© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK JAISWAL ENGLISH

VECTOR \& 3DIMENSIONAL GEOMETRY

Exercise 1 Single Choice Problems

1. If $a x+b y+c z=p$, then minimum value of $x^{2}+y^{2}+z^{2}$ is
$\left(\frac{p}{a+b+c}\right)^{2}$ (b) $\frac{p^{2}}{a^{2}+b^{2}+c^{2}} \frac{a^{2}+b^{2}+c^{2}}{p^{2}}$ (d) $\left(\frac{a+b+c}{p}\right)^{2}$
A. $\left(\frac{p}{a+b+c}\right)^{2}$
B. $\frac{p^{2}}{a^{2}+b^{2}+c^{2}}$
C. $\frac{a^{2}+b^{2}+c^{2}}{p^{2}}$
D. 0

- Watch Video Solution

2. If the angle between the vectors \vec{a} and \vec{b} is $\frac{\pi}{3}$ and the area of the triangle with adjacemnt sides parallel to \vec{a} and \vec{b} is 3 , then a.b is
A. $\sqrt{3}$
B. $2 \sqrt{3}$
C. $4 \sqrt{3}$
D. $\frac{\sqrt{3}}{2}$

Answer: B

D Watch Video Solution

3. A straight line L cuts the sides $A B, A C, A D$ of a parallelogram $A B C D$ at $B_{1}, C_{1}, d_{1} \quad$ respectively. If $\quad \operatorname{vec}\left(\mathrm{AB}_{-}(1)\right)=\operatorname{lambda}(1) \operatorname{vec}(\mathrm{AB})$,
$\operatorname{vec}\left(A D_{-}(1)\right)=l a m b d a _(2) \operatorname{vec}(A D)$ and vec(AC_(1))=lambda_(3)vec(AC),
A. λ_{1}, λ_{3} and λ_{2} are in AP
B. λ_{1}, λ_{3} and λ_{2} are in GP
C. λ_{1}, λ_{3} and λ_{2} are in HP
D. $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$

Answer: C

- Watch Video Solution

4. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and \quad the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

- Watch Video Solution

5. If acute angle between the line $\vec{r}=\hat{i}+2 \hat{j}+\lambda(4 \hat{i}-3 \hat{k})$ and $x y-$ plane is θ_{1} and acute angle between planes $x+2 y=0$ and $2 x+y=0$ is θ_{2}, then $\left(\cos ^{2} \theta_{1}+\sin ^{2} \theta_{2}\right)$ equals to :
A. 1
B. $\frac{1}{4}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: A

- Watch Video Solution

6. If $a, b, \quad c, x, y, \quad z$ are real and $a^{2}+b^{2}+c^{2}=25, x^{2}+y^{2}+z^{2}=36$ and $a x+b y+c z=30, \quad$ then $\frac{a+b+c}{x+y+z}$ is equal to :
A. 1
B. $\frac{6}{5}$
C. $\frac{5}{6}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

7. If \vec{a} and \vec{b} are non-zero, non-collinear vectors such that $|\vec{a}|=2, \vec{a} \cdot \vec{b}=1$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$. If \vec{r} is any vector such
that
$\vec{r} \cdot \vec{a}=2, \vec{r} \cdot \vec{b}=8,(\vec{r}+2 \vec{a}-10 \vec{b}) \cdot(\vec{a} \times \vec{b})=4 \sqrt{3}$ and
satisfy to $\vec{r}+2 \vec{a}-10 \vec{b}=\lambda(\vec{a} \times \vec{b})$, then λ is equal to : (a) $\frac{1}{2}$ (b)
2 (c) $\frac{1}{4}$ (d) none of these
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{4}$
D. None of these

Answer: D

- Watch Video Solution

8. Given $\vec{a}=3 \hat{i}+2 \hat{j}+4 \hat{k}, \vec{b}=2(\hat{i}+\hat{k})$ and $\vec{c}=4 \hat{i}+2 \hat{j}+3 \hat{k}$.

