©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK JAISWAL ENGLISH

FUNCTION

Single Choice Problems

1. Range of the function $f(x)=\log _{\sqrt{2}}\left(2-\log _{2} 16 \sin ^{2} x+1\right)$ is:
A. $[0,1]$
B. $(-\infty, 1]$
C. $[-1,1]$
D. $(-\infty, \infty)$

Answer: B
2. The value of a and b for which $\left|e^{|x-b|}-a\right|=2$, has four distinet solutions, are :
A. $a \in(-2, \infty), b=0$
B. $a \in(2, \infty), b=0$
C. $a \in(3, \infty), b \in R$
D. $a \in(2, \infty) b=0$

Answer: C

Watch Video Solution

3. The range of the function : $f(x)=\tan ^{-1} x+\frac{1}{2} \sin ^{-1} x$
A. $(-\pi / 2, \pi / 2)$
B. $[-\pi / 2, \pi / 2]-\{0\}$
C. $[-\pi / 2, \pi / 2]$
D. $(-3 \pi / 4,3 \pi / 4)$

Answer: C

- Watch Video Solution

4. Find the number of real ordered pair (s) (x, y) for which :

$$
16^{x^{2}+y}+16^{x+y^{2}}=1
$$

A. 0
B. 1
C. 2
D. 3

Answer: B

5. The range of values of 'a' such that $\left(\frac{1}{2}\right)^{|x|}=x^{2}-a$ is satisfied for maximum number of values of ' x '
A. $(-\infty,-1)$
B. $(-\infty, \infty)$
C. $(-1,1)$
D. $(-1, \infty)$

Answer: D

- Watch Video Solution

6. For a real number x let $[x]$ denoutes the greatest interger less than or equal to x , let $f: R \rightarrow R$ be defined by $f(x)=2 x+[x]+\sin \cos x$, then f is:
A. One-one but not onto
B. onto but not one-one
C. Both one-one and onto
D. Neither one-one nor onto

Answer: A

- Watch Video Solution

7. The maximum value of $\sec ^{-1}\left(\frac{7-5\left(x^{2}+3\right)}{2\left(x^{2}+2\right)}\right)$ is:
A. $\frac{5 \pi}{6}$
B. $\frac{5 \pi}{12}$
C. $\frac{7 \pi}{12}$
D. $\frac{2 \pi}{3}$

Answer: D
8. Number of ordered pair (a,b) the set $A=\{1,2,3,4,5\}$ so that the functon $f(x)=\frac{x^{3}}{3}+\frac{a}{2} x^{2}+b x+10$ is an injective mapping $\forall x \in R$:
A. ' 13
B. 14
C. 15
D. 16

Answer: C

- Watch Video Solution

9. let A be the greatest value of the function $f(x)=\log _{x}[x]$, (where [.] denotes gratest integer function) and B be the least value of the function $g(x)=|\sin x|+|\cos x|$, then :
A. $A>B$
B. $A<B$
C. $A=B$
D. $2 A+B=4$

Answer: C

- Watch Video Solution

10. Let $A=[a, \infty)$ denotes domain, then
$f:[a, \infty) \rightarrow B, f(x)=2 x^{3}+6$ will have an inverse for then smallest real values of a, if:
A. $a=1, B=[5, \infty)$
B. $a=2, B=[10, \infty)$
C. $a=0, B=[6, \infty)$
D. $a=-1, B=[1, \infty)$

Answer: A

11. Solution of the inequation $\{x\}(\{x\}-1)(\{x\}+2) \geq 0$ where $\{$.$\} denots fractin part function) is :$
A. $x \in(-2,1)$
B. $x \in I$ (I denote set of integers)
C. $x \in[0,1)$
D. $x \in[-2,0)$

Answer: B

- Watch Video Solution

12. Let $f(x), g(x)$ be two real valued functions then the function $h(x)=2 \max \{f(x)-g((x), 0\}$ is equal to :
A. $f(x)-g(x)-|g(x)-f(x)|$
B. $f(x)+g(x)-|g(x)-f(x)|$
C. $f(x)-g(x)+|g(x)-f(x)|$
D. $f(x)+g(x)+|g(x)-f(x)|$

Answer: C

- Watch Video Solution

13. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation the set $A=\{1,2,3,4\}$. The relation R is (a). a function (b). reflexive (c). not symmetric (d). transitive
A. a function
B. reflexive
C. not symmetric
D. transitive

Answer: C

14. The true set of valued of ' K ' for which $\sin ^{-1}\left(\frac{1}{1+\sin ^{2} x}\right)=\frac{k \pi}{6}$ may have a solution is : $(a) .\left[\frac{1}{4}, \frac{1}{2}\right](b) .[1,3](c) .\left[\frac{1}{6}, \frac{1}{2}\right](d) .[2,4]$
A. $\left[\frac{1}{4}, \frac{1}{2}\right]$
B. $[1,3]$
C. $\left[\frac{1}{6}, \frac{1}{2}\right]$
D. $[2,4]$

Answer: B

- Watch Video Solution

15. A real valued function $f(x)$ satisfies the functional equation $f(x-y)=f(x) f(y)-f(a-x) f(a+y)$, where a is a given constant and $f(0)=1, f(2 a-x)=$?

$$
\text { A. }-f(x)
$$

B. $f(x)$
C. $f(a)+f(a-x)$
D. $f(-x)$

Answer: A

- Watch Video Solution

16. Let $g: R \rightarrow R$ be given by $g(x)=3+4 x$ if $g^{n}(x)=$ gogogo.....og (x) n times. Then inverse of $g^{n}(x)$ is equal to :
A. $\left(x+1-4^{n}\right) \cdot 4^{-n}$
B. $\left(x-1+4^{n}\right) 4^{-n}$
C. $\left(x+1+4^{n}\right) 4^{-n}$
D. None of these

Answer: A

17. Let $f: D \rightarrow R$ bge defined as: $f(x)=\frac{x^{2}+2 x+a}{x^{2}+4 x+3 a}$ where D and R denote the domain of f and the set of all the real numbers respectively. If f is surjective mapping. Then the complete range of a is :
A. $0<a \leq 1$
B. $0<a \leq 1$
C. $0 \leq a<1$
D. $0<a<1$

Answer: D

- Watch Video Solution

18. Let $f:[2, \infty) \rightarrow X$ be defined by $f(x)=4 x-x^{2}$. Then, f is invertible, if $X=[2, \infty)$ (b) $(-\infty, 2]$ (c) $(-\infty, 4]$ (d) $[4, \infty)$
A. $2-\sqrt{4-x}$
B. $2+\sqrt{4-x}$
C. $-2+\sqrt{4-x}$
D. $-2-\sqrt{4-x}$

Answer: A

- Watch Video Solution

19. IF $[5 \sin x]+[\cos x]+6=0$, then range of $f(x)=\sqrt{3} \cos x+\sin x$ corresponding to solution set of the given equation is: (where [.] denotes greatest integer function)
A. $[-2,-1]$
B. $\left(-\frac{3 \sqrt{3}+2}{5},-1\right)$
C. $[-2,-\sqrt{3})$
D. $\left(-\frac{3 \sqrt{3}+4}{5},-1\right)$

- Watch Video Solution

20. If $f: R \rightarrow R$ where $f(x)=a x+\cos x$ is an invertible function, then
(a). $(-2,-1] \cup[1,2)$;
(b). $[-1,1]$;
(c). $(-\infty,-1] \cup[1, \infty)$;
(d). $(-\infty,-2] \cup[2, \infty)$.
A. $(-2,-1] \cup[1,2)$
B. $[-1,1]$
C. $(-\infty,-1] \cup[1, \infty)$
D. $(-\infty,-2] \cup[2, \infty)$

Answer: C

- Watch Video Solution

21.

$$
f(x)=[1+\sin x]+\left[2+\sin \frac{x}{2}\right]+\left[3+\sin \frac{x}{3}\right]++\left[n+\sin \frac{x}{n}\right] \forall x \in[
$$ where [.] denotes the greatest integer function, is,

