© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

AREA OF BOUNDED REGIONS

Examples

1. Mark the region represtented by $3 x+4 y \leq 12$.

- Watch Video Solution

2. Sketch the curve $y=x^{3}$.
3. Sketch the curve $y=x^{3}-4 x$.

- Watch Video Solution

4. Sketch the curve $y=(x-1)(x-2)(x-3)$.

- Watch Video Solution

5. Sketch the graph for $y=x^{2}-x$.

- Watch Video Solution

6. Sketch the curve $y=\sin 2 x$.

- Watch Video Solution

7. Sketch the curve $y=\sin ^{2} x$.

Watch Video Solution

8. Construct the graph for $f(x)=\frac{x^{2}-1}{x^{2}+1}$.

- Watch Video Solution

9. Construct the graph for $f(x)=x+\frac{1}{x}$.

- Watch Video Solution

10. Construct the graph for $f(x)=\frac{1}{1+e^{1 / x}}$.

- Watch Video Solution

11. Sketch the graph $y=|x+1|$. Evaluate $\int_{-4}^{2}|x+1| d x$. What does the value of this integral represent on the graph?
12. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0$ is (a) $12 \sqrt{3}$ sq units (b) $6 \sqrt{3}$ sq units (c) $8 \sqrt{3}$ sq units (d) $4 \sqrt{3}$ sq units

- Watch Video Solution

13. The area enclosed by $y=x(x-1)(x-2)$ and x -axis, is given by

- Watch Video Solution

14. The area between the curve $y=2 x^{4}-x^{2}$, the axis, and the ordinates of the two minima of the curve is $11 / 60$ sq. units (b) $7 / 120$ sq. units $1 / 30$ sq. units (d) 7/90 sq. units

- Watch Video Solution

15. Sketch the curves and identify the region bounded by the curves $x=\frac{1}{2}, x=2, y=\log x a n y=2^{x}$. Find the area of this region.

Watch Video Solution

16. Find the area of region
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$.

- Watch Video Solution

17. The area common to the region determined by $y \geq \sqrt{x}$ and $x^{2}+y^{2}<2$ has the value
A. π sq units
B. $(2 \pi-1)$ sq units
C. $\left(\frac{\pi}{4}-\frac{1}{6}\right)$ sq units
D. None of these

- Watch Video Solution

18. Find the area of the figure enclosed by the curve $5 x^{2}+6 x y+2 y^{2}+7 x+6 y+6=0$.

- Watch Video Solution

19. If $f(x)=\left\{\begin{array}{ll}\sqrt{\{x\}} & x \notin Z \\ 1 & x \in Z\end{array}\right.$ and $g(x)=\{x\}^{2}$ then area bounded by $f(x)$ and $g(x)$ for $x \in[0,10]$ is
A. $\frac{5}{3}$ sq units
B. 5 sq units
C. $\frac{10}{3}$ sq units
D. None of these

Answer: C

20. Find the area of the region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$, and $y=2$, which lies to the right of the line $\mathrm{x}=1$.

Watch Video Solution

21. The area enclosed by the curve $|y|=\sin 2 x$, where $x \in[0,2 \pi]$. is
A. 1 sq unit
B. 2 sq unit
C. 3 sq unit
D. 4 sq unit

Answer: D

- Watch Video Solution

22. Let $f(x)=x^{2}, g(x)=\cos x$ and $\alpha, \beta(\alpha<\beta)$ be the roots of the equation $18 x^{2}-19 \pi x+\pi^{2}=0$. Then the area bounded by the curves $u=\operatorname{fog}(x)$, the ordinates $x=\alpha, x=\beta$ and the X -asis is
A. $\frac{1}{2}(\pi-3)$ sq units
B. $\frac{\pi}{3}$ sq units
C. $\frac{\pi}{4}$ sq units
D. None of these

Answer: D

- Watch Video Solution

23. Find the area bounded by the curves $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$, and $x=0$ above the x-axis.

- Watch Video Solution

24. Find area enclosed by $|x|+|y|=1$.

- Watch Video Solution

25. Let $f(x)=\max \left\{\sin x, \cos x, \frac{1}{2}\right\}$, then determine the area of region bounded by the curves $y=f(x)$, X -axis, Y -axis and $x=2 \pi$.

- Watch Video Solution

26. If A denotes the area bounded by $f(x)=\left|\frac{\sin x+\cos x}{x}\right|$, X -axis, $x=\pi$ and $x=3 \pi$,then
A. $1<A<2$
B. $0<A<2$
C. $2<A<3$
D. None of these

Answer: B

- Watch Video Solution

27. If $y=f(x)$ makes positive intercepts of 2 and 1 unit on x and y coordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_{0}^{2} x f^{\prime}(x) d x$, is
A. $\frac{3}{4}$
B. 1
C. $\frac{5}{4}$
D. $-\frac{3}{4}$

Answer: D

- Watch Video Solution

28. The area of the region included between the regions satisfying $\min (|x|,|y|) \geq 1$ and $x^{2}+y^{2} \leq 5$ is
A. $\frac{5}{2}\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1} 1}{\sqrt{5}}\right)-4$
B. $10\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4$
C. $\frac{2}{5}\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4$
D. $15\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4$

Answer: B

- Watch Video Solution

29. The area of the region bounded by the curves $y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines $\mathrm{x}=0$ and $x=\frac{\pi}{4}$ is
A. $\int_{0}^{\sqrt{2}-1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
B. $\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
C. $\int_{0}^{\sqrt{2}=1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
D. $\int_{0}^{\sqrt{2}+1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$

Answer: B

Watch Video Solution

30. Let T be the triangle with vertices $(0,0),\left(0, c^{2}\right)$ and $\left(c, c^{2}\right)$ and let R be the region between $y=c x$ and $y=x^{2}$ where $c>0$ then
A. Area $(R)=\frac{c^{3}}{6}$
B. Area of $R=\frac{c^{3}}{3}$
C. $c \rightarrow 0^{+} \frac{\operatorname{Area}(T)}{\operatorname{Area}(R)}=3$
D. $c \xrightarrow{\lim } 0^{+} \frac{\operatorname{Area}(T)}{\operatorname{Area}(R)}=\frac{3}{2}$

Answer: A:C

- Watch Video Solution

31. Suppose fis defined from $R \rightarrow[-1,1]$ as $f(x)=\frac{x^{2}-1}{x^{2}+1}$ where R is the set of real number .then the statement which does not hold is
A. f is many-one onto
B. f increases for $x>0$ and decreases for $x<0$
C. minimum value is not attained even though f is bounded
D. the area included by the curve $y-f(x)$ and the line $y=1$ is π sq units

Answer: A::C::D

- Watch Video Solution

32. Consider $f(x)=\left\{\begin{array}{ll}\cos x & 0 \leq x<\frac{\pi}{2} \\ \left(\frac{\pi}{2}-x\right)^{2} & \frac{\pi}{2} \leq x<\pi\end{array}\right.$ such that f is periodic with period π. Then which of the following is not true?
A. the range of f is $\left[0, \frac{\pi^{2}}{4}\right)$
B. f is continuous for all real x, but not defferentiable for some real x
C. f is continuous fo all real x
D. the area bounded by $y=f(x)$ and the X-axis for $x=n \pi$ to

$$
x=n \pi \text { is } 2 n\left(1+\frac{\pi^{2}}{24}\right) \text { for a given } n \in N
$$

Answer: A::D

- Watch Video Solution

33. Consider the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$, both defined from $R \rightarrow R$ and are defined as $f(x)=2 x-x^{2}$ and $g(x)=x^{n}$ where $n \in N$. If the area between $f(x)$ and $g(x)$ is $1 / 2$, then the value of n is
A. 12
B. 15
C. 20
D. 30

