

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

AREA OF BOUNDED REGIONS

1. Mark the region represtented by $3x + 4y \leq 12$.

2. Sketch the curve
$$y = x^3$$
.

3. Sketch the curve $y = x^3 - 4x$.

4. Sketch the curve
$$y = (x - 1)(x - 2)(x - 3)$$
.

Watch Video Solution

5. Sketch the graph for $y = x^2 - x$.

Watch Video Solution

6. Sketch the curve $y = \sin 2x$.

Watch Video Solution

7. Sketch the curve $y = \sin^2 x$.

8. Construct the graph for
$$f(x) = rac{x^2-1}{x^2+1}.$$

Watch Video Solution

9. Construct the graph for
$$f(x) = x + rac{1}{x}$$
.

Watch Video Solution

10. Construct the graph for
$$f(x) = rac{1}{1+e^{1/x}}.$$

Watch Video Solution

11. Sketch the graph y=|x+1|. Evaluate $\int_{-4}^2 |x+1| dx$. What does the

value of this integral represent on the graph?

12. The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^2 - y + 9 = 0$ is (a) $12\sqrt{3}$ sq units (b) $6\sqrt{3}$ sq units (c) $8\sqrt{3}$ sq units (d) $4\sqrt{3}$ sq units

Watch Video Solution

13. The area enclosed by y = x(x-1)(x-2) and x-axis, is given by

Watch Video Solution

14. The area between the curve $y = 2x^4 - x^2$, the axis, and the ordinates of the two minima of the curve is 11/60 sq. units (b) 7/120 sq. units 1/30 sq. units (d) 7/90 sq. units

15. Sketch the curves and identify the region bounded by the curves $x = \frac{1}{2}, x = 2, y = \log xany = 2^x$. Find the area of this region.

Watch Video Solution

17. The area common to the region determined by $y \geq \sqrt{x}$ and $x^2 + y^2 < 2$ has the value

A. π sq units

B. $(2\pi - 1)$ sq units

C.
$$\left(\frac{\pi}{4} - \frac{1}{6}\right)$$
sq units

D. None of these

Answer: C

18. Find the area of the figure enclosed by the curve $5x^2 + 6xy + 2y^2 + 7x + 6y + 6 = 0.$

Watch Video Solution

19. If
$$f(x) = \begin{cases} \sqrt{\{x\}} & x \notin Z \\ 1 & x \in Z \end{cases}$$
 and $g(x) = \{x\}^2$ then area bounded by f(x) and g(x) for $x \in [0, 10]$ is
A. $\frac{5}{3}$ sq units

B. 5 sq units

C. $\frac{10}{3}$ sq units

D. None of these

Answer: C

20. Find the area of the region bounded by the curves $y = x^2, y = \left|2 - x^2\right|$, and y = 2, which lies to the right of the line x=1.

Watch Video Solution

21. The area enclosed by the curve $|y|=\sin 2x, \,$ where $x\in [0,2\pi].$ is

A.1 sq unit

B. 2 sq unit

C. 3 sq unit

D. 4 sq unit

Answer: D

22. Let $f(x) = x^2$, $g(x) = \cos x$ and α , $\beta(\alpha < \beta)$ be the roots of the equation $18x^2 - 19\pi x + \pi^2 = 0$. Then the area bounded by the curves $u = \log(x)$, the ordinates $x = \alpha$, $x = \beta$ and the X-asis is

A.
$$rac{1}{2}(\pi-3)$$
 sq units
B. $rac{\pi}{3}$ sq units
C. $rac{\pi}{4}$ sq units

D. None of these

Answer: D

Watch Video Solution

23. Find the area bounded by the curves $x^2+y^2=25, 4y=\left|4-x^2
ight|,$

and x = 0 above the x-axis.

24. Find area enclosed by |x| + |y| = 1.

25. Let $f(x) = \max\left\{\sin x, \cos x, \frac{1}{2}\right\}$, then determine the area of region

bounded by the curves y = f(x), X-axis, Y-axis and $x = 2\pi$.

Watch Video Solution

26. If A denotes the area bounded by $f(x) = \left|rac{\sin x + \cos x}{x}
ight|$, X-axis, $x = \pi$ and $x = 3\pi$,then

A. 1 < A < 2

 $\mathrm{B.}\, 0 < A < 2$

 $\mathsf{C.}\, 2 < A < 3$

D. None of these

Answer: B

27. If y = f(x) makes positive intercepts of 2 and 1 unit on x and ycoordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_0^2 x f'(x) dx$, is A. $\frac{3}{4}$ B. 1 C. $\frac{5}{4}$ D. $-\frac{3}{4}$

Answer: D

28. The area of the region included between the regions satisfying $\min \; (|x|,|y|) \geq 1$ and $x^2+y^2 \leq 5$ is

A.
$$\frac{5}{2} \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}1}{\sqrt{5}} \right) - 4$$

B. $10 \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4$
C. $\frac{2}{5} \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4$
D. $15 \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4$

Answer: B

> Watch Video Solution

29. The area of the region bounded by the curves $y = \sqrt{\frac{1 + \sin x}{\cos x}}$ and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$ bounded by the lines x=0 and $x = \frac{\pi}{4}$ is A. $\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$ B. $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$

$$\mathsf{C}. \int_{0}^{\sqrt{2}=1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$$
$$\mathsf{D}. \int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$$

Answer: B

Watch Video Solution

30. Let T be the triangle with vertices $(0,0), \left(0,c^2
ight)$ and $\left(c,c^2
ight)$ and let R

be the region between $y = cx \ ext{and} \ y = x^2$ where c > 0 then

A. Area
$$(R) = rac{c^3}{6}$$

B. Area of $R = rac{c^3}{3}$
C. $c o 0^+ rac{Area(T)}{Area(R)} = 3$
D. $c o 0^+ rac{Area(T)}{Area(R)} = rac{3}{2}$

Answer: A::C

31. Suppose fis defined from R o [-1,1] as $f(x) = rac{x^2-1}{x^2+1}$ where R is

the set of real number .then the statement which does not hold is

A. f is many-one onto

B. f increases for x>0 and decreases for x<0

C. minimum value is not attained even though f is bounded

D. the area included by the curve y-f(x) and the line y=1 is π sq

units

Answer: A::C::D

Watch Video Solution

32. Consider
$$f(x) = \begin{cases} \cos x & 0 \le x < rac{\pi}{2} \\ \left(rac{\pi}{2} - x
ight)^2 & rac{\pi}{2} \le x < \pi \end{cases}$$
 such that f is periodic

with period π . Then which of the following is not true?

