India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

COMPLEX NUMBERS

Examples

1. Is the following computation correct ? If not give the correct computation:

$$\sqrt{(-2)}\sqrt{(-3)} = \sqrt{(-2)(-3)} = 6$$

Watch Video Solution

2. A student writes the formula $\sqrt{ab}=\sqrt{a}\,\sqrt{b}$. Then he substitutes

$$a=-1$$
 and $b=-1$ and finds $1=-1$. Explain where is he wrong?

3. Evaluate.

- (i) i^{1998}
- (ii) $i^{\,-\,9999}$
- (iii) $\left(-\sqrt{-1}\right)^{4n=3}$,n \neq N
 - Watch Video Solution

4. Find the value of $1+i^2+i^4+i^6+...+i^{2n},$

where $i=\sqrt{-1}$ and n in N.

- **5.** If $a=rac{1+i}{\sqrt{2}}, \quad ext{where} \quad i=\sqrt{-1}, \ ext{then find the value of} \ a^{1929}.$
 - Watch Video Solution

6. The value of $sum\sum_{n=1}^{13} \left(i^n+i^{n+1}\right), ext{where} i=\sqrt{-1} ext{equals} i$ (b)

$$i-1$$
 (c) $-i$ (d) 0

7. The value of $\sum_{i=0}^{100} i^{n!}$ equals (where $i=\sqrt{-1}$)

8. Find he value of $\sum_{r=1}^{4n+7} i^r$ where, $i=\sqrt{-1}$.

9. Show that the polynomial $x^{4p}+x^{4q+1}+x^{4r+2}+x^{4s+3}$ is divisible by $x^3+x^2+x+1, wherep, q, r, s \in n$.

10. What is the digit in the unit's place of $\left(5172\right)^{11327}$?

- 11. What is the digit in the unit's place of $\left(143\right)^{86}$?
 - Watch Video Solution

- 12. What is the digit in unit's place of
- $(1354)^{22222}$?
 - Watch Video Solution

 $\left(13057\right)^{941120579}$

13. What is the digit in the unit's place of

14. What is the digit in the unit's place of $(1008)^{786}$?

15. What is the digit in the unit's place of $(2419)^{111213}$?

16. If $\dfrac{x-3}{3+i}+\dfrac{y-3}{3-i}=i$ where $x,y\in R$ then find values of x and y

17. If $(x+iy)^5=p+iq$, then prove that $(y+ix)^5=q+ip$

18. Find the least positive integral value of

n, for which
$$\left(rac{1-i}{1+i}
ight)^n$$
 , where $i=\sqrt{-1},\;$ is purely

imaginary with positive imaginary part.

19. If the multicative inverse of a comlex number is $\left(\sqrt{3}+4i\right)\backslash 19, \,$ where $i=\sqrt{-1},$ find the complex number.

20. Find the value of heta if $(3+2i\sin\theta)/(1-2i\sin\theta)$ is purely real or purely imaginary.

21. Find real value of xandy for which the complex numbers

 $-3+ix^2y$ an dx^2+y+4i k are conjugate of each other.

22. If
$$x=-5+2\sqrt{-4}$$
 , find the value of $x^4+9x^3+35x^2-x+4$.

23. Let z be a complex number satisfying the equation $z^2-(3+i)z+\lambda+2i=0$, whre $\lambda\in R$ and suppose the equation has a real root, then find the non-real root.

 $z_1=2+2i, z_2=-3+3i, z^3=-4-4i \, ext{ and } \, z_4=5-5i, where i=\sqrt{2}$

of

- **Watch Video Solution**

25. Find the modulus and argument of the complex number $\frac{2+i}{4i+\left(1+i\right)^2}$

26. 1. If $|z-2+i| \leq$ 2 then find the greatest and least value of |z|

27. If z is any complex number such that $|z+4| \leq 3,$ then find the greatest value of |z+1|.

28. If $|z_1|=1, |z_2|=2, |z_3|=3, \ \ {
m and} \ \ |9z_1z_2+4z_1z_3|=12$, then find the value of $|z_1+z_2+z_3|$.

29. For any two complex numbers, z_1, z_2

$$\left|rac{1}{2}(z_1+z_2)+\sqrt{z_1z_2}
ight|+\left|rac{1}{2}(z_1+z_2)-\sqrt{z_1z_2}
ight|$$
 is equal to

Watch Video Solution

30. A complex number z is said to be unimodular if |z|=1 Suppose z_1 and z_2 are complex number such that $(z_{91})-2z_2\frac{)}{2-z_1\bar{z}_2}$ is unimodular and z_2 is non-unimodular. Then the poit z_1 lies on a.

Watch Video Solution

31. If arg $(z_1)=rac{17\pi}{18}$ and arg $(z_2)=rac{7\pi}{18}, ext{ find}$ the principal argument of z_1z_2 and (z_1/z_2) .