Find for what number of distinct values of α the equation $x \vec{a}+y \vec{b}+z \vec{c}=\alpha(x \hat{i}+y \hat{j}+z \hat{k})$ has non-trival solution ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
A. -1
B. 4
C. 7
D. 8

Answer: C

- Watch Video Solution

9. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then the value of
$\left\lvert\, \begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c}\end{array}\right.$
$\vec{b} \cdot \vec{a} \vec{b} \cdot \vec{b} \quad \vec{b} \cdot \vec{c}$ is equal to :
$\vec{c} \cdot \vec{a} \quad \vec{c} \cdot \vec{b} \quad \vec{c} \cdot \vec{c} \mid$
A. 2
B. 4
C. 16
D. 64

Answer: C

10. \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4$ and \vec{a}. Vecb $=2 . I f$ vecc $=(2 \vec{a} \times \vec{b})-3 \vec{b}$ then find angle between \vec{b} and \vec{c}.
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{3}$

Answer: D

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, then the value of $|\vec{a}-2 \vec{b}|^{2}+|\vec{b}-2 \vec{c}|^{2}+|\vec{c}-2 \vec{a}|^{2}$ does not exceed to : (a) 9 (b) 12
(c) 18 (d) 21
A. 9
B. 12
C. 18
D. 21

Answer: D

(Watch Video Solution

12. The adjacent side vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$ of a rectangle OACB are \vec{a} and \vec{b} respectively, where O is the origin . If $16|\vec{a} \times \vec{b}|=3(|\vec{a}|+|\vec{b}|)^{2}$ and θ be the acute angle between the diagonals OC and AB then the value of $\cos \left(\frac{\theta}{2}\right)$ is: (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{3}$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{3}$

Answer: D

- Watch Video Solution

13. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is
A. $\sqrt{288}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{18}$

Answer: C

- Watch Video Solution

14. If $\vec{a}=2 \hat{i}+\lambda \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+3 \hat{j}+5 \hat{k}, \vec{c}=\lambda \hat{i}+2 \hat{j}+2 \hat{k}$ are linearly dependent vectors, then the number of possible values of λ is:
A. 0
B. 1
C. 2
D. More than 2

Answer: C

- Watch Video Solution

15. The scalar triple product
$\left[\begin{array}{lll}\vec{a}+\vec{b}-\vec{c} & \vec{b}+\vec{c}-\vec{a} & \vec{c}+\vec{a}-\vec{b}\end{array}\right]$ is equal to :
A. 0
B. $[\vec{a} \vec{b} \vec{c}]$
C. $2[\vec{a} \vec{b} \vec{c}]$
D. $4\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]$

Answer: D

- Watch Video Solution

16. If \hat{a} and \hat{b} are unit vectors then the vector defined as $\vec{V}=(\widehat{a} \times \hat{b}) \times(\widehat{a}+\hat{b})$ is collinear to the vector :
A. $\widehat{a}+\hat{b}$
B. $\hat{b}-\widehat{a}$
C. $2 \widehat{a}-\hat{b}$
D. $\widehat{a}+2 \hat{b}$

Answer: B

- Watch Video Solution

17. The sine of angle formed by the lateral face ADC and plane of the base ABC of the terahedron

ABCD, where $A=(3,-2,1), B=(3,1,5), C=(4,0,3)$ and $D=(1,0,0)$, is :
A. $\frac{2}{\sqrt{29}}$
B. $\frac{5}{\sqrt{29}}$
C. $\frac{3 \sqrt{3}}{\sqrt{29}}$
D. $\frac{-2}{\sqrt{29}}$

Answer: B

- Watch Video Solution

18. Let $\vec{a}_{r}=x_{r} \hat{i}+y_{r} \hat{j}+z_{r} \hat{k}, r=1,2,3$ three mutually prependicular unit vectors then the value of $\left|\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right|$ is equal to
A. 0
B. ± 1
C. ± 2
D. ± 4

Answer: B

- Watch Video Solution

19. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r}$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these
A. $[\vec{a} \vec{b} \vec{c}] \vec{r}$
B. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
C. $4[\vec{a} \vec{b} \vec{c}] \vec{r}$
D. $\overrightarrow{0}$

- Watch Video Solution

20. E and F are the interior points on the sides $B C$ and $C D$ of a parallelogram ABCD. Let $\overrightarrow{B E}=4 \overrightarrow{E C}$ and $\overrightarrow{C F}=4 \overrightarrow{F D}$. If the line $E F$ meets the diagonal AC in G , then $\overrightarrow{A G}=\lambda \overrightarrow{A C}$, where λ is equal to :
A. $\frac{1}{3}$
B. $\frac{21}{25}$
C. $\frac{7}{13}$
D. $\frac{21}{5}$

Answer: B

21. If \widehat{a}, \hat{b} are unit vectors and \vec{c} is such that $\vec{c}=\vec{a} \times \vec{c}+\vec{b}$, then the maximum value of $[\vec{a} \vec{b} \vec{c}]$ is :
A. 1
B. $\frac{1}{2}$
C. 2
D. $\frac{3}{2}$