D Watch Video Solution

34. The area of the region bounded by the curve $y=e^{x}$ and lines
$x=0$ andy $=e$ is $e-1$ (b) $\int_{1}^{e} \ln (e+1-y) d y \quad e-\int_{0}^{1} e^{x} d x$
$\int_{1}^{e} 1 n y d y$
A. $e-1$
B. $\int_{1}^{e} \operatorname{In}(e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{0}^{e} \operatorname{In} y d y$

Answer: B::C::D

35. Consider the function $f(x)=x^{3}-8 x^{2}+20 x-13$

The function $f(x)$ defined for $R \rightarrow R$
A. (a)is one-one onto
B. (b)is many-one onto
C. (c)has 3 real roots
D. (d)is such that $f\left(x_{1}\right) \cdot f\left(x_{2}\right)<0$ where x_{1} and x_{2} are the roots of

$$
f^{\prime}(x)=0
$$

Answer: B

- Watch Video Solution

36. Consider the function $f(x)=x^{3}-8 x^{2}+20 x-13$

Area enclosed by $y=f(x)$ and the coordinate axes is
A. $65 / 12$
B. $13 / 12$
C. $71 / 12$
D. None of these

Answer: A

- Watch Video Solution

37. Let $h(x)-f(x)-g(x)$ where $f(x)=\sin ^{4} \pi x$ and $g(x)=\operatorname{In} x$. Let $x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n-1}$ be the roots of $f(x)=g(x)$ in increasing oder.Then the absolute area enclosed by $y=f(x)$ and $y=g(x)$ is given by
A. $\sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}}(-1)^{r} h(x) d x$
B. $\sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}}(-1)^{r+1} h(x) d x$
C. $2 \sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}}(-1)^{r} h(x) d x$
D. $\frac{1}{2} \sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}}(-1)^{r+1} h(x) d x$

Answer: A

38. Let $h(x)=f(x)=f_{x}-g_{x}$, where $f_{x}=\sin ^{4} \pi x$ and $g(x)=I n x$. Let $x_{0}, x_{1}, x_{2}, \ldots ., x_{n+1}$ be the roots of $f_{x}=g_{x}$ in increasing order. In the above question, the value of n is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

39. Let $h(x)=f(x)=f_{x}-g_{x}$, where $f_{x}=\sin ^{4} \pi x$ and $g(x)=$ In x. Let $x_{0}, x_{1}, x_{2}, \ldots ., x_{n+1}$ be the roots of $f_{x}=g_{x}$ in increasing order.

The absolute area enclosed by $y=f_{x}$ and $y=g(x)$ is given by
A. $\frac{11}{8}$
B. $\frac{8}{3}$
C. 2
D. $\frac{13}{3}$

Answer: A

- Watch Video Solution

40. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valud diferentiable function $y-g(x)$ satisfying $g_{0}=0$.

If $f(-10 \sqrt{2})=2 \sqrt{2}$, then $f(-10 \sqrt{2})$ is equal to
A. $\frac{4 \sqrt{2}}{7^{3} 3^{2}}$
B. $-\frac{4 \sqrt{2}}{7^{3} 3^{2}}$
C. $\frac{4 \sqrt{2}}{7^{3} 3}$
D. $-\frac{4 \sqrt{2}}{7^{3} 3}$

Answer: B

- Watch Video Solution

41. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valud diferentiable function $y-g(x)$ satisfying $g_{0}=0$.

The area of the region bounded by the curve $y=f(x)$, the X -axis and the line $x=a$ and $x=b$, where $-\infty<a<b<-2$ is

$$
\text { A. } \int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x+b y(b)-a f(a)
$$

B. $-\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x-b y(b)+a f(a)$
C. $\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x-b y(b)+a f(a)$
D. $-\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x+b y(b)=a f(a)$

Answer: A

- Watch Video Solution

42. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valud diferentiable function $y-g(x)$ satisfying $g_{0}=0$.

If $f(-10 \sqrt{2})=2 \sqrt{2}$, then $f(-10 \sqrt{2})$ is equal to
A. $2 g(-1)$
B. 0
C. $-2 g(1)$
D. $2 g(1)$

Answer: D

- Watch Video Solution

43. A curve $y=f(x)$ passes through point $P(1,1)$. The normal to the curve at P is a $(y-1)+(x-1)=0$. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is
(b) $(c) y=(d) e^{(e)(f) K((g)(h) x-1(i))(j)}(k)(l)$
(m)
$(n)(o) y=(p) e^{(q)(r) K e(s)}(t)(u)$
(v)
(d) $(e) y=(f) e^{(g)(h) K((i)(j) x-2(k))(l)}(m)(n)$ (o) (d) None of these

- Watch Video Solution

44. Sketch the region bounded by the curves $y=x^{2} a n d y=\frac{2}{1+x^{2}}$. Find the area.

- Watch Video Solution

45. The area enclosed between the curves
$y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right)$, and the x-axis is

- Watch Video Solution

46. Find the area of the region bounded by the curve $\mathrm{C}: \mathrm{y}=\tan \mathrm{x}$, tangent drawn to C at $x=\mathrm{pi} / 4$, and the x -axis.

- Watch Video Solution

47. Find all the possible values of $b>0$, so that the area of the bounded region enclosed between the parabolas $y=x-b x^{2} a n d y=\frac{x^{2}}{b}$ is
maximum.

- Watch Video Solution

48. Let C_{1} and C_{2} be the graphs of the functions $y=x^{2}$ and $y=2 x$, respectively, where $0 \leq x \leq 1$. Let C_{3} be the graph of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, where $0 \leq x \leq 1, f(0)=0$. For a point P on C_{1}, let the lines through P, parallel to the axes, meet C_{2} and C_{3} at Q and R , respectively (see figure). If for every position of $P\left(o n C_{1}\right)$, the areas of the shaded regions OPQ and ORP are equal, determine the function $f(x)$.

49. Compute the area of the region bounded by the curves $y-e x(\log)_{e} x a n d y=\frac{\log x}{e x}$

- Watch Video Solution

50. If A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0, x=\pi / 4$, then for $n>2$.

- Watch Video Solution

51. Consider a square with vertices at $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$. Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

- Watch Video Solution

52. The area of the region included between the curves $x^{2}+y^{2}=a^{2}$ and $\sqrt{|x|}+\sqrt{|y|}=\sqrt{a}(a>0)$ is

- Watch Video Solution

53. Show that the area included between the parabolas $y^{2}=4 a(x+a)$ and $y^{2}=4 b(b-x)$ is $\frac{8}{3} \sqrt{a b}(a+b)$.

- Watch Video Solution

54. Determine the area of the figure bounded by two branches of the curve $(y-x)^{2}=x^{3}$ and the straight line $x=1$.

- Watch Video Solution

55. Prove that the areas S_{0}, S_{1}, S_{2}...bounded by the x-axis and half-waves of the curve $y=e^{-a x} \sin \beta x, x \geq 0$ form a geometric progression with the common ratio $r=e^{-\pi \alpha / \beta}$.

- Watch Video Solution

56. Let $b \neq 0$ and for $j=0,1,2, \ldots, n$. Let S_{j} be the area of the region bounded by Y_{-}axis and the curve $x \cdot e^{a y}=\sin b y, \frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0}, S_{1}, S_{2}, \ldots S_{n}$ are in geometric progression. Also, find their sum for $a=-1$ and $b=\pi$.

- Watch Video Solution

57. For any real $t, x=\frac{1}{2}\left(e^{t}+e^{-t}\right), y=\frac{1}{2}\left(e^{t}-e^{-t}\right)$ is a point on the hyperbola $x^{2}-y^{2}=1$ Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to t_{1} and $-t_{1}$ is t_{1}.

- Watch Video Solution

58. Find the area enclosed by circle $x^{2}+y^{2}=4$, parabola $y=x^{2}+x+1$, the curve $y=\left[\frac{\sin ^{2} x}{4}+\frac{\cos x}{4}\right]$ and X -axis (where,[.] is the greatest integer function.

- Watch Video Solution

59. Let $f(x)=\operatorname{Ma\xi \mu m}\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$, where $0 \leq x \leq 1$. Determine the area of the region bounded by the curves $y=f(x), x-a \xi s, x=0$, and $x=1$.

