©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK JAISWAL ENGLISH

STRAIGHT LINES

Exercise 1 Single Choice Problems

1. The ratio in which the line segment joining $(2,-3)$ and $(5,6)$ is divided by the x-axis is :
A. $3: 1$
B. 1: 2
C. $\sqrt{3}: 2$
D. $\sqrt{2}: 3$

Answer: B

(Watch Video Solution

2. If L is the line whose equation is $a x+b y=c$. Let M be the reflection of L through the y - axis, and let N be the reflection of L through the x - axis. Which of the following must be true about M and N for all choices of a, b and c ?
A. The x - intercepts of M and N are equal
B. The y - intercepts of M and N are equal
C. The slopes of M and N are equal
D. The slopes of M and N are reciprocal

D Watch Video Solution

3. Find the values of a for which point (3a,a) lies inside the triangle formed by the lines $\mathrm{y}=\mathrm{x}$, the x -axis and line $\mathrm{x}+\mathrm{y}=4$.
A. $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
B. $\left(\frac{\pi}{2}, \pi\right) \cup\left(\frac{2 \pi}{2}, 2 \pi\right)$
C. $(0, \pi)$
D. $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

Answer: C

4. Let m be a positive integer and let the lines $13 x+11 y=700$ and $y=m x-1$ intersect in a point whose coordinates are integer. Then m equals to :
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

5. If $P \equiv\left(\frac{1}{x_{p}}, p\right), Q=\left(\frac{1}{x_{q}}, q\right), R=\left(\frac{1}{x_{r}}, r\right)$
where $x_{k} \neq 0$, denotes the $k^{t h}$ terms of a H.P. for $k \in N$, then
A. ar.

$$
(\Delta P Q R)=\frac{p^{2} q^{2} r^{2}}{2} \sqrt{(p-q)^{2}+(q-r)^{2}+(r-p)^{2}}
$$

B. $\triangle P Q R$ is a right angled triangle
C. the points P, Q, R are collinear
D. None of these

Answer: C

(D) Watch Video Solution

6. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then the value of c is \qquad
A. 1
B. -1
C. 2
D. -2

Answer: C

D Watch Video Solution

7. A piece of cheese is located at $(12,10)$ in a coordinate plane. A mouse is at $(4,-2)$ and is running up the line $y=-5 x+18$.

At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of $(a+b)$ is :
A. 6
B. 10
C. 18
D. 14

Answer: B

- Watch Video Solution

8. The vertex of the right angle of a right angled triangle lies on the straight line $2 x+y-10=0$ and the two other vertices, at points $(2,-3)$ and $(4,1)$ then the area of triangle in sq. units is-
A. $\sqrt{10}$
B. 3
C. $\frac{33}{5}$
D. 11

Answer: B

- Watch Video Solution

9.

Given
the
family
of
lines,
$a(2 x+y+4)+b(x-2 y-3)=0$. Among the lines of the family, the number of lines situated at a distance of $\sqrt{10}$ from the point $M(2,-3)$ is:
A. 0
B. 1
C. 2
D. ∞

D Watch Video Solution

10. Point $(0, \beta)$ lies on or inside the triangle fromed by the lines $y=0, x+y=8$ and $3 x-4 y+12=0$. Then β can be :
A. 2
B. 4
C. 8
D. 12

Answer: A

11. If the lines $x+y+1=0,4 x+3 y+4=0$ and $x+\alpha y+\beta=0$, where $\alpha^{2}+\beta^{2}=2$, are concurrent then :
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. $\alpha=-1, \beta= \pm 1$
D. $\alpha= \pm 1, \beta=1$

Answer: D

(Watch Video Solution
12. about to only mathematics
A. 1:2
B. $4: 3$
C. 2: 1
D. 3: 4

Answer: D

D Watch Video Solution

13. If the points $(2 a, a),(a, 2 a)$ and (a, a) enclose a triangle of area 72 units, then co-ordinates of the centroid of the triangle may be :
A. $(4,4)$
B. $(-4,4)$
C. $(12,12)$
D. $(16,16)$

- Watch Video Solution

14. Let $g(x)=a x+b$, where $a<0$ and g is defined from [1,3] onto $[0,2]$ then the value of $\cot \left(\cos ^{-1}(|\sin x|+|\cos x|)+\sin ^{-1}(-|\cos x|-|\sin x|)\right)$ is equal to :
A. $g(1)$
B. $g(2)$
C. $g(3)$
D. $g(1)+g(3)$

