

MATHS

BOOKS - VK JAISWAL ENGLISH

PARABOLA

Exercise 1 Single Choice Problems

1. If BC is a latus rectum of parabola $y^2=4ax$

and A is the vertex, then the minimum length

of the projection of BC on a tangent drawn in

the portion BAC is

A. 2

B. 4

C. $2\sqrt{3}$

D. $2\sqrt{2}$

Answer: D

2. A normal is drawn to the parabola $y^2 = 9x$ at the point P(4, 6). A circle is described on SP as diameter, where S is the focus. The length of the intercept made by the circle on the normal at point P is :

A.
$$\frac{17}{4}$$

B. $\frac{15}{4}$
C. 4

D. 5

Answer: B

4. Find the length of normal chord which subtends an angle of 90^0 at the vertex of the parabola $y^2 = 4x$.

A. $6\sqrt{3}$

- B. $7\sqrt{2}$
- $\mathsf{C.}\,8\sqrt{2}$
- D. $9\sqrt{2}$

Answer: A

5. If $b \ and \ c$ are lengths of the segments of any focal chord of the parabola $y^2 = 4ax$, then write the length of its latus rectum.

A.
$$\frac{bc}{b+c}$$

B. $\frac{2bc}{b+c}$
C. $\frac{b+c}{2}$

D.
$$\sqrt{bc}$$

Answer: B

6. The length of the shortest path that begins at the point (-1, 1), touches the x-axis and then ends at a point on the parabola $(x - y)^2 = 2(x + y - 4)$, is :

A.
$$3\sqrt{2}$$

B. 5

C. $4\sqrt{10}$

D. 13

Answer: A

7. The normal to the parabola $y^2 = 4ax$ at three points P,Q and R meet at A. If S is the focus, then prove that $SP \cdot SR = aSA^2$.

A.
$$2^{3}$$

B. $a^{2}(SO')$
C. $a(SO')^{2}$

D. None of these

Answer: C

8. A and B are two points on the parabola $y^2 = 4ax$ with vertex O. if OA is perpendicular to OB and they have lengths r_1 and r_2 respectively, then the value of $rac{r_1^{4/3}r_2^{4/3}}{r_1^{2/3}+r_2^{2/3}}$ is

A. $16a^2$

 $\mathsf{B.}\,a^2$

C.4a

D. None of these

Answer: A

9. Length of the shortest chord of the parabola $y^2=4x+8,$ which belongs to the family of lines $(1+\lambda)y+(\lambda-1)x+2(1-\lambda)=0,$ is :

A. 6

B. 5

D. 2

Answer: C

Watch Video Solution

10. If locus of mid point of any normal chord of the parabola :

$$y^2 = 4x \;\; ext{is}\;\;\; x-a = rac{b}{y^2} + rac{y^2}{c}$$
 ,

where $a, b, c \in N$, then (a + b + c) equals to

:

B. 8

C. 10

D. None of these

Answer: B

Watch Video Solution

11. Let tangents at P and Q to curve $y^2 - 4x - 2y + 5 = 0$ intersect at T. If S(2, 1) is a point such that (SP)(SQ) = 16, then the length ST is equal to :

A. 3

B.4

C. 5

D. None of these

Answer: B

Watch Video Solution

12. Abscissa of two points P and Q on parabola

$$y^2=8x$$
 are roots of equation $x^2-17x+11=0.$ Let Tangents at P and Q

meet at point T, then distance of T from the

focus of parabola is :

A. 7

B. 6

C. 5

D. 4

Answer: A

13. If Ax + By = 1 is a normal to the curve $ay = x^2$, then :

A.
$$4A^2(1-aB) = aB^3$$

B. $4A^2(2+aB) = aB^3$
C. $4A^2(1+aB) + aB^3 = 0$

D.
$$2A^2(2-aB)=aB^3$$

Answer: D

14. The equation of a curve which passes through the point (3, 1), such the segment of any tangent between the point of tangency and the x-axis is bisected at its point of intersection with y-axis, is :

A.
$$x=3y^2$$

$$\mathsf{B.}\,x^2=9y$$

C.
$$x=y^2+2$$

D.
$$2x=3y^2+3$$

Answer: A

15. The parabola $y = 4 - x^2$ has vertex P. It intersects x-axis at A and B. If the parabola is translated from its initial position to a new position by moving its vertex along the line y = x + 4, so that it intersects x-axis at B and C, then abscissa of C will be :

A. 3

B.4

D. 8

Answer: D

Watch Video Solution

16. A focal chord for parabola $y^2 = 8(x + 2)$ is inclined at an angle of 60° with positive x-axis and intersects the parabola at P and Q. Let perpendicular bisector of the chord PQ intersects the x-axis at R, then the distance of R from focus is :

Answer: C

Watch Video Solution

17. The chord of contact of a point $A(x_A, y_A)$ of $y^2 = 4x$ passes through (3, 1) and point A lies on $x^2 + y^2 = 5^2$. Then :

A.
$$5x_A^2+24x_A+11=0$$

B. $13x_A^2+8x_A-21=0$
C. $5x_A^2+24x_A+61=0$
D. $13x_A^2+21x_A-31=0$

Answer: A

Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are Correct **1.** PQ is a double ordinate of the parabola $y^2 = 4ax$. If the normal at P intersect the line passing through Q and parallel to x-axis at G, then locus of G is a parabola with :

A. vertex at (4a, 0)

B. focus at (5a, 0)

C. directrix as the line x-3a=0

D. length of latus rectum equal to 4a

Answer: A::B::C::D

Exercise 5 Subjective Type Problems

1. Points A and B lie on the parabola $y = 2x^2 + 4x - 2$, such that origin is the midpoint of the line segment AB. If 'l' be the length of the line segment AB, then find the unit digit of l^2 .

2. The chord AC of the parabola $y^2 = 4ax$ subtends an angle of 90° at points B and D on the parabola. If points A, B, C and D are represented by $(at_i^2, 2at_i), i = 1, 2, 3, 4$ respectively, then find the value of $\left|\frac{t_2 + t_4}{t_1 + t_3}\right|$.