Answer: B

- Watch Video Solution

22. Conside the matrices $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1\end{array}\right] \quad B=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 2 & 3\end{array}\right]$
$C=\left[\begin{array}{c}14 \\ 12 \\ 2\end{array}\right] \quad D=\left[\begin{array}{l}13 \\ 11 \\ 14\end{array}\right]$. Now $x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is such that solutions of
equation $A X=C$ and $B X=D$ represent two points L and
respectively in 3 dimensional space. If L^{\prime} and M^{\prime} are hre reflections of L and M in the plane $x+y+z=9$ then find coordinates of $L, M, L^{\prime}, M^{\prime}$
A. $(3,4,2)$
B. $(5,3,4)$
C. $(7,2,3)$
D. $(1,5,6)$

Answer: A

- Watch Video Solution

23. The value of α for which point $M(\alpha \hat{i}+2 \hat{j}+\hat{k})$, lie in the plane containing three points $A(\hat{i}+\hat{j}+\hat{k})$ and $C(3 \hat{i}-\hat{k})$ is:
A. 1
B. 2
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: B

- Watch Video Solution

24. Q is the image of point $P(1,-2,3)$ with respect to the plane $x-y+z=7$. The distance of Q from the origin is :
A. $\sqrt{\frac{70}{3}}$
B. $\frac{1}{2} \sqrt{\frac{70}{3}}$
C. $\sqrt{\frac{35}{3}}$
D. $\sqrt{\frac{15}{2}}$

Answer: A

- Watch Video Solution

25. \widehat{a}, \hat{b} and $\widehat{a}-\hat{b}$ are unit vectors. The volume of the parallelopiped, formed with \widehat{a}, \hat{b} and $\widehat{a} \times \hat{b}$ as coterminous edges is:
A. 1
B. $\frac{1}{4}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: D

- Watch Video Solution

26. A line passing through $P(3,7,1)$ and $R(2,5,7)$ meet the plane $3 x+2 y+11 z-9=0$ at Q . Then PQ is equal to :
A. $\frac{5 \sqrt{41}}{59}$
B. $\frac{\sqrt{41}}{59}$
C. $\frac{50 \sqrt{41}}{59}$
D. $\frac{25 \sqrt{41}}{59}$

Answer: D

- Watch Video Solution

27. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero non coplanar vectors and \vec{p}, \vec{q} and \vec{r} be three vectors given by $\vec{p}=\vec{a}+\vec{b}-2 \vec{c}, \vec{q}=3 \vec{a}-2 \vec{b}+\vec{c}$ and $\vec{r}=\vec{a}-4 \vec{b}+2 \vec{c}$

If the volume of the parallelopiped determined by \vec{a}, \vec{b} and \vec{c} is V_{1} and that of the parallelopiped determined by \vec{p}, \vec{q} and \vec{r} is V_{2}, then $V_{2}: V_{1}=$
A. 10
B. 15
C. 20
D. None of these

Watch Video Solution

28.

two
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime} \quad$ are pendicular to each other if
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

29. The perpendicular distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k}) \quad$ and \quad the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is :
A. $\frac{10}{9}$
B. $\frac{10}{3 \sqrt{3}}$
C. $\frac{3}{10}$
D. $\frac{10}{3}$

Answer: B

- Watch Video Solution

30. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, where \vec{a}, \vec{b} and \vec{c} are any three vectors such that $\vec{a} \cdot \vec{b} \neq 0, \vec{b} \cdot \vec{c} \neq 0$, then \vec{a} and \vec{c} are :
A. Inclined at an angle of $\frac{\pi}{3}$
B. Inclined at an angle of $\frac{\pi}{6}$
C. Perpendicular
D. Parallel

Watch Video Solution

31. Let \vec{r} be position vector of variable point in cartesian plane OXY such that $\vec{r} \cdot(\vec{r}+6 \hat{j})=7$ cuts the co-ordinate axes at four distinct points, then the area of the quadrilateral formed by joining these points is :
A. $4 \sqrt{7}$
B. $6 \sqrt{7}$
C. $7 \sqrt{7}$
D. $8 \sqrt{7}$

Answer: D

- Watch Video Solution

32. If $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=0$,
then
$\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b})))))$ is equal to :
A. $64 \vec{a}$
B. $64 \vec{b}$
C. $-64 \vec{a}$
D. $-64 \vec{b}$

Answer: D

- Watch Video Solution

33. If O (origin) is a point inside the triangle $P Q R$ such that $\overrightarrow{O P}+k_{1} \overrightarrow{O Q}+k_{2} \overrightarrow{O R}=0$, where k_{1}, k_{2} are constants such that $\frac{\operatorname{Area}(\Delta P Q R)}{\operatorname{Area}(\Delta O Q R)}=4$, then the value of $k_{1}+k_{2}$ is :
A. 2
B. 3
C. 4
D. 5

- Watch Video Solution

34. Let $P Q$ and $Q R$ be diagonals of adjacent faces of a rectangular box, with its centre at 0 . If $\angle Q O R, \angle R O P$ and $\angle P O Q$ are θ, ϕ and Ψ respectively then the value of ' $\cos \theta+\cos \phi+\cos \Psi^{\prime}$ is :
A. -2
B. $-\sqrt{3}$
C. -1
D. 0

Answer: C

35.

