$

$$A. \left\{ \frac{n^2+n-2}{2}, \frac{n(n+1)}{2} \right\}$$

$$B. \left\{ \frac{n(n+1)}{2} \right\}$$

$$C. \left\{ \frac{n(n+1)}{2}, \frac{n^2+n+2}{2}, \frac{n^2+n+4}{2} \right\}$$

$$D. \left\{ \frac{n(n+1)}{2}, \frac{n^2+n-2}{2} \right\}$$

Answer: D

Watch Video Solution

22. Let $f\!:\!R o R,\,$ where $f(x)=rac{x^2+ax+1}{x^2+x+1}.$ Then the complete set

of values of 'a' such that f(x) is onto is :

A. $(-\infty,\infty)$

B. $(-\infty, 0)$

 $\mathsf{C}.\left(0,\infty
ight)$

D. not possible

Answer: D

Watch Video Solution

23. Let
$$A = \{1, 2, 3\}$$
 and $B = \{a, b\}$

what is the number of non empty relations from A to B

Answer: C

Watch Video Solution

25. Which of the following function is homogeneous ?

A.
$$f(x) = x \sin y + y \sin x$$

B. $g(x) = xe^{rac{y}{x}} + ye^{rac{x}{y}}$
C. $h(x) = rac{xy}{x+y^2}$
D. $\phi(x) = rac{x - y \cos x}{y \sin x + y}$

Answer: B

26. Let
$$f(x)=egin{bmatrix} 2x+3 & x>1 \ lpha^2x+1 & x\leq 1 \end{bmatrix}$$
 If range of $f(x)=R$ (set of real

numbers) then number orf integral value(s), which lpha any take :

A. 2

- B. 3
- C. 4

D. 5

Answer: C

27. The maximum integral values of x in the domain of $f(x) = \log_{10} \left(\log_{1/3} (\log_4 (x-5)) \text{ is : (a). 5 (b). 7 (c). 8 (d). 9} \right)$

A. 5	
B. 7	
C. 8	
D. 9	

Answer: C

Watch Video Solution

28. Range of the function
$$f(x) = \log_2\left(\frac{4}{\sqrt{x+2}+\sqrt{2-x}}\right)$$
 is $(a). (0, \infty)$
(b). $\left[\frac{1}{2}, 1\right]$ (c). $[1, 2]$ (d). $\left[\frac{1}{4}, 1\right]$
A $(0, \infty)$
B. $\left[\frac{1}{2}, 1\right]$
C. $[1, 2]$
D. $\left[\frac{1}{4}, 1\right]$

Answer: B

29.	Number	of	integers	stastifying	the	equation		
$\left x^2+5x ight +\left x-x^2 ight =\left 6x ight $ is:								
A. 3	1							
B. 5	i							
C. 7	,							
D. 9)							
Answer: C								

30. If $A=\{2,1\}, ext{ find } A imes A imes A$

Watch Video Solution

31. Which of the following function is periodic with fundamental period π

?

A.
$$f(x) = \cos x \left| \frac{\sin x}{2} \right|$$
, where [.] denotes greatest integer function
B. $g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x|$
C. $h(x) = \{x\} + |\cos x|$, where {.} denotes functional part function
D. $\phi(x) = |\cos x| + \ln(\sin x)$

Answer: B

Watch Video Solution

32. Let
$$f: N \to Z$$
 and $f(x) = \begin{bmatrix} \frac{x-1}{2} & \text{when x is odd} \\ -\frac{x}{2} & \text{when x is even} \end{bmatrix}$, then:

(a). f (x) is bijective (b).f (x) is injective but not surjective (c).f (x) is not injective but surjective (d).f (x) is neither injective nor subjective

A. f (x) is bijective

B. f (x) is injective but not surjective

C. f (x) is not injective but surjective

D. f (x) is neither injective nor subjective

Answer: A

33. Let
$$g(x)$$
 be the inverse of $f(x) = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}}$ then g (x) be :

A.
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

B.
$$-\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

C.
$$\log_2\left(\frac{2+x}{2-x}\right)$$

D.
$$\log_2\left(\frac{2-x}{2+x}\right)$$

Answer: C

34. Which of the following is the graph of the curve $\sqrt{|y|} = x$ is ?

Answer: B

35. Domain of
$$f(x) = \log_{\left(x
ight)}\left(9 - x^{2}
ight)$$
 is :

36. If $e^x + e^{f(x)} = e$, then for f(x) domain is:

Watch Video Solution

37. If high voltage current is applied on the field given by the graph y + |y| - x - |x| = 0. on which of the following curve a person can move so that the remains safe ?

A.
$$y = x^2$$

$$\mathsf{B}.\,y=sgn\big(-e^2\big)$$

$$\mathsf{C}.\, y = \log_{1\,/\,3} x$$

D.
$$y=m+|x|,m>3$$

Answer: D

Watch Video Solution

38. If
$$f(x) + 6 - x^2] = |f(x)| + |4 - x^2| + 2$$
, then f(x) is necessarily non-negative for:

H.
$$x \in [-2, 2]$$

B. $xn(-\infty, -2) \cup (2, \infty)$
C. $x \in [-\sqrt{6}, \sqrt{6}]$
D. $x \in [-5, -2] \cup [2, 5]$

Answer: A

39. Let $f(x) = \cos x + \sin px$ be periodic, then p must be :

(a).Positive real number (b). Negative real number (c).Rational (d).Prime

A. Positive real number

B. Negative real number

C. Rational

D. Prime

Answer: C

Watch Video Solution

40. The domain of f(x)is(0,1). Then the domain of $(f(e^x) + f(1n|x|))$ is

$$(a)(-1,e)$$
 (b). $(1,e)$ (c) . $(-e,\ -1)$ (d) $(-e,1)$

A. $\left(rac{1}{e},1
ight)$ B. (-e,1)C. $\left(-1,\,-rac{1}{e}
ight)$

$$\mathsf{D}.\,(\,-\,e,\,\,-\,1)\,\cup\,(1,\,e)$$

Answer: B

Watch Video Solution

41. Let
$$A = \{1, 2, 3, 4\}$$
 and $f: A \to A$ satisfy
 $f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1$. Suppose $g: A \to A$ satisfies
 $g(1) = 3$ and $fog = gof$, then $g =$
(a). $\{(1, 3), (2, 1), (3, 2), (4, 4)\}$ (b). $\{(1, 3), (2, 4), (3, 1), (4, 2)\}$
(c). $\{(1, 3), (2, 2), (3, 4), (4, 3)\}$ (d). $\{(1, 3), (2, 4), (3, 2), (4, 1)\}$
A. $\{(1, 3), (2, 1), (3, 2), (4, 4)\}$
B. $\{(1, 3), (2, 4), (3, 1), (4, 2)\}$
C. $\{(1, 3), (2, 2), (3, 4), (4, 3)\}$
D. $\{(1, 3), (2, 4), (3, 2), (4, 1)\}$