Answer: C
15. If the point $P(x, y)$ be equidistant from the points $A(a+b, a-b)$ and $B(a-b, a+b)$ then
A. $a x+b y=0$
B. $a x-b y=0$
C. $b x+a y=0$
D. $x-y=0$

Answer: D

D Watch Video Solution

16. If the equation $4 y^{3}-8 a^{2} y x^{2}-3 a y^{2} x+8 x^{3}=0$
represents three straight lines, two of them are perpendicular,
then sum of all possible values of a is equal to
A. $\frac{3}{8}$
B. $\frac{-3}{4}$
C. $\frac{1}{4}$
D. -2

Answer: B

D Watch Video Solution

17. The orthocentre of the triangle formed by the lines $x-7 y+6=0,2 x-5 y-6=0$ and $7 x+y-8=0$ is
A. $(8,2)$
B. $(0,0)$
C. $(1,1)$
D. $(2,8)$

Answer: C

- Watch Video Solution

18. All the chords of the curve $2 x^{2}+3 y^{2}-5 x=0$ which subtend a right angle at the origin are concurrent at :
A. $(0,1)$
B. $(1,0)$
C. $(-1,1)$
D. $(1,-1)$

- Watch Video Solution

19. From a point $P=(3,4)$ perpendiculars $P Q$ and $P R$ are drawn to line $3 x+4 y-7=0$ and a variable line $y-1=m(x-7)$ respectively then maximum area of triangle $P Q R$ is :
A. 10
B. 12
C. 6
D. 9

Answer: D
20. The equation of two adjacent sides of rhombus are given
by $y=x$ and $y=7 x$. The diagonals of the rhombus intersect
each other at the point $(1,2)$. Then the area of the rhombus is
:
A. $\frac{10}{3}$
B. $\frac{20}{3}$
C. $\frac{40}{3}$
D. $\frac{50}{3}$

Answer: A

21. The point $\mathrm{P}(3,3)$ is reflected across the line $y=-x$. Then it is translated horizontally 3 units to the left and vertically 3 units up. Finally, it is reflected across the line $y=x$. What are the coordinates of the point after these transformations?
A. $(0,-6)$
B. $(0,0)$
C. $(-6,6)$
D. $(-6,0)$

Answer: A

- Watch Video Solution

22. The equation $x=t^{3}+9$ and $y=\frac{3 t^{3}}{4}+6$ represents a straight line where t is a parameter. Then y - intercept of the line is: (a) $-\frac{3}{4}$ (b) 9 (c) 6 (d) 1
A. $-\frac{3}{4}$
B. 9
C. 6
D. 1

Answer: A

D Watch Video Solution

23. The combined equation of two adjacent sides of a rhombus formed in first quadrant is $7 x^{2}-8 x y+y^{2}=0$ then
slope of its longer diagonal is
A. $-\frac{1}{2}$
B. -2
C. 2
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

24. The number of integral point inside the triangle made by the line $3 x+4 y-12=0$ with the coordinate axes which are equidistant from at least two sides is/are :
(an integral point is a point both of whose coordinates are integers.)
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

25. The area of triangle formed by the straight lines whose equations are $y=4 x+2,2 y=x+3$ and $x=0$ is :
A. $\frac{25}{7 \sqrt{2}}$
B. $\frac{\sqrt{2}}{28}$
C. $\frac{1}{28}$
D. $\frac{15}{7}$

Answer: C

(D) Watch Video Solution

26. In a triangle $A B C$, if A is $(1,2)$ and the equations of the medians through B and C are $x+y=5$ and $x=4$ respectively then B must be:
A. $(1,4)$
B. $(7,-2)$
C. $(4,1)$
D. $(-2,7)$

(D) Watch Video Solution

27. The equation of image of pair of lines $y=|x-1|$ in Y-axis is
A. $x^{2}-y^{2}-2 x+1=0$
B. $x^{2}-y^{2}-4 x+4=0$
C. $4 x^{2}-4 x-y^{2}+1=0$
D. $x^{2}-y^{2}+2 x+1=0$