A. the range of f is
$$\left[0, rac{\pi^2}{4}
ight)$$

B. f is continuous for all real x, but not defferentiable for some real x

C. f is continuous fo all real x

D the area bounded by y = f(x) and the X-axis for $x = n\pi$ to

$$x=n\pi$$
 is $2nigg(1+rac{\pi^2}{24}igg)$ for a given $n\in N$

Answer: A::D

33. Consider the functions f(x) and g(x), both defined from $R \to R$ and are defined as $f(x) = 2x - x^2$ and $g(x) = x^n$ where $n \in N$. If the area between f(x) and g(x) is 1/2, then the value of n is

A. 12

B. 15

C. 20

D. 30

Answer: B::C::D

34. The area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is e - 1 (b) $\int_1^e 1n(e + 1 - y)dy \ e - \int_0^1 e^x dx$ (d) $\int_1^e 1nydy$ A. e - 1B. $\int_1^e In(e + 1 - y)dy$ C. $e - \int_0^1 e^x dx$ D. $\int_0^e Inydy$

Answer: B::C::D

35. Consider the function $f(x) = x^3 - 8x^2 + 20x - 13$

The function f(x) defined for R o R

A. (a)is one-one onto

B. (b) is many-one onto

C. (c)has 3 real roots

D. (d)is such that $f(x_1) \cdot f(x_2) < 0$ where x_1 and x_2 are the roots of

f'(x) = 0

Answer: B

Watch Video Solution

36. Consider the function $f(x) = x^3 - 8x^2 + 20x - 13$

Area enclosed by y = f(x) and the coordinate axes is

A. 65/12

B. 13/12

C.71/12

D. None of these

Answer: A

Watch Video Solution

37. Let h(x) - f(x) - g(x) where $f(x) = \sin^4 \pi x$ and g(x) = Inx. Let $x_0, x_1, x_2, \dots, x_{n-1}$ be the roots of f(x) = g(x) in increasing oder. Then the absolute area enclosed by y = f(x) and y = g(x) is given by

A.
$$\sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^r h(x) dx$$

B. $\sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^{r+1} h(x) dx$
C. $2\sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^r h(x) dx$
D. $\frac{1}{2} \sum_{r=0}^{n} \int_{x_r}^{x_{r+1}} (-1)^{r+1} h(x) dx$

Answer: A

38. Let $h(x)=f(x)=f_x-g_x$, where $f_x=\sin^4\pi x$ and g(x)=Inx. Let

 $x_0, x_1, x_2, ..., x_{n+1}$ be the roots of $f_x = g_x$ in increasing order.

In the above question, the value of n is

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

39. Let $h(x) = f(x) = f_x - g_x$, where $f_x = \sin^4 \pi x$ and g(x) = Inx. Let $x_0, x_1, x_2, ..., x_{n+1}$ be the roots of $f_x = g_x$ in increasing order. The absolute area enclosed by $y = f_x$ and y = g(x) is given by

A.
$$\frac{11}{8}$$

B. $\frac{8}{3}$
C. 2
D. $\frac{13}{3}$

Answer: A

Watch Video Solution

40. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

If $fig(-10\sqrt{2}ig)=2\sqrt{2}$, then $fig(-10\sqrt{2}ig)$ is equal to

A.
$$\frac{4\sqrt{2}}{7^3 3^2}$$

B.
$$-\frac{4\sqrt{2}}{7^3 3^2}$$

C. $\frac{4\sqrt{2}}{7^3 3}$
D. $-\frac{4\sqrt{2}}{7^3 3}$

Answer: B

Watch Video Solution

41. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

The area of the region bounded by the curve y=f(x), the X-axis and the line x=a and x=b, where $-\infty < a < b < -2$ is

A.
$$\int_a^b rac{x}{3ig[\{f(x)\}^2-1ig]}dx+by(b)-af(a)$$

$$egin{aligned} & \mathsf{B}. - \int_a^b rac{x}{3ig[\{f(x)\}^2 - 1ig]} dx - by(b) + af(a) \ & \mathsf{C}. \int_a^b rac{x}{3ig[\{f(x)\}^2 - 1ig]} dx - by(b) + af(a) \ & \mathsf{D}. - \int_a^b rac{x}{3ig[\{f(x)\}^2 - 1ig]} dx + by(b) = af(a) \end{aligned}$$

Answer: A

42. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

If $fig(-10\sqrt{2}ig)=2\sqrt{2}$, then $fig(-10\sqrt{2}ig)$ is equal to

A. 2g(-1)

B. 0

C. - 2g(1)

D. 2g(1)

Answer: D

Watch Video Solution

43. A curve y = f(x) passes through point P(1, 1). The normal to the curve at P is a (y-1) + (x-1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the (a) is curve $(b)(c)y = (d)e^{(\,e\,)\,(\,f\,)\,K(\,(\,g\,)\,(\,h\,)\,x\,-\,1\,(\,i\,)\,)\,(\,j\,)}\,(k)(l)$ (m) (b) $(n)(o)y = (p)e^{(\,q\,)\,(\,r\,)\,Ke\,(\,s\,)}\,(t)(u)$ (v) (c) $(d)(e)y = (f)e^{(\,g\,)\,(\,h\,)\,K(\,(\,i\,)\,(\,j\,)\,x\,-\,2\,(\,k\,)\,)\,(\,l\,)}\,(m)(n)$ (o) (d) None of these

44. Sketch the region bounded by the curves $y=x^2andy=rac{2}{1+x^2}$.

Find the area.

46. Find the area of the region bounded by the curve C : y=tan x ,tangent

drawn to C at x=pi/4, and the x-axis.

47. Find all the possible values of $b>0,\,$ so that the area of the bounded

region enclosed between the parabolas $y=x-bx^2 andy=rac{x^2}{b}$ is

maximum.

Watch Video Solution

48. Let C_1 and C_2 be the graphs of the functions $y = x^2$ and y = 2x, respectively, where $0 \le x \le 1$. Let C_3 be the graph of a function y=f(x), where $0 \le x \le 1$, f(0) = 0. For a point P on C_1 , let the lines through P, parallel to the axes, meet C_2 and C_3 at Q and R, respectively (see figure). If for every position of $P(onC_1)$, the areas of the shaded regions OPQ and ORP are equal, determine the function f(x).

49. Compute the area of the region bounded by the curves $y - ex(\log)_e xandy = \frac{\log x}{ex}$

Watch Video Solution

50. If A_n be the area bounded by the curve $y = (\tan x)^n$ and the lines $x=0, \ y=0, \ x=\pi/4$, then for n>2.

Watch Video Solution

51. Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -1). Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

52. The area of the region included between the curves $x^2+y^2=a^2$ and $\sqrt{|x|}+\sqrt{|y|}=\sqrt{a}(a>0)$ is

Watch Video Solution

53. Show that the area included between the parabolas $y^2 = 4a(x+a)$ and $y^2 = 4b(b-x)$ is $\frac{8}{3}\sqrt{ab}(a+b)$.

Watch Video Solution

54. Determine the area of the figure bounded by two branches of the curve $\left(y-x
ight)^2=x^3$ and the straight line x=1.

Watch Video Solution

55. Prove that the areas S_0, S_1, S_2 ...bounded by the x-axis and half-waves of the curve $y = e^{-ax} \sin \beta x, x \ge 0$ form a geometric progression with the common ratio $r = e^{-\pi \alpha / \beta}$.

56. Let $b \neq 0$ and for j = 0, 1, 2, ..., n. Let S_j be the area of the region bounded by Y_axis and the curve $x \cdot e^{ay} = \sin by$, $\frac{j\pi}{b} \leq y \leq \frac{(j+1)\pi}{b}$. Show that $S_0, S_1, S_2, ...S_n$ are in geometric progression. Also, find their sum for a=-1 and $b = \pi$.

Watch Video Solution

57. For any real $t, x = \frac{1}{2}(e^t + e^{-t}), y = \frac{1}{2}(e^t - e^{-t})$ is a point on the hyperbola $x^2 - y^2 = 1$ Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to $t_1and - t_1$ is t_1 .

58. Find the area enclosed by circle $x^2 + y^2 = 4$, parabola $y = x^2 + x + 1$, the curve $y = \left[\frac{\sin^2 x}{4} + \frac{\cos x}{4}\right]$ and X-axis (where,[.] is

the greatest integer function.

Watch Video Solution

59. Let
$$f(x) = Ma\xi\mu m\Big\{x^2, (1-x)^2, 2x(1-x)\Big\}$$
, where $0 \le x \le 1$.
Determine the area of the region bounded by the curves $y = f(x), x - a\xi s, x = 0$, and $x = 1$.