$\vec{r}=a(\vec{m} \times \vec{n})+b(\vec{n} \times \vec{I})+c(\vec{I} \times \vec{m})$ and $[\vec{I} \vec{m} \vec{n}]=4, \quad$ find
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 2

Answer: A

D Watch Video Solution

36. The volume of tetrahedron, for which three co-terminous edges are
$\vec{a}-\vec{b}, \vec{b}+2 \vec{c}$ and $3 \vec{a}-\vec{c}$ is : (a) $6 k$ (b) $7 k$ (c) $30 k$ (d) $42 k$
A. 6 k
B. 7 k
C. 30k
D. 42 k

Answer: D

- Watch Video Solution

37. The equation of a plane passing through the line of intersection of the planes :
$x+2 y+z-10=0$ and $3 x+y-z=5$ and passing through the origin is :
A. $5 x+3 z=0$
B. $5 x-3 z=0$
C. $5 x+4 y+3 z=0$
D. $5 x-4 y+3 z=0$

Answer: B

- Watch Video Solution

38. Find the locus of a point whose distance from x-axis is twice the distance from the point (1,-1, 2)

(Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are Correct

1. If equation of three lines are :
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}, \frac{x}{2}=\frac{y}{1}=\frac{z}{3}$ and $\frac{x-1}{1}=\frac{2-y}{1}=\frac{z-3}{0}$, then
which of the following statement(s) is/are correct ?
A. Triangle formed by the line is equilateral
B. Triangle formed by the lines is isosceles
C. Equation of the plane containing the lines is $x+y=z$
D. Area of the triangle formed by the lines is $\frac{3 \sqrt{3}}{2}$

Answer: B::C::D

- Watch Video Solution

2.

$\vec{a}=\hat{i}+6 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=(\alpha+1) \hat{i}+(\beta-1) \hat{j}+\hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{6}$, then the possible value(s) of $(\alpha+\beta)$ can be : (a) 1 (b) 2 (c) 3 (d) 4
A. 1
B. 2
C. 3
D. 4

Answer: A:C

3. Consider the lines:
$L_{1}: \frac{x-2}{1}=\frac{y-1}{7}=\frac{z+2}{-5}$
$L_{2}: x-4=y+3=-z$
Then which of the following is/are correct ?
A. Point of intersection of L_{1} and L_{2} is $(1,-6,3)$
B. Equation of plane containing L_{1} and L_{2} is $x+2 y+3 z+2=0$
C. Acute angle between L_{1} and L_{2} is $\cot ^{-1}\left(\frac{13}{15}\right)$
D. Equation of plane containing L_{1} and L_{2} is $x+2 y+2 z+3=0$

Answer: A::B::C

D Watch Video Solution

4. Let \hat{a}, \hat{b} and \hat{c} be three unit vectors such that $\hat{a}=\hat{b}+(\hat{b} \times \hat{c})$, then the possible value(s) of $|\widehat{a}+\hat{b}+\hat{c}|^{2}$ can be:
A. 1
B. 4
C. 16
D. 9

Answer: A::D

- Watch Video Solution

5. The value(s) of μ for which the straight lines
$\vec{r}=3 \hat{i}-2 \hat{j}-4 \hat{k}+\lambda_{1}(\hat{i}-\hat{j}+\mu \hat{k})$
and
$\vec{r}=5 \hat{i}-2 \hat{j}+\hat{k}+\lambda_{2}(\hat{i}+\mu \hat{j}+2 \hat{k})$ are coplanar is/are :
A. $\frac{5+\sqrt{33}}{4}$
B. $\frac{-5+\sqrt{33}}{4}$
C. $\frac{5-\sqrt{33}}{4}$
D. $\frac{-5-\sqrt{33}}{4}$

Answer: A::C

6.