Answer: D

- Watch Video Solution

28. If P, Q and R are three points with coordinates $(1,4),(4,5)$
and (m, m) respectively, then the value of m for which
$P R+R Q$ is minimum, is :
A. 4
B. 3
C. $\frac{17}{8}$
D. $\frac{7}{2}$

Answer: A

D Watch Video Solution

29. The vertices of a triangle are $(A(-1,-7), B(5,1)$, and
$C(1,4)$. The equation of the bisector of $\angle A B C$ is
A. $y+2 x-11=0$
B. $x-7 y+2=0$
C. $y-2 x+9=0$
D. $y+7 x-36=0$

Answer: B

- Watch Video Solution

30. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then $\mathrm{c}=$
A. -3
B. -1
C. 3
D. 1

- Watch Video Solution

31. Lines L_{1} and L_{2} have slopes m and n , respectively, suppose L_{1} makes twice as large angle with the horizontal (mesured counter clockwise from the positive x-axis as does L_{2} and L_{1} has 4 times the slope of L_{2}. If L_{1} is not horizontal, then the value of the proudct mn equals.
A. $\frac{\sqrt{2}}{2}$
B. $-\frac{\sqrt{2}}{2}$
C. 2
D. -2

Answer: C

32. Given $\mathrm{A}(0,0)$ and $\mathrm{B}(\mathrm{x}, \mathrm{y})$ wih $x \in(0,1)$ and $y>0$. Let the slope of line $A B$ be m_{1}, where $0<m_{2}<m_{1}$. If the are of triangle ABC can be expresses as $\left(m_{1}-m_{2}\right) f(x)$. then the largest possible value of $f(x)$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: D

33. If a, b, c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)_{\frac{y}{b}}+\left(\frac{l}{c}\right)=0$ always passes through a fixed point.
Find that point.
A. $(-1,2)$
B. $(-1,-2)$
C. $(1,-2)$
D. $\left(1, \frac{1}{2}\right)$

Answer: C

(D) Watch Video Solution

34. If $\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represent pair of straight lines and slope of one line is twice the other, then $a b: h^{2}$ is :
A. $9: 8$
B. $8: 9$
C. $1: 2$
D. 2: 1

Answer: A

(Watch Video Solution

35. Statement-1 : A variable line drawn through a fixed point cuts the coordinate axes at A and B. The locus of mid-point of $A B$ is a circle. because

Statement-2 : Through 3 non-collinear points in a plane, only one circle can be drawn.
A. Statement- 1 is true, statement- 2 is true and statement- 2
is correct explanation for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2
is not the correct explanation for statement-1.
C. Statement-1 is true, statement- 2 is false.
D. Statement-1 is false, statement-2 is true.

Answer: D

(D) Watch Video Solution

36. A line passing through $(0,0)$ and perpendicular to $2 x+y+6=0,4 x+2 y-9=0$ then the origin divids the line in the ratio of
A. $1: 2$
B. 1: 1
C. 5: 4
D. $3: 4$

Answer: D

- Watch Video Solution

37. If a vertex of a triangle is $(1,1)$ and the mid-points of two side through this vertex are $(-1,2)$ and $(3,2)$, then centroid of the triangle is
A. $\left(-1, \frac{7}{3}\right)$
B. $\left(-\frac{1}{3}, \frac{7}{3}\right)$
C. $\left(1, \frac{7}{3}\right)$
D. $\left(\frac{1}{3}, \frac{7}{3}\right)$

Answer: C

D Watch Video Solution

38. about to only mathematics
A. rectangle
B. square
C. rhombus
D. neither rhombus nor rectangle

Answer: C
39. The two points on the line $x+y=4$ that lies at a unit perpendicular distance from the line $4 x+3 y=10$ are (a_{1}, b_{1}) and $\left(a_{2}, b_{2}\right)$ then $a_{1}+b_{1}+a_{2}+b_{2}$ is equal to (a) 5
(b) 6 (c) 7 (d) 8
A. 5
B. 6
C. 7
D. 8

Answer: D

40. The orthocenter of the triangle formed by lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0 \quad$ lines in quadrant number
A. first quadrant
B. second quadrant
C. third quadrant
D. fourth quadrant