- Watch Video Solution

60. Let

$$
f(x)= \begin{cases}-2 & -3 \leq x \leq 0 \\ x-2 & 0<x \leq 3\end{cases}
$$

where
$g(x)=\min \{f(|x|)+|f(x)|, f(|x|)-|f(x)|\}$. Find the area bounded by the curve $g(x)$ and the X -axis between the ordinates at $x=3$ and $x=-3$.
61. Let $O(0,0), A(2,0)$, $\operatorname{andB}\left(1 \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which satisfy $d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

- Watch Video Solution

62. A curve $y=f(x)$ passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the co-ordinate axes. If the curve divides the area formed by these lines and co-ordinates axes in the ratio $m: n$, find the curve.

- Watch Video Solution

63. Find the ratio of the areas in which the curve $y=\left[\frac{x^{3}}{100}+\frac{x}{35}\right]$ divides the circle $x^{2}+Y^{2}-4 x+2 y+1=0$. (where, [.] denotes the
greated integer function).

- Watch Video Solution

64. Area bounded by the line $\mathrm{y}=\mathrm{x}$, curve $y=f(x),(f(x)>x, \forall x>1)$ and the lines $\mathrm{x}=1, \mathrm{x}=\mathrm{t}$ is $\left(t-\sqrt{1+t^{2}}-(1+\sqrt{2})\right)$ for all $t>1$. Find $f(x)$.

- Watch Video Solution

65. If the area bounded by the curve $y=f(x), x-a x i s$ and the ordinates $x=1$ and $\mathrm{x}=\mathrm{b}$ is $(\mathrm{b}-1) \sin (3 \mathrm{~b}+4)$, then find $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

66. Let $\mathrm{f}(\mathrm{x})$ be a function which satisfy the equatio $f(x y)=f 9 x)+f(y)$ for all $x>0, y>0$ such that $f^{\prime}(1)=2$. Let A be the area of the region
$y=f(x), y=\left|x^{3}-6 x^{2}+11 x-6\right|$ and $x=0$, then find value of 28 $\frac{28}{17} A$.

- Watch Video Solution

67. Find the area of the region which is inside the parabola satisfying the condition $|x-2 y|+|x+2 y| \leq 8$ and $x y \geq 2$.

- Watch Video Solution

68. Consider the function $f(x)=\left\{\begin{array}{ll}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{array}\right.$ where [.] denotes the fractional integral function and I is the set of integers. Then find $g(x)$ max $\cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.

- Watch Video Solution

69. Find the area of the region bounded by the curves $y=x^{2}$ and $y=\sec ^{-1}\left[-\sin ^{2} x\right]$, where [.] denotes G.I.F.

(D) Watch Video Solution

70. Draw a graph of the function $f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1]$ and find the ara enclosed between the graph of the function and the x axis varies from 0 to 1 .

- Watch Video Solution

71. Let $f(x)$ be continuous function given by $f(x)=\{2 x,|x| \leq 1$ and $\left.x^{2}+a x+b,|x|>1\right\}$.

Find the area of the region in the third quadrant bounded by the curves $x=-2 y^{2}$ and $y=f(x)$ lying on the left of the line $8 x+1=0$.

- Watch Video Solution

72. Let $[x]$ denotes the greatest integer function. Draw a rough sketch of the portions of the curves $x^{2}=4[\sqrt{x}] y$ and $y^{2}=4[\sqrt{y}] x$ that lie within the square $\{(x, y) \mid 1 \leq x \leq 4,1 \leq y \leq 4\}$. Find the area of the
part of the square that is enclosed by the two curves and the line $x+y=3$.

- Watch Video Solution

73. Find all the values of the parameter $a(a \leq 1)$ for which the area of the figure bounded by pair of straight lines $y^{2}-3 y+2=0$ and curves $y=[a] x^{2}, y=\frac{1}{2}[a] x^{2}$ is greatest, where [.] denotes the greatest integer function.

- Watch Video Solution

74. Find the area in the 1^{*} quadrant bounded by $[x]+[y]=n$, where $n \in N$ and $y=k$ (where $k \in n \forall k \leq n+1$), where [.] denotes the greatest integer less than or equal to x .

- Watch Video Solution

1. Draw a rough sketch of $y=\sin 2 x$ and determine the area enclosed by the curve. X -axis and the lines $x=\pi / 4$ and $x=3 \pi / 4$.

- Watch Video Solution

2. Find the area under the curve $y=\left(x^{2}+2\right)^{2}+2 x$ between the ordinates $\mathrm{x}=0$ and $\mathrm{x}=2^{`}$
A. $\frac{236}{15}$ sq units
B. $\frac{136}{14}$ sq units
C. $\frac{430}{14}$ sq units
D. $\frac{436}{14}$ sq units

Answer: $\frac{436}{14}$ sq units
3. Find by integration the area of the region bounded by the curve $y=2 x-x^{2}$ and the x-axis.
A. $\frac{1}{3}$ sq units
B. $\frac{2}{3}$ sq units
C. $\frac{4}{3}$ sq units
D. $\frac{5}{3}$ sq units

Answer: $\frac{4}{3}$ sq units

- Watch Video Solution

4. Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.

- Watch Video Solution

5. Find the area bounded by the curve $y=4-x^{2}$ and the lines $y=0, y=3$.

- Watch Video Solution

6. Find the area of the region bounded by the curve $x=a t^{2}, y=2 a t$ between the ordinates corresponding $t=1$ andt $=2$.

- Watch Video Solution

7. Find the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum.

- Watch Video Solution

8. Find the area bounded by $y=1+2 \sin ^{2} x$, X -axis, $X=0$ and $x=\pi$.

- Watch Video Solution

9. Sketch the graph of $y=\sqrt{x}+\operatorname{in}[0,4]$ and determine the area of the region enclosed by the curve, the axis of X and the lines $x=0, x=4$.

- Watch Video Solution

10. Find the area of the region bounded by the curve $x y-3 x-2 y-10=0, \mathrm{x}$-axis and the lines $x=3, x=4$.

- Watch Video Solution

Exercise For Session 2

1. Find the area of the region bounded by parabola $y^{2}=2 x+1$ and the line $x-y-1=0$.
A. $2 / 3$
B. $4 / 3$
C. $8 / 3$
D. $16 / 3$

Answer: D

- Watch Video Solution

2. Find the area bounded by the curve $y=2 x-x^{2}$, and the line $y=x$
A. $9 / 2$
B. $43 / 6$
C. $35 / 6$
D. None of these

Answer: A

- Watch Video Solution

3. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1 \& x=1$ is:
A. 0
B. $1 / 3$
C. $2 / 3$
D. None of these

Answer: C

- Watch Video Solution

4. Area of the region bounded by the curves $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by:
A. $\frac{3}{\log 2}-\frac{4}{3}$
B. $\frac{3}{\log 2}+\frac{4}{3}$
C. $3 \log 2-\frac{4}{3}$
D. None of these

Answer: A

D Watch Video Solution

5. Find the area (in sq. unit) bounded by the curves : $y=e^{x}, y=e^{-x}$ and the straight line $x=1$.
A. $e+\frac{1}{e}$
B. $e-\frac{1}{e}$
C. $e+\left(\frac{1}{e}\right)-2$
D. None of these

Answer: A

- Watch Video Solution

6. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is 2 b. $\frac{9}{4}$ c. $\frac{9}{3}$ d. $\frac{9}{2}$
A. 2
B. $\frac{9}{4}$
C. $6 \sqrt{3}$
D. None of these

Answer: B

- Watch Video Solution

7. The area of the region bounded by $y=\sin x, y=\cos x$ in the first quadrant is
A. $2(\sqrt{2-1})$
B. $\sqrt{3}+1$
C. $2(\sqrt{3}-1)$
D. None of these