Answer: B

42. Number of solutions of the equation, $[y + [y]] = 2\cos x$ is: (where $y = 1/3)[\sin x + [\sin x + [\sin x]]]$ and [] = greatest integer function) (a). 0 (b) 1 (c) 2 (d) ∞

A. 0

B. 1

C. 2

D. Infinite

Answer: A

Watch Video Solution

43. The function
$$f(x) = \left\{ rac{(x^{2n})}{(x^{2n}sgnx)^{2n+1}} \left(rac{e^{rac{1}{x}} - e^{rac{1}{x}}}{e^{rac{1}{x}} + e^{-rac{1}{x}}}
ight) \! x
eq 0n \in N$$

is:

A. Odd function

B. Even function

C. Neither odd nor even function

D. Constant function

Answer: B

Watch Video Solution

44. Let $A = \{1, 2\}, B = \{1, 2, 3\}, c = \{5, 6\}$ and $d = \{5, 6, 7\}$ verify

that

A imes C is a subset of B imes D

45. Let
$$f(x) = rac{x}{\sqrt{1+x^2}}$$
 then ubrace(fo fo foof)(x)`is :

A.
$$rac{x}{\sqrt{1+ig(\sum_{r=1}^n rig)x^2}}$$

B.
$$rac{x}{\sqrt{1+ig(\sum_{r=1}^n 1ig)x^2}}$$

C. $ig(rac{x}{\sqrt{1+x^2}}ig)^n$
D. $rac{n\pi}{\sqrt{1+\pi x^2}}$

Answer: B

46. Let $f \colon R o R$, then $f(x) = 2x + |\cos x|$ is:

(a).One-one into (b).One-one and onto

(c).May-one and into (d).Many-one and onto

A. One-one into

B. One-one and onto

C. May-one and into

D. Many-one and onto

Answer: B

47. Let $f\colon R o R$ be a function defined by $f(x)=x^3+x^2+3x+\sin x.$

Then f is

A. One-one end into

B. One-one and onto

C. Many-one and into

D. many-one and onto

Answer: B

Watch Video Solution

48. If $f(x) = \{x\} + \{x + 1\} + \{x + 2\}$ $\{x + 99\}$, then the value of $\left[f(\sqrt{2})\right]$ is, where (.) denotes fractional part function & [.] denotes the greatest integer function (a).5050 (b).4950 (c).41 (d).14

A. 5050

B. 4950

C. 41

D. 14

Answer: C

Watch Video Solution

49. If $|\cot x + \cos ecx| = |\cot x| + |\cos ecx|, x \in [0, 2\pi]$, then complete set of values of x is : (a). $[0, \pi]$ (b). $\left(0, \frac{\pi}{2}\right]$ (c). $\left(0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right)$ (d). $\left(\pi, \frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$

A. $[0,\pi]$

B. $\left(0, \frac{\pi}{2}\right]$ C. $\left(0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right)$ D. $\left(\pi, \frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$

Answer: C

50. The function f(x) = 0 has eight dinstict real solution and f also satisfy f(4+x) = f(4-x). The sum of all the eight solution of f(x) = 0 is :

(a). 12 (b). 32 (c). 16 (d). 15

A. 12

B. 32

C. 16

D. 15

Answer: B

51. Let f(x) polynomial of degree 5 with leading coefficient unity such that f(1)=5, f(2)=4,f(3)=3,f(4)=2,f(5)=1, then f(6) is equal to (a).0 (b). 24 (c). 120 (d). 720

A. 0

B. 24

C. 120

D. 720

Answer: C

Watch Video Solution

52. Let $f\colon A o B$ be a function such that $f(x)=rac{(c)}{\sqrt{x-2}}+\sqrt{4-x,}$

is invertible, then which of the following is not possible ?

A.
$$A=[3,4]$$

B.A = [2, 3]

C.
$$A=\left[2,2\sqrt{3}
ight]$$

D. $\{2, 2\sqrt{2}\}$

Answer: C

53. Find the number of positive integral values of x satisfying $\left[\frac{x}{9}\right] = \left[\frac{x}{11}\right]$ is where [.] -=Gl.F) (a). 21 (b). 22 (c). 23 (d). 24

A. 21

B. 22

C. 23

D. 24

Answer: D
54. The domain of function $f(x) = \log_{\left\lfloor x + rac{1}{2}
ight
ceil} ig(2x^2 + x - 1ig), ext{ where } [.]$

denotes the greatest integer function is :

A. $\left[\frac{3}{2},\infty\right)$ B. $(2,\infty)$ C. $\left(-\frac{1}{2},\infty\right) - \left\{\frac{1}{2}\right\}$ D. $\left(\frac{1}{2},1\right) \cup (1,\infty)$

Answer: A

55. The solution set of the equation $\left[x
ight]^2+\left[x+1
ight]-2=0,\;$ where $\left[.\;
ight]$ represents greatest integeral function is :

A.
$$[-1,o) \cup [1,2)$$

$${\tt B}.\,[\,-2,\ -1)\cup[1,2]$$

 $\mathsf{C}.\,[1,\,2]$

D.
$$[-3, -2) \cup [2, 3)$$

Answer: B

56. Which among the following relations is a function ?

A.
$$x^2+y^2=r^2$$

B. $rac{x^2}{a^2}+rac{y^2}{b^2}=r^2$
C. $y^2=4ax$
D. $x^2=dxy$

Answer: D

57. A function $f\colon R o R$ is defined as $f(x)=3x^2+1.$ then $f^{-1}(x)$ is :

A.
$$rac{\sqrt{x-1}}{3}$$

B. $\left(rac{1}{2}\sqrt{x}-1
ight)$

C. f^{-1} does not exist

D.
$$\sqrt{rac{x-1}{3}}$$

Answer: C

Watch Video Solution

$$\begin{aligned} \mathbf{58.} & \text{If} \begin{cases} 2+x, \ x \geq 0 \\ 4-x, \ x < 0 \end{cases}, \text{ a then } f(f(x)) \text{ is given by :} \\ \text{A. 1)} & f(f(x)) = \begin{cases} 4+x, \ x \geq 0 \\ 6-x, \ x < 0 \end{cases} \\ \text{B. 2)} & f(f(x)) = \begin{cases} 4+x, \ x \geq 0 \\ x, \ x < 0 \end{cases} \\ \text{C. 3)} & f(f(x)) = \begin{cases} 4-x, \ x \geq 0 \\ x, \ x < 0 \end{cases} \\ \text{D. 4)} & f(f(x)) = \begin{cases} 4-x, \ x \geq 0 \\ x+2x, \ x < 0 \end{cases} \end{aligned}$$