Watch Video Solution

60. Let
$$f(x) = egin{cases} -2 & -3 \le x \le 0 \ x-2 & 0 < x \le 3 \end{cases}$$
, where

 $g(x) = \min \left\{ f(|x|) + |f(x)|, f(|x|) - |f(x)|
ight\}$. Find the area bounded

by the curve g(x) and the X-axis between the ordinates at x=3 and x=-3.

61. Let $O(0, 0), A(2, 0), and B\left(1\frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside OAB which satisfy $d(P, OA) \leq \min [d(p, OB), d(P, AB)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

62. A curve y = f(x) passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the co-ordinate axes. If the curve divides the area formed by these lines and co-ordinates axes in the ratio m:n, find the curve.

Watch Video Solution

63. Find the ratio of the areas in which the curve $y = \left[\frac{x^3}{100} + \frac{x}{35}\right]$ divides the circle $x^2 + Y^2 - 4x + 2y + 1 = 0$. (where, [.] denotes the

greated integer function).

64. Area bounded by the line y=x, curve $y = f(x), (f(x) > x, \forall x > 1)$ and the lines x=1,x=t is $\left(t - \sqrt{1 + t^2} - (1 + \sqrt{2})\right)$ for all t > 1. Find f(x).

Watch Video Solution

65. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 and x=b is (b-1) $\sin(3b+4)$, then find f(x).

66. Let f (x) be a function which satisfy the equatio f(xy) = f9x + f(y)for all x > 0, y > 0 such that f'(1) = 2. Let A be the area of the region

bounded

$$y = f(x), y = \left|x^3 - 6x^2 + 11x - 6\right|$$
 and $x = 0$, then find value of $\frac{28}{17}A$.

67. Find the area of the region which is inside the parabola satisfying the

condition $|x - 2y| + |x + 2y| \le 8$ and $xy \ge 2$.

Watch Video Solution

68. Consider the function
$$f(x) = egin{cases} x-[x]-rac{1}{2} & x
otin \\ 0 & x\in I \end{bmatrix}$$
 where [.]

denotes the fractional integral function and I is the set of integers. Then

find $g(x) \, \max$. $ig[x^2, f(x), |x|ig], \ -2 \leq x \leq 2.$

Watch Video Solution

69. Find the area of the region bounded by the curves $y = x^2$ and $y = \sec^{-1} \left[-\sin^2 x \right]$, where [.] denotes G.I.F.

70. Draw a graph of the function $f(x) = \cos^{-1}(4x^3 - 3x), x \in [-1, 1]$ and find the ara enclosed between the graph of the function and the xaxis varies from 0 to 1.

Watch Video Solution

71. Let f(x) be continuous function given by $f(x)=\{2x,|x|\leq 1$ and $x^2+ax+b,|x|>1\}$.

Find the area of the region in the third quadrant bounded by the curves

 $x = -2y^2 andy = f(x)$ lying on the left of the line 8x + 1 = 0.

Watch Video Solution

72. Let [x] denotes the greatest integer function. Draw a rough sketch of the portions of the curves $x^2 = 4[\sqrt{x}]y$ and $y^2 = 4[\sqrt{y}]x$ that lie within the square $\{(x, y) \mid 1 \le x \le 4, 1 \le y \le 4\}$. Find the area of the

part of the square that is enclosed by the two curves and the line x+y=3.

73. Find all the values of the parameter $a(a \le 1)$ for which the area of the figure bounded by pair of straight lines $y^2 - 3y + 2 = 0$ and curves $y = [a]x^2$, $y = \frac{1}{2}[a]x^2$ is greatest , where [.] denotes the greatest integer function.

Watch Video Solution

74. Find the area in the 1* quadrant bounded by [x] + [y] = n, where $n \in N$ and y = k(where $k \in n \forall k \le n + 1$), where [.] denotes the greatest integer less than or equal to x.

Watch Video Solution

Exercise For Session 1

1. Draw a rough sketch of $y=\sin 2x$ and determine the area enclosed by the curve. X-axis and the lines $x=\pi/4$ and $x=3\pi/4$.

2. Find the area under the curve $y = \left(x^2 + 2
ight)^2 + 2x$ between the ordinates x =0 and x=2`

A.
$$\frac{236}{15}$$
 sq units
B. $\frac{136}{14}$ sq units
C. $\frac{430}{14}$ sq units
D. $\frac{436}{14}$ sq units

Answer: $\frac{436}{14}$ sq units

3. Find by integration the area of the region bounded by the curve $y = 2x - x^2$ and the x-axis.

A.
$$\frac{1}{3}$$
 sq units
B. $\frac{2}{3}$ sq units
C. $\frac{4}{3}$ sq units
D. $\frac{5}{3}$ sq units

Answer: $\frac{4}{3}$ sq units

Watch Video Solution

4. Find the area of the region bounded by the curve $y^2 = 2y - x$ and the

y-axis.

9. Sketch the graph of $y=\sqrt{x}+1\mathrm{in}[0,4]$ and determine the area of the

region enclosed by the curve, the axis of X and the lines x = 0, x = 4.

Exercise For Session 2

1. Find the area of the region bounded by parabola $y^2 = 2x + 1$ and the line x - y - 1 = 0.

A. 2/3

B. 4/3

C.8/3

D. 16/3

Answer: D

2. Find the area bounded by the curve $y=2x-x^2$, and the line y=x

A. 9/2

B. 43/6

C. 35/6

D. None of these

Answer: A

3. The area bounded by the curve y = x |x|, x-axis and the ordinates x = -1 & x = 1 is:

A. 0

B. 1/3

C. 2/3

D. None of these

Answer: C

4. Area of the region bounded by the curves
$$y = 2^x, y = 2x - x^2, x = 0$$
 and $x = 2$ is given by :

A.
$$\frac{3}{\log 2} - \frac{4}{3}$$

B. $\frac{3}{\log 2} + \frac{4}{3}$
C. $3\log 2 - \frac{4}{3}$

D. None of these

Answer: A

5. Find the area (in sq. unit) bounded by the curves : $y = e^x$, $y = e^{-x}$ and the straight line x =1.

A.
$$e + rac{1}{e}$$

B. $e - rac{1}{e}$
C. $e + \left(rac{1}{e}
ight) - 2$

D. None of these

Answer: A

6. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line $y = 3 \text{ is } 2 \text{ b.} \frac{9}{4} \text{ c.} \frac{9}{3} \text{ d.} \frac{9}{2}$ A. 2 B. $\frac{9}{4}$ C. $6\sqrt{3}$ D. None of these

Answer: B

> Watch Video Solution

7. The area of the region bounded by $y = \sin x$, $y = \cos x$ in the first quadrant is

A. $2(\sqrt{2-1})$ B. $\sqrt{3}+1$ C. $2(\sqrt{3}-1)$

D. None of these

Answer: A

8. The area bounded by the curves $y=xe^x, y=xe^{-x}$ and the line x=1 is

Answer: A

9. The figure into which the curve $y^2=6x$ divides the circle $x^2+y^2=16$

are in the ratio

A.
$$\frac{2}{3}$$

B. $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$
C. $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$

D. None of these

Answer: C

Watch Video Solution

10. Find the area bounded by the y-axis, $y = \cos x$,and $y = \sin x$ when

$$0\leq x\leq rac{\pi}{2}$$
.
A. $2ig(\sqrt{2-1}$
B. $\sqrt{2}-1ig)$
C. $ig(\sqrt{2}+1ig)$