Answer: A

- Watch Video Solution

8. The area bounded by the curves $y=x e^{x}, y=x e^{-x}$ and the line $\mathrm{x}=1$ is
A. $\frac{2}{e}$
B. $1-\frac{2}{e}$
C. $\frac{1}{e}$
D. $1-\frac{1}{e}$

Answer: A

- Watch Video Solution

9. The figure into which the curve $y^{2}=6 x$ divides the circle $x^{2}+y^{2}=16$ are in the ratio
A. $\frac{2}{3}$
B. $\frac{4 \pi-\sqrt{3}}{8 \pi+\sqrt{3}}$
C. $\frac{4 \pi+\sqrt{3}}{8 \pi-\sqrt{3}}$
D. None of these

Answer: C

- Watch Video Solution

10. Find the area bounded by the y-axis, $y=\cos x$,and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$.
A. $2(\sqrt{2-1})$
B. $\sqrt{2}-1$)
C. $(\sqrt{2}+1)$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

11. The area bounded by the curves $y=-x^{2}+2$ and $y=2|x|-x$ is
A. $2 / 3$
B. $8 / 3$
C. $4 / 3$
D. None of these

Answer: D

- Watch Video Solution

12. The are bounded by the curve $y^{2}=4 x$ and the circle $x^{2}+y^{2}-2 x-3=0$ is
A. $2 \pi+\frac{8}{3}$
B. $4 \pi+\frac{8}{3}$
C. $\pi+\frac{8}{3}$
D. $\pi-\frac{8}{3}$

Answer: A

- Watch Video Solution

13. A point P moves inside a triangle formed by $A(0,0), B(1, \sqrt{3}), C(2,0)$ such that $\min \{P A, P B, P C)=1$, then the area bounded by the curve traced by P , is
A. (a) $3 \sqrt{3}-\frac{3 \pi}{2}$
B. (b) $\sqrt{3}+\frac{\pi}{2}$
C. (c) $\sqrt{3}-\frac{\pi}{2}$
D. (d) $3 \sqrt{3}+\frac{3 \pi}{2}$

Answer: C

- Watch Video Solution

14. The graph of $y^{2}+2 x y+40|x|=400$ divides the plane into regions. Then the area of the bounded region is 200squnits (b) 400squnits 800squinits (d) 500 squinits
A. 400
B. 800
C. 600
D. None of these

Answer: B

15. The area of the region defined by $||x|-|y|| \leq 1$ and $x^{2}+y^{2} \leq 1$ in the xy plane is
A. $\pi-2$
B. $2 \pi-1$
C. 3π
D. 1

Answer: A

- Watch Video Solution

16. The area of the region defined by $1 \leq|x-2|+|y+1| \leq 2$ is (a) 2
(b) 4 (c) 6 (d) non of these
A. 2
B. 4
C. 6
D. None of these

Answer: C

- Watch Video Solution

17. The area of the region enclosed by the curve $|y|=-(1-|x|)^{2}+5$, is
A. $\frac{8}{3}(7+5 \sqrt{5})$ sq units
B. $\frac{2}{3}(7+5 \sqrt{5})$ sq units
C. $\frac{2}{3}(5 \sqrt{5}-7)$ sq units
D. None of these

Answer: A

18. The area bounded
$f(x)=||\tan x+\cot x|-|\tan x-\cot x||$ between the lines $x=0, x=\frac{\pi}{2}$ and the X -axis is
A. $\log 4$
B. $\log \sqrt{2}$
C. $2 \log 2$
D. $\sqrt{2} \log 2$

Answer: A

- Watch Video Solution

19. If $f(x)=\max \left\{\sin x, \cos x, \frac{1}{2}\right\}$, then the area of the region bounded by the curves $y=f(x), \mathrm{x}$-axis, Y -axis and $x=\frac{5 \pi}{3}$ is
A. $\left(\sqrt{2}-\frac{\sqrt{3}}{2}+\frac{5 \pi}{12}\right)$ sq units
B. $\left(\sqrt{2}+\sqrt{3}+\frac{5 \pi}{2}\right)$ sq units
c. $\left(\sqrt{2}+\sqrt{3}+\frac{5 \pi}{2}\right)$ sq units
D. None of these

Answer: B

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. A point $P(x, y)$ moves such that $[x+y+1]=[x]$. Where [.] denotes greatest intetger function and $x \in(0,2)$, then the area represented by all the possible position of P, is
A. (a) $\sqrt{2}$
B. (b) $2 \sqrt{2}$
C. (c) $4 \sqrt{2}$
D. (d) 2

- Watch Video Solution

2. If $f:[-1,1] \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]: f(x)=\frac{x}{1+x^{2}}$, then find the area bounded by $y=f^{-1}(x)$, the x-axis and the lines $x=\frac{1}{2}, x=-\frac{1}{2}$.
A. $\frac{1}{2} \log e$
B. $\log \left(\frac{e}{2}\right)$
C. $\frac{1}{2} \frac{\log e}{3}$
D. $\frac{1}{2} \log \left(\frac{e}{2}\right)$

Answer: B

- Watch Video Solution

3. If the length of latusrectum of ellipse

$$
E_{1}: 4(x+y+1)^{2}+2(x-y+3)^{2}=8
$$

$E_{2}=\frac{x^{2}}{p}+\frac{y^{2}}{p^{2}}=1,(0<p<1)$ are equal , then area of ellipse E_{2}, is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{\sqrt{2}}$
C. $\frac{\pi}{2 \sqrt{2}}$
D. None of these

Answer: B

- Watch Video Solution

4.

The
area
of
bounded
by the
curve
$4\left|x-2017^{2017}\right|+5\left|y-2017^{2017}\right| \leq 20$, is
A. (a) 60
B. (b) 50
C. (c) 40
D. (d) 30

- Watch Video Solution

5. If the area bounded by the corve $y=x^{2}+1, y=x$ and the pair of lines $x^{2}+y^{2}+2 x y-4 x-4 y+3=0$ is K units, then the area of the region bounded by the curve $y=x^{2}+1, y=\sqrt{x-1}$ and the pair of lines $(x+y-1)(x+y-3)=0$ is
A. (a)K
B. (b) 2 K
C. (c) $\frac{K}{2}$
D. (d)None of these

Answer: B

- Watch Video Solution

6. Suppose $y=f(x)$ and $y=g(x)$ are two functions whose graphs intersect at the three point $(0,4),(2,2)$ and $(4,0)$ with $f(x) \operatorname{gtg}(x)$ for 0 It x It 2 and $f(x)$ It $g(x)$ for 2 It x It 4.

If $\int_{0}^{4}[f(x)-g(x)] d x=10$ and $\int_{2}^{4}[g(x)-f(x)] d x=5$, the area between two curves for 0 It x It 2 , is
A. 5
B. 10
C. 15
D. 20

Answer: C

- Watch Video Solution

7. Let 'a' be a positive constant number. Consider two curves $C_{1}: y=e^{x}, C_{2}: y=e^{a-x}$. Let S be the area of the part surrounding by C_{1}, C_{2} and the y axis, then $\operatorname{Lim}_{a \rightarrow 0} \frac{s}{a^{2}}$ equals (A) 4 (B) $\frac{1}{2}$ (C) 0 (D) $\frac{1}{4}$
A. 4
B. $\frac{1}{2}$
C. 0
D. 1.4

Answer: D

- Watch Video Solution

8. 3 point $\mathrm{O}(0,0), P\left(a, a^{2}\right), Q\left(-b, b^{2}\right)(a>0, b>0)$ are on the parabola $y=x^{2}$. Let S_{1} be the area bounded by the line PQ and parabola let S_{2} be the area of the $\triangle O P Q$, the minimum value of S_{1} / S_{2} is
A. (a) $2 / 3$
B. (b) $5 / 3$
C. (c) 2
D. (d) 73