Answer: A

- 59. The function $f\!:\!R o R$ defined as $f(x)=rac{3x^2+3x-4}{3+3x-4x^2}$ is :
- (a) One to one but not onto
- (b) Onto but not one to one
- (c) Both one to one and onto
- (d)Neither one to one nor onto
 - A. One ot one buty not onto
 - B. Onto but not one to one
 - C. Both one to one and onto
 - D. Neither one to one nor onto

Answer: B

60. The number of solutions of the equation $e^x - \log \lvert x \rvert = 0$ is :

A. 0	
B. 1	
C. 2	
D. 5	

Answer: B

Watch Video Solution

61. If complete solution set of $e^{-x} \leq 4 - xis[lpha, eta]$ is equal to : (where [.]

denotes greatest integer function)

A. 0

B. 2

C. 1

D. 4

Answer: C

62. Range of
$$f(x) = \sqrt{\sin(\log_7(\cos(\sin x)))}$$
 is:

A. [0, 1]

B. $\{0, 1\}$

C. {0}

D. [1, 7]

Answer: C

Watch Video Solution

63. If the domain of y = f(x)is[-3, 2], then find the domain of g(x) = f(|[x]|), where [.] denotes the greatest integer function.

A. [-3,2]

B.[-2,3)

C. [-3, 3]

 $\mathsf{D}.\left[\,-2,3
ight]$

Answer: B

64. Range of the function
$$f(x) = \cot^{-1}\{-x\} + \sin^{-1}\{x\} + \cos^{-1}\{x\}$$
, where {.} denotes

fractional part function:

A.
$$\left(\frac{3\pi}{4}, \pi\right)$$

B. $\left[\frac{3\pi}{4}, \pi\right)$
C. $\left[\frac{3\pi}{4}, \pi\right]$
D. $\left(\frac{3\pi}{4}, \pi\right]$

Answer: D

65.

$$f{:}R-\left\{rac{3}{2}
ight\}
ightarrow R, f(x)=rac{3x+5}{2x-3}. \ Let f_1(x)=f(x), f_n(x)=f(f_{n-1}(x))$$

for $\pi\geq 2, n\in N,$ then $f_{2008}(x)+f_{2009}(x)=$

A.
$$\frac{2x^2 + 5}{2x - 3}$$

B. $\frac{x^2 + 5}{2x - 3}$
C. $\frac{2x^2 - 5}{2x - 3}$
D. $\frac{x^2 - 5}{2x - 3}$

Answer: A

Watch Video Solution

66. Range of the function,
$$f(x)=rac{ig(1+x+x^2ig)ig(1+c^4ig)}{x^3}, ext{ for } x>\ =0$$

is :

A. $[0,\infty]$

 $\mathsf{B}.\left[2,\infty\right]$

 $\mathsf{C}.\,[4,\infty]$

D. $[6,\infty]$

Answer: D

Watch Video Solution

67. The function $f\colon(-\infty,3] o \left(o,e^7
ight]$ defined by $f(x)=e^{x^3-3x^2-9x+2}$

is

A. Many one and onto

B. Many one and into

C. One to one and onto

D. One to one and into

Answer: A

68. Find the domain and range of function

$$f(x) = \sin \Biggl(\log_e \Biggl(rac{\sqrt{4-x^2}}{1-x} \Biggr) \Biggr)$$

A. [-1,1]

- B. [0, 1]
- $\mathsf{C}.\,[\,-1,1)$

D. None of these

Answer: A

69. Set of values of 'a' for which the function $f\colon R o R,\,$ given by $f(x)=x^3+(a+2)x^2+3ax+10$ is one-one is given by :

A.
$$(-\infty,1]\cup[4,\infty)$$

B. [1, 4]

 $\mathsf{C}.\left[1,\infty
ight]$

D. $[-\infty, 4]$

Answer: B

Watch Video Solution

70. If the range of the function $f(x) = \tan^{-1} \left(3x^2 + bx + c \right)$ is $\left[0, \frac{\pi}{2} \right)$,

(domain is R), then:

A. $b^2=3c$ B. $b^2=4c$ C. $b^2=12c$

 $\mathsf{D}.\,b^2=8c$

Answer: C

71. Let $f(x) = \sin^{-1}x - \cos^{-1}x$, then the set of values of k for which of |f(x)| = k has exactly two distinct solutions is :

A.
$$(0, \pi]$$

B. $\left(0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
D. $\left[\pi, \frac{3\pi}{2}\right]$

Answer: A

Watch Video Solution

72. Let
$$f: R \to R$$
 is defined by $f(x) = egin{cases} (x+1)^3 & x \leq 1 \ \ln x + (b^2 - 3b + 10) & x > 1 \end{bmatrix}$ If f (x) is invertible, then the

set of all values of 'b' is :

A. $\{1, 2\}$

 $\mathsf{B.}\,\phi$

 $C. \{2, 5\}$

D. None of these

Answer: A

73. If
$$f(x)$$
 is continuous such that $|f(x)| \le 1, \ \forall x \in R \text{ and } g(x) = \frac{e^{f(x)} - e^{-|f(x)|}}{e^{f(x)} + e^{-|f(x)|}}$, then range of $g(x)$ is

 $\mathsf{A}.\left[0,1\right]$

B.
$$\left[0, \frac{e^2 + 1}{e^2 - 1}\right]$$

C. $\left[0, \frac{e^2 - 1}{e^2 + 1}\right]$
D. $\left[\frac{e^2 + 1}{e^2 + 1}, 0\right]$

Answer: D

74. Consider all function $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ which are one-one, onto and satisfy the following property :

If f(k) is odd then f(k+1) is even,K = 1, 2, 3. The number of such function is :

A. 4 B. 8 C. 12

D. 16

Answer: C

Watch Video Solution

75. Consider the function $f\!:\!R-\{1\}$ given by $f(x)=rac{2x}{x-1}$ Then $f^{-1}(x)$ =

76. If rang of fraction f(x) whose domain is set of all real numbers is [-2,4], then range of function $g(x)=rac{1}{2}f(2x+1)$ is equal to : A. [-2,4]

B.[-1,2]

- $\mathsf{C}.\,[\,-3,\,9]$
- D.[-2,2]

Answer: B

:

D Watch Video Solution

77. Let
$$f: R \to ext{ and } f(x) = rac{x \left(x^4 + 1
ight) (x + 1) + x^4 + 1}{x^2 + x + 1}, ext{ then } f(x) ext{ is }$$