$\left\{\frac{n+n-2^{2}}{2}, \frac{n(n+1)}{2}\right\}\left\{\frac{n(n+1)}{2}\right\}\left\{\frac{n(n+1)}{2}, \frac{n^{2}+n+2}{2}\right\}$ $\left[\frac{n(n+1)}{2}, \frac{n^{2}+n+2}{2}\right]$
A. $\left\{\frac{n^{2}+n-2}{2}, \frac{n(n+1)}{2}\right\}$
B. $\left\{\frac{n(n+1)}{2}\right\}$
c. $\left\{\frac{n(n+1)}{2}, \frac{n^{2}+n+2}{2}, \frac{n^{2}+n+4}{2}\right\}$
D. $\left\{\frac{n(n+1)}{2}, \frac{n^{2}+n-2}{2}\right\}$

Answer: D

- Watch Video Solution

22. Let $f: R \rightarrow R$, where $f(x)=\frac{x^{2}+a x+1}{x^{2}+x+1}$. Then the complete set of values of 'a' such that $f(x)$ is onto is :
A. $(-\infty, \infty)$
B. $(-\infty, 0)$
C. $(0, \infty)$
D. not possible

Answer: D

- Watch Video Solution

23. Let $A=\{1,2,3\}$ and $B=\{a, b\}$
what is the number of non empty relations from A to B
24. The graph of function $f(x)$ is shown below:

Then the graph of $g(x)=\frac{1}{f(|x|)}$ is:

A.

B.
C.

D.

Answer: C

- Watch Video Solution

25. Which of the following function is homogeneous ?
A. $f(x)=x \sin y+y \sin x$
B. $g(x)=x e^{\frac{y}{x}}+y e^{\frac{x}{y}}$
C. $h(x)=\frac{x y}{x+y^{2}}$
D. $\phi(x)=\frac{x-y \cos x}{y \sin x+y}$

Answer: B

D Watch Video Solution

26. Let $f(x)=\left[\begin{array}{ll}2 x+3 & x>1 \\ \alpha^{2} x+1 & x \leq 1\end{array}\right.$ If range of $f(x)=R$ (set of real numbers) then number of integral value(s), which α any take :
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

27. The maximum integral values of x in the domain of $f(x)=\log _{10}\left(\log _{1 / 3}\left(\log _{4}(x-5)\right)\right.$ is : (a). 5 (b). 7 (c). 8 (d). 9
A. 5
B. 7
C. 8
D. 9

Answer: C

- Watch Video Solution

28. Range of the function $\mathrm{f}(\mathrm{x})=\log _{2}\left(\frac{4}{\sqrt{x+2}+\sqrt{2-x}}\right)$ is $(a) .(0, \infty)$
$(b) \cdot\left[\frac{1}{2}, 1\right](c) \cdot[1,2](d) \cdot\left[\frac{1}{4}, 1\right]$
A. $(0, \infty)$
B. $\left[\frac{1}{2}, 1\right]$
C. $[1,2]$
D. $\left[\frac{1}{4}, 1\right]$
29. 29. Number of integ
$\left|x^{2}+5 x\right|+\left|x-x^{2}\right|=|6 x|$ is:
A. 3
B. 5
C. 7
D. 9

Answer: C

- Watch Video Solution

30. If $A=\{2,1\}$, find $A \times A \times A$
31. Which of the following function is periodic with fundamental period π ?
A. $f(x)=\cos x\left|\frac{\sin x}{2}\right|$, where [.] denotes greatest integer function
B. $g(x)=\frac{\sin x+\sin 7 x}{\cos x+\cos 7 x}+|\sin x|$
C. $h(x)=\{x\}+|\cos x|$, where $\{$.$\} denotes functional part function$
D. $\phi(x)=|\cos x|+\ln (\sin x)$

Answer: B

- Watch Video Solution

32. Let $f: N \rightarrow Z$ and $f(x)=\left[\begin{array}{cl}\frac{x-1}{2} & \text { when } \mathrm{x} \text { is odd } \\ -\frac{x}{2} & \text { when } \mathrm{x} \text { is even }\end{array}\right.$, then:
(a). $f(x)$ is bijective (b).f (x) is injective but not surjective (c). $f(x)$ is not injective but surjective (d). $\mathrm{f}(\mathrm{x}$) is neither injective nor subjective

$$
\text { A. } f(x) \text { is bijective }
$$

B. $\mathrm{f}(\mathrm{x})$ is injective but not surjective
C. $f(x)$ is not injective but surjective
D. $f(x)$ is neither injective nor subjective

Answer: A

- Watch Video Solution

33. Let $g(x)$ be the inverse of $f(x)=\frac{2^{x+1}-2^{1-x}}{2^{x}+2^{-x}}$ then $g(x)$ be :
A. $\frac{1}{2} \log _{2}\left(\frac{2+x}{2-x}\right)$
B. $-\frac{1}{2} \log _{2}\left(\frac{2+x}{2-x}\right)$
C. $\log _{2}\left(\frac{2+x}{2-x}\right)$
D. $\log _{2}\left(\frac{2-x}{2+x}\right)$

Answer: C

- Watch Video Solution

34. Which of the following is the graph of the curve $\sqrt{|y|}=x$ is ?

B.

C.

D.
35. Domain of $f(x)=\log _{(x)}\left(9-x^{2}\right)$ is:

- Watch Video Solution

36. If $e^{x}+e^{f(x)}=e$, then for $f(x)$ domain is:

- Watch Video Solution

37. If high voltage current is applied on the field given by the graph $y+|y|-x-|x|=0$. on which of the following curve a person can move so that the remains safe ?
A. $y=x^{2}$
B. $y=\operatorname{sgn}\left(-e^{2}\right)$
C. $y=\log _{1 / 3} x$
D. $y=m+|x|, m>3$

Answer: D

- Watch Video Solution

38. If $\left.f(x)+6-x^{2}\right]=|f(x)|+\left|4-x^{2}\right|+2$, then $\mathrm{f}(\mathrm{x})$ is necessarily non-negative for:
A. $x \in[-2,2]$
B. $x n(-\infty,-2) \cup(2, \infty)$
C. $x \in[-\sqrt{6}, \sqrt{6}]$
D. $x \in[-5,-2] \cup[2,5]$

Answer: A

- Watch Video Solution

39. Let $f(x)=\cos x+\sin p x$ be periodic, then p must be :
(a).Positive real number (b). Negative real number (c).Rational (d).Prime
A. Positive real number
B. Negative real number
C. Rational
D. Prime

Answer: C

- Watch Video Solution

40. The domain of $f(x) i s(0,1)$. Then the domain of $\left(f\left(e^{x}\right)+f(1 n|x|)\right.$ is
$(a)(-1, e)$
(b). $(1, e)$
$(c) \cdot(-e,-1)$
(d) $(-e, 1)$
A. $\left(\frac{1}{e}, 1\right)$
B. $(-e, 1)$
C. $\left(-1,-\frac{1}{e}\right)$

$$
\text { D. }(-e,-1) \cup(1, e)
$$

Answer: B

- Watch Video Solution

41. Let $A=\{1,2,3,4\}$ and $f: A \rightarrow \quad$ A satisfy
$f(1)=2, f(2)=3, f(3)=4, f(4)=1$. Suppose $g: A \rightarrow A$ satisfies $g(1)=3$ and $f o g=g \circ f$, then $\mathrm{g}=$
(a). $\{(1,3),(2,1),(3,2),(4,4)\}$
(b). $\{(1,3),(2,4),(3,1),(4,2)\}$
$(c) \cdot\{(1,3),(2,2),(3,4),(4,3)\}(d) \cdot\{(1,3),(2,4),(3,2),(4,1)\}$
A. $\{(1,3),(2,1),(3,2),(4,4)\}$
B. $\{(1,3),(2,4),(3,1),(4,2)\}$
C. $\{(1,3),(2,2),(3,4),(4,3)\}$
D. $\{(1,3),(2,4),(3,2),(4,1)\}$

Answer: B

42. Number of solutions of the equation, $[y+[y]]=2 \cos x$ is: (where $y=1 / 3)[\sin x+[\sin x+[\sin x]]]$ and []$=$ greatest integer function)
(a). 0 (b) 1 (c) 2 (d) ∞
A. 0
B. 1
C. 2
D. Infinite