- Watch Video Solution

9. Area enclosed by the graph of the function $y=\operatorname{In}^{2} x-1$ lying in the $4^{\text {th }}$ 'quadrant is
A. $\frac{2}{e}$
B. $\frac{4}{e}$
C. $2\left(e+\frac{1}{e}\right)$
D. $4\left(e-\frac{1}{e}\right)$

Answer: B

- Watch Video Solution

10. The area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is:
A. (a) $\frac{4+3 \ln 3}{2}$
B. (b) $\frac{19}{8}-3 \ln 2$
C. (c) $\frac{3}{2}+\ln 3$
D. (c) $\frac{1}{2}+\ln 3$

Answer: B

- Watch Video Solution

11. Suppose $g(x)=2 x+1$ and $h(x)=4 x^{2}+4 x+5 \quad$ and $h(x)=(f o g)(x)$. The area enclosed by the graph of the function $y=f(x)$ and the pair of tangents drawn to it from the origin is:
A. (a) $\frac{8}{3}$
B. (b) $\frac{16}{3}$
C. (c) $\frac{32}{3}$
D. (d) None of these

- Watch Video Solution

12. The area bounded by the curves $y=-\sqrt{-x}$ and $x=-\sqrt{-y}$ where $x, y \leq 0$
A. cannot be determined
B. is $\frac{1}{3}$
C. is $\frac{2}{3}$
D. is same as that of the figure bounded by the curves

$$
y=\sqrt{-x}, x \leq 0 \text { and } x=\sqrt{-y}, y \leq 0
$$

Answer: B

- Watch Video Solution

13. $y=f(x)$ is a function which satisfies $f(0)=0, f^{\prime \prime}(x)=f^{\prime}(x)$ and $f^{\prime}(0)=1$ then the area bounded by the graph of $y=f(x)$, the lines $x=0, x-1=0$ and $y+1=0$ is
A.e
B. e-2
C. e-1
D. $\mathrm{e}+1$

Answer: C

- Watch Video Solution

14. The area of the region enclosed between the curves $x=y^{2}-1$ and $x=|x| \sqrt{1-y^{2}}$ is
A. 1
B. $4 / 3$
C. $2 / 3$
D. 2

Answer: D

- Watch Video Solution

15. The area bounded by the curve $y=x e^{-x}, y=0$ and $x=c$, where c is the x-coordinate to the curve's inflection point, is
A. $1-3 e^{-2}$
B. $1-2 e^{-2}$
C. $1-e^{-2}$
D. 1

Answer: A

16. If $(a, 0)$, agt 0 , is the point where the curve $y=\sin 2 x-\sqrt{3} \sin x$ cuts the x-axis first, A is the area bounded by this part of the curve, the origin and the positive x-axis. Then
A. $4 A+8 \cos a=7$
B. $4 A+8 \sin a=7$
C. $4 A-8 \sin a=7$
D. $4 A-8 \cos a=7$

Answer: A

- Watch Video Solution

17. The curve $y=a x^{2}+b x+c$ passes through the point $(1,2)$ and its tangent at origin is the line $y=x$. The area bounded by the curve, the ordinate of the curve at minima and the tangent line is
A. $\frac{1}{24}$
B. $\frac{1}{12}$
C. $\frac{1}{8}$
D. $\frac{1}{6}$

Answer: A

- Watch Video Solution

18. A function $y=f(x)$ satisfies the differential equation $\frac{d y}{d x}-y=\cos x-\sin x$ with initial condition that y is bounded when $x>\infty$. The area enclosed by $y=f(x), y=\cos x$ and the y-axis is
A. (a) $\sqrt{2}-1$
B. (b) $\sqrt{2}$
C. (c) 1
D. (d) $1 / \sqrt{2}$

Answer: A

19. The ratio between masses of two planets is $3: 5$ and the ratio between their radii is $5: 3$. The ratio between their acceleration due to gravity will be
A. (a) 4 or -2
B. (b)two values are in (2,3) and one in ($-1,0$)
C. (c)two values are in (3,4) and one in ($-2,-1$)
D. (d)None of the above

Answer: C

- Watch Video Solution

20. Area bounded by $y=f^{-1}(x)$ and tangent and normal drawn to it at points with abscissae π and 2π, where $f(x)=\sin x-x$ is
A. a) $\frac{\pi^{2}}{2}-1$
B. b) $\frac{\pi^{2}}{2}-2$
C. c) $\frac{\pi^{2}}{2}-4$
D. d) $\frac{\pi^{2}}{2}$

Answer: B

- Watch Video Solution

21. If $f(x)=x-1$ and $g(x)=|f|(x)|-2|$, then the area bounded by $y=g(x)$ and the curve $x^{2}-4 y+8=0$ is equal to
A. $\frac{4}{3}(4 \sqrt{2}-5)$
B. $\frac{4}{3}(4 \sqrt{2}-3)$
C. $\frac{8}{3}(4 \sqrt{2}-3)$
D. $\frac{8}{3}(4 \sqrt{2}-5)$
22.

$S=\left\{(x, y): \frac{y(3 x-1)}{x(3 x-2)}<0\right\}, S^{\prime}=\{(x, y) \in A \times B:-1 \leq A \leq 1,-$ then the area of the region enclosed by all points in $S \cap S^{\prime}$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

23. The area of the region bounded between the curves
$y=e| | x|\operatorname{In}| x| |, x^{2}+y^{2}-2(|x|+|y|)+1 \geq 0$ and X-axis where
$|x| \leq 1$, if α is the x-coordinate of the point of intersection of curves in 1st quadrant, is
A. $4\left[\int_{0}^{\alpha} e x \operatorname{Inx} d x+\int_{\alpha}^{1}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$
B. $4\left[\int_{0}^{\alpha} e x \operatorname{In} x d x+\int_{1}^{\alpha}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$
C. $4\left[-\int_{0}^{\alpha} e x \operatorname{Inx} d x+\int_{\alpha}^{1}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$
D. $2\left[\int_{0}^{\alpha} e x \operatorname{Inx} d x+\int_{\alpha}^{1}\left(1-\sqrt{1-(x-1)^{2}}\right) d x\right]$

Answer: D

- Watch Video Solution

24. A point P lying inside the curve $y=\sqrt{2 a x-x^{2}}$ is moving such that its shortest distance from the curve at any position is greater than its distance from X-axis. The point P enclose a region whose area is equal to
A. (a) $\frac{\pi a^{2}}{2}$
B. (b) $\frac{a^{2}}{3}$
C. (c) $\frac{2 a^{2}}{3}$
D. (d) $\left(\frac{3 \pi-4}{6}\right) a^{2}$

Answer: C

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The triangle formed by the normal to the curve $f(x)=x^{2}-a x+2 a$ at the point $(2,4)$ and the coordinate axes lies in second quadrant, if its area is 2 sq units, then a can be
A. 2
B. $17 / 4$
C. 5
D. None of these

- Watch Video Solution

2. Let f and g be continuous function on $a \leq x \leq b$ and set $p(x)=\max \{f(x), g(x)\}$ and $q(x)=\min \{f(x), g(x)\}$. Then the area bounded by the curves $y=p(x), y=q(x)$ and the ordinates $x=a$ and $x=b$ is given by
A. (a) $\int_{a}^{b}|f(x)-g(x)| d x$
B. (b) $\int_{a}^{b}|p(x)-q(x)| d x$
C. (c) $\int_{a}^{b}\{f(x)-g(x)\} d x$
D. (d) $\int_{a}^{b}\{p(x)-a(x)\} d x$

Answer: A::B::D

- Watch Video Solution

3. The area bounded by the parabola $y=x^{2}-7 x+10$ and X -axis
A. $9 / 2$ sq units
B. $1 / 6$ sq units
C. $5 / 6$ sq units
D. None of these

Answer: A

- Watch Video Solution

4. Area bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is equal to
A. 6π sq units
B. 3π sq units
C. $12 \pi \mathrm{sq}$ units
D. area bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

- Watch Video Solution

5. There is curve in which the length of the perpendicular from the orgin to tangent at any point is equal to abscissa of that point. Then,
A. $x^{2}+y^{2}=2$ is one such curve
B. $y^{2}=4 x$ is one such curve
C. $x^{2}+y^{2}=2 c x$ (c parameters) are such curve
D. there are no such curves

Answer: A: C

- Watch Video Solution

1. Statement I - The area of the curve $y=\sin ^{2} x$ from 0 to π will be more than that of the curve $y=\sin x$ from 0 to π.