A. one-one, into

B. Many -one onto

C. One-one, onto

D. Many one, into

Answer: D

78. Let f (x) be defined as

$$f(x) = \left\{egin{array}{ccc} |x| & 0 \leq x < 1 \ |x-1| + |x-2| & 1 \leq x < 2 \ |x-3| & 2 \leq x < 3 \end{array}
ight.$$

The range of function $g(x) = \sin(7(f(x)))$ is :

A. [0, 1]

$$\mathsf{C}.\left[-\frac{1}{2},\frac{1}{2}\right]$$

D.
$$[-1, 1]$$

Answer: D

79. If $[x]^2 - 7[x] + 10 < 0$ and $4[y]^2 - 16[y] + 7 < 0$, then [x + y] cannot be ([.]' denotes greatest integer function):

A. 7 B. 8 C. 9

D. both (b) and (c)

Answer: C

80. Let
$$f: R \to R$$
 be a functino defined by $f(x) = e^x - e^{-x}$, $then f^{-1}(x) =$

81.	The	function	f(x)	satisfy	the	equation
f(1 -	(x) + 2f($(x)=3xorall x\in X$	$\in R, ext{ then }$	f(0) =		
A.	-2					
В.	-1					
C.	0					
D.	1					

Answer: B

Watch Video Solution

82. Let $f:[0,5] \to [0,5)$ be an invertible function defined by $f(x) = ax^2 + bx + C$, where $a, b, c \in R, abc \neq 0$, then one of the root of the equation $cx^2 + bx + a = 0$ is:

A. a

B.b

С. с

 $\mathsf{D}. a + b + c$

Answer: A

Watch Video Solution

83. Let $f(x) = x^2 + \lambda x + \mu \cos x$, λ being an integer and μ is a real number. The number of ordered pairs (λ, μ) for which the equation f(x) = 0 and f(f(x)) = 0 have the same (non empty) set of real roots is:

A. 2

B. 1

C. 4

D. 6

Answer: C

84. Consider all function $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ which are one-one, onto and satisfy the following property :

If f(k) is odd then f(k+1) is even,K = 1, 2, 3. The number of such function is :

A. 4 B. 8 C. 12

D. 16

Answer: C

85. Which of the following is closest to the graph of $y = an(\sin x), \, x > 0$?

Answer: B

86. Consider the function $f\colon R-\{1\} o R-\{2\}$ given by $f(x)=rac{2x}{x-1}$ Then :

A. f is one-one but not onto

- C. f is one-one nor onto
- D. f is both one-one and onto

Answer: D

Watch Video Solution

87. If range of function f(x) whose domain is set of all real numbers is

 $[-2,4], ext{ then range of function } g(x) = rac{1}{2}f(2x+1) ext{ is equal to}$

- A. [-2,4]
- B. [-1, .2]
- $\mathsf{C}.\,[\,-3,\,9]$
- D.[-2,2]

Answer: B

88. Let
$$f: R \to \text{ and } f(x) = rac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}, ext{ then } f(x) ext{ is }$$

A. One-one, into

:

B. Many one, onto

C. One-one, onto

D. Many one, into

Answer: D

Watch Video Solution

89. Let f (x) be defined as

$$f(x) = \left\{egin{array}{ccc} |x| & 0 \leq x < 1 \ |x-1| + |x-2| & 1 \leq x < 2 \ |x-3| & 2 \leq x < 3 \end{array}
ight.$$

The range of function $g(x) = \sin(7(f(x)))$ is :

A. [0, 1]

B.
$$[\,-1,\,0]$$

C. $\left[\,-\frac{1}{2},\,\frac{1}{2}\,
ight]$
D. $[\,-1,\,1]$

Answer: D

Watch Video Solution

90. Number of integral values of x in the domain of function $f(x) = \sqrt{\ln(|\ln|x|||)} + \sqrt{7|x| - (|x|)^2 - 10}$ is equal to A. 5 B. 6 C. 7 D. 8

Answer: B

91. The number of integral ordered pair (x,y) that satisfy the system of equatin |x + y - 4| = 5 and |x - 3| + |y - 1| = 5 is/are:

A. 2

B. 4

C. 6

D. 12

Answer: D

Watch Video Solution

92. Let $f\colon R o R,\,$ where $f(x)=rac{x^2+ax+1}{x^2+x+1}.$ Then the complete set of values of 'a' such that f(x) is onto is :

A. $(-\infty,\infty)$

B. $(-\infty, 0)$

 $\mathsf{C}.(0,\infty)$

D. Empty set

Answer: D

Watch Video Solution

93. If $A = \{1, 2, 3, 4\}$ and $f: A \to A$, then total number of invertible function 'f' such that $f(2) \neq 2, f(4) \neq 4, f(1) = 1$ is equal to :

A. 1

B. 2

C. 3

D. 4

Answer: C

94. The domian of definition of $f(x) = \log_{\left(x^2 - x - 1
ight)}\left(2x^2 - 7x + 9
ight)$ is :

A. R

B. $R - \{0\}$

 $\mathsf{C}.\,R-\{0,1\}$

D. $R - \{1\}$

Answer: C

Watch Video Solution

95. If $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ are two sets and function $f: A \to B$ is defined by $f(x) = x + 2, \ \forall x \in A$, then the function f is

A. bijective

B. one one into

C. many oneonto

D. None of these

Answer: B

Watch Video Solution

96. Let $f(x)=x^2-2x-3, x\geq 1$ and $g(x)=1+\sqrt{x+4}, x\geq -4$ then the number of real solution os equation f(x)=g(x) is/are

- A. 0
- B. 1
- C. 2
- D. 4

Answer: B

Watch Video Solution

One Or More Than One Answer Is Are Correct

1. f(x) is an even periodic function with period 10. In $[0, 5]f(x) = \begin{cases} 2x & 0 \le x < 2\\ 3x^2 - 8 & 2 \le x < 4 \end{cases}$ Then : $10x & 4 \le x \le 5$ A. f(-4) = 40B. $\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$ C. f(5) is not defined

Answer: A::B::D

D. Range of f(x) is [0, 50]

2. Let $f(x) = \left| \left| x^2 - 4x + 3 \right| - 2 \right|$. Which of the following is/are correct ?

A. f(x)=m has exactly two real solutios of different sign $\, orall \, m>2$ B. f(x)=m has exactly two real solution $\, orall \, m\in (2,\infty)\cup\{0\}$ C. f(x) = m has no solutions $\forall m < 0$

D. f(x) = m has four distinct real solution $\forall m \in (0, 1)$

Answer: A::B::C

Watch Video Solution

3. Let
$$f(x)=\cos^{-1}\Biggl(rac{1- an^2(x\,/\,2)}{1+ an^2(x\,/\,2)}\Biggr)$$

Which of the following statement (s) is/are correct about f(x) ?