 π

D. $\sqrt{2}$

Answer: B

11. The area bounded by the curves $y=\ -x^2+2 \ {
m and} \ y=2|x|-x$ is

A. 2/3

B. 8/3

C.4/3

D. None of these

Answer: D

12. The are bounded by the curve $y^2 = 4x$ and the circle $x^2 + y^2 - 2x - 3 = 0$ is 8

A.
$$2\pi + \frac{3}{3}$$

B. $4\pi + \frac{8}{3}$
C. $\pi + \frac{8}{3}$
D. $\pi - \frac{8}{3}$

Answer: A

13. A point P moves inside a triangle formed by $A(0, 0), B(1, \sqrt{3}), C(2, 0)$ such that min $\{PA, PB, PC\} = 1$, then the area bounded by the curve traced by P, is

A. (a)
$$3\sqrt{3}-rac{3\pi}{2}$$
B. (b) $\sqrt{3}+rac{\pi}{2}$

C. (c)
$$\sqrt{3}-rac{\pi}{2}$$

D. (d) $3\sqrt{3}+rac{3\pi}{2}$

Answer: C

Watch Video Solution

14. The graph of $y^2 + 2xy + 40|x| = 400$ divides the plane into regions. Then the area of the bounded region is 200squnits (b) 400squnits800squnits (d) 500squnits

A. 400

B. 800

C. 600

D. None of these

Answer: B

15. The area of the region defined by $||x|-|y| ~|~ \leq 1~~{
m and}~~x^2+y^2\leq 1$ in the xy plane is

A. $\pi-2$ B. $2\pi-1$

C. 3π

D. 1

Answer: A

Watch Video Solution

16. The area of the region defined by $1 \leq |x-2|+|y+1| \leq 2$ is (a) 2

(b) 4 (c) 6 (d) non of these

C. 6

D. None of these

Answer: C

Watch Video Solution

17. The area of the region enclosed by the curve $|y|=-\left(1-|x|
ight)^2+5,$

is

A.
$$rac{8}{3}ig(7+5\sqrt{5}ig)$$
 sq units
B. $rac{2}{3}ig(7+5\sqrt{5}ig)$ sq units
C. $rac{2}{3}ig(5\sqrt{5}-7ig)$ sq units

D. None of these

Answer: A

18.	The	area	bounded	by	the	curve	
f(x)) = an x +	$\cot x - 1$	$ an x - \cot x \mid \mid$	betweer	n the	lines	
$x=0, x=rac{\pi}{2}$ and the X-axis is							
ļ	A. log 4						
E	3. log $\sqrt{2}$						
($1.2\log 2$						
C	D. $\sqrt{2}\log 2$						

Answer: A

19. If
$$f(x) = \max\left\{\sin x, \cos x, \frac{1}{2}\right\}$$
, then the area of the region bounded by the curves $y = f(x)$, x-axis, Y-axis and $x = \frac{5\pi}{3}$ is

A.
$$\left(\sqrt{2} - \frac{\sqrt{3}}{2} + \frac{5\pi}{12}\right)$$
sq units
B. $\left(\sqrt{2} + \sqrt{3} + \frac{5\pi}{2}\right)$ sq units

C.
$$\left(\sqrt{2}+\sqrt{3}+rac{5\pi}{2}
ight)$$
sq units

D. None of these

Answer: B

Watch Video Solution

Exercise Single Option Correct Type Questions

1. A point P(x, y) moves such that [x + y + 1] = [x]. Where [.] denotes greatest integer function and $x \in (0, 2)$, then the area represented by all the possible position of P, is

A. (a) $\sqrt{2}$

B. (b) $2\sqrt{2}$

C. (c) $4\sqrt{2}$

D. (d)2

Answer: D

2. If
$$f: [-1,1] \rightarrow \left[-\frac{1}{2}, \frac{1}{2}\right]: f(x) = \frac{x}{1+x^2}$$
, then find the area bounded by $y = f^{-1}(x)$, the *x*-axis and the lines $x = \frac{1}{2}, x = -\frac{1}{2}$.

A.
$$\frac{1}{2}\log e$$

B. $\log\left(\frac{e}{2}\right)$
C. $\frac{1}{2}\frac{\log e}{3}$
D. $\frac{1}{2}\log\left(\frac{e}{2}\right)$

Answer: B

 $E_2 = rac{x^2}{p} + rac{y^2}{p^2} = 1, \, (0 are equal , then area of ellipse <math>E_2$, is

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{\sqrt{2}}$
C. $\frac{\pi}{2\sqrt{2}}$

D. None of these

Answer: B

4. The area of bounded by the curve

$$4|x - 2017^{2017}| + 5|y - 2017^{2017}| \le 20$$
, is
A. (a) 60
B. (b) 50
C. (c) 40
D. (d) 30

Answer: C

Watch Video Solution

5. If the area bounded by the corve $y = x^2 + 1$, y = x and the pair of lines $x^2 + y^2 + 2xy - 4x - 4y + 3 = 0$ is K units, then the area of the region bounded by the curve $y = x^2 + 1$, $y = \sqrt{x - 1}$ and the pair of lines (x + y - 1)(x + y - 3) = 0 is

A. (a)K

B. (b)2K

C. (c)
$$\frac{K}{2}$$

D. (d)None of these

Answer: B

6. Suppose y = f(x) and y = g(x) are two functions whose graphs intersect at the three point (0, 4), (2,2) and (4, 0) with f(x) gt g(x) for 0 lt x lt 2 and f(x) lt g(x) for 2 lt x lt 4.

If
$$\int_{0}^{4} [f(x) - g(x)] dx = 10$$
 and $\int_{2}^{4} [g(x) - f(x)] dx = 5$, the area

between two curves for 0 lt x lt 2, is

A. 5

B. 10

C. 15

D. 20

Answer: C

7. Let 'a' be a positive constant number. Consider two curves $C_1: y = e^x, C_2: y = e^{a-x}$. Let S be the area of the part surrounding by C_1, C_2 and the y axis, then $\lim_{a \to 0} \frac{s}{a^2}$ equals (A) 4 (B) $\frac{1}{2}$ (C) 0 (D) $\frac{1}{4}$

A.	4
В.	$\frac{1}{2}$
C.	0

D. 1.4

Answer: D

Watch Video Solution

8. 3 point O(0,0), $P(a,a^2)$, $Q(-b,b^2)(a > 0, b > 0)$ are on the parabola $y = x^2$. Let S_1 be the area bounded by the line PQ and parabola let S_2 be the area of the ΔOPQ , the minimum value of S_1/S_2 is

A. (a)2/3

B. (b)5/3

C. (c)2

D. (d)73

Answer: A

9. Area enclosed by the graph of the function $y=In^2x-1$ lying in the

$$4^{th}$$
 `quadrant is

A.
$$\frac{2}{e}$$

B. $\frac{4}{e}$
C. $2\left(e + \frac{1}{e}\right)$
D. $4\left(e - \frac{1}{e}\right)$

Answer: B

10. The area bounded by
$$y=2-|2-x|~~ ext{and}~~y=rac{3}{|x|}$$
 is:

A. (a)
$$\frac{4 + 3 \ln 3}{2}$$

B. (b) $\frac{19}{8} - 3 \ln 2$
C. (c) $\frac{3}{2} + \ln 3$
D. (c) $\frac{1}{2} + \ln 3$

Answer: B

Watch Video Solution

11. Suppose g(x) = 2x + 1 and $h(x) = 4x^2 + 4x + 5$ and h(x) = (fog)(x). The area enclosed by the graph of the function y = f(x) and the pair of tangents drawn to it from the origin is:

A. (a)
$$\frac{8}{3}$$

B. (b) $\frac{16}{3}$
C. (c) $\frac{32}{3}$

D. (d) None of these

Answer: B

12. The area bounded by the curves $y=-\sqrt{-x}$ and $x=-\sqrt{-y}$ where $x,y\leq 0$

A. cannot be determined

B. is
$$\frac{1}{3}$$

C. is $\frac{2}{3}$
D. is same as that of the figure bounded by the curves $y=\sqrt{-x}, x\leq 0$ and $x=\sqrt{-y}, y\leq 0$

Answer: B

13. y = f(x) is a function which satisfies f(0) = 0, f''(x) = f'(x) and f'(0) = 1 then the area bounded by the graph of y = f(x), the lines x = 0, x - 1 = 0 and y + 1 = 0 is A. e B. e-2

C. e-1

D. e+1

Answer: C

14. The area of the region enclosed between the curves
$$x=y^2-1$$
 and $x=|x|\sqrt{1-y^2}$ is

A. 1

B.4/3

C.2/3

 $\mathsf{D.}\,2$

Answer: D

Watch Video Solution

15. The area bounded by the curve $y = x e^{-x}, y = 0 \, ext{ and } \, x = c, \,$ where c

is the x-coordinate to the curve's inflection point, is

A.
$$1 - 3e^{-2}$$

B. $1 - 2e^{-2}$
C. $1 - e^{-2}$

D. 1

Answer: A

16. If (a, 0), agt 0, is the point where the curve $y = \sin 2x - \sqrt{3} \sin x$ cuts the x-axis first, A is the area bounded by this part of the curve, the origin and the positive x-axis. Then

A. $4A + 8\cos a = 7$

B. $4A + 8\sin a = 7$

 $C.4A - 8\sin a = 7$

 $\mathsf{D.}\,4A-8\cos a=7$

Answer: A

Watch Video Solution

17. The curve $y = ax^2 + bx + c$ passes through the point (1, 2) and its tangent at origin is the line y = x. The area bounded by the curve, the ordinate of the curve at minima and the tangent line is

A.
$$\frac{1}{24}$$

B.
$$\frac{1}{12}$$

C. $\frac{1}{8}$
D. $\frac{1}{6}$

Answer: A

Watch Video Solution

18. A function y = f(x) satisfies the differential equation $\frac{dy}{dx} - y = \cos x - \sin x$ with initial condition that y is bounded when $x \ge \infty$. The area enclosed by $y = f(x), y = \cos x$ and the y-axis is

A. (a) $\sqrt{2}-1$

B. (b) $\sqrt{2}$

C. (c)1

D. (d) $1/\sqrt{2}$

Answer: A

19. The ratio between masses of two planets is 3 : 5 and the ratio between their radii is 5 : 3. The ratio between their acceleration due to gravity will be

A. (a)4 or -2

B. (b)two values are in (2,3) and one in (-1,0)

C. (c)two values are in (3,4) and one in (-2,-1)

D. (d)None of the above

Answer: C

Watch Video Solution

20. Area bounded by $y = f^{-1}(x)$ and tangent and normal drawn to it at points with abscissae π and 2π , where $f(x) = \sin x - x$ is

A. a)
$$rac{\pi^2}{2} - 1$$

B. b) $rac{\pi^2}{2} - 2$
C. c) $rac{\pi^2}{2} - 4$
D. d) $rac{\pi^2}{2}$

Answer: B

Watch Video Solution

21. If f(x) = x - 1 and g(x) = |f|(x)| - 2|, then the area bounded by y = g(x) and the curve $x^2 - 4y + 8 = 0$ is equal to

A.
$$\frac{4}{3}(4\sqrt{2}-5)$$

B. $\frac{4}{3}(4\sqrt{2}-3)$
C. $\frac{8}{3}(4\sqrt{2}-3)$
D. $\frac{8}{3}(4\sqrt{2}-5)$

Answer: A

22.

$$S = igg\{(x,y)\!:\!rac{y(3x-1)}{x(3x-2)} < 0igg\}, S' = \{(x,y)\in A imes B\colon -1\leq A\leq 1, \; -1\leq X \leq 1, \; -1\leq X \leq X\}$$

then the area of the region enclosed by all points in $S\cap S'$ is

A. 1

B. 2

C. 3

D. 4

Answer: B

23. The area of the region bounded between the curves y=e||x|In|x| | | $,x^2+y^2-2(|x|+|y|)+1\geq 0$ and X-axis where

 $|x| \leq$ 1, if lpha is the x-coordinate of the point of intersection of curves in 1st quadrant, is

$$\begin{split} &\mathsf{A.4} \Bigg[\int_{0}^{\alpha} exInxdx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \Bigg] \\ &\mathsf{B.4} \Bigg[\int_{0}^{\alpha} exInxdx + \int_{1}^{\alpha} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \Bigg] \\ &\mathsf{C.4} \Bigg[- \int_{0}^{\alpha} exInxdx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \Bigg] \\ &\mathsf{D.2} \Bigg[\int_{0}^{\alpha} exInxdx + \int_{\alpha}^{1} \left(1 - \sqrt{1 - (x - 1)^{2}} \right) dx \Bigg] \end{split}$$

Answer: D

Watch Video Solution

24. A point P lying inside the curve $y = \sqrt{2ax - x^2}$ is moving such that its shortest distance from the curve at any position is greater than its distance from X-axis. The point P enclose a region whose area is equal to

A. (a)
$$\frac{\pi a^2}{2}$$

B. (b) $\frac{a^2}{3}$

C. (c)
$$rac{2a^2}{3}$$

D. (d) $\left(rac{3\pi-4}{6}
ight)a^2$

Answer: C

Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The triangle formed by the normal to the curve $f(x) = x^2 - ax + 2a$ at the point (2,4) and the coordinate axes lies in second quadrant, if its area is 2 sq units, then a can be

A. 2

B. 17/4

C. 5

D. None of these

Answer: B::C

2. Let f and g be continuous function on $a \le x \le b$ and set $p(x) = \max \{f(x), g(x)\}$ and $q(x) = \min\{f(x), g(x)\}$. Then the area bounded by the curves y = p(x), y = q(x) and the ordinates x = a and x = b is given by

A. (a)
$$\int_{a}^{b} |f(x) - g(x)| dx$$

B. (b) $\int_{a}^{b} |p(x) - q(x)| dx$
C. (c) $\int_{a}^{b} \{f(x) - g(x)\} dx$
D. (d) $\int_{a}^{b} \{p(x) - a(x)\} dx$

Answer: A::B::D

3. The area bounded by the parabola $y=x^2-7x+10$ and X-axis

A. 9/2 sq units

B. 1/6 sq units

C. 5/6 sq units

D. None of these

Answer: A

Watch Video Solution

4. Area bounded by the ellipse $rac{x^2}{4}+rac{y^2}{9}=1$ is equal to

A. 6π sq units

B. 3π sq units

C. 12π sq units

D. area bounded by the ellipse $\displaystyle rac{x^2}{9} + \displaystyle rac{y^2}{4} = 1$

Answer: A::D

5. There is curve in which the length of the perpendicular from the orgin to tangent at any point is equal to abscissa of that point. Then,

A. $x^2 + y^2 = 2$ is one such curve

B. $y^2 = 4x$ is one such curve

C. $x^2 + y^2 = 2cx$ (c parameters) are such curve

D. there are no such curves

Answer: A::C

Exercise Statement I And Ii Type Questions

1. Statement I- The area of the curve $y = \sin^2 x {
m from} 0 {
m to} \pi$ will be more than that of the curve $y = \sin x {
m from} 0 {
m to} \pi.$

Statement II - $x^2 > x$, if x > 1.