Statement II $-x^{2}>x, \quad$ if $x>1$.
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.
C. Statement I is true , Statement II is false
D. Statement I is false , Statement II is true

Answer: D

- Watch Video Solution

2. Statement I - The area of bounded by the curves $y=x^{2}-3$ and $y=k x+2$ is least if $k=0$.

Statement II- The area bounded by the curves $y=x^{2}-3$ and $y=k x+2 i s \sqrt{k^{2}+20}$.
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.
C. Statement I is true , Statement II is false
D. Statement I is false , Statement II is true

Answer: C

- Watch Video Solution

3. Statement I - The area of region bounded parabola $y^{2}=4 x$ and $x^{2}=4 y$ is $\frac{32}{3}$ sq units.

Statement II- The area of region bounded by parabola $y^{2}=4 a x$ and $x^{2}=4 b y$ is $\frac{16}{3} a b$.
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: D

D Watch Video Solution

4. Statement I- The area by region $|x+y|+|x-y| \leq 2$ is 4 sq units. Statement II- Area enclosed by region $|x+y|+|x-y| \leq 2$ is symmetric about X-axis.
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: B

D Watch Video Solution

5. Statement I- Area bounded by $y=x(x-1)$ and $y=x(1-x)$ is $\frac{1}{3}$. Statement II- Area bounded by $y=f(x)$ and $y=g(x)$ "is" $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$ is true when $f(x)$ and $g(x)$ lies above X-axis. (Where a and b are intersection of $y=f(x)$ and $y=g(x)$).
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true, Statement II is not the
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: C

- Watch Video Solution

Exercise Passage Based Questions

1. Let $f(x)=\frac{a x^{2}+b x+c}{x^{2}+1}$ such that $\mathrm{y}=-2$ is an asymptote of the curve $y=f(x)$. The curve $y=f(x)$ is symmetric about Y-axis and its maximum values is 4. Let $h(x)=f(x)-g(x)$,where $\quad f(x)=\sin ^{4} \pi x$ and $g(x)=\log _{e} x$. Let $x_{0}, x_{1}, x_{2} \ldots x_{n+1}$ be the roots of $f(x)=g(x)$ in increasing order

Then, the absolute area enclosed by $y=f(x)$ and $y=g(x)$ is given by
A. $\sum_{r=0}^{n} \int_{x_{r}}^{x_{r+1}}(-1)^{r} \cdot h(x) d x$
B. $\sum_{r=0}^{n} \int_{x_{1}}^{x_{r+1}}(-1)^{r+1} \cdot h(x) d x$
C. $2 \sum_{r=0}^{n} \int_{x_{r}}^{x_{r-r}+1}(-1)^{r} \cdot h(x) d x$
D. $\frac{1}{2} \cdot \sum_{r=0}^{n} \int_{x_{1}}^{x_{r+1}}(-1)^{r+1} \cdot h(x) d x$

Answer: A

- Watch Video Solution

2. Let $h(x)=f(x)=f_{x}-g_{x}$, where $f_{x}=\sin ^{4} \pi x$ and $g(x)=\operatorname{In} x$. Let $x_{0}, x_{1}, x_{2}, \ldots, x_{n+1}$ be the roots of $f_{x}=g_{x}$ in increasing order. In the above question, the value of n is
A. 1
B. 2
C. 3
D. 4

Answer: B

3. Let $f(x)=\frac{a x^{2}+b x+c}{x^{2}+1}$ such that $\mathrm{y}=-2$ is an asymptote of the curve $y=f(x)$. The curve $y=f(x)$ is symmetric about Y-axis and its maximum values is 4. Let $h(x)=f(x)-g(x)$, where $f(x)=\sin ^{4} \pi x$ and $g(x)=\log _{e} x$. Let $x_{0}, x_{1}, x_{2} \ldots x_{n+1}$ be the roots of $f(x)=g(x)$ in increasing order

Then, the absolute area enclosed by $y=f(x)$ and $y=g(x)$ is given by
A. $\frac{11}{8}$
B. $\frac{8}{3}$
C. 2
D. $\frac{13}{3}$

Answer: A

- Watch Video Solution

4. Consider the function $f:(-\infty, \infty) \rightarrow(-\infty, \infty)$ defined by $f(x)=\frac{x^{2}-a x+1}{x^{2}+a x+1} ; 0<a<2$. Which of the following is true ?
A. $(2-a)^{2} f(1)+(2-a)^{2} f(-1)=0$
B. $(2-a)^{2} f(1)-(2-\mathrm{a})^{\wedge}(2) \mathrm{f}(-1)=0$
C. $f^{\prime}(1) f^{\prime}(-1)=(2-a)^{2}$
D. $f^{\prime}(1) f^{\prime}(-1)=-(2+a)^{2}$

Answer: A

- Watch Video Solution

5. Consider the function $f:(-\infty, \infty) \rightarrow(-\infty, \infty)$ defined by $f(x)=\frac{x^{2}-a x+1}{x^{2}+a x+1} ; 0<a<2$. Which of the following is true ?
A. $f(x)$ is decreasing on $(-1,1)$ and has a local minimum at $x=1$
B. $f(x)$ is increasing on $(-1,1)$ and has maximum at $x=1$
C. $f(x)$ is increasing on ($-1,1$) but has neither a local maximum nor a local minimum at $\mathrm{x}=1^{\wedge}$
D. $f(x)$ is decreasing on $(-1,1)$ but has neither a local maximum nor a local minimum at $\mathrm{x}=1$.

Answer: A

- Watch Video Solution

6. Let $g(x)=\int_{0}^{e^{x}} \frac{f^{\prime}(t) d t}{1+t^{2}}$. Which of the following is true?
A. $g^{\prime}(x)$ is positive on $(-\infty, 0)$ and negative on $(0, \infty)$
B. $g^{\prime}(x)$ is negative on $(-\infty, 0)$ and positive on $(0, \infty)$
C. $g^{\prime}(x)$ change sign on both $(-\infty, 0)$ and $(0, \infty)$
D. $g^{\prime}(x)$ does not change sign on $(-\infty, \infty)$.

Answer: B

7. Computing area with parametrically represented boundaries If the boundary of a figure is represented by parametric equations $x=x(t), y=y(t)$, then the area of the figure is evaluated by one of the three formulae
$S=-\int_{\alpha}^{\beta} y(t) x^{\prime}(t) d t, S=\int_{\alpha}^{\beta} x(t) y^{\prime}(t) d t$
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$
where α and β are the values of the parameter t corresponding respectively to the beginning and the end of traversal of the contour .
The area enclosed by the astroid $\left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{a}\right)^{\frac{2}{3}}=1$ is
A. (a) $\frac{3}{4} a^{2} \pi$
B. (b) $\frac{3}{18} \pi a^{2}$
C. (c) $\frac{3}{8} \pi a^{2}$
D. (d) $\frac{3}{4} a \pi$

Answer: C

(D) Watch Video Solution

8. Computing area with parametrically represented boundaries: If the boundary of a figure is represented by parametric equation, i.e., $x=x(t), y=(t)$, then the area of the figure is evaluated by one of the three formulas :
$S=-\int_{\beta}^{\beta} y(t) x^{\prime}(t) d t$,
$S=\int_{\alpha} x(t) y^{\prime}(t) d t$,
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$,
Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t .