A. Domain is R

- B. Range is $[0, \pi]$
- C. f(x) is even
- D. f(x) is dervable in $(\pi, 2\pi)$

Answer: C::D

4. $|\log_e |x|| = |k-1| - 3$ has four distict roots then k satisfies : (where $|x| < d^2, x
eq 0$)

A. (-4, -2)

- B.(4, 6)
- $\mathsf{C}.\left(e^{-1},e\right)$
- D. $\left(d^{\,-2},e^{\,-1}
 ight)$

Answer: A::B

Watch Video Solution

5. Which of the following funjctions are difined for all $x \in R$?

(Where[.] = denotes greatest integer function)

A.
$$f(x) = \sin[x] + \cos[x]$$

B. $f(x) = \sec^{-1}(1 + \sin^2 x)$
C. $f(x) = \sqrt{rac{9}{8} + \cos x + \cos 2x}$

D.
$$f(x) = an(ln(1+|x|))$$

Answer: A::B::C

Watch Video Solution

6. Let
$$f(x) = \begin{cases} x^2 & 0 < x < 2\\ 2x - 3 & 2 \le x < 3 \end{cases}$$
 then the tuue equations:
 $x + 2 & x \ge 3 \end{cases}$
A. $f\left(f\left(f\left(\frac{3}{2}\right)\right) = f\left(\frac{3}{2}\right)$
B. $1 + f\left(f\left(f\left(\frac{5}{2}\right)\right)\right) = f\left(\frac{5}{2}\right)$
C. $f(f(f(2)) = f(1)$
D. $f(f(f(\ldots,f(4))\ldots)) = 2012$

Answer: A::B::C::D

7. Let $f: \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \to [0, 4]$ be a function difined as $f(x) = \sqrt{3} \sin x - \cos x + 2$, then : A. $f^{-1}(1) = \frac{4\pi}{3}$ B. $f^{-1}(1) = \pi$ C. $f^{-1}(2) = \frac{5\pi}{6}$ D. $f^{-1}(2) = \frac{7\pi}{6}$

Answer: A::D

Watch Video Solution

8. Let f(x) be invertible function and let $f^{-1}(x)$ be is inverse. Let equation $f(f^{-1}(x)) = f^{-1}(x)$ has two real roots α and β (with in domain of f(x)), then :

A. f(x) = x also have same two rreal roots

B. $f^{-1}(x) = x$ also have same two real roots

C. $f(x) = f^{-1}(x)$ also have same two real roots

D. Area of triangle formed by $(0, 0), (\alpha, f(\alpha)), \text{ and } (\beta, f(\beta))$ is 1

unit

Answer: A::B::C

Watch Video Solution

9. Find the value of
$$\cos^{-1}(x)+\cos^{-1}\left(rac{x}{2}+rac{\sqrt{3-3x^2}}{2}
ight)$$

Watch Video Solution

10. Let $f: R \to R$ defined by $f(x) = \cos^{-1}(-\{-x\})$, where {x} denotes fractional part of x. Then, which of the following is/are correct?

A. f is many coe but not even function

B. Eange of f contains two prime numbers

C. f is a periodic

D. Graph of f does not lie below x-axis

Answer: A::B::D

Watch Video Solution

11. Which option (s) is/are ture ?

A. $f\!:\!R o R, f(x)=e^{\,|x|}-e^{\,-x}$ is many-one into function

B. $f\!:\!R o R, f(x)=2x+|\!\sin x|$ is one-one onto

C.
$$f\colon R o R,\,f(x)=rac{x^2+4x+30}{x^2-8x+18}$$
 is many-one onto
D. $f\colon R o R,\,f(x)=rac{2x^2-x+5}{7x^2+2x+10}$ is many-one into

Answer: A::B::D

12. If $f(x) = \left[\frac{\ln(x)}{e}\right] + \left[\frac{\ln(e)}{x}\right]$, where [.] denotes greatest interger

function, the which of the following are ture ?

A. range of
$$f(x)is\{\,-1,0\}$$

B. If f(x) = -1, then x can be rational as well as irrational

C. If f(x) = -1, then x can be rational as well as irrational

D. f(x) is periodic function

Answer: A::C

> Watch Video Solution

13. If
$$f(x)=egin{cases} x^3 & x=Q\ -x^3 & x
eq Q \end{pmatrix},$$
 then :

A. f (x) is periodic

B. f (x) is many-one

C. f (x) is one-one
D. range of the function is R

Answer: C::D

Watch Video Solution

14. Let f(x) be a real vaued continuous function such that

$$f(0)=rac{1}{2} \,\, ext{and}\,\, f(x+y)=f(x)f(4-y)+f(y)f(4-x)\,orall x,y\in R,$$

then for some real a:

A. f (x) is perodic function

B. f (x) is a constant function

C.
$$f(x) = rac{1}{2}$$

D. $f(x) = rac{\cos x}{2}$

Answer: A::B::C

15. f(x) is an even periodic function with period 10. In $[0, 5]f(x) = \begin{cases} 2x & 0 \le x < 2\\ 3x^2 - 8 & 2 \le x < 4 \end{cases}$ Then : $10x & 4 \le x \le 5 \end{cases}$ A. f(-4) = 40B. $\frac{f(-13) - x(11)}{f(13) + f(-11)} = \frac{17}{21}$ C. f(5) is not defined D. Range of f(x) is [0, 50]

Answer: A::B::D

Watch Video Solution

16. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement (s) is/are correct ?

A. when $\lambda \in (0,\infty)$ equation has 2 real and distinct roots

B. when $\lambda \in ig(-\infty, \ -e^2ig)$ equation has 2 real and distinct roots

C. when $\lambda \in (0,\infty)$ equatio has 1 real root

D. when $\lambda \in (-e,0)$ equation has no real root

Answer: B::C::D

17. For $x\in R^+,~~ ext{if}~~x,[x],\{x\}$ are in harmonic progesssion then the vaue of x can not be equal to :

A.
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$$

B.
$$\frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$$

C.
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$$

D.
$$\frac{1}{\sqrt{2}} \cot \frac{\pi}{12}$$

Answer: A::C::D

18. The equation $||x-1|+a|=4, a\in R, \;$ has :

A. 3 distinet real roots for unique value of a.

B. 4 distinct real roots for $a \in (-\infty, -4)$

C. 2 distinct real roots for |a| < 4

D. no real roots for a>4

Answer: A::B::C::D

Watch Video Solution

19. The numer of real values of x satisfying the equation , $\left[\frac{2x+1}{3}\right] + \left[\frac{4x+5}{6}\right] = \frac{3x-1}{2}$ are greater than or equal to {[.]` denotes greatest integer functio}:

A. 7

B. 8

C. 9

Answer: A::B::C

Watch Video Solution

20. Let
$$f\Big(x=\sin^6\Big(rac{x}{4}\Big)+\cos^6\Big(rac{x}{4}\Big).$$
 $Iff^n(x)$ denotes n^{th} derivative of f

evaluated at x. Then which of the following hold ?