$\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]=0$ an , then :
A. $x+y=1$
B. $y+z=\frac{1}{2}$
C. $x+z=1$
D. None of these

Answer: A:C

- Watch Video Solution

7. $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f}\end{array}\right]$ is equal to
(a) $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
(b) $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}]$
(c) $[\vec{c} \vec{d} \vec{a}]\left[\begin{array}{l}\vec{b}\end{array} \vec{e} \vec{f}\right]-[\vec{a} \vec{d} \vec{b}]\left[\begin{array}{l}\vec{a} e \vec{e}\end{array}\right]$
(d) $\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{e}\end{array}\right]\left[\begin{array}{lll}\vec{b} & \vec{d} & \vec{f}\end{array}\right]$
A. $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
B. $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}]$
c. $[\vec{c} \vec{d} \vec{a}][\vec{b} \vec{e} \vec{f}]-[\vec{c} \vec{d} \vec{b}][\vec{a} e \vec{e} \vec{f}]$
D. $[\vec{b} \vec{c} \vec{d}][\vec{a} \vec{e} \vec{f}]-[\vec{b} \vec{c} \vec{f}][\vec{a} \vec{e} \vec{d}]$

Answer: A::B::C

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c} \& \vec{d}$ are position vector of point A, B, C and D respectively in $3-D$ space no three of A, B, C, D are colinear and satisfy the relation $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$ then (a) A, B, C and D are coplanar (b) The line joining the points B and D divides the line joining the point A and C in the ratio of $2: 1$ (c) The line joining the points A and C divides the line joining the points B and D in the ratio of $1: 1$ (d)The four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are linearly dependent.
A. A, B, C and D are coplanar
B. The line joining the points B and D divides the line joining the point
A and C in the ratio of $2: 1$
C. The line joining the points A and C divides the line joining the
points B and D in the ratio of $1: 1$
D. The four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are linearly dependent.

Answer: A::C::D

D Watch Video Solution

9. \vec{a} and \vec{c} are unit vectors and $|\vec{b}|=4$ the angle between \vec{a} and \vec{b} is $\cos ^{-1}(1 / 4)$ and $\vec{b}-2 \vec{c}=\lambda \vec{a}$ the value of λ is
A. 2
B. -3
C. 3
D. -4

Answer: C::D

- Watch Video Solution

10. Consider the lines $x=y=z$ and line
$2 x+y+z-1=0=3 x+y+2 z-2$, then
A. The shortest distance between the two lines is $\frac{1}{\sqrt{2}}$
B. The shortest distance between the two lines is $\sqrt{2}$
C. Plane containing the line L_{2} and parallel to line L_{1} is $z-x+1=0$
D. Perpendicular distance of origin from plane containing line L_{2} and parallel to line L_{1} is $\frac{1}{\sqrt{2}}$

Answer: A::D

11. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=h \vec{a}+k \vec{b}=r \vec{c}+s \vec{d}$, where \vec{a}, \vec{b} are non-collinear and \vec{c}, \vec{d} are also non-collinear then :
A. π^{2}
B. $\frac{5 \pi^{2}}{4}$
C. $\frac{35 \pi^{2}}{4}$
D. $\frac{37 \pi^{2}}{4}$

Answer: B::D

- Watch Video Solution

12. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=h \vec{a}+k \vec{b}=r \vec{c}+s \vec{d}$, where \vec{a}, \vec{b} are non-collinear and \vec{c}, \vec{d} are also non-collinear then :
A. $h=[\vec{b} \vec{c} \vec{d}]$
B. $k=[\vec{a} \vec{c} \vec{d}]$
C. $r=\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{d}\end{array}\right]$
D. $s=-[\vec{a} \vec{b} \vec{c}]$

Answer: B::C::D

- Watch Video Solution

13. Let a be a real number
$\vec{\alpha}=\hat{i}+2 \hat{j}, \vec{\beta}=2 \hat{i}+a \hat{j}+10 \hat{k}, \vec{\gamma}=12 \hat{i}+20 \hat{j}+a \hat{k}$ be vectors, then $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are linearly independent for :
A. $a>0$
B. $a<0$
C. $a=0$
D. No value of a

Answer: A::B::C

14. The volume of a right triangular prism $\mathrm{ABC} A_{1} B_{1} C_{1}$ is equal to 3 cubic unit. Then the co-ordinates of the vertex A_{1}, if the co-ordinates of the base vertices of the prism are $A(1,0,1), B(2,0,0)$ and $C(0,1,0)$, are
A. $(2,2,2)$
B. $(0,2,0)$
C. $(0,-2,2)$
D. $(0,-2,0)$