Answer: A

- Watch Video Solution

43. The function $f(x)=\left\{\frac{\left(x^{2 n}\right)}{\left(x^{2 n} \operatorname{sgn} x\right)^{2 n+1}}\left(\frac{e^{\frac{1}{x}}-e^{\frac{1}{x}}}{e^{\frac{1}{x}}+e^{-\frac{1}{x}}}\right) x \neq 0 n \in N\right.$ is:
B. Even function
C. Neither odd nor even function
D. Constant function

Answer: B

D Watch Video Solution

44. Let $A=\{1,2\}, B=\{1,2,3\}, c=\{5,6\}$ and $d=\{5,6,7\}$ verify that
$A \times C$ is a subset of $B \times D$

- Watch Video Solution

45. Let $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ then ubrace(fo fo foof)($\left.x\right)^{`}$ is :
A. $\frac{x}{\sqrt{1+\left(\sum_{r=1}^{n} r\right) x^{2}}}$
B. $\frac{x}{\sqrt{1+\left(\sum_{r=1}^{n} 1\right) x^{2}}}$
c. $\left(\frac{x}{\sqrt{1+x^{2}}}\right)^{n}$
D. $\frac{n \pi}{\sqrt{1+\pi x^{2}}}$

Answer: B

Watch Video Solution

46. Let $f: R \rightarrow R$, then $f(x)=2 x+|\cos x|$ is:
(a).One-one into (b).One-one and onto
(c).May-one and into (d).Many-one and onto
A. One-one into
B. One-one and onto
C. May-one and into
D. Many-one and onto

Watch Video Solution

47. Let $f: R \rightarrow R$ be a function defined by $f(x)=x^{3}+x^{2}+3 x+\sin x$. Then f is
A. One-one end into
B. One-one and onto
C. Many-one and into
D. many-one and onto

Answer: B

- Watch Video Solution

48. If $f(x)=\{x\}+\{x+1\}+\{x+2\} \ldots \ldots \ldots .\{x+99)$, then the value of $[f(\sqrt{2})]$ is, where (.) denotes fractional part function \& [.] denotes the greatest integer function (a). 5050 (b). 4950 (c). 41 (d). 14
A. 5050
B. 4950
C. 41
D. 14

Answer: C

- Watch Video Solution

49. If $|\cot x+\cos e c x|=|\cot x|+|\cos e c x|, x \in[0,2 \pi]$, then complete set of values of x is : $(a) .[0, \pi](b) .\left(0, \frac{\pi}{2}\right](c) .\left(0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right)$
$(d) \cdot\left(\pi, \frac{3 \pi}{2}\right] \cup\left[\frac{7 \pi}{4}, 2 \pi\right]$
A. $[0, \pi]$
B. $\left(0, \frac{\pi}{2}\right]$
C. $\left(0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right)$
D. $\left(\pi, \frac{3 \pi}{2}\right] \cup\left[\frac{7 \pi}{4}, 2 \pi\right]$

- Watch Video Solution

50. The function $f(x)=0$ has eight dinstict real solution and f also satisfy $f(4+x)=f(4-x)$. The sum of all the eight solution of $f(x)=0$ is :
(a). 12 (b). 32 (c). 16 (d). 15
A. 12
B. 32
C. 16
D. 15

Answer: B

- Watch Video Solution

51. Let $\mathrm{f}(\mathrm{x})$ polynomial of degree 5 with leading coefficient unity such that $f(1)=5, f(2)=4, f(3)=3, f(4)=2, f(5)=1$, then $f(6)$ is equal to (a). 0 (b). 24 (c). 120 (d). 720
A. 0
B. 24
C. 120
D. 720

Answer: C

- Watch Video Solution

52. Let $f: A \rightarrow B$ be a function such that $f(x)=\frac{(c)}{\sqrt{x-2}}+\sqrt{4-x}$, is invertible, then which of the following is not possible?
A. $A=[3,4]$
B. $A=[2,3]$
C. $A=[2,2 \sqrt{3}]$
D. $\{2,2 \sqrt{2}\}$

Answer: C

- Watch Video Solution

53. Find the number of positive integral values of x satisfying $\left[\frac{x}{9}\right]=\left[\frac{x}{11}\right]$ is where [.] =GI.F) (a). 21 (b). 22 (c). 23 (d). 24
A. 21
B. 22
C. 23
D. 24

Answer: D

54. The domain of function $f(x)=\log _{\left[x+\frac{1}{2}\right]}\left(2 x^{2}+x-1\right)$, where [.] denotes the greatest integer function is :
A. $\left[\frac{3}{2}, \infty\right)$
B. $(2, \infty)$
C. $\left(-\frac{1}{2}, \infty\right)-\left\{\frac{1}{2}\right\}$
D. $\left(\frac{1}{2}, 1\right) \cup(1, \infty)$

Answer: A

- Watch Video Solution

55. The solution set of the equation $[x]^{2}+[x+1]-2=0$, where [.] represents greatest integeral function is :
A. $[-1, o) \cup[1,2)$
B. $[-2,-1) \cup[1,2]$
C. $[1,2]$
D. $[-3,-2) \cup[2,3)$

Answer: B

- Watch Video Solution

56. Which among the following relations is a function ?
A. $x^{2}+y^{2}=r^{2}$
B. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=r^{2}$
C. $y^{2}=4 a x$
D. $x^{2}=d x y$

Answer: D

- Watch Video Solution

57. A function $f: R \rightarrow R$ is defined as $f(x)=3 x^{2}+1$. then $f^{-1}(x)$ is:
A. $\frac{\sqrt{x-1}}{3}$
B. $\left(\frac{1}{2} \sqrt{x}-1\right.$
C. f^{-1} does not exist
D. $\sqrt{\frac{x-1}{3}}$

Answer: C

- Watch Video Solution

58. If $\left\{\begin{array}{l}2+x, \quad x \geq 0 \\ 4-x, \quad x<0\end{array}\right.$, a then $f(f(x))$ is given by :
A. 1) $f(f(x))= \begin{cases}4+x, & x \geq 0 \\ 6-x, & x<0\end{cases}$
B. 2) $f(f(x))= \begin{cases}4+x, & x \geq 0 \\ x, & x<0\end{cases}$
С. 3) $f(f(x))= \begin{cases}4-x, & x \geq 0 \\ x, & x<0\end{cases}$
D. 4) $f(f(x))= \begin{cases}4-x, & x \geq 0 \\ x+2 x, & x<0\end{cases}$

Answer: A

59. The function $f: R \rightarrow R$ defined as $f(x)=\frac{3 x^{2}+3 x-4}{3+3 x-4 x^{2}}$ is:
(a) One to one but not onto
(b) Onto but not one to one
(c) Both one to one and onto
(d)Neither one to one nor onto
A. One ot one buty not onto
B. Onto but not one to one
C. Both one to one and onto
D. Neither one to one nor onto

Answer: B

- Watch Video Solution

60. The number of solutions of the equation $e^{x}-\log |x|=0$ is:
A. 0
B. 1
C. 2
D. 5

Answer: B

- Watch Video Solution

61. If complete solution set of $e^{-x} \leq 4-x i s[\alpha, \beta]$ is equal to : (where [.] denotes greatest integer function)
A. 0
B. 2
C. 1
D. 4

Answer: C

62. Range of $f(x)=\sqrt{\sin \left(\log _{7}(\cos (\sin x))\right)}$ is:
A. $[0,1]$
B. $\{0,1\}$
C. $\{0\}$
D. $[1,7]$

Answer: C

- Watch Video Solution

63. If the domain of $y=f(x) i s[-3,2]$, then find the domain of $g(x)=f(|[x]|)$, where $[$.$] denotes the greatest integer function.$
A. $[-3,2]$
B. $[-2,3)$
C. $[-3,3]$
D. $[-2,3]$

Answer: B

- Watch Video Solution

64. Range of the function
$f(x)=\cot ^{-1}\{-x\}+\sin ^{-1}\{x\}+\cos ^{-1}\{x\}, \quad$ where $\quad\{$.$\} denotes$
fractional part function:
A. $\left(\frac{3 \pi}{4}, \pi\right)$
B. $\left[\frac{3 \pi}{4}, \pi\right)$
C. $\left[\frac{3 \pi}{4}, \pi\right]$
D. $\left(\frac{3 \pi}{4}, \pi\right]$

Answer: D

65.