A.
$$f^{2014}(0) = -\frac{3}{8}$$

B. $f^{2015}(0) = \frac{3}{8}$
C. $f^{2010}\left(\frac{\pi}{2}\right) = 0$
D. $f^{2011}\left(\frac{\pi}{2}\right) = \frac{3}{8}$

Answer: A::C::D

21. Which of the following is (are) incorrect?

A. If $f(x) = \sin x$ and g(x) =in x then range of g(f(x)) is [-1, 1]

Β.

C. If $f(x) = \left(2011 - x^{2012}
ight)^{rac{1}{2012}}$ then $f(f(2)) = rac{1}{2}$

D. The function $f\!:\!R o R$ defined as $f(x)=rac{x^2+4x+30}{x^2-8x+18}$ is not

surjective.

Answer: A::B

Watch Video Solution

22. If [x] denotes the integral part of x for real x, and

$$S = \left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{3}{200}\right] \dots + \left[\frac{1}{4} + \frac{199}{200}\right] \dots$$

then

23. Let
$$f(x) = \log_{\{x\}} [x]$$
 $g(x) = \log_{\{x\}} \{x\}$ $h(x) = \log_{\{x\}} \{x\}$

where $[], \{\}$ denotes the greatest integer function and fractional part function respectively.

Domine of h(x) is :

A. 5 B. 4 C. 3 D. 2

Answer: C

Watch Video Solution

Comprehension Type Problems

1. Let
$$f(x) = \log_{\{x\}} [x]$$
 $g(x) = \log_{\{x\}} - \{x\}$ $h(x) \log_{\{x\}} \{x\}$

where $[], \{\}$ denotes the greatest integer function and fractional part function respectively.

If $A=\{x\!:\!x\in ext{ domine of } f(x)))$ and $B\{x\!:\!x ext{ domine of } g(x)\}$ then $orall x\in (1,5), A-B$ will be :

A. (2, 3)

- B.(1,3)
- C.(1,2)

D. None of these

Answer: D

2. Let
$$f(x) = \log_{\{x\}}[x]$$
 $g(x) = \log_{\{x\}}\{x\}$ $h(x) = \log_{\{x\}}\{x\}$

where $[], \{\}$ denotes the greatest integer function and fractional part function respectively.

Domine of h(x) is :

A. $[2,\infty)$

 $\mathsf{B}.\left[1,\infty\right)$

 $\mathsf{C}.\left[2,\infty
ight)-\left\{I
ight\}$

$$\mathsf{D}.\,R^+-\{I\}$$

Answer: C

3. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of f + g and g equal. The value of θ for

which $h(\theta)$ is defined are handosome. Let

$$f(x) = \sqrt{ heta x^2 - 2(heta^2 - 3)x - 12 heta,} g(x) = \ln(x^2 - 49),$$
 $h(heta) \ln \left[\int_0^ heta 4 \cos^2 t dt - heta^2
ight], ext{ where } heta ext{ is in radians.}$

Complete set of vlaues of θ which are well behaved as well as intellignent

is:

A.
$$\left[\frac{3}{4}, \frac{\pi}{2}\right]$$

B. $\left[\frac{3}{5}, \frac{7}{8}\right]$
C. $\left[\frac{5}{6}, \frac{\pi}{2}\right]$
D. $\left[\frac{6}{7}, \frac{\pi}{2}\right]$

Answer: D

4. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of f + g and g equal. The value of θ for which $h(\theta)$ is defined are handosome. Let

$$f(x) = \sqrt{ heta x^2 - 2(heta^2 - 3)x - 12 heta,} g(x) = \ln(x^2 - 49),$$

 $h(heta) \ln \left[\int_0^ heta 4 \cos^2 t dt - heta^2
ight], ext{ where } heta ext{ is in radians.}$

Complete set of alues of θ which are intelligent is :

A.
$$\left[\frac{6}{7}, \frac{7}{2}\right]$$

B. $\left(0, \frac{\pi}{3}\right]$
C. $\left[\frac{1}{4}, \frac{6}{7}\right]$
D. $\left[\frac{1}{2}, \frac{\pi}{2}\right]$

Answer: A

> Watch Video Solution

5. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of f + g and g equal. The value of θ for which $h(\theta)$ is defined are handosome. Let

,

$$f(x) = \sqrt{ heta x^2 - 2(heta^2 - 3)x - 12 heta,} \, g(x) = \ln ig(x^2 - 49ig)
onumber h(heta) \ln igg[\int_0^ heta 4 \cos^2 t dt - heta^2 igg], ext{ where } heta ext{ is in radians.}$$

Complete set of vlaues of θ which are well behaved as well as intellignent is:

A.
$$\left(0, \frac{\pi}{2}\right]$$

B. $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
C. $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{3}{5}, \frac{\pi}{2}\right]$

Answer: B

6. Let $f(x)=2-|x-3|, 1\leq x\leq 5$ and for rest of the values f(x) can be obtained by using the relation f(5x)=lpha f(x) $orall x\in R$ The maximum value of f(x) in $\left[5^4,5^5
ight]$ for lpha=2 is

A. 16

B. 32

C. 64

Answer: B

Watch Video Solution

7. Let $f(x)=2-|x-3|, 1\leq x\leq 5$ and for rest of the values f(x) can be obtained by using the relation f(5x)=lpha f(x) $orall x\in R$ The maximum value of f(x) in $\left[5^4,5^5
ight]$ for lpha=5 is

A. 1118

B. 2007

C. 1250

D. 132

Answer: A

8. An even periodic functin $f\colon R o R$ with period 4 is such that

$$f(x) = egin{bmatrix} \max \ . \ ig(|x|, x^2ig) & 0 \leq x < 1 \ x & 1 \leq x \leq 2 \end{cases}$$

The value of $\{f(5.12)\}$ (where $\{.\}$ denotes fractional part function), is :

A. $\{f(3.26)\}$ B. $\{f(7.88)\}$ C. $\{f(2.12)\}$ D. $\{f(5.88)\}$

Answer: B

Watch Video Solution

9. An even periodic functin $f \colon R o R$ with period 4 is such that

$$f(x) = egin{bmatrix} \max \ . \ ig(|x|, x^2 ig) & 0 \leq x < 1 \ x & 1 \leq x \leq 2 \end{bmatrix}$$