The area of the region bounded by an are of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$ and the x -axis is
A. $6 \pi a^{2}$
B. $3 \pi a^{2}$
C. $4 \pi a^{2}$
D. None of these

Answer: B

- Watch Video Solution

9. Computing area with parametrically represented boundaries: If the boundary of a figure is represented by parametric equation, i.e., $x=x(t), y=(t)$, then the area of the figure is evaluated by one of the three formulas :
$S=-\int_{\beta}^{\beta} y(t) x^{\prime}(t) d t$,
$S=\int_{\alpha} x(t) y^{\prime}(t) d t$,
$S=\frac{1}{2} \int_{\alpha}^{\beta}\left(x y^{\prime}-y x^{\prime}\right) d t$,
Where α and β are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t .

The area of the loop described as
$x=\frac{t}{3}(6-t), y=\frac{t^{2}}{8}(6-t)$ is
A. $\frac{27}{5}$
B. $\frac{24}{5}$
C. $\frac{27}{6}$
D. $\frac{21}{5}$

Answer: A

- Watch Video Solution

Area Of Bounded Regions Exercise 5 Matching Type Questions

1. Match the statement of Column I with value of Column II.

Column I

(A. The area bounded by the curve
$y=x+\sin x$ and its inverse function
between the ordinates $x=0$ to $x=2 \pi$ is
$+s$ Then, the value of s is
(B) The area bounded by $y=x e^{|x|}$ and lies
$y=1 . r=0$ is
(C) The area bounded by the curves $y^{2}=x^{3}$ and $y=2 x$ is
(q) 1
(r) $\frac{16}{5}$
(p) 2

Column II

(D) The smaller are included between the curves $\sqrt{|x|}+\sqrt{|y|}=1$ and $|x|+|y|=1$ is
(s) $\frac{1}{3}$

(Watch Video Solution

2. Match the following

Column I

(A) Area enclosed by $y=|x|,|x|=1$ and (p)

Column II

2 $y=0$ is
(B) Area enclosed by the curve $y=\sin x$,
(4) 4
$x=0, x=\pi$ and $y=0$ is
(C) If the area of the region bounded by
$x^{2} \leq y$ and $y \leq x+2$ is $\frac{k}{4}$, then k is
equal to
(D) Area of the quadrilateral formed by
(s) 18 tangents at the ends of latusrectum of ellipse of ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is

Exercise Single Integer Answer Type Questions

1. Consider $f(x)=x^{2}-3 x+2$ The area bounded by $|y|=|f(|x|)|, x \geq 1$ is A , then find the value of $3 A+2$.

- Watch Video Solution

2. If S is the sum of cubes of possible value of c for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, then straight lines $x=1 a n d x=c$ and the abscissa axis is equal to $\frac{16}{3}$, then the value of [S], where[.] denotest the greatest integer function, is \qquad

- Watch Video Solution

3. If the area bounded by $y=2-|2-x|$ and $y=\frac{3}{|x|}$ is $\frac{k-3 \ln 3}{2}$, then k is equal to \qquad -
4. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

- Watch Video Solution

5. A point ' P ' moves in $x y$ plane in such a way that $[|x|]+[|y|]=1$ where [.] denotes the greatest integer function. Area of the region representing all possible positions of the point ' P ' is equal to:

- Watch Video Solution

6. Let $f:[0,1] \rightarrow\left[0, \frac{1}{2}\right]$ be a function such that $f(x)$ is a polynomial of 2nd degree, satisfty the following condition :
(a) $f(0)=0$
(b) has a maximum value of $\frac{1}{2} a t x=1$.

If A is the area bounded by $y=f(x)=f^{-1}(x)$ and the line $2 x+2 y-3=0$ in 1st quadrant, then the value of 24 A is equal to

- Watch Video Solution

7. Let $f(x)=\min \left\{\sin ^{-1} x, \cos ^{-1} x, \frac{\pi}{6}\right\}, x \in[0,1]$. If area bounded by $y=f(x)$ and X -axis, between the lines $x=0$ and $x=1 i s \frac{a}{b(\sqrt{3}+1)}$. Then , (a-b) is

(Watch Video Solution

8. Let $f(x)$ be a real valued function satisfying the relation $f\left(\frac{x}{y}\right)=f(x)-f(y)$ and $\lim _{x \rightarrow 0} \frac{f(1+x)}{x}=3$. The area bounded by the curve $y=f(x), y$-axis and the line $y=3$ is equal to

- Watch Video Solution

1. Find the continuous function f where
$\left(x^{4}-4 x^{2}\right) \leq f(x) \leq\left(2 x^{2}-x^{3}\right)$ such that the area bounded by $y=f(x), y=x^{4}-4 x^{2}$. then y-axis, and the line $x=t$, where $(0 \leq t \leq 2)$ is k times the area bounded by $y=f(x), y=2 x^{2}-x^{3}, \mathrm{y}$ axis , and line $x=t(w h e r e 0 \leq t \leq 2)$.

- Watch Video Solution

2. Let $\quad f(t)=|t-1|-|t|+|t+1|, \forall t \in R$.

Find
$g(x)=\max \{f(t): x+1 \leq t \leq x+2\}, \forall x \in R$. Find $g(x)$ and the area bounded by the curve $y=g(x)$, the X -axis and the lines $x=-3 / 2$ and $x=5$.

- Watch Video Solution

3. Let $\mathrm{f}(\mathrm{x})=$ minimum $\left\{e^{x}, 3 / 2,1+e^{-x}\right\}, 0 \leq x \leq 1$. Find the area bounded by $y=f(x), \mathrm{X}$-axis and the line $\mathrm{x}=1$.
4. Find the area bounded by $y=f(x)$ and the curve $y=\frac{2}{1+x^{2}}$ satisfying the condition $f(x), f(y)=f(x y) \forall x, y \in R$ and $f^{\prime}(1)=2, f(1)=1$,

- Watch Video Solution

5. The value of

$$
\int_{0}^{\sin ^{2} x} \sin ^{-1} \sqrt{t} d t+\int_{0}^{\cos ^{2} x} \cos ^{-1} \sqrt{t} d t \text {, is }
$$

- Watch Video Solution

6. Let T be an acute triangle Inscribe a pair R,S of rectangle in T as shown:

Let $A(x)$ denote the area of polygon X find the maximum value (or show that no maximum exists), of $\frac{A(R)+A(S)}{A(T)}$, where T ranges over all
triangles and R,S over all rectangle as above.

- Watch Video Solution

7. Find the maximum area of the ellipse that can be inscribed in an isoceles triangles of area A and having one axis lying along the perpendicular from the vertex of the triangles to its base.

- Watch Video Solution

8. Find the area of the region bounded by curve $y=25^{x}+16$ and the curve $y=b .5^{x}+4$, whose tangent at the point $\mathrm{x}=1$ make an angle $\tan ^{-1}$ (40 $\ln 5$) with the X-axis.

(D) Watch Video Solution

9. If the circles of the maximum area inscriabed in the region bounded by the curves $y=x^{2}-2 x-3$ and $y=3+2 x-x^{2}$, then the area of region $y-x^{2}+2 x+3 \leq 0, y+x^{2}-2 x-3 \leq 0$ and $s \leq 0$.

- Watch Video Solution

10. Find limit of the ratio of the area of the triangle formed by the origin and intersection points of the parabola $y=4 x^{2}$ and the line $y=a^{2}$ to the area between the parabola and the line as a approaches to zero.

- Watch Video Solution

11. Find the area of curve enclosed by
$|x+y|+|x-y| \leq 4,|x| \leq 1, y \geq \sqrt{x^{2}-2 x+1}$.
12. Calculate the area enclosed by the curve $4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$.

- Watch Video Solution

13. Find the area enclosed by the curve $[x]+[y]-4$ in 1st quadrant (where [.] denotes greatest integer function).

- Watch Video Solution

14. Sketch the region and find the area bounded by the curves $|y+x| \leq 1,|y-x| \leq 1$ and $2 x^{2}+2 y^{2} \geq 1$.

- Watch Video Solution

15. Find the area of the region bounded by the curve $2^{|x|}|y|+2^{|x|-1} \leq 1$, with in the square formed by the lines $|x| \leq 1 / 2,|y| \leq 1 / 2$.