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: D

Watch Video Solution

2. Statement I- The area of bounded by the curves $y=x^2-3$ and

$$y = kx + 2$$
 is least if $k = 0$.

Statement II- The area bounded by the curves $y=x^2-3$ and $y=kx+2is\sqrt{k^2+20}.$

A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: C

Watch Video Solution

3. Statement I- The area of region bounded parabola $y^2 = 4x$ and $x^2 = 4y$ is $\frac{32}{3}$ sq units. Statement II- The area of region bounded by parabola $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16}{3}ab$.
A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false , Statement II is true

Answer: D

Watch Video Solution

4. Statement I- The area by region $|x+y|+|x-y|\leq 2is4$ sq units. Statement II- Area enclosed by region $|x+y|+|x-y|\leq 2$ is symmetric about X-axis.

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false , Statement II is true

Answer: B

Watch Video Solution

5. Statement I- Area bounded by y = x(x-1) and $y = x(1-x)is\frac{1}{3}$. Statement II- Area bounded by y = f(x) and y = g(x) "is" $\left|\int_{a}^{b} (f(x) - g(x))dx\right|$ is true when f(x) and g(x) lies above X-axis.

(Where a and b are intersection of y = f(x) and y = g(x)).

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false

D. Statement I is false, Statement II is true

Answer: C

Watch Video Solution

Exercise Passage Based Questions

1. Let $f(x) = \frac{ax^2 + bx + c}{x^2 + 1}$ such that y=-2 is an asymptote of the curve y = f(x). The curve y = f(x) is symmetric about Y-axis and its maximum values is 4. Let h(x) = f(x) - g(x), where $f(x) = \sin^4 \pi x$ and $g(x) = \log_e x$. Let $x_0, x_1, x_2...x_{n+1}$ be the roots of f(x) = g(x) in increasing order

Then, the absolute area enclosed by y = f(x) and y = g(x) is given by

A.
$$\sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}} (-1)^{r} \cdot h(x) dx$$

B. $\sum_{r=0}^{n} \int_{x_{1}}^{x_{r+1}} (-1)^{r+1} \cdot h(x) dx$

$$\begin{array}{l} \mathsf{C.}\, 2 \sum_{r=0}^n \int_{x_r}^{x_{r_r+1}} (\,-1)^r \cdot h(x) dx \\ \mathsf{D.}\, \frac{1}{2} \cdot \sum_{r=0}^n \int_{x_1}^{x_{r+1}} (\,-1)^{r+1} \cdot h(x) dx \end{array}$$

Answer: A

Watch Video Solution

2. Let
$$h(x) = f(x) = f_x - g_x$$
, where $f_x = \sin^4 \pi x$ and $g(x) = Inx$. Let

 $x_0, x_1, x_2, ..., x_{n+1}$ be the roots of $f_x = g_x$ in increasing order.

In the above question, the value of n is

A. 1

B. 2

C. 3

D. 4

Answer: B

3. Let $f(x) = \frac{ax^2 + bx + c}{x^2 + 1}$ such that y=-2 is an asymptote of the curve y = f(x). The curve y = f(x) is symmetric about Y-axis and its maximum values is 4. Let h(x) = f(x) - g(x), where $f(x) = \sin^4 \pi x$ and $g(x) = \log_e x$. Let $x_0, x_1, x_2...x_{n+1}$ be the roots of f(x) = g(x) in increasing order

Then, the absolute area enclosed by y=f(x) and y=g(x) is given by

A. $\frac{11}{8}$ B. $\frac{8}{3}$ C. 2 D. $\frac{13}{3}$

Answer: A

D Watch Video Solution

4. Consider the function $f: (-\infty, \infty) \to (-\infty, \infty)$ defined by $f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}; 0 < a < 2$. Which of the following is true ? A. $(2 - a)^2 f(1) + (2 - a)^2 f(-1) = 0$ B. $(2 - a)^2 f(1) - (2 - a)^2 (2) f(-1) = 0$ C. $f'(1) f'(-1) = (2 - a)^2$ D. $f'(1) f'(-1) = -(2 + a)^2$

Answer: A

Watch Video Solution

5. Consider the function $f\colon (-\infty,\infty) o (-\infty,\infty)$ defined by

 $f(x) = rac{x^2 - ax + 1}{x^2 + ax + 1}; 0 < a < 2.$ Which of the following is true ?

A. f(x) is decreasing on (-1,1) and has a local minimum at x=1

B. f(x) is increasing on (-1,1) and has maximum at x=1

C. f(x) is increasing on (-1,1) but has neither a local maximum nor a

local minimum at x=1`

D. f(x) is decreasing on (-1,1) but has neither a local maximum nor a

local minimum at x=1.

Answer: A

> Watch Video Solution

6. Let
$$g(x) = \int_{0}^{e^{x}} rac{f'(t)dt}{1+t^{2}}$$
. Which of the following is true?

A. g'(x) is positive on $(-\infty,0)$ and negative on $(0,\infty)$

B. g'(x) is negative on $(-\infty,0)$ and positive on $(0,\infty)$

C. g'(x) change sign on both $(-\infty, 0)$ and $(0, \infty)$

D. g'(x) does not change sign on $(-\infty,\infty)$.

Answer: B

7. Computing area with parametrically represented boundaries

If the boundary of a figure is represented by parametric equations x = x(t), y = y(t), then the area of the figure is evaluated by one of the three formulae

$$S= \ -\int\limits_{lpha}^{eta} y(t)x\,{}'(t)dt, S= \int\limits_{lpha}^{eta} x(t)y\,{}'(t)dt \ S= rac{1}{2} \int\limits_{lpha}^{eta} (xy\,{}'-yx\,{}')dt$$

where α and β are the values of the parameter t corresponding respectively to the beginning and the end of traversal of the contour .

The area enclosed by the astroid $\left(rac{x}{a}
ight)^{rac{2}{3}}+\left(rac{y}{a}
ight)^{rac{2}{3}}=1$ is

A. (a)
$$\frac{3}{4}a^{2}\pi$$

B. (b) $\frac{3}{18}\pi a^{2}$
C. (c) $\frac{3}{8}\pi a^{2}$
D. (d) $\frac{3}{4}a\pi$

Answer: C

8. Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x = x(t), y = (t), then the area of the figure is evaluated by one of the three formulas :

$$S= -\int\limits_{lpha}^{eta} y(t)x\,{}^{\prime}(t)dt,
onumber \ S= \int\limits_{lpha}^{eta} x(t)y\,{}^{\prime}(t)dt,
onumber \ S= rac{1}{2}\int\limits_{lpha}^{eta} (xy\,{}^{\prime}-yx\,{}^{\prime})dt,$$

Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t.