$f: R-\left\{\frac{3}{2}\right\} \rightarrow R, f(x)=\frac{3 x+5}{2 x-3} \cdot \operatorname{Let} f_{1}(x)=f(x), f_{n}(x)=f\left(f_{n-1}(x)\right.$
for $\pi \geq 2, n \in N$, then $f_{2008}(x)+f_{2009}(x)=$
A. $\frac{2 x^{2}+5}{2 x-3}$
B. $\frac{x^{2}+5}{2 x-3}$
C. $\frac{2 x^{2}-5}{2 x-3}$
D. $\frac{x^{2}-5}{2 x-3}$

Answer: A

66. Range of the function, $f(x)=\frac{\left(1+x+x^{2}\right)\left(1+c^{4}\right)}{x^{3}}$, for $x>=0$ is:
A. $[0, \infty]$
B. $[2, \infty]$
C. $[4, \infty]$
D. $[6, \infty]$

Answer: D

- Watch Video Solution

67. The function $f:(-\infty, 3] \rightarrow\left(o, e^{7}\right]$ defined by $f(x)=e^{x^{3}-3 x^{2}-9 x+2}$ is
A. Many one and onto
B. Many one and into
C. One to one and onto
D. One to one and into

Answer: A

68. Find the domain and range of function
$f(x)=\sin \left(\log _{e}\left(\frac{\sqrt{4-x^{2}}}{1-x}\right)\right)$
A. $[-1,1]$
B. $[0,1]$
C. $[-1,1)$
D. None of these

Answer: A

- Watch Video Solution

69. Set of values of 'a' for which the function $f: R \rightarrow R$, given by $f(x)=x^{3}+(a+2) x^{2}+3 a x+10$ is one-one is given by:

$$
\text { A. }(-\infty, 1] \cup[4, \infty)
$$

B. $[1,4]$
C. $[1, \infty]$
D. $[-\infty, 4]$

Answer: B

- Watch Video Solution

70. If the range of the function $f(x)=\tan ^{-1}\left(3 x^{2}+b x+c\right)$ is $\left[0, \frac{\pi}{2}\right)$, (domain is R), then:
A. $b^{2}=3 c$
B. $b^{2}=4 c$
C. $b^{2}=12 c$
D. $b^{2}=8 c$

Answer: C

71. Let $f(x)=\sin ^{-1} x-\cos ^{-1} \mathrm{x}$, then the set of values of k for which of $|f(x)|=k$ has exactly two distinct solutions is:
A. $(0, \pi]$
B. $\left(0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
D. $\left[\pi, \frac{3 \pi}{2}\right]$

Answer: A

- Watch Video Solution

72.

$f: R \rightarrow R$
is
defined
by
$f(x)=\left\{\begin{array}{ll}(x+1)^{3} & x \leq 1 \\ \ln x+\left(b^{2}-3 b+10\right) & x>1\end{array}\right.$ If $\mathrm{f}(\mathrm{x})$ is invertible, then the
set of all values of ' b ' is :
A. $\{1,2\}$
B. ϕ
C. $\{2,5\}$
D. None of these

Answer: A

- Watch Video Solution

73. If $f(x)$ is continuous such that
$|f(x)| \leq 1, \forall x \in R$ and $g(x)=\frac{e^{f(x)}-e^{-|f(x)|}}{e^{f(x)}+e^{-|f(x)|}}$, then range of $g(x)$ is
A. $[0,1]$
B. $\left[0, \frac{e^{2}+1}{e^{2}-1}\right]$
C. $\left[0, \frac{e^{2}-1}{e^{2}+1}\right]$
D. $\left[\frac{e^{2}+1}{e^{2}+1}, 0\right]$

Answer: D

74. Consider all function $f:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$ which are one-one, onto and satisfy the following property:

If $f(k)$ is odd then $f(k+1)$ is even, $K=1,2,3$. The number of such function is :
A. 4
B. 8
C. 12
D. 16

Answer: C

- Watch Video Solution

75. Consider the function $f: R-\{1\}$ given by $f(x)=\frac{2 x}{x-1}$ Then $f^{-1}(x)=$
76. If rang of fraction $f(x)$ whose domain is set of all real numbers is $[-2,4]$, then range of function $g(x)=\frac{1}{2} f(2 x+1)$ is equal to :
A. $[-2,4]$
B. $[-1,2]$
C. $[-3,9]$
D. $[-2,2]$

Answer: B

- Watch Video Solution

77. Let $f: R \rightarrow$ and $f(x)=\frac{x\left(x^{4}+1\right)(x+1)+x^{4}+1}{x^{2}+x+1}$, then $f(x)$ is
A. one-one, into
B. Many -one onto
C. One-one, onto
D. Many one, into

Answer: D

- Watch Video Solution

78. Let $f(x)$ be defined as
$f(x)= \begin{cases}|x| & 0 \leq x<1 \\ |x-1|+|x-2| & 1 \leq x<2 \\ |x-3| & 2 \leq x<3\end{cases}$
The range of function $g(x)=\sin (7(f(x))$ is :
A. $[0,1]$
B. $[-1,0]$
C. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
D. $[-1,1]$

Answer: D

79. If $[x]^{2}-7[x]+10<0$ and $4[y]^{2}-16[y]+7<0$, then $[x+y]$ cannot be ([.]` denotes greatest integer function):
A. 7
B. 8
C. 9
D. both (b) and (c)

Answer: C

- Watch Video Solution

80. Let $f: R \rightarrow R$ be a functino defined by
$f(x)=e^{x}-e^{-x}$, thenf $^{-1}(x)=$
81. The function $f(x)$ satisfy the equation
$f(1-x)+2 f(x)=3 x \forall x \in R$, then $f(0)=$
A. -2
B. -1
C. 0
D. 1

Answer: B

Watch Video Solution

82. Let $f:[0,5] \rightarrow[0,5)$ be an invertible function defined by $f(x)=a x^{2}+b x+C$, where $a, b, c \in R, a b c \neq 0$, then one of the root of the equation $c x^{2}+b x+a=0$ is:
A. a
B. b
C. c
D. $a+b+c$

Answer: A

- Watch Video Solution

83. Let $f(x)=x^{2}+\lambda x+\mu \cos x, \lambda$ being an integer and μ is a real number. The number of ordered pairs (λ, μ) for which the equation $f(x)=0$ and $f(f(x))=0$ have the same (non empty) set of real roots is:
A. 2
B. 1
C. 4
D. 6

Answer: C

84. Consider all function $f:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$ which are one-one, onto and satisfy the following property :

If $f(k)$ is odd then $f(k+1)$ is even, $K=1,2,3$. The number of such function is :
A. 4
B. 8
C. 12
D. 16

Answer: C

- Watch Video Solution

85. Which of the following is closest to the graph of $y=\tan (\sin x), x>0 ?$

A.
B.

(c)

C.
D.

Answer: B

- Watch Video Solution

86. Consider the function $f: R-\{1\} \rightarrow R-\{2\}$ given by $f(x)=\frac{2 x}{x-1}$ Then :
A. f is one-one but not onto
B. f is onto but not one-one
C. f is one-one nor onto
D. f is both one-one and onto

Answer: D

D Watch Video Solution

87. If rangr of funtion $f(x)$ whose domain is set of all real numbers is $[-2,4]$, then range of function $g(x)=\frac{1}{2} f(2 x+1)$ is equal to
A. $[-2,4]$
B. $[-1, .2]$
C. $[-3,9]$
D. $[-2,2]$

Answer: B

88. Let $f: R \rightarrow$ and $f(x)=\frac{x\left(x^{4}+1\right)(x+1)+x^{4}+2}{x^{2}+x+1}$, then $f(x)$ is
A. One-one, into
B. Many one, onto
C. One-one, onto
D. Many one, into

Answer: D

- Watch Video Solution

89. Let $\mathrm{f}(\mathrm{x})$ be defined as
$f(x)= \begin{cases}|x| & 0 \leq x<1 \\ |x-1|+|x-2| & 1 \leq x<2 \\ |x-3| & 2 \leq x<3\end{cases}$
The range of function $g(x)=\sin (7(f(x))$ is:
A. $[0,1]$
B. $[-1,0]$
C. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
D. $[-1,1]$