Answer: A:D

- Watch Video Solution

15. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$ and $\vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
(a)parallel to $\quad(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k} \quad$ (b)orthogonal to
$\hat{i}+\hat{j}+\hat{k}$
(c)orthogonal to
$(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
(d)orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$
A. Parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. Orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. Orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$,
D. Orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

Answer: A::B::C::D

- Watch Video Solution

16. If a line has a vector equation, $\vec{r}=2 \hat{i}+6 \hat{j}+\lambda(\hat{i}-3 \hat{j})$ then which of the following statements holds good?
A. the line is parallel to $2 \hat{i}+6 \hat{j}$
B. the line passes through the point $3 \hat{i}+3 \hat{j}$
C. the line passes through the point $\hat{i}+9 \hat{j}$
D. the line is parallel to xy plane

Answer: B::C::D

- Watch Video Solution

17. Let M, N, P and Q be the mid points of the edges $A B, C D, A C$ and $B D$ respectively of the tetrahedron $A B C D$. Further, $M N$ is perpendicular to both $A B$ and $C D$ and $P Q$ is perpendicular to both $A C$ and $B D$. Then which of the following is/are correct:
A. $A B=C D$
B. $B C=D A$
C. $A C=B D$
D. $A N=B N$

Answer: A::B::C::D

18. The solution vectors \vec{r} of the equation $\vec{r} \times \hat{i}=\hat{j}+\hat{k}$ and $\vec{r} \times \hat{j}=\hat{k}+\hat{j}$ represent two straight lines which are :
A. Intersecting
B. Non coplanar
C. Coplanar
D. Non intersecting

Answer: B::D

- Watch Video Solution

$$
\begin{aligned}
& \text { 19. The lines with vector equations are, } \\
& \vec{r}_{1}=3 \hat{i}+6 \hat{j}+\lambda(-4 \hat{i}+3 \hat{j}+2 \hat{k}) \text { and } \vec{r}_{2}=-2 \hat{i}+7 \hat{j}+\mu(-4 \hat{i}+
\end{aligned}
$$ are such that :

A. they are coplanar
B. they do not intersect
C. they are skew
D. the angle between then is $\tan ^{-1}(3 / 7)$

Answer: B::C::D

- Watch Video Solution

Exercise 3 Comprehension Type Problems

1. The vertices of $\Delta A B C$ are $(2,0,0), \mathrm{B}(0,1,0), \mathrm{C}(0,0,2)$. Its orthocentre is H and circumcentre is $\mathrm{S} . \mathrm{P}$ is a point equidistant from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and the origin 0.
Q. The z -coordinate of H is :
A. 1
B. $1 / 2$
C. $1 / 6$
D. $1 / 3$

Answer: D

- Watch Video Solution

2. The vertices of $\Delta A B C$ are $(2,0,0), \mathrm{B}(0,1,0), \mathrm{C}(0,0,2)$. Its orthocentre is H and circumcentre is $S . P$ is a point equidistant from A, B, C and the origin 0 .
Q. The y -coordinate of S is :
A. $5 / 6$
B. $1 / 3$
C. $1 / 6$
D. $1 / 2$

Answer: C

3. The vertices of $\Delta A B C$ are $(2,0,0), \mathrm{B}(0,1,0), \mathrm{C}(0,0,2)$. Its orthocentre is H and circumcentre is $S . P$ is a point equidistant from A, B, C and the origin 0.
Q. PA is equal to :
A. 1
B. $\sqrt{2}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

4. Consider a plane $\pi: \vec{r} \cdot \vec{n}=d$ (where \vec{n} is not a unti vector). There are two points $A(\vec{a})$ and $B(\vec{b})$ lying on the same side of the plane. Q. If foot of perpendicular from A and B to the plane π are P and Q respectively, then length of PQ be :
A. $\frac{|(\vec{b}-\vec{a}) \cdot \vec{n}|}{|\vec{n}|}$
B. $|(\vec{b}-\vec{a}) \cdot \vec{n}|$
C. $\frac{|(\vec{b}-\vec{a}) \times \vec{n}|}{|\vec{n}|}$
D. $|(\vec{b}-\vec{a}) \times \vec{n}|$

Answer: C

- Watch Video Solution

5. Consider a plane $\pi: \vec{r} \cdot \vec{n}=d$ (where \vec{n} is not a unti vector). There are two points $A(\vec{a})$ and $B(\vec{b})$ lying on the same side of the plane.
Q. If foot of perpendicular from A and B to the plane π are P and Q respectively, then length of PQ be :
A. $\vec{a}+\frac{2}{(\vec{n})^{2}}(d-\vec{a} \cdot \vec{n}) \vec{n}$
B. $\vec{a}-\frac{1}{(\vec{n})^{2}}(d-\vec{a} \cdot \vec{n}) \vec{n}$
c. $\vec{a}+\frac{2}{(\vec{n})^{2}}(d+\vec{a} \cdot \vec{n}) \vec{n}$
D. $\vec{a}+\frac{2}{(\vec{n})^{2}} \vec{n}$