The number of solution of $f(x) = |3\sin x|$ for $x \in (\,-\,6,\,6)$ are :

C. 7

D. 9

Answer: C

Watch Video Solution

10. Let
$$f(x) = rac{2|x|-1}{x-3}$$
Range of $f(x)$:

A.
$$R - \{3\}$$

B. $\left(-\infty, \frac{1}{3}\right] \cup (2, \infty)$
C. $\left(-2, \frac{1}{3}\right] \cup (2, \infty)$

D. R

Answer: B

11. Let
$$f(x)=rac{2|x|-1}{x-3}$$

Range of the values of 'k' for which f(x) = k has exactly two distinct solutions:

A.
$$\left(-2, \frac{1}{3}\right)$$

B. $\left(-2, 1\right]$
C. $\left(0, \frac{2}{3}\right]$
D. $\left(-\infty, -2\right)$

Answer: A

Watch Video Solution

12. Let f(x) be a continuous function (define for all x) which satisfies $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0, f^2(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 4$ If distinct positive number b_1, b_2 and b_3 ar in G.P. then $f(1) + \ln b_1), f(2) + \ln b_2, f(3) + \ln b_3$ are in : A. A.P.

B. G.P.

C. H. P.

D. A. G. P.

Answer: A

Watch Video Solution

13. Let f(x) be a continuous function (define for all x) which satisfies $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0, f^2(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 4$. The equation of tangent that can be drawn from (2, 0) on the curve $y = x^2 f(\sin x)$ is :

A. y = 24(x + 2)B. y = 12(x + 2)C. y = 24(x - 2)D. y = 12(x - 2)

Answer: C

14. Let
$$f:[2,\infty) \to \{1,\infty)$$
 defined by
 $f(x) = 2^{x^4 - 4x^2}$ and $g:\left[\frac{\pi}{2},\pi\right] \to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be
two invertible functions, then
 $f^{-1}(x)$ is equal to
A. $\sqrt{2 + \sqrt{4 - \log_2 x}}$

B.
$$\sqrt{2+\sqrt{4+\log_2 x}}$$

C. $\sqrt{4+\sqrt{4+\log_2 x}}$
D. $\sqrt{4-\sqrt{2+\log_2 x}}$

Answer: B

15. Let
$$f:[2,\infty) \to \{1,\infty)$$
 defined by $f(x) = 2^{x^4 - 4x^3}$ and $g:\left[\frac{\pi}{2},\pi\right] \to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be

two invertible functions, then

The set "A" equals to

A. [5, 2]B. [-2, 5]C. [-5, 2]D. [-5, -2]

Answer: D

Watch Video Solution

Matching Type Problems

1. If $x,y,z\in R$ satisfies the system of equations $x+(y)+(s)=12.7, [x]+\{y\}+z=4.1$ and $\{x\}+y+[z]=2$

where {.} and [.] denotes the fractional and integral parts respectively)

then match the following

	Column-I		Column-II	
(A)	${x} + {y} =$	(P)	7.7	
(B)	[z] + [x] =	(Q)	1.1	
(C)	$x + \{z\} =$	(R)	1	
(D)	$z + [y] - \{x\} =$	(\$)	3	
		(T)	4	

Watch Video Solution

2. Given the graph of y = f(x)

	Column-i		Column-li
(A)	$f(x)=\sin^2 2x-2\sin^2 x$	(P)	Range contains no natural number
(B)	$f(x) = \frac{4}{\pi} (\sin^{-1} (\sin \pi x))$	(Q)	Range contains atleast one integer
(C)	$f(x) = \sqrt{\ln(\cos(\sin x))}$	(R)	Many one but not even function
(D)	$f(x) = \tan^{-1} \left(\frac{x^2 + 1}{x^2 + \sqrt{3}} \right)$	(S)	Both many one and even function
		(T)	Periodic but not odd function

3.

D Watch Video Solution

	Column-l		Column-li
(A)	If $ x^2 - x \ge x^2 + x$, then complete set of values of x is	(P)	(0,∞)
(B)	If $ x+y > x-y$, where $x > 0$, then complete set of values of y is	(Q)	(-∞, 0]
(C)	If $\log_2 x \ge \log_2(x^2)$, then complete set of values of x is	(R)	[−1,∞)

4.

(D)	$[x] + 2 \ge x $, (where [] denotes the greatest integer function) then complete set of		(0, 1]	
1	values of x is		and the state of the second	
	The market and a second some second states and	(T)	[1,∞)	

	Column-l		Column-II
(A)	Domain of $f(x) = \ln \tan^{-1}$ { $(x^3 - 6x^2 + 11x - 6)x(e^x - 1)$ } is	(P)	$\left[-1,\frac{5}{4}\right]$
(B)	Range of $f(x) = \sin^2 \frac{x}{4} + \cos \frac{x}{4}$ is	(Q)	(2,∞)
(C)	The domain of function $f(x) = \sqrt{\log_{(x -1)}(x^2 + 4x + 4)}$ is	(R)	$(1,2)\cup(3,\infty)$
(D)	Let $f(x) = \begin{cases} x^2 & x < 1 \\ x+1 & x \ge 1 \end{cases}$; $g(x) = \begin{cases} x+2 & x < 1 \\ x^2 & x \ge 1 \end{cases}$	(S)	[0 ,∞)
	Then range of function $f(g(x))$ is	(T)	$(-\infty, -3) \cup (-2, -1) \cup (2, \infty)$

Watch Video Solution

6. Let
$$f(x)iggl[egin{array}{cccc} 1+x, & 0\leq x\leq 2\ 3-x, & 2< x< 3 \end{array}]$$
 :

g(x) = f(f(x)) :

5.