Answer: D

- Watch Video Solution

90. Number of integral values of x in the domain of function $f(x)=\sqrt{\ln (|\ln | x| |)}+\sqrt{7|x|-(|x|)^{2}-10}$ is equal to
A. 5
B. 6
C. 7
D. 8

Answer: B

91. The number of integral ordered pair (x, y) that satisfy the system of equatin $|x+y-4|=5$ and $|x-3|+|y-1|=5$ is/are:
A. 2
B. 4
C. 6
D. 12

Answer: D

- Watch Video Solution

92. Let $f: R \rightarrow R$, where $f(x)=\frac{x^{2}+a x+1}{x^{2}+x+1}$. Then the complete set of values of 'a' such that $f(x)$ is onto is :
A. $(-\infty, \infty)$
B. $(-\infty, 0)$
C. $(0, \infty)$
D. Empty set

Answer: D

- Watch Video Solution

93. If $A=\{1,2,3,4\}$ and $f: A \rightarrow A$, then total number of invertible function 'f' such that $f(2) \neq 2, f(4) \neq 4, f(1)=1$ is equal to :
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

94. The domian of definition of $f(x)=\log _{\left(x^{2}-x-1\right)}\left(2 x^{2}-7 x+9\right)$ is:
A. R
B. $R-\{0\}$
C. $R-\{0,1\}$
D. $R-\{1\}$

Answer: C

Watch Video Solution

95. If $A=\{1,2,3,4\}$ and $B=\{1,2,3,4,5,6\}$ are two sets and function $f: A \rightarrow B$ is defined by $f(x)=x+2, \forall x \in A$, then the function f is
A. bijective
B. one one into
C. many oneonto
D. None of these

Answer: B

- Watch Video Solution

96. Let $f(x)=x^{2}-2 x-3, x \geq 1$ and $g(x)=1+\sqrt{x+4}, x \geq-4$ then the number of real solution os equation $f(x)=g(x)$ is/are
A. 0
B. 1
C. 2
D. 4

Answer: B

1. $f(x)$ is an even periodic function with period 10. In
$[0,5] f(x)=\left\{\begin{array}{ll}2 x & 0 \leq x<2 \\ 3 x^{2}-8 & 2 \leq x<4 \\ 10 x & 4 \leq x \leq 5\end{array}\right.$ Then :
A. $f(-4)=40$
B. $\frac{f(-13)-f(11)}{f(13)+f(-11)}=\frac{17}{21}$
C. $f(5)$ is not defined
D. Range of $f(x)$ is $[0,50]$

Answer: A::B::D

- Watch Video Solution

2. Let $f(x)=\left|\left|x^{2}-4 x+3\right|-2\right|$. Which of the following is/are correct ?
A. $f(x)=m$ has exactly two real solutios of different sign $\forall m>2$
B. $f(x)=m$ has exactly two real solution $\forall m \in(2, \infty) \cup\{0\}$
C. $f(x)=m$ has no solutions $\forall m<0$
D. $f(x)=m$ has four distinct real solution $\forall m \in(0,1)$

Answer: A::B::C

- Watch Video Solution

3. Let $f(x)=\cos ^{-1}\left(\frac{1-\tan ^{2}(x / 2)}{1+\tan ^{2}(x / 2)}\right)$

Which of the following statement (s) is/are correct about $f(x)$?
A. Domain is R
B. Range is $[0, \pi]$
C. $f(x)$ is even
D. $f(x)$ is dervable in $(\pi, 2 \pi)$

Answer: C::D

4. $\left|\log _{e}\right| x||=|k-1|-3$ has four distict roots then k satisfies : (where $\left.|x|<d^{2}, x \neq 0\right)$
A. $(-4,-2)$
B. $(4,6)$
C. $\left(e^{-1}, e\right)$
D. $\left(d^{-2}, e^{-1}\right)$

Answer: A: B

- Watch Video Solution

5. Which of the following funjctions are difined for all $x \in R$?
(Where[.] = denotes greatest integer function)
A. $f(x)=\sin [x]+\cos [x]$
B. $f(x)=\sec ^{-1}\left(1+\sin ^{2} x\right)$
C. $f(x)=\sqrt{\frac{9}{8}+\cos x+\cos 2 x}$
D. $f(x)=\tan (\ln (1+|x|))$

Answer: A::B::C

- Watch Video Solution

6. Let $f(x)=\left\{\begin{array}{ll}x^{2} & 0<x<2 \\ 2 x-3 & 2 \leq x<3 \\ x+2 & x \geq 3\end{array}\right.$ then the tuue equations:
A. $f\left(f\left(f\left(\frac{3}{2}\right)\right)=f\left(\frac{3}{2}\right)\right.$
B. $1+f\left(f\left(f\left(\frac{5}{2}\right)\right)\right)=f\left(\frac{5}{2}\right)$
C. $f(f(f(2))=f(1)$
D. $\underbrace{f(f(f(\ldots \ldots f(4)) \ldots))}=2012$

Answer: A::B::C::D

- Watch Video Solution

7. Let $f:\left[\frac{2 \pi}{3}, \frac{5 \pi}{3}\right] \rightarrow[0,4]$ be a function difined as $f(x)=\sqrt{3} \sin x-\cos x+2$, then :
A. $f^{-1}(1)=\frac{4 \pi}{3}$
B. $f^{-1}(1)=\pi$
C. $f^{-1}(2)=\frac{5 \pi}{6}$
D. $f^{-1}(2)=\frac{7 \pi}{6}$

Answer: A:D

- Watch Video Solution

8. Let $f(x)$ be invertible function and let $f^{-1}(x)$ be is inverse. Let equation $f\left(f^{-1}(x)\right)=f^{-1}(x)$ has two real roots α and β (with in domain of $f(x)$), then :
A. $f(x)=x$ also have same two rreal roots
B. $f^{-1}(x)=x$ also have same two real roots
C. $f(x)=f^{-1}(x)$ also have same two real roots
D. Area of triangle formed by $(0,0),(\alpha, f(\alpha))$, and $(\beta, f(\beta))$ is 1 unit

Answer: A::B::C

- Watch Video Solution

9. Find the value of $\cos ^{-1}(x)+\cos ^{-1}\left(\frac{x}{2}+\frac{\sqrt{3-3 x^{2}}}{2}\right)$

D Watch Video Solution

10. Let $f: R \rightarrow R$ defined by $f(x)=\cos ^{-1}(-\{-x\})$, where $\{\mathrm{x}\}$ denotes fractional part of x. Then, which of the following is/are correct?
A. f is many coe but not even function
B. Eange of f contains two prime numbers
C. f is a periodic
D. Graph of f does not lie below x -axis

Answer: A::B::D

- Watch Video Solution

11. Which option (s) is/are ture ?
A. $f: R \rightarrow R, f(x)=e^{|x|}-e^{-x}$ is many-one into function
B. $f: R \rightarrow R, f(x)=2 x+|\sin x|$ is one-one onto
C. $f: R \rightarrow R, f(x)=\frac{x^{2}+4 x+30}{x^{2}-8 x+18}$ is many-one onto
D. $f: R \rightarrow R, f(x)=\frac{2 x^{2}-x+5}{7 x^{2}+2 x+10}$ is many-one into

Answer: A::B::D

- Watch Video Solution

12. If $f(x)=\left[\frac{\ln (x)}{e}\right]+\left[\frac{\ln (e)}{x}\right]$, where [.] denotes greatest interger function, the which of the following are ture?
A. range of $f(x) i s\{-1,0\}$
B. If $f(x)=-1$, then x can be rational as well as irrational
C. If $f(x)=-1$, then x can be rational as well as irrational
D. $f(x)$ is periodic function

Answer: A:C

- Watch Video Solution

13. If $f(x)=\left\{\begin{array}{ll}x^{3} & x=Q \\ -x^{3} & x \neq Q\end{array}\right.$, then :
A. $f(x)$ is periodic
B. $f(x)$ is many-one
C. $f(x)$ is one-one
D. range of the function is R