Answer: A

- Watch Video Solution

41. The equation of the line passing through the intersection of the lines $3 x+4 y=-5,4 x+6 y=6$ and perpendicular
to $7 x-5 y+3=0$ is :
A. $5 x+7 y-2=0$
B. $5 x-7 y+2=0$
C. $7 x-5 y+2=0$
D. $5 x+7 y+2=0$

Answer: D

- Watch Video Solution

42. The point $(2,1),(8,5)$ and $(x, 7)$ lie on a straight line. Then the value of x is :
A. 10
B. 11
C. 12
D. $\frac{35}{3}$

Answer: B

- Watch Video Solution

43. In a parallelogram PQRS (taken in order), P is the point (-1 ,
$-1), Q$ is $(8,0)$ and R is $(7,5)$. Then S is the point:
A. $(-1,4)$
B. $(-2,2)$
C. $\left(-2, \frac{7}{2}\right)$
D. $(-2,4)$

- Watch Video Solution

44. The area of triangle whose vertices are
$(a, a),(a+1, a+1),(a+2, a)$ is :
A. a^{3}
B. $2 a$
C. 1
D. 2

Answer: C

- Watch Video Solution

45. The equation $x^{2}+y^{2}-2 x y-1=0$ represents :
A. two parallel straight lines
B. two perpendicular straight lines
C. a point
D. a circle

Answer: A

- Watch Video Solution

46. Let $A(-2,0)$ and $B(2,0)$, then the number of integral values of a, ${ }^{\prime}$ a in $[-10,10]$ for which line segment $A B$ subtends an acute angle at point $C(a, a+1)$ is
A. 15
B. 17
C. 19
D. 21

Answer: C

- Watch Video Solution

47. The angle between sides of a rhombus whose $\sqrt{2}$ times sides is mean of its two diagonal, is equal to :
A. 300°
B. 45°
C. 60°
D. 90°

(D) Watch Video Solution

48. A rod of $A B$ of length 3 rests on a wall as follows :

P is a point on AB such that $A P: P B=1: 2$ If the rod slides along the wall, then the locus of P lies on
A. $2 x+y+x y=2$
B. $4 x^{2}+x y+x y+y^{2}=4$
C. $4 x^{2}+y^{2}=4$
D. $x^{2}+y^{2}-x-2 y=0$

Answer: C

D Watch Video Solution

49. If $\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represent pair of straight lines and slope of one line is twice the other, then $a b: h^{2}$ is :
A. $8: 9$
B. 1: 2
C. 2:1
D. 9: 8

Answer: D
50. Locus of point of reflection of point $(a, 0)$ w.r.t. the line $y t=x+a t^{2}$ is given by (t is parameter, $t \in R$):
A. $x-a=0$
B. $y-a=0$
C. $x+a=0$
D. $y+a=0$

Answer: C

- Watch Video Solution

51. A light ray emerging from the point source placed at $P(1,3)$ is reflected at a point Q in the x - axis. If the reflected ray
passes through $R(6,7)$, then abscissa of Q is :
A. $\frac{5}{2}$
B. 3
C. $\frac{7}{2}$
D. 1

Answer: A

D Watch Video Solution

52. If the axes are rotated through 60° in the anticlockwise sense, find the transformed form of the equation

$$
x^{2}-y^{2}=a^{2}:
$$

A. $X^{2}+Y^{2}-3 \sqrt{3} X Y=2 a^{2}$
B. $X^{2}+Y^{2}=a^{2}$
C. $Y^{2}-X^{2}-2 \sqrt{3} X Y=2 a^{2}$
D. $X^{2}-Y^{2}+2 \sqrt{3} X Y=2 a^{2}$

Answer: C

(D) Watch Video Solution

53. about to only mathematics
A. equilateral
B. right- angled
C. acute- angled and isosceles
D. obtuse - angled and isosceles

(Watch Video Solution

54. If m and b are real numbers and $m b>0$, then the line whose equation is $y=m x+b$ cannot contain the point :
A. $(0,2008)$
B. $(2008,0)$
C. $(0,-2008)$
D. $(20,-100)$

Answer: B

55. The number of possible straight lines passing through $(2,3)$ and forming a triangle with the coordinate axes, whose area is 12 sq. Units, is
A. one
B. two
C. three
D. four