Answer: A

- Watch Video Solution

6. Consider a plane $\pi: \vec{r} \cdot \vec{n}=d$ (where \vec{n} is not a unti vector). There are two points $A(\vec{a})$ and $B(\vec{b})$ lying on the same side of the plane. Q. If foot of perpendicular from A and B to the plane π are P and Q respectively, then length of PQ be :
A. $\frac{|(\vec{a}-\vec{b}) \cdot \vec{n}|}{|\vec{n}|}$
B. $|(\vec{a}-\vec{b}) \cdot \vec{n}|$
c. $|(\vec{a}-\vec{b}) \times \vec{n}|$
D. $\frac{|(\vec{a}-\vec{b}) \times \vec{n}|}{|\vec{n}|}$

- Watch Video Solution

7. Consider a plane $\prod: \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=5$, a line $L_{1}: \vec{r}=(3 \hat{i}-\hat{j}+2 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}-\hat{k}) \quad$ and \quad a point $a(3,-4,1) \cdot L_{2}$ is a line passing through A intersecting L_{1} and parallel to plane \prod.
Q. Equation of L_{2} is :
A. $\vec{r}=(1+\lambda) \hat{i}+(2-3 \lambda) \hat{j}+(1-\lambda) \hat{k}: \lambda \in R$
B. $\vec{r}=(3+\lambda) \hat{i}-(4-2 \lambda) \hat{j}+(1+3 \lambda) \hat{k}, \lambda \in R$
C. $\vec{r}=(3+\lambda) \hat{i}-(4+3 \lambda) \hat{j}+(1-\lambda) \hat{k}, \lambda \in R$
D. None of the above

Answer: C

8. Consider a plane $\prod: \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=5$, a line $L_{1}: \vec{r}=(3 \hat{i}-\hat{j}+2 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}-\hat{k}) \quad$ and \quad a point $a(3,-4,1) \cdot L_{2}$ is a line passing through A intersecting L_{1} and parallel to plane \prod.
Q. Plane containing L_{1} and L_{2} is:
A. parallel to yz-plane
B. parallel to x-axis
C. parallel to y-axis
D. passing through origin

Answer: B

- Watch Video Solution

9. Consider three planes:
$2 x+p y+6 z=8, x+2 y+q z=5$ and $x+y+3 z=4$
Q. Three planes do not have any common point of intersection if:
A. $p=2, q \neq 3$
B. $p \neq 2, q \neq 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: B

- Watch Video Solution

10. Consider three planes:
$2 x+p y+6 z=8, x+2 y+q z=5$ and $x+y+3 z=4$
Q. Three planes do not have any common point of intersection if :
A. $p=2, q \neq 3$
B. $p \neq 2, q \neq 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: C

D Watch Video Solution

11. Consider a tetrahedron $D-A B C$ with position vectors if its angular points as
$A(1,1,1), B(1,2,3), C(1,1,2)$
and centre of tetrahedron $\left(\frac{3}{2}, \frac{3}{4}, 2\right)$.
Q. Shortest distance between the skew lines $A B$ and $C D$:
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: B

12. Consider a tetrahedron $D-A B C$ with position vectors if its angular points as
$A(1,1,1), B(1,2,3), C(1,1,2)$
and centre of tetrahedron $\left(\frac{3}{2}, \frac{3}{4}, 2\right)$.
Q. If N be the foot of the perpendicular from point D on the plane face $A B C$ then the position vector of N are :
A. $(-1,1,2)$
B. $(1,-1,2)$
C. $(1,1,-2)$
D. $(-1,-1,2)$

Answer: B

- Watch Video Solution

13. In a triangle $A O B, R$ and Q are the points on the side $O B$ and $A B$ respectively such that $3 O R=2 R B$ and $2 A Q=3 Q B$. Let $O Q$ and $A R$ intersect
at the point P (where O is origin).
Q. If the point P divides $O Q$ in the ratio of $\mu: 1$, then μ is :
A. $\frac{2}{19}$
B. $\frac{2}{17}$
C. $\frac{2}{15}$
D. $\frac{10}{9}$