Answer: C::D

- Watch Video Solution

14. Let $f(x)$ be a real vaued continuous function such that
$f(0)=\frac{1}{2}$ and $f(x+y)=f(x) f(4-y)+f(y) f(4-x) \forall x, y \in R$, then for some real a:
A. $f(x)$ is perodic function
B. $\mathrm{f}(\mathrm{x})$ is a constant function
C. $f(x)=\frac{1}{2}$
D. $f(x)=\frac{\cos x}{2}$

Answer: A::B::C

- Watch Video Solution

15. $f(x)$ is an even periodic function with period 10. In $[0,5] f(x)=\left\{\begin{array}{ll}2 x & 0 \leq x<2 \\ 3 x^{2}-8 & 2 \leq x<4 \\ 10 x & 4 \leq x \leq 5\end{array}\right.$ Then :
A. $f(-4)=40$
B. $\frac{f(-13)-x(11)}{f(13)+f(-11)}=\frac{17}{21}$
C. $f(5)$ is not defined
D. Range of $f(x)$ is $[0,50]$

Answer: A::B::D

- Watch Video Solution

16. For the equation $\frac{e^{-x}}{1+x}=\lambda$ which of the following statement (s) is/are correct ?
A. when $\lambda \in(0, \infty)$ equation has 2 real and distinct roots
B. when $\lambda \in\left(-\infty,-e^{2}\right)$ equation has 2 real anddistinct roots
C. when $\lambda \in(0, \infty)$ equatio has 1 real root
D. when $\lambda \in(-e, 0)$ equation has no real root

Answer: B::C::D

- Watch Video Solution

17. For $x \in R^{+}$, if $x,[x],\{x\}$ are in harmonic progesssion then the vaue of x can not be equal to :
A. $\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$
B. $\frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$
C. $\frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$
D. $\frac{1}{\sqrt{2}} \cot \frac{\pi}{12}$

Answer: A::C::D

- Watch Video Solution

18. The equation $||x-1|+a|=4, a \in R$, has:
A. 3 distinet real roots for unique value of a.
B. 4 distinct real roots for $a \in(-\infty,-4)$
C. 2 distinct real roots for $|a|<4$
D. no real roots for $a>4$

Answer: A::B::C::D

- Watch Video Solution

19. The numer of real values of x satisfying the equation, $\left[\frac{2 x+1}{3}\right]+\left[\frac{4 x+5}{6}\right]=\frac{3 x-1}{2}$ are greater than or equal to \{[.] denotes greatest integer functio\}:
A. 7
B. 8
C. 9
D. 10

Answer: A::B::C

- Watch Video Solution

20. Let $f\left(x=\sin ^{6}\left(\frac{x}{4}\right)+\cos ^{6}\left(\frac{x}{4}\right) \cdot I f f^{n}(x)\right.$ denotes $n^{\text {th }}$ derivative of f evaluated at x . Then which of the following hold?
A. $f^{2014}(0)=-\frac{3}{8}$
B. $f^{2015}(0)=\frac{3}{8}$
C. $f^{2010}\left(\frac{\pi}{2}\right)=0$
D. $f^{2011}\left(\frac{\pi}{2}\right)=\frac{3}{8}$

Answer: A::C::D

- Watch Video Solution

21. Which of the following is (are) incorrect ?
A. If $f(x)=\sin x$ and $g(x)=$ in x then range of $g(f(x))$ is $[-1,1]$
B.
C. If $f(x)=\left(2011-x^{2012}\right)^{\frac{1}{2012}}$ then $f(f(2))=\frac{1}{2}$
D. The function $f: R \rightarrow R$ defined as $f(x)=\frac{x^{2}+4 x+30}{x^{2}-8 x+18}$ is not surjective.

Answer: A::B

- Watch Video Solution

22. If [x] denotes the integral part of x for real x, and
$S=\left[\frac{1}{4}\right]+\left[\frac{1}{4}+\frac{1}{100}\right]+\left[\frac{1}{4}+\frac{1}{100}\right]+\left[\frac{1}{4}+\frac{3}{200}\right] \ldots .+\left[\frac{1}{4}+\frac{199}{200}\right.$ then
23. Let $f(x)=\log _{\{x\}}[x]$
$g(x)=\log _{\{x\}}\{x\}$
$h(x)=\log _{\{x\}}\{x\}$
where [], $\}$ denotes the greatest integer function and fractional part function respectively.

Domine of $h(x)$ is :
A. 5
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

Comprehension Type Problems

1. Let $f(x)=\log _{\{x\}}[x]$
$g(x)=\log _{\{x\}}-\{x\}$
$h(x) \log _{\{x\}}\{x\}$
where [], $\}$ denotes the greatest integer function and fractional part function respectively.

If $A=\{x: x \in$ domine of $f(x)))$ and $B\{x: x$ domine of $g(x)\}$ then $\forall x \in(1,5), A-B$ will be :
A. $(2,3)$
B. $(1,3)$
C. $(1,2)$
D. None of these

Answer: D

2. Let $f(x)=\log _{\{x\}}[x]$
$g(x)=\log _{\{x\}}\{x\}$
$h(x)=\log _{\{x\}}\{x\}$
where [], $\}$ denotes the greatest integer function and fractional part function respectively.

Domine of $h(x)$ is :
A. $[2, \infty)$
B. $[1, \infty)$
C. $[2, \infty)-\{I\}$
D. $R^{+}-\{I\}$

Answer: C

- Watch Video Solution

3. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of $f+g$ and g equal. The vlaue of θ for
which $h(\theta)$ is defined are handosome. Let
$f(x)=\sqrt{\theta x^{2}-2\left(\theta^{2}-3\right) x-12 \theta}, g(x)=\ln \left(x^{2}-49\right)$,
$h(\theta) \ln \left[\int_{0}^{\theta} 4 \cos ^{2} t d t-\theta^{2}\right]$, where θ is in radians.
Complete set of vlaues of θ which are well behaved as well as intellignent is:
A. $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
B. $\left[\frac{3}{5}, \frac{7}{8}\right]$
C. $\left[\frac{5}{6}, \frac{\pi}{2}\right]$
D. $\left[\frac{6}{7}, \frac{\pi}{2}\right]$

Answer: D

- Watch Video Solution

4. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of $f+g$ and g equal. The vlaue of θ for which $h(\theta)$ is defined are handosome. Let
$f(x)=\sqrt{\theta x^{2}-2\left(\theta^{2}-3\right) x-12 \theta,} g(x)=\ln \left(x^{2}-49\right)$,
$h(\theta) \ln \left[\int_{0}^{\theta} 4 \cos ^{2} t d t-\theta^{2}\right]$, where θ is in radians.
Complete set of alues of θ which are intelligent is :
A. $\left[\frac{6}{7}, \frac{7}{2}\right]$
B. $\left(0, \frac{\pi}{3}\right]$
C. $\left[\frac{1}{4}, \frac{6}{7}\right]$
D. $\left[\frac{1}{2}, \frac{\pi}{2}\right]$

Answer: A

- Watch Video Solution

5. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of $f+g$ and g equal. The vlaue of θ for which $h(\theta)$ is defined are handosome. Let

$$
f(x)=\sqrt{\theta x^{2}-2\left(\theta^{2}-3\right) x-12 \theta,} g(x)=\ln \left(x^{2}-49\right)
$$

$h(\theta) \ln \left[\int_{0}^{\theta} 4 \cos ^{2} t d t-\theta^{2}\right]$, where θ is in radians.