- Watch Video Solution

16. The value of the parameter $a(a \geq 1)$ for which the area of the figure bounded by the pair of staight lines $y^{2}-3 y+2=0$ and the curves $y=[a] x^{2}, y=\frac{1}{2}[a] x^{2}$ is greatest is (Here [.] denotes the greatest integer function). (A) $[0,1)$ (B) $[1,2)$ (C) $[2,3)$ (D) $[3,4)$

- Watch Video Solution

Area Of Bounded Regions Exercise 7 Subjective Type Questions

1. If $f(x)$ is positive for all positive values of X and $f^{\prime}(x)<0, f(x)>0, \forall x \in R^{+}$, prove that $\frac{1}{2} f(1)+\int_{1}^{n} f(x) d x<\sum_{r=1}^{n} f(r)<\int_{1}^{n} f(x) d x+f(1)$.

- Watch Video Solution

1. Area of the region
$\left\{(x, y) \in R^{2}: y \geq \sqrt{|x+3|}, 5 y \leq x+9 \leq 15\right\}$ is equal to
A. $\frac{1}{6}$
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

Answer: C

Watch Video Solution
2. about to only mathematics

- Watch Video Solution

3. about to only mathematics
A. 3
B. 6
C. 9
D. 15

Answer: D

- Watch Video Solution

4. The area enclosed by the curve $y=\sin x+\cos x a n d y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is (a) $4(\sqrt{2}-2)$ (b) $2 \sqrt{2}(\sqrt{2}-1)(c) 2(\sqrt{2}+1)$ (d) $2 \sqrt{2}(\sqrt{2}+1)$
A. $4(\sqrt{2}-1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2 \sqrt{2}(\sqrt{2}+1)$

- Watch Video Solution

5. Let S be the area of the region enclosed by $y-e^{-x^{2}}, y=0, x=0$ and $x=1$. Then
A. $S \geq \frac{1}{e}$
B. $S \geq 1-\frac{1}{e}$
C. $S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)$
D. $S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$

Answer: B::D

- Watch Video Solution

6. Let $f:[-1,2] \rightarrow[0, \infty)$ be a continuous function such that $f(x)=f(1-x) f$ or all $x \in[-1,2]$. Let $R_{1}=\int_{-1}^{2} x f(x) d x$, and R_{2}
be the area of the region bounded by $y=f(x), x=-1, x=2$, and the x- axis. Then $R_{1}=2 R_{2}$ (b) $R_{1}=3 R_{2}$ (c) $2 R_{1}=R_{2}$ (d) $3 R_{1}=R_{2}$
A. $R_{1}=2 R_{2}$
B. $R_{1}=3 R_{2}$
C. $2 R_{1}=R_{2}$
D. $3 R_{1}=R_{2}$

Answer: C

- Watch Video Solution

7. Let the straight line $x=b$ divide the area enclosed by $y=(1-x)^{2}, y=0$, and $x=0$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such that $R_{1}-R_{2}=\frac{1}{4}$. Then b equals
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

- Watch Video Solution

8. The area of the region bounded by the curve $y=e^{x}$ and lines
$x=0$ andy $=e$ is $e-1$ (b) $\int_{1}^{e} 1 n(e+1-y) d y \quad e-\int_{0}^{1} e^{x} d x$
$\int_{1}^{e} 1 n y d y$
A. $e-1$
B. $\int_{1}^{e} \operatorname{In}(e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{0}^{e} I n y d y$

Answer: B::C
9. The area of the region bounded by the curves $y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines $\mathrm{x}=0$ and $x=\frac{\pi}{4}$ is
A. A. $\int_{0}^{\sqrt{2}-1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
B. B. $\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
C. C. $\int_{0}^{\sqrt{2}=1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
D. D. $\int_{0}^{\sqrt{2}+1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$

Answer: B

- Watch Video Solution

10. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valud diferentiable function $y-g(x)$
satisfying $g_{0}=0$.
If $f(-10 \sqrt{2})=2 \sqrt{2}$, then $f(-10 \sqrt{2})$ is equal to
A. (a) $\frac{4 \sqrt{2}}{7^{3} 3^{2}}$
B. (b) $-\frac{4 \sqrt{2}}{7^{3} 3^{2}}$
C. (c) $\frac{4 \sqrt{2}}{7^{3} 3}$
D. (d) $-\frac{4 \sqrt{2}}{7^{3} 3}$

Answer: B

- Watch Video Solution

11. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valud diferentiable function $y-g(x)$ satisfying $g_{0}=0$.

The area of the region bounded by the curve $y=f(x)$, the X -axis and the line $x=a$ and $x=b$, where $-\infty<a<b<-2$ is
A. $\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x+b y(b)-a f(a)$
B. $-\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x-b y(b)+a f(a)$
C. $\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x-b y(b)+a f(a)$
D. $-\int_{a}^{b} \frac{x}{3\left[\{f(x)\}^{2}-1\right]} d x+b y(b)=a f(a)$

Answer: A

- Watch Video Solution

12. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valued diferentiable function $y-g(x)$
satisfying $g_{0}=0$.
$\int_{-1}^{1} g^{\prime}(x) d x$ is equal to
A. $2 g(-1)$
B. 0
C. $-2 g(1)$
D. $2 g(1)$

Answer: D

- Watch Video Solution

13. The area (in sqaure units) of the region
$\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$ is
A. $\frac{5}{2}$
B. $\frac{59}{12}$
C. $\frac{3}{2}$
D. $\frac{7}{3}$

Answer: A

- Watch Video Solution

14. The area (in sq. units) of the region $\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \leq 0, y \geq 0\right\}$ is
A. $\pi-\frac{4}{3}$
B. $\pi-\frac{8}{3}$
C. $\pi-\frac{4 \sqrt{2}}{3}$
D. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$

Answer: B

- Watch Video Solution

15. The area (in sq units) of the region described by $\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.y \geq 4 x-1\right\}$ is
A. $\frac{7}{32}$
B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

- Watch Video Solution

16. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is (a) $\frac{27}{4}$
(b) 18 (c) $\frac{27}{2}$ (d) 27
A. $\frac{27}{4}$
B. 18
C. $\frac{27}{2}$
D. 27

Answer: D

- Watch Video Solution

17. The area of the region described by
$A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is
A. $\frac{\pi}{2}+\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{4}{3}$
C. $\frac{\pi}{2}-\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{2}{3}$

Answer: A

18. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$, and x-axis in the 1st quadrant is 18 sq. units (b) $\frac{27}{4}$ s qunits $\frac{4}{3}$ squnits (d) 9 sq. units
A. 9
B. 36
C. 1
D. $\frac{27}{4}$

Answer: A

- Watch Video Solution

19. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $\mathrm{y}=2$ is
A. $20 \sqrt{2}$
B. $\frac{10 \sqrt{2}}{3}$
C. $\frac{20 \sqrt{2}}{3}$
D. $10 \sqrt{2}$

Answer: C

- Watch Video Solution

20. The area of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive x-axis is
A. 1 sq unit
B. $\frac{3}{2}$ sq units
C. $\frac{5}{2}$ sq units
D. $\frac{1}{2}$ sq unit

Answer: B

21. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $\mathrm{x}=0$ and $x=3 \pi / 2$ is
A. $(4 \sqrt{2}-2)$ sq units
B. $(4 \sqrt{2}+2)$ sq units
C. $(4 \sqrt{2}-1)$ sq units
D. $(4 \sqrt{2}+1)$ sq units

Answer: A

- Watch Video Solution

22. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 6 sq units
B. 9 sq units
C. 12 sq units
D. 3 sq units

Answer: B

- Watch Video Solution

23. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$
A. $\frac{5}{3}$ sq units
B. $\frac{1}{3}$ sq unit
C. $\frac{2}{3}$ sq unit
D. $\frac{4}{3}$ sq units

Answer: D

- Watch Video Solution