Answer: D

- Watch Video Solution

Exercise 5 Subjective Type Problems

1. If \hat{a}, \hat{b} and \hat{c} are non-coplanar inti vectors such that $\left[\begin{array}{lll}\hat{a} \\ b \\ c\end{array}\right]=\left[\begin{array}{lll}\hat{b} \times \hat{c} & \hat{c} \times \widehat{a} & \widehat{a} \times \hat{b}\end{array}\right]$, then find the projection of $\hat{b}+\hat{c}$ on $\hat{a} \times \hat{b}$.
2. If M is the matrix $\left[\begin{array}{cc}1 & -3 \\ -1 & 1\end{array}\right]$ then find matrix $\sum_{r=0}^{\infty}\left(\frac{-1}{3}\right)^{r} M^{r+1}$

- Watch Video Solution

3. A sequence of 2×2 matrices $\left\{M_{n}\right\}$ is defined as follows
$M_{n}=\left[\begin{array}{cc}\frac{1}{(2 n+1)!} & \frac{1}{(2 n+2)!} \\ \sum_{k=0}^{n} \frac{(2 n+2)!}{(2 k+2)!} & \sum_{k=0}^{n} \frac{(2 n+1)!}{(2 k+1)!}\end{array}\right]$
$\lim _{n \rightarrow \infty} \operatorname{det} .\left(M_{n}\right)=\lambda-e^{-1}$. Find λ.

- Watch Video Solution

4. Let $|\vec{a}|=1,|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$. If \vec{c} be a vector such that $\vec{c}=\vec{a}+2 \vec{b}-3(\vec{a} \times \vec{b})$ and $p=|(\vec{a} \times \vec{b}) \times \vec{c}|$, then find [p^{2}]. (where [] represents greatest integer function).

- Watch Video Solution

5. Let $\vec{r}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$, where $\vec{a}, \vec{b}, \vec{c}$ are non-zero and non-coplanar vectors. If \vec{r} is orthogonal to $\vec{a}+\vec{b}+\vec{c}$, then find the minimum value of $\frac{4}{\pi^{2}}\left(x^{2}+y^{2}\right)$.

- Watch Video Solution

6. The plane denoted by $P_{1}: 4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with plane $P_{2}: 5 x+3 y+10 z=25$. If the plane in its new position be denoted by P , and the distance of this plane from the origin is d , then the value of $\left[\frac{k}{2}\right]$ (where[.] represents greatest integer less than or equal to k) is....

Watch Video Solution

7. $A B C D$ is a regular tetrahedron, A is the origin and B lies on x-axis. $A B C$ lies in the xy-plane $|\overrightarrow{A B}|=2$ Under these conditions, the number of possible tetrahedrons is :
8. A, B, C, D are four points in the space and satisfy $|\overrightarrow{A B}|=3,|\overrightarrow{B C}|=7,|\overrightarrow{C D}|=11$ and $|\overrightarrow{D A}|=9$. Then find the value of $\overrightarrow{A C} \cdot \overrightarrow{B D}$

(Watch Video Solution

9. Let OABC be a regular tetrahedron of edge length unity. Its volume be V and $6 V=\sqrt{\frac{p}{q}}$ where p and q are relatively prime. The find the value of $(p+q)$.

(Watch Video Solution

10. If \vec{a} and \vec{b} are non zero, non collinear vectors and $\vec{a}_{1}=\lambda \vec{a}+3 \vec{b}, \vec{b}_{1}=2 \vec{a}+\lambda \vec{b}, \vec{c}_{1}=\vec{a}+\vec{b}$. Find the sum of all possible real values of λ so that points A_{1}, B_{1}, C_{1} whose position vectors are $\vec{a}_{1}, \vec{b}_{1}, \vec{c}_{1}$ respectively are collinear is equal to.

Watch Video Solution

11. Let P and Q are two points on curve $y=\log _{\frac{1}{2}}\left(x-\frac{1}{2}\right)+\log _{2} \sqrt{4 x^{2}-4 x+1} \quad$ and $\quad \mathrm{P} \quad$ is also on $x^{2}+y^{2}=10$. Q lies inside the given circle such that its abscissa is integer. Find the smallest possible value of $\overrightarrow{O P} \cdot \overrightarrow{O Q}$ where 'O' being origin.

- Watch Video Solution

12.

> If $a, b, c, l, m, n \in R-\{0\}$
such
that
$a l+b m+c n=0, b l+c m+a n=0, c l+a m+b n=0$. If a, b, c are distinct and $f(x)=a x^{3}+b x^{2}+c x+2$. Find $\mathrm{f}(1)$.

- Watch Video Solution

13. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$. Find the value of $[\vec{u} \vec{v} \vec{w}]$.