Answer: C

- Watch Video Solution

56. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in $G P$ with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and
$\left(x_{3}, y_{3}\right) \cdot(\mathrm{a})$ lie on a straight line (b)lie on an ellipse (c)lie on a circle (d) are the vertices of a triangle.
A. lie on a straight line
B. lie on a circle
C. are vertices of a triangle
D. None of these

Answer: A

- Watch Video Solution

57. Prove that the locus of the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$, and (1, 0), where t is a parameter, is circle.
A. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
C. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$

Answer: B

- Watch Video Solution

58. Find the equation of the straight line passing through the point $(4,3)$ and making intercepts on the coordinate axes whose sum is -1 .
A. $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{2}+\frac{y}{1}=1$
D. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D

- Watch Video Solution

59. Let $\mathrm{A}(3,2)$ and $\mathrm{B}(5,1)$. ABP is an equilateral triangle is constructed one the side of $A B$ remote from the origin then the orthocentre of triangle ABP is:
A. $\left(4-\frac{1}{2} \sqrt{3}, \frac{3}{2}-\sqrt{3}\right)$
B. $\left(4+\frac{1}{2} \sqrt{3}, \frac{3}{2}+\sqrt{3}\right)$
C. $\left(4-\frac{1}{6} \sqrt{3}, \frac{3}{2}-\frac{1}{3} \sqrt{3}\right)$
D. $\left(4+\frac{1}{6} \sqrt{3}, \frac{3}{2}+\frac{1}{3} \sqrt{3}\right)$

D Watch Video Solution

60. Area of the triangle formed by the lines through point (6,

0) and at a perpendicular distance of 5 from point $(1,3)$ and line $y=16$ in square units is :
A. 160
B. 200
C. 240
D. 130

Answer: C

61. The orthocentre of the triangle with vertices
$(5,0),(0,0),\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$ is :
A. $(2,3)$
B. $\left(\frac{5}{2}, \frac{5}{2 \sqrt{3}}\right)$
C. $\left(\frac{5}{6}, \frac{5}{2 \sqrt{3}}\right)$
D. $\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$

Answer: B

- Watch Video Solution

62. Show that all chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$, which subtend a right angle at the
origin, pass through a fixed point. Find the coordinates of the point.
A. $(1,2)$
B. $(1,-2)$
C. $(2,1)$
D. $(-2,1)$

Answer: B

D Watch Video Solution

63.

$P \equiv(-1,0), Q \equiv(0,0)$, and $R \equiv(3,3 \sqrt{3})$ be three points.
Then the equation of the bisector of $\angle P Q R$ is
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are Correct

1. A line makes intercepts on co-ordinate axes whose sum is 9 and their product is 20 , then its equation is/are :

$$
\text { A. } 4 x+5 y-20=0
$$

B. $5 x+4 y-20=0$
C. $4 x-5 y-20=0$
D. $4 x+5 y+20=0$

Answer: A::B

(D) Watch Video Solution

2. The equation(s) of the medians of the triangle formed by the points $(4,8),(3,2)$ and $5,-6)$ is/are :
A. $x=4$
B. $x=5 y-3$
C. $2 x+3 y-12=0$
D. $22 x+3 y-92=0$

D Watch Video Solution

3. The value(s) of t for which the lines $2 x+3 y=5, t^{2} x+t y-6=0$ and $3 x-2 y-1=0 \quad$ are concurrent, can be :
A. $t=2$
B. $t=-3$
C. $t=-2$
D. $t=3$
4. If one of the lines given by the equation $a x^{2}+6 x y+b y^{2}=0$ bisects the angle between the coordinate axes, then value of $(a+b)$ can be :
A. -6
B. 3
C. 6
D. 12

Answer: A::C

- Watch Video Solution

5. Suppose $A B C D$ is a quadrilateral such that the coordinates of A, B and C are $(1,3)(-2,6)$ and $(5,-8)$ respectively.