The area of the region bounded by an are of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$ and the x-axis is

A. $6\pi a^2$

B. $3\pi a^2$

C. $4\pi a^2$

D. None of these

Answer: B

Watch Video Solution

9. Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x = x(t), y = (t), then the area of the figure is evaluated by one of the three formulas :

$$S= -\int\limits_{lpha}^{eta} y(t)x^{\,\prime}(t)dt,
onumber \ S= \int\limits_{lpha}^{eta} x(t)y^{\,\prime}(t)dt,
onumber \ S= rac{1}{2}\int\limits_{lpha}^{eta} (xy^{\,\prime}-yx^{\,\prime})dt,$$

Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t. The area of the loop described as

$$x = \frac{t}{3}(6-t), y = \frac{t^2}{8}(6-t)$$
 is
A. $\frac{27}{5}$
B. $\frac{24}{5}$
C. $\frac{27}{6}$
D. $\frac{21}{5}$

Answer: A

Watch Video Solution

Area Of Bounded Regions Exercise 5 Matching Type Questions

1. Match the statement of Column I with value of Column II.

	Column l		Column II	
(A	The area bounded by the curve $y = x + \sin x$ and its inverse function between the ordinates $x = 0$ to $x = 2\pi$ is 4s. Then, the value of s is	(p)	2	
(B)	The area bounded by $y = x e^{ x }$ and lies $x = 1, y = 0$ is	(q)	1	
(C)	The area bounded by the curves $y^2 = x^3$ and $y = 2x$ is	(r)	$\frac{16}{5}$	
(D)	The smaller are included between the surves $\sqrt{ x } + \sqrt{ y } = 1$ and $ x + y = 1$ is	(s)	$\frac{1}{3}$	

Watch Video Solution

2. Match the following

	Column I		Column II
(A)	Area enclosed by $y = x $, $ x = 1$ and $y = 0$ is	(p)	2
(B)	Area enclosed by the curve $y = \sin x$, $x = 0, x = \pi$ and $y = 0$ is	(q)	4
(C)	If the area of the region bounded by $x^2 \le y$ and $y \le x + 2$ is $\frac{k}{4}$, then k is equal to	(r)	27
(D)	Area of the quadrilateral formed by tangents at the ends of latusrectum of ellipse of ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is	(s)	18

Watch Video Solution

1. Consider $f(x)=x^2-3x+2$ The area bounded by $|y|=|f(|x|)|,\,x\geq 1$ is A, then find the value of 3A+2.

Watch Video Solution

2. If S is the sum of cubes of possible value of c for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, then straight lines x = 1 and x = c and the abscissa axis is equal to $\frac{16}{3}$, then the value of [S], where [.] denotest the greatest integer function, is ____

Watch Video Solution

3. If the area bounded by y = 2 - |2 - x| and $y = \frac{3}{|x|}$ is $\frac{k - 3 \ln 3}{2}$, then k is equal to ____.

4. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B(4, 5) and C(6, 3).

Watch Video Solution

5. A point 'P' moves in xy plane in such a way that [|x|] + [|y|] = 1 where [.] denotes the greatest integer function. Area of the region representing all possible positions of the point 'P' is equal to:

Watch Video Solution

6. Let $f:[0,1] \to \left[0,\frac{1}{2}\right]$ be a function such that f(x) is a polynomial of 2nd degree, satisfty the following condition :

(a) f(0) = 0

(b) has a maximum value of $rac{1}{2}atx=1.$

If A is the area bounded by $y = f(x) = f^{-1}(x)$ and the line 2x + 2y - 3 = 0 in 1st quadrant, then the value of 24A is equal to

Watch Video Solution

7. Let
$$f(x) = \min\left\{\sin^{-1}x, \cos^{-1}x, \frac{\pi}{6}\right\}, x \in [0, 1]$$
. If area bounded
by $y = f(x)$ and X-axis, between the lines $x = 0$ and
 $x = 1is \frac{a}{b\left(\sqrt{3} + 1\right)}$. Then , (a-b) is

Watch Video Solution

8. Let f(x) be a real valued function satisfying the relation $f\left(\frac{x}{y}\right) = f(x) - f(y)$ and $\lim_{x \to 0} \frac{f(1+x)}{x} = 3$. The area bounded by

the curve $y=f(x),\,$ y-axis and the line y=3 is equal to

Watch Video Solution

Exercise Subjective Type Questions

1. Find the continuous function f where $(x^4 - 4x^2) \leq f(x) \leq (2x^2 - x^3)$ such that the area bounded by $y = f(x), y = x^4 - 4x^2$. then y-axis, and the line x = t, where $(0 \leq t \leq 2)$ is k times the area bounded by $y = f(x), y = 2x^2 - x^3$,y-axis , and line x = t (where $0 \leq t \leq 2$).

Watch Video Solution

2. Let
$$f(t)=|t-1|-|t|+|t+1|, \ \forall t\in R.$$
 Find $g(x)=\max{\{f(t):x+1\leq t\leq x+2\}}, \ \forall x\in R.$ Find $g(x)$ and the area bounded by the curve $y=g(x)$, the X-axis and the lines $x=-3/2$ and $x=5.$

Watch Video Solution

3. Let f(x)= minimum $ig\{e^x,3/2,1+e^{-x}ig\}, 0\leq x\leq 1$. Find the area bounded by y=f(x), X-axis and the line x=1.

4. Find the area bounded by y = f(x) and the curve $y = rac{2}{1+x^2}$ satisfying the condition

$$f(x),\,f(y)=f(xy)\,orall x,\,y\in R\,\, ext{and}\,\,\,f'(1)=2,\,f(1)=1,$$

Watch Video Solution

5. The value of

$$\int\limits_{0}^{\sin^2x}\sin^{-1}\sqrt{t}dt+\int\limits_{0}^{\cos^2x}\cos^{-1}\sqrt{t}dt$$
, is

Watch Video Solution

6. Let T be an acute triangle Inscribe a pair R,S of rectangle in T as shown: Let A(x) denote the area of polygon X find the maximum value (or show that no maximum exists), of $\frac{A(R) + A(S)}{A(T)}$, where T ranges over all triangles and R,S over all rectangle as above.

7. Find the maximum area of the ellipse that can be inscribed in an isoceles triangles of area A and having one axis lying along the perpendicular from the vertex of the triangles to its base.

Watch Video Solution

8. Find the area of the region bounded by curve $y = 25^x + 16$ and the curve $y = b.5^x + 4$, whose tangent at the point x=1 make an angle \tan^{-1} (40 In 5) with the X-axis.

9. If the circles of the maximum area inscriabed in the region bounded by the curves $y=x^2-2x-3$ and $y=3+2x-x^2$, then the area of region $y-x^2+2x+3\leq 0, y+x^2-2x-3\leq 0$ and $s\leq 0.$

Watch Video Solution

10. Find limit of the ratio of the area of the triangle formed by the origin and intersection points of the parabola $y = 4x^2$ and the line $y = a^2$ to the area between the parabola and the line as a approaches to zero.

Watch Video Solution11. Find the area of curve enclosed by
$$|x + y| + |x - y| \le 4, |x| \le 1, y \ge \sqrt{x^2 - 2x + 1}.$$
Watch Video Solution

12. Calculate the area enclosed by the curve $4 \leq x^2 + y^2 \leq 2(|x|+|y|).$

$$|y+x|\leq 1,$$
 $|y-x|\leq 1$ and $2x^2+2y^2\geq 1.$

Watch Video Solution

15. Find the area of the region bounded by the curve $2^{|x|}|y| + 2^{|x|-1} \le 1$, with in the square formed by the lines $|x| \le 1/2, |y| \le 1/2$.