	Column-J		Column-II
(A)	If domain of $g(x)$ is $[a, b]$ then $b - a$ is	(P)	1
(B)	If range of $g(x)$ is $[c, d]$ then $c + d$ is	(Q)	2
(C)	f(f(f(2))) + f(f(f(3))), is	(R)	3
(D)	m = maximum value of $g(x)$ then 2m = 2 is:	(S)	4

Watch Video Solution

Subjective Type Problems

1. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further that f(1) =1, f(2)=3, f(3)=5, f(4)=7, f(5) =9, f'(2)=2. Then the sum of all the digits of f(6) is

Watch Video Solution

2. Let
$$f(x) = x^3 - 3x$$
 Find $f(f(x))$

Watch Video Solution

3. If
$$f(x+y+1) = \left\{\sqrt{f(x)} + \sqrt{f(y)}
ight\}^2$$
 and

 $f(0)=1\,orall x,y\in R,determ\in ef(n),n\in N_{2}$

Watch Video Solution

4. If the domain of $f(x)=\sqrt{12-3^x-3^{3-x}}+\sin^{-1}iggl(\frac{2x}{3}iggr)is[a,b],$ then $a=\ldots\ldots$

5. The number of elements in the range of functions: $y = \sin^{-1} \left[x^2 + \frac{5}{9} \right] + \cos^{-1} \left[x^2 - \frac{4}{9} \right]$ where where [.] denotes the

greatest integer function is:

Watch Video Solution

6. The number of integers in the range of function $f(x) = [\sin x] + [\sin x + \cos x]$ is (where [.]= denotes greatet integer function)

Watch Video Solution

7. If P(x) is polynomial of degree 4 such than P(-1) = P(1) = 5 and P(-2) = P(0) = P(2) = 2 find the maximum vaue of P (x). 8. The number of integral vlaue (s) of k for which the curve $y = \sqrt{-x^2 - 2x}$ and x + y - k = 0 intersect at 2 distinct points is/are

Watch Video Solution

9. Let the solution set of the equation :

$$\sqrt{\left[x+\left[rac{x}{2}
ight]
ight]}+\sqrt{(x)}+\left[rac{x}{3}
ight]
ight]=3$$
 is (a,b) Find the product ab.

(where [.] and $\{.\}$ denote greatest integer and fractional part function repectively),

Watch Video Solution

10. For the real number x, let $f(x)=rac{1}{2011\sqrt{1-x^{2011}}}.$ Find the number of

real roots of the equation

$$f(f(....\,(f(x))....\,) = (\{-x\}$$

where f is applies 2013 times and {.} denotes fractional part function.

11. Find the number of elements contained in the range of the function $f(x) = \left[\frac{x}{6}\right] \left[\frac{-6}{x}\right] \forall x \in (0,30)] where [.]` denotes greatest integer$

function)

Watch Video Solution

12. Let
$$f(x,y) = x^2 - y^2$$
 and $g(x,y) = 2xy$. such that

 $(f(x,y))^2 - (g(x,y))^2 = rac{1}{2} ext{ and } f(x,y). \ G(x,y) = rac{\sqrt{3}}{4}$ Find the

number of ordered pairs (x, y) ?

Watch Video Solution

13. Let $f(x)=rac{x+5}{\sqrt{x^2}+1}$ $orall x\in R,\,$ then the smallest integral value of k for which $f(x)\leq k\,orall x\in R$ is

14. The number of integral values of a for which $f(x)=x^3+(a+2)x^2+3ax+5$ is monotonic in $orall x\in R.$

17. Let $f(x) = x^2 - bx + c$, b is an odd positive integer. Given that f(x)=0has two prime numbers as roots and b+c=35. If the least value of $f(x) \forall x \in R$ is λ , then $\left[\left| \frac{\lambda}{3} \right| \right]$ is equal to (where [.] denotes greatest integer function)

Watch Video Solution

18. Let
$$f(x)$$
 be a continuous function such that $f(0) = 1$ and $f(x) = f\left(\frac{x}{7}\right) = \frac{x}{7} \, \forall x \in R$, then $f(42)$ is

Watch Video Solution

19. If
$$f(x) = 4x^3 - x^2 - 2x + 1$$
 and $g(x) = \begin{cases} \min\{f(t): 0 \le t \le x\} & 0 \le x \\ 3 - x & 1 < x \end{cases}$ and if $\lambda = g\left(\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{5}{4}\right)$, then $2\lambda =$

20. If
$$x = 10 \sum_{r=3}^{100} rac{1}{(r^2-4)},$$
 then $[x] =$

(where [.] denotes gratest integer function)

Watch Video Solution

21. Let
$$f(x) = \frac{ax+b}{xc+d}$$
, where a,b,c d are non zero If $f(7) = 7$, $f(11) = 11$ and $f(f(x)) = x$ for all x expect $-\frac{d}{c}$. The

unique number which is not is the range of f is

Watch Video Solution

22. Let
$$A=ig\{x\mid x^2-4x+3<0,x\in Rig\}$$

If $A \subset B$, then the rang of real number $p \in [a, b]$ where, a,b are integers. Find the value of (b - a).

23. Let the maximum value of expression $y=rac{x^4-x^2}{x^6+2x^3-1}$ for $x>1israc{p}{1},$ where p and 1q are relatively prime natural numbers, then p+q=

Watch Video Solution

24. If f(x) is an even function, then the number of distinect real numbers

x such that
$$f(x)=figgl(rac{x+1}{x+2}iggr)$$
 is :

Watch Video Solution

25. The least integral value of m, m $\in R$ for which the range of function

$$f(x)=rac{x+m}{x^2+1}$$
 contains the interval $[0,1]$ is :

26. Let x_1, x_2, x_3 satisfying the equation $x^3 - x^2 + \beta x + \gamma = 0$ are in G.P. where $x(1), x_2, x_3$ are positive numbers. Then the maximum value of $[\beta] + [\gamma] + 4$ is where [.] denotes greatest integer function is :

27. Let $A = \{1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3, 4, 5\}$. If 'm' is the number of strictly increasing function f, $f: A \to B$ and n is the number of onto functions $g: B \to A$. Then the last digit of n-m is.

28. If $\sum_{r=1}^{n} [\log_2 r] = 2010$ where [.] denotes greatest integer function,

then the sum of the digits of n is:

29. Let $f(x) = \frac{ax+b}{xc+d}$, where a,b,c d are non zero If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x expect $-\frac{d}{c}$. The unique number which is not is the range of f is

Watch Video Solution

30. It is pouring down rain and the amount of rain hitting point (x, y) is given by $f(x, y) = |x^3 + 2x^2y - 5xy^2 - 6y^3|$. If Mr. 'A' starts at (0, 0), find number of possible value (s) for 'm' such that y= mx is a line along which Mr.' A could walk without any rain falling on him.

Watch Video Solution

31. Let P (x) be a cubic polynomical with leading co-efficient unity. Let the remainder when P (x) is divided by $x^2 - 5x + 6$ equals 2 times the remainder when P (x) is divided by $x^2 - 5x + 4$. If P(0) = 100, find the sum of the digits of P(5),

32. Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0

33. If range of
$$f(x) = \frac{(\ln x)(\ln x^2) + \ln x^3 + 3}{\ln^2 x + \ln x^2 + 2}$$
 can be expressed as $\left[\frac{a}{b}, \frac{c}{d}\right]$ where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.

34. Polynomial P(x) is divided by (x - 3), the remainder if 6.If P(x) is divided by $(x^2 - 9)$, then the remainder is g(x). Then the value of g(2) is _____.