Complete set of vlaues of θ which are well behaved as well as intellignent is:
A. $\left(0, \frac{\pi}{2}\right]$
B. $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
C. $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{3}{5}, \frac{\pi}{2}\right]$

Answer: B

- Watch Video Solution

6. Let $f(x)=2-|x-3|, 1 \leq x \leq 5$ and for rest of the values $\mathrm{f}(\mathrm{x})$ can be obtained by using the relation $f(5 x)=\alpha f(x) \forall x \in R$ The maximum value of $f(x)$ in $\left[5^{4}, 5^{5}\right]$ for $\alpha=2$ is
A. 16
B. 32
C. 64
D. 8

Answer: B

- Watch Video Solution

7. Let $f(x)=2-|x-3|, 1 \leq x \leq 5$ and for rest of the values $\mathrm{f}(\mathrm{x})$ can be obtained by using the relation $f(5 x)=\alpha f(x) \forall x \in R$ The maximum value of $f(x)$ in $\left[5^{4}, 5^{5}\right]$ for $\alpha=5$ is
A. 1118
B. 2007
C. 1250
D. 132

Answer: A

- Watch Video Solution

8. An even periodic functin $f: R \rightarrow R$ with period 4 is such that
$f(x)=\left[\begin{array}{ll}\max .\left(|x|, x^{2}\right) & 0 \leq x<1 \\ x & 1 \leq x \leq 2\end{array}\right.$
The value of $\{f(5.12)\}$ (where $\{$.$\} denotes fractional part function), is:$
A. $\{f(3.26)\}$
B. $\{f(7.88)\}$
C. $\{f(2.12)\}$
D. $\{f(5.88)\}$

Answer: B

- Watch Video Solution

9. An even periodic functin $f: R \rightarrow R$ with period 4 is such that
$f(x)=\left[\begin{array}{ll}\max .\left(|x|, x^{2}\right) & 0 \leq x<1 \\ x & 1 \leq x \leq 2\end{array}\right.$
The number of solution of $f(x)=|3 \sin x|$ for $x \in(-6,6)$ are :
A. 5
B. 3
C. 7
D. 9

Answer: C

- Watch Video Solution

10. Let $f(x)=\frac{2|x|-1}{x-3}$

Range of $f(x)$:
A. $R-\{3\}$
B. $\left(-\infty, \frac{1}{3}\right] \cup(2, \infty)$
C. $\left(-2, \frac{1}{3}\right] \cup(2, \infty)$
D. R

Answer: B
11. Let $f(x)=\frac{2|x|-1}{x-3}$

Range of the values of ' k ' for which $f(x)=k$ has exactly two distinct solutions:
A. $\left(-2, \frac{1}{3}\right)$
B. $(-2,1]$
C. $\left(0, \frac{2}{3}\right]$
D. $(-\infty,-2)$

Answer: A

- Watch Video Solution

12. Let $f(x)$ be a continuous function (define for all \mathbf{x}) which satisfies
$f^{3}(x)-5 f^{2}(x)+10 f(x)-12 \geq 0, f^{2}(x)+3 \geq 0$ and $f^{2}(x)-5 f(x)+$ If distinct positive number b_{1}, b_{2} and b_{3} ar in G.P. then $\left.f(1)+\ln b_{1}\right), f(2)+\ln b_{2}, f(3)+\ln b_{3}$ are in:
A. A.P.
B. G.P.
C. H. P.
D. A. G. P.

Answer: A

D Watch Video Solution

13. Let $f(x)$ be a continuous function (define for all x) which satisfies $f^{3}(x)-5 f^{2}(x)+10 f(x)-12 \geq 0, f^{2}(x)+3 \geq 0$ and $f^{2}(x)-5 f(x)+$ The equation of tangent that can be drawn from $(2,0)$ on the curve $y=x^{2} f(\sin x)$ is :
A. $y=24(x+2)$
B. $y=12(x+2)$
C. $y=24(x-2)$
D. $y=12(x-2)$

- Watch Video Solution

14. Let $f:[2, \infty) \rightarrow\{1, \infty)$
defined
$f(x)=2^{x^{4}-4 x^{2}}$ and $g:\left[\frac{\pi}{2}, \pi\right] \rightarrow A$ defined by $g(x)=\frac{\sin x+4}{\sin x-2}$ be two invertible functions, then
$f^{-1}(x)$ is equal to
A. $\sqrt{2+\sqrt{4-\log _{2} x}}$
B. $\sqrt{2+\sqrt{4+\log _{2} x}}$
C. $\sqrt{4+\sqrt{4+\log _{2} x}}$
D. $\sqrt{4-\sqrt{2+\log _{2} x}}$

Answer: B

- Watch Video Solution

15. Let

$$
f:[2, \infty) \rightarrow\{1, \infty)
$$

defined
$f(x)=2^{x^{4}-4 x^{3}}$ and $g:\left[\frac{\pi}{2}, \pi\right] \rightarrow A$ defined by $g(x)=\frac{\sin x+4}{\sin x-2}$ be two invertible functions, then

The set "A" equals to
A. $[5,2]$
B. $[-2,5]$
C. $[-5,2]$
D. $\left[\begin{array}{ll}-5 & -2]\end{array}\right.$

Answer: D

- Watch Video Solution

Matching Type Problems

1. If $x, y, z \in R$ satisfies the system of equations
$x+(y)+(s)=12.7,[x]+\{y\}+z=4.1$ and $\{x\}+y+[z]=2$
where \{.\} and [.] denotes the fractional and integral parts respectively) then match the following

Column-1		Column-lI	
(A)	$\{x\}+\{y\}=$	(P)	7.7
(B)	$[z]+[x]=$	(Q)	1.1
(C)	$x+\{z\}=$	(R)	1
(D)	$z+[y]-\{x\}=$	(S)	3
		(T)	4

Watch Video Solution

2. Given the graph of $y=f(x)$

- Watch Video Solution

3.

	Column-1	Column-11	
(A)	$f(x)=\sin ^{2} 2 x-2 \sin ^{2} x$	(P)	Range contains no natural number
(B)	$f(x)=\frac{4}{\pi}\left(\sin ^{-1}(\sin \pi x)\right)$	(Q)	Range contains atleast one integer
(C)	$f(x)=\sqrt{\ln (\cos (\sin x)}$	(R)	Many one but not even function
(D)	$f(x)=\tan ^{-1}\left(\frac{x^{2}+1}{x^{2}+\sqrt{3}}\right)$	(s)	Both many one and even function
	(T)	Periodic but not odd function	

- Watch Video Solution

4.

5.

	Colume		Cofumbil
(A)	$\begin{aligned} & \text { Domain of } f(x)=\ln \tan ^{-1} \\ & \left\{\left(x^{3}-6 x^{2}+11 x-6\right) x\left(e^{x}-1\right)\right\} \text { is } \end{aligned}$	(P)	$\left[-1, \frac{5}{4}\right]$
(B)	Range of $f(x)=\sin ^{2} \frac{x}{4}+\cos \frac{x}{4}$ is	(Q)	$[2, \infty)$
(C)	$\begin{aligned} & \text { The domain of } \quad \text { function } \\ & f(x)=\sqrt{\log _{(\|x\|-1)}\left(x^{2}+4 x+4\right)} \text { is } \end{aligned}$	(R)	$(1,2) \cup(3, \infty)$
(D)		(S)	$[0, \infty)$
	Then range of function $f(g(x)$) is	(T)	$(-\infty,-3) \cup(-2,-1) \cup(2, \infty)$

- Watch Video Solution

6. Let $f(x)\left[\begin{array}{ll}1+x, & 0 \leq x \leq 2 \\ 3-x, & 2<x \leq 3\end{array}\right.$:
$g(x)=f(f(x)):$

	Columnt-l		
(A)	If domain of $g(x)$ is $[a, b]$ then $b-a$ is	(P)	Column-ll
(B)	If range of $g(x)$ is $[c, d]$ then $c+d$ is	(Q)	1
(C)	$f(f(f(2)))+f(f(f(3))$), is	(R)	2
(D)	$m=$ maximum value of $g(x)$ then	(S)	3
	$2 m-2$ is :	4	

- Watch Video Solution

Subjective Type Problems

1. Let $f(x)$ be a polynomial of degree 6 with leading coefficient 2009. Suppose further that $f(1)=1, f(2)=3, f(3)=5, f(4)=7, f(5)=9, f^{\prime}(2)=2$. Then the sum of all the digits of $f(6)$ is

- Watch Video Solution

2. Let $f(x)=x^{3}-3 x$ Find $f(f(x))$

- Watch Video Solution

3. If

$$
f(x+y+1)=\{\sqrt{f(x)}+\sqrt{f(y)}\}^{2} \quad \text { and }
$$

$f(0)=1 \forall x, y \in R, \operatorname{determ} \in e f(n), n \in N$.