16. The value of the parameter $a(a \ge 1)$ for which the area of the figure bounded by the pair of staight lines $y^2 - 3y + 2 = 0$ and the curves $y = [a]x^2, y = \frac{1}{2}[a]x^2$ is greatest is (Here [.] denotes the greatest integer function). (A) [0, 1) (B) [1, 2) (C) [2, 3) (D) [3, 4)

Watch Video Solution

Area Of Bounded Regions Exercise 7 Subjective Type Questions

1. If
$$f(x)$$
 is positive for all positive values of X and
 $f'(x) < 0, f(x) > 0, \forall x \in R^+,$ prove that
 $\frac{1}{2}f(1) + \int_1^n f(x)dx < \sum_{r=1}^n f(r) < \int_1^n f(x)dx + f(1).$
Vatch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. Area of the region

$$igg\{(x,y)\in R^2\colon y\geq \sqrt{|x+3|}, 5y\leq x+9\leq 15igg\}$$
 is equal to
A. $rac{1}{6}$
B. $rac{4}{3}$
C. $rac{3}{2}$
D. $rac{5}{3}$

Answer: C

Watch Video Solution

2. about to only mathematics

Watch Video Solution

3. about to only mathematics

A. 3	
B. 6	
C. 9	
D. 15	

Answer: D

Watch Video Solution

A. $4(\sqrt{2}-1)$ B. $2\sqrt{2}(\sqrt{2}-1)$ C. $2(\sqrt{2}+1)$ D. $2\sqrt{2}(\sqrt{2}+1)$

Answer: B

5. Let S be the area of the region enclosed by $y - e^{-x^2}, y = 0, x = 0$

Answer: B::D

6. Let $f\colon [-1,2] o [0,\infty)$ be a continuous function such that f(x)=f(1-x)f or $allx\in [-1,2].$ Let $R_1=\int_{-1}^2 xf(x)dx,$ and R_2

be the area of the region bounded by $y=f(x), x=-1, x=2, \,$ and the x- axis . Then $R_1=2R_2$ (b) $R_1=3R_2$ (c) $2R_1=R_2$ (d) $3R_1=R_2$

A. $R_1=2R_2$ B. $R_1=3R_2$ C. $2R_1=R_2$ D. $3R_1=R_2$

Answer: C

Watch Video Solution

7. Let the straight line x= b divide the area enclosed by $y = (1-x)^2, y = 0$, and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then b equals

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$

C.
$$\frac{1}{3}$$

D. $\frac{1}{4}$

Answer: B

8. The area of the region bounded by the curve
$$y = e^x$$
 and lines
 $x = 0$ and $y = e$ is $e - 1$ (b) $\int_1^e 1n(e + 1 - y)dy \ e - \int_0^1 e^x dx$ (d)
 $\int_1^e 1nydy$
A. $e - 1$
B. $\int_1^e In(e + 1 - y)dy$
C. $e - \int_0^1 e^x dx$
D. $\int_0^e Inydy$

Answer: B::C

9. The area of the region bounded by the curves
$$y = \sqrt{\frac{1+\sin x}{\cos x}}$$
 and
 $y = \sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines x=0 and $x = \frac{\pi}{4}$ is
A. A. $\int_0^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$
B. B. $\int_0^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$
C. C. $\int_0^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$
D. D. $\int_0^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$

Answer: B

Watch Video Solution

10. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valud differentiable function y - g(x) satisfying $g_0 = 0$.

If $fig(-10\sqrt{2}ig)=2\sqrt{2}$, then $fig(-10\sqrt{2}ig)$ is equal to

A. (a)
$$\frac{4\sqrt{2}}{7^3 3^2}$$

B. (b) $-\frac{4\sqrt{2}}{7^3 3^2}$
C. (c) $\frac{4\sqrt{2}}{7^3 3}$
D. (d) $-\frac{4\sqrt{2}}{7^3 3}$

Answer: B

Watch Video Solution

11. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

The area of the region bounded by the curve y = f(x), the X-axis and the line x = a and x = b, where $-\infty < a < b < -2$ is

$$\begin{aligned} \mathsf{A}. & \int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2} - 1\right]} dx + by(b) - af(a) \\ \mathsf{B}. & -\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2} - 1\right]} dx - by(b) + af(a) \\ \mathsf{C}. & \int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2} - 1\right]} dx - by(b) + af(a) \\ \mathsf{D}. & -\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2} - 1\right]} dx + by(b) = af(a) \end{aligned}$$

Answer: A

Watch Video Solution

12. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x)

satisfying
$$g_0 = 0$$
. $\int_{-1}^{1} g'(x) dx$ is equal to
A. $2g(-1)$
B. O
C. $-2g(1)$
D. $2g(1)$

Answer: D

Watch Video Solution

13. The area (in square units) of the region
$$\{(x, y): x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x}\}$$
 is
A. $\frac{5}{2}$
B. $\frac{59}{12}$
C. $\frac{3}{2}$

$$\mathsf{D}.\,\frac{7}{3}$$

Answer: A

14. The area (in sq. units) of the region

$$\{(x, y): y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \le 0, y \ge 0\}$$
 is
A. $\pi - \frac{4}{3}$
B. $\pi - \frac{8}{3}$
C. $\pi - \frac{4\sqrt{2}}{3}$
D. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$

Answer: B

Watch Video Solution

15. The area (in sq units) of the region described by $ig\{(x,y): y^2 \leq 2x ext{ and } y \geq 4x-1ig\}$ is

A.
$$\frac{7}{32}$$

B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

> Watch Video Solution

16. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is (a) $\frac{27}{4}$ (b) 18 (c) $\frac{27}{2}$ (d) 27

A.
$$\frac{27}{4}$$

B. 18

C.
$$\frac{27}{2}$$

D. 27

Answer: D

17. The area of the region described by

$$A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$$
 is
A. $\frac{\pi}{2} + \frac{4}{3}$
B. $\frac{\pi}{2} - \frac{4}{3}$

C.
$$\frac{\pi}{2} - \frac{2}{3}$$

D. $\frac{\pi}{2} + \frac{2}{3}$

Answer: A

Watch Video Solution

18. The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x, and x-axis in the 1st quadrant is 18 sq. units (b) $\frac{27}{4}$ s qu n i t s $\frac{4}{3}$ s qu n i t s (d) 9 sq. units

A. 9 B. 36 C. 1

D.
$$\frac{27}{4}$$

Answer: A

Watch Video Solution

19. The area bounded between the parabolas $x^2 = rac{y}{4}$ and $x^2 = 9y$ and

the straight line y=2 is

A. $20\sqrt{2}$

$$\mathsf{B.} \ \frac{10\sqrt{2}}{3}$$

$$\mathsf{C}.\,\frac{20\sqrt{2}}{3}$$

D. $10\sqrt{2}$

Answer: C

Watch Video Solution

20. The area of the region enclosed by the curves $y = x, x = e, y = \frac{1}{x}$

and the positive x-axis is

A. 1 sq unit

B.
$$\frac{3}{2}$$
 sq units
C. $\frac{5}{2}$ sq units
D. $\frac{1}{2}$ sq unit

Answer: B

Watch Video Solution

21. The area bounded by the curves y=cos x and y= sin x between the ordinates x=0 and $x=3\pi/2$ is

- A. $\left(4\sqrt{2}-2
 ight)$ sq units
- B. $(4\sqrt{2}+2)$ sq units
- C. $(4\sqrt{2}-1)$ sq units
- D. $\left(4\sqrt{2}+1
 ight)$ sq units

Answer: A

Watch Video Solution

22. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x-axis is

A. 6 sq units

B.9 sq units

C. 12 sq units
D. 3 sq units

Answer: B

Watch Video Solution

23. The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$ A. $\frac{5}{3}$ sq units B. $\frac{1}{3}$ sq unit C. $\frac{2}{3}$ sq unit D. $\frac{4}{3}$ sq units

Answer: D

Watch Video Solution