For what choices of coordinates of D will make $A B C D$ a trapezium?
A. $(3,-6)$
B. $(6,-9)$
C. $(0,5)$
D. $(3,-1)$

Answer: A::B

D Watch Video Solution

6. One diagonal of a square is the portion of the line $\sqrt{3} x+y=2 \sqrt{3}$ intercepted by the axes. Obtain the extremities of the other diagonal is
A. $(1+\sqrt{3}, \sqrt{3}-1)$
B. $(1+\sqrt{3}, \sqrt{3}+1)$
C. $(1-\sqrt{3}, \sqrt{3}-1)$
D. $(1-\sqrt{3}, \sqrt{3}+1)$

Answer: B::C

- Watch Video Solution

7. Two sides of a rhombus $A B C D$ are parallel to the lines $y=x+$

2 and $y=7 x+3$ if the diagonals of the rhombus intersect at the point $(1,2)$ and the vertex A is on the y -axis, then vertex A can be a. (0,3) b. $(0,5 / 2)$ c. $(0,0)$ d. $(0,6)$
A. $\left(0, \frac{5}{2}\right)$
B. $(0,0)$
C. $(0,5)$
D. $(0,3)$

Answer: A::B

(D) Watch Video Solution

8. Find the equations of the sides of the triangle having
$(3,-1)$ as a vtrtex $\quad x-4 y+10=0 \quad$ and $6 x+10 y=59=0$ being the equations of an angle bisector and a median respectively drawn from different vertices.
A. $6 x+7 y-13=0$
B. $2 x+9 y-65=0$
C. $18 x+13 y-41=0$
D. $6 x-7 y-25=0$

Answer: B::C::D

- Watch Video Solution

9. $A(1,3)$ and $C(5,1)$ are two opposite vertices of a rectangle
$A B C D$. If the slope of $B D$ is 2 , then the coordinates of B can be :
A. $(4,4)$
B. $(5,4)$
C. $(2,0)$
D. $(1,0)$

- Watch Video Solution

10. All the points lying inside the triangle formed by the points
$(1,3),(5,6)$, and (-1, 2) satisfy :
A. $3 x+2 y \geq 0$
B. $2 x+y+1 \geq 0$
C. $-2 x+11 \geq 0$
D. $2 x+3 y-12 \geq 0$

Answer: A::B::C::D
(D) Watch Video Solution
11. The slope of a median, drawn from the vertex A of the triangle $A B C$ is -2 . The co-ordinates of vertices B and C are respectively $(-1,3)$ and $(3,5)$. If the area of the triangle be 5 square units, then possible distance of vertex A from the origin is/are.
A. 6
B. 4
C. $2 \sqrt{2}$
D. $3 \sqrt{2}$

Answer: A::C

- Watch Video Solution

12. The points $A(0,0), B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right angled triangle if :
A. $\sin \left(\frac{\alpha-\beta}{2}\right)=\frac{1}{\sqrt{2}}$
B. $\cos \left(\frac{\alpha-\beta}{2}\right)=-\frac{1}{\sqrt{2}}$
C. $\cos \left(\frac{\alpha-\beta}{2}\right)=\frac{1}{\sqrt{2}}$
D. $\sin \left(\frac{\alpha-\beta}{2}\right)=-\frac{1}{\sqrt{2}}$

Answer: A::B::C

- Watch Video Solution

Exercise 3 Comprehension Type Problems

1. The equations of the sides AB and CA of a $\triangle A B C$ are $x+2 y=0$ and $x-y=3$ respectively. Given a fixed point $P(2,3)$.
Q. Let the equation of BC is $x+p y=q$. Then the value of $(p+q)$ if P be the centroid of the $\Delta A B C$ is :
A. 14
B. -14
C. 22
D. -22

Answer: D

- Watch Video Solution

2. The equations of the sides AB and CA of a $\triangle A B C$ are $x+2 y=0$ and $x-y=3$ respectively. Given a fixed point $P(2,3)$.
Q. If P be orthocentre of $\triangle A B C$ then equation of side BC is :
A. $y+5=0$
B. $y-5=0$
C. $5 y+1=0$
D. $5 y-1=0$

Answer: A

- Watch Video Solution

3. Consider a triangle $A B C$ with vertex $A(2,-4)$. The internal bisectors of the angles B and C are $x+y=2$ and $x-3 y=6$ respectively. Let the two bisectors meet at I.
Q. If (a, b) is incentre of the triangle $A B C$ then $(a+b)$ has the value equal to :
A. 1
B. 2
C. 3
D. 4

Answer: B
4. If the line joining the points $\left(-x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ subtends a right angle at the point (1,1), then $x_{1}+x_{2}+y_{2}+y_{2}$ is equal to
A. 4
B. 5
C. 6
D. 8