- Watch Video Solution

4. If the domain of $f(x)=\sqrt{12-3^{x}-3^{3-x}}+\sin ^{-1}\left(\frac{2 x}{3}\right) i s[a, b]$, then $a=\ldots$...
5. The number of elements in the range of functions: $y=\sin ^{-1}\left[x^{2}+\frac{5}{9}\right]+\cos ^{-1}\left[x^{2}-\frac{4}{9}\right]$ where where [.] denotes the greatest integer function is:

- Watch Video Solution

6. The number of integers in the range of function $f(x)=[\sin x]+[\sin x+\cos x]$ is (where [.] $=$ denotes greatet integer funcion)

- Watch Video Solution

7. If $P(x)$ is polynomial of degree 4 such than $P(-1)=P(1)=5$ and $P(-2)=P(0)=P(2)=2 \quad$ find \quad the maximum vaue of $P(x)$.
8. The number of integral vlaue (s) of k for which the curve $y=\sqrt{-x^{2}-2 x}$ and $x+y-k=0$ intersect at 2 distinct points is/are

- Watch Video Solution

9. Let the solution set of the equation :
$\left.\sqrt{\left[x+\left[\frac{x}{2}\right]\right]}+\sqrt{(x)}+\left[\frac{x}{3}\right]\right]=3$ is (a, b) Find the product ab . (where [.] and $\{$.$\} denote greatest integer and fractional part function$ repectively),

- Watch Video Solution

10. For the real number x , let $f(x)=\frac{1}{2011 \sqrt{1-x^{2011}}}$. Find the number of real roots of the equation
$f(f(\ldots .(f(x)) \ldots)=.(\{-x\}$
where f is applies 2013 times and \{.\} denotes fractional part function.
11. Find the number of elements contained in the range of the function $\left.f(x)=\left[\frac{x}{6}\right]\left[\frac{-6}{x}\right] \forall x \in \quad(0,30)\right]$ where $[.]^{`}$ denotes greatest integer function)

- Watch Video Solution

12. Let $f(x, y)=x^{2}-y^{2}$ and $g(x, y)=2 x y$. such that $(f(x, y))^{2}-(g(x, y))^{2}=\frac{1}{2}$ and $f(x, y) . G(x, y)=\frac{\sqrt{3}}{4} \quad$ Find \quad the number of ordered pairs (x, y) ?

- Watch Video Solution

13. Let $f(x)=\frac{x+5}{\sqrt{x^{2}}+1} \forall x \in R$, then the smallest integral value of k for which $f(x) \leq k \forall x \in R$ is

- Watch Video Solution

14. The number of integral values of a for which $f(x)=x^{3}+(a+2) x^{2}+3 a x+5$ is monotonic in $\forall x \in R$.

- Watch Video Solution

15. The number of roots of equation $\left(\frac{(x-1)(x-3)}{(x-2)(x-4)}-e^{x}\right)\left(\frac{(x+1)(x+3) e^{x}}{(x+2)(x+4)}-1\right)\left(x^{3}-\cos x\right)=0:$

- Watch Video Solution

16. The number of solutions of the equation $\cos ^{-1}\left(\frac{1-x^{2}-2 x}{(x+1)^{2}}\right)=\pi(1-\{x\}$, for $x \in[0,76]$ is equal to (where
$\{$.$\} denote fraction part function)$

- Watch Video Solution

17. Let $f(x)=x^{2}-b x+c, b$ is an odd positive integer. Given that $\mathrm{f}(\mathrm{x})=0$ has two prime numbers as roots and $b+c=35$. If the least value of $f(x) \forall x \in R$ is λ, then $\left[\left|\frac{\lambda}{3}\right|\right]$ is equal to (where [.] denotes greatest integer function)

- Watch Video Solution

18. Let $f(x)$ be a continuous function such that $f(0)=1$ and $f(x)=f\left(\frac{x}{7}\right)=\frac{x}{7} \forall x \in R$, then $f(42)$ is

- Watch Video Solution

19.

$f(x)=4 x^{3}-x^{2}-2 x+1$ and $g(x)= \begin{cases}\min \{f(t): 0 \leq t \leq x\} & 0 \leq: \\ 3-x & 1<:\end{cases}$ and if $\lambda=g\left(\frac{1}{4}\right)+g\left(\frac{3}{4}\right)+g\left(\frac{5}{4}\right)$, then $2 \lambda=$

- Watch Video Solution

20. If $x=10 \sum_{r=3}^{100} \frac{1}{\left(r^{2}-4\right)}$, then $[x]=$
(where [.] denotes gratest integer function)

D Watch Video Solution

21. Let $f(x)=\frac{a x+b}{x c+d}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \quad \mathrm{d}$ are non zero if $f(7)=7, f(11)=11$ and $f(f(x))=x$ for all x expect $-\frac{d}{c}$. The unique number which is not is the range of f is

- Watch Video Solution

22. Let $A=\left\{x \mid x^{2}-4 x+3<0, x \in R\right\}$

If $A \subset B$, then the rang of real number $p \in[a, b]$ where, a, b are integers. Find the value of $(b-a)$.

- Watch Video Solution

23. Let the maximum value of expression $y=\frac{x^{4}-x^{2}}{x^{6}+2 x^{3}-1}$ for $x>1 i s \frac{p}{1}$, where p and 1 q are relatively prime natural numbers, then $p+q=$

- Watch Video Solution

24. If $f(x)$ is an even function, then the number of distinect real numbers x such that $f(x)=f\left(\frac{x+1}{x+2}\right)$ is :

(Watch Video Solution

25. The least integral value of $\mathrm{m}, \mathrm{m} \in R$ for which the range of function $f(x)=\frac{x+m}{x^{2}+1}$ contains the interval $[0,1]$ is :

- Watch Video Solution

26. Let x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+\beta x+\gamma=0$ are in G.P. where $x(1), x_{2}, x_{3}$ are positive numbers. Then the maximum value of $[\beta]+[\gamma]+4$ is where [.] denotes greatest integer function is :

- Watch Video Solution

27. Let $A=\{1,2,3,4\}$ and $B=\{0,1,2,3,4,5\}$. If ' m ' is the number of strictly increasing function $\mathrm{f}, f: A \rightarrow B$ and n is the number of onto functions $g: B \rightarrow A$. Then the last digit of $\mathrm{n}-\mathrm{m}$ is.

- Watch Video Solution

28. If $\sum_{r=1}^{n}\left[\log _{2} r\right]=2010$ where [.] denotes greatest integer function, then the sum of the digits of n is:

- Watch Video Solution

29. Let $f(x)=\frac{a x+b}{x c+d}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \quad \mathrm{d}$ are non zero If $f(7)=7, f(11)=11$ and $f(f(x))=x$ for all x expect $-\frac{d}{c}$. The unique number which is not is the range of f is

- Watch Video Solution

30. It is pouring down rain and the amount of rain hitting point (x, y) is given by $f(x, y)=\left|x^{3}+2 x^{2} y-5 x y^{2}-6 y^{3}\right|$. If Mr. 'A' starts at $(0,0)$, find number of possible value (s) for ' m ' such that $\mathrm{y}=\mathrm{mx}$ is a line along which Mr.' A could walk without any rain falling on him.

- Watch Video Solution

31. Let $P(x)$ be a cubic polynomical with leading co-efficient unity. Let the remainder when $P(x)$ is divided by $x^{2}-5 x+6$ equals 2 times the remainder when $\mathrm{P}(\mathrm{x})$ is divided by $x^{2}-5 x+4$. If $P(0)=100$, find the sum of the digits of $P(5)$,
32. Let $f(x)=x^{2}+10 x+20$. Find the number of real solution of the equation $f(f(f(f(x))))=0$

- Watch Video Solution

33. If range of $f(x)=\frac{(\ln x)\left(\ln x^{2}\right)+\ln x^{3}+3}{\ln ^{2} x+\ln x^{2}+2}$ can be expressed as $\left[\frac{a}{b}, \frac{c}{d}\right]$ where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.

- Watch Video Solution

34. Polynomial $P(x)$ is divided by $(x-3)$, the remainder if 6 .If $P(x)$ is divided by $\left(x^{2}-9\right)$, then the remainder is $g(x)$. Then the value of $g(2)$ is \qquad .
35. The equation $2 x^{3}-3 x^{2}+p=0$ has three real roots. Then find the minimum value of p.

Watch Video Solution
36. Find the number of integers in the domain of $f(x)=\frac{1}{\sqrt{{\ln \cos ^{-1} x}}}$

- Watch Video Solution