Answer: D

- Watch Video Solution

Exercise 4 Matching Type Problems

Column-I			Column-II
(A)	If a, b, c are in A.P., then lines $a x+b y+c=0$ are concurrent at:	(P)	$(-4,-7)$
(B)	A point on the line $x+y=4$ which lies at a unit distance from the line $4 x+3 y=10$ is :	(Q)	$(-7,11)$
(C)	Orthocentre of triangle made by lines $x+y=1$, $x-y+3=0,2 x+y=7$ is	(R)	$(1,-2)$
(D)	Two vertice of a triangle are $(5,-1)$ and $(-2,3)$. If orthocentre is the origin then coordinates of the third vertex are	(s)	$(-1,2)$
		(T)	$(0,0)$

(D) Watch Video Solution

Column-1		Column-ll	
(A)	Exact value of $\cos 40^{\circ}\left(1-2 \sin 10^{\circ}\right)=$	(P)	$\frac{1}{4}$

2.

| (B) $\begin{array}{l}\text { Value of } \lambda \text { for which lines are concurrent } \\ x+y+1=0,3 x+2 \lambda y+4=0, x+y-3 \lambda=0 \text { can } \\ \text { be }\end{array}$ | (Q) | $\frac{1}{2}$ |
| :--- | :--- | ---: | ---: |
| (C) $\begin{array}{l}\text { Points }(k, 2-2 k),(-k+1,2 k) \text { and }(-4-k, 6-2 k) \\ \begin{array}{l}\text { are collinear then sum of all possible real values of } \\ \text { ' } k \text { ' is }\end{array} \\ \text { (D) } \\ \text { Value of } \sum_{k=3}^{\infty} \sin ^{k}\left(\frac{\pi}{6}\right)=\end{array}$ | (S) | $\frac{3}{2}$ |

- Watch Video Solution

Exercise 5 Subjective Type Problems

1. If the area of the quadrilateral $A B C D$ whose vertices are $A(1$, $1), B(7,-3), C(12,2)$ and $D(7,21)$ is Δ. Find the sum of the digits of Δ.

- Watch Video Solution

2. The equation of a line through the mid-point of the sides $A B$ and $A D$ of rhombus $A B C D$, whose one diagonal is $3 x-4 y+5=0$ and one vertex is $\mathrm{A}(3,1)$ is $a x+b y+c=0$.

Find the absolute value of $(a+b+c)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers expressed in lowest form.
3. If the point $\left(\alpha, \alpha^{4}\right)$ lies on or inside the triangle formed by lines $x^{2} y+x y^{2}-2 x y=0$, then the largest value of α is.

- Watch Video Solution

4. The minimum value of
$\left[\left(x_{1}-x_{2}\right)^{2}+\left(12-\sqrt{1-x_{1}^{2}}-\sqrt{4 x_{2}}\right)^{2}\right]^{1 / 2} \quad$ for \quad all permissible values of x_{1} and x_{2} is equal to $a \sqrt{b}-c$ where a, $\mathrm{b}, \mathrm{c} \in \mathrm{N}$, then find the value of $a+b-c$.

- Watch Video Solution

5. The number of lines that can be drawn passing through point $(2,3)$ so that its perpendicular distance from $(-1,6)$ is equal to 6 is:

(Watch Video Solution

6. The graph of $x^{4}=x^{2} y^{2}$ is a union of n different lines, then the value of n is.

D Watch Video Solution

7. The orthocentre of triangle formed by lines $x+y-1=0,2 x+y-1=0$ and $y=0$ is (h, k), then $\frac{1}{k^{2}}=$

- Watch Video Solution

8. Find the integral value of a for which the point $(-2, a)$ lies in the interior of the triangle formed by the lines
$y=x, y=-x$ and $2 x+3 y=6$.

(D) Watch Video Solution

9. Let $A=(-1,0), B=(3,0)$ and $P Q$ be any line passing through $(4,1)$ having slope m. Find the range of m for which there exist two points on $P Q$ at which $A B$ subtends a right angle.

(D) Watch Video Solution

10. Given that the three points where the curve $y=b x^{2}-2$ intersects the x-axis and y-axis form an equilateral triangle. Find the value of $2 b$.