32. If z_1 and z_2 are conjugate to each other , find the principal argument of $(-z_1z_2)$.

33. Write the value of arg(z) + arg(z) .

34. Write the polar form of $-\frac{1}{2}-\frac{i\sqrt{3}}{2}$ (Where, $i=\sqrt{-1}$).

35. If $argz=\alpha$ and given that |z-1|=1, where z is a point on the argand plane , show that $\Big|\frac{z-2}{z}\Big|=|\tan\alpha|$,

36. Let z be a non-real complex number

lying on
$$|z|=1,\,$$
 prove that $z=rac{1+i an\left(rac{arg\left(z
ight)}{2}
ight)}{1-i an\left(rac{arg\left(z
ight)}{2}
ight)}$ (where $i=\sqrt{-1}.$)

O v

Watch Video Solution

- **37.** Prove that $tan\Big(i(\log)_e\Big(rac{a-ib}{a+ib}\Big)\Big)=rac{2ab}{a^2-b^2}ig(wherea,b\in R^+ig)$
 - Watch Video Solution

38. If m and x are two real numbers where $m \in I$, then $(x,i+1)^m$

$$e^{2mi\cot^{-1}x}\Big(rac{x\cdot i+1}{x\cdot i-1}\Big)^m$$

- (A) $\cos x + i \sin x$ (B) $\frac{m}{2}$ (C) 1 (D) $\frac{m+1}{2}$
 - **Watch Video Solution**

39. Express $(1+i)^{-1}$,where, $\mathsf{i} \texttt{=} \sqrt{-1}$ in the form A+iB.

40. If
$$\sin(\log_e i^i) = a + ib, \,\,$$
 where $i = \sqrt{-1},$

find a and b, hence and find $\cos(\log_e i^i)$.

41. Find the general value of
$$\log_2(5i)$$
,

where $i = \sqrt{-1}$.

find the of z_1z_2 .

42. If $|z_1|=|z_2|$ and arg $(z_1/z_2)=\pi, \,$ then

43. Let
$$z$$
 and w are two non zero complex number such that $|z|=|w|, ext{ and } Arg(z)+Arg(w)=\pi$ then (a) $z=w$ (b) $z=\overline{w}$ (c)

$$ar{z}=\overline{w}$$
 (d) $ar{z}=\,-\,\overline{w}$

44. Find the square root of

 $X+\sqrt{\big(-X^4-X^2-1\big)}.$

- **45.** Solve that equation $z^2+|z|=0$, where z is a complex number.
 - Watch Video Solution

46. Number of solutions of the equation $z^2 + |z|^2 = 0$, where $z \in C$, is

47. Find the all complex numbers satisfying the equation

$$2{|z|}^2+z^2-5+i\sqrt{3}=0, where i=\sqrt{-1}.$$

48. If $z_r=\cos\left(rac{\pi}{3_r}
ight)+i\sin\left(rac{\pi}{3_r}
ight), r=1,2,3,$ prove that

$$z_1 z_2 z_3 z_\infty = i$$

49. about to only mathematics

50. Find all roots of $X^5 - 1 = 0$.

Watch Video Solution

51. Find all roots of the equation

$$X^6 - X^5 + X^4 - X^3 + X^2 - X + 1 = 0.$$

52. if α, β, γ are the roots of $x^3 - 3x^2 + 3x + 7 = 0$ then

$$\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1}$$

Watch Video Solution

53. If $z=rac{\sqrt{3+i}}{2}$ (where $i=\sqrt{-1}$) then $\left(z^{101}+i^{103}
ight)^{105}$ is equal to

54. If $\left(\frac{3}{2} + \frac{i\sqrt{3}}{2}\right)^{50} = 3^{25}(x+iy)$, where x and y are reals, then the ordered pair (x,y) is given by

55. If the polynomial $7x^3 + ax + b$ is divisible by $x^2 - x + 1$, find the value of 2a + b.

56. If $1,\omega,\omega^2,...\omega^{n-1}$ are n, nth roots of unity, find the value of $(9-\omega)\big(9-\omega^2\big)...\big(9-\omega^{n-1}\big)$.

57. F $a=\cos(2\pi/7)+i\sin(2\pi/7)$, then find the quadratic equation whose roots are $lpha=a+a^2+a^4and\beta=a^3+a^5+a^7$.

58. Find the value of

$$\sum_{k=1}^{10} \left[\sin \left(rac{2\pi k}{11}
ight) - i \cos \left(rac{2\pi k}{11}
ight)
ight], where i = \sqrt{-1}.$$

59. If $n\geq 3$ and $1,\alpha_1,\alpha_2,\alpha_3,...,\alpha_{n-1}$ are the n,nth roots of unity, then find value of $\Big(\sum\sum\Big)_{1\leq i< j\leq n-1}\alpha_i\alpha_j$

60. Complex numbers z_1, z_2 and z_3 are the vertices A,B,C respectivelt of an isosceles right angled triangle with right angle at C. show that $(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2).$

61. Complex numbers $z_1,\,z_2,\,z_3$ are the vertices of A,B,C respectively of an equilteral triangle. Show that $z_1^2+z_2^2+z_3^2=z_1z_2+z_2z_3+z_3z_1.$

62. If z_1, z_2 and z_3 are the vertices of an equilasteral triangle with z_0 as its circumcentre , then changing origin to z^0 ,show that $z_1^2 + z_2^2 + z_3^2 = 0$, where z_1, z_2, z_3 , are new complex numbers of the vertices.

63. Show that inverse of a point a with $\text{respect to the circle } |z-c|=R(a \ \text{and} \ c \ \text{are complex}$ numbers and center respectively and R is the radius) is the point $c+\frac{R^2}{\overline{a}-\overline{c}} \ ,$

$$3 + 4i \text{ and } -5 + 6i, where i = \sqrt{-1}.$$

65. If z_1, z_2 and z_3 are the affixes of the vertices of a triangle having its circumcentre at the origin. If zis the affix of its orthocentre, prove that

$$Z_1 + Z_2 + Z_3 - Z = 0.$$

66. Let z_1z_2 and z_3 be three complex numbers and $a,b,c\in R,$ such that a+b+c=0 and $az_1+bz_2+cz_3=0$ then show that z_1z_2 and z_3 are collinear.

67. Show that the area of the triangle on the Argand diagram formed by the complex numbers z, zi and z+zi is $=\frac{1}{2}|z|^2$

68. Show that the point a' is the reflection of the point a in the line $zar b+ar zb+c=0, \$ If a ' ar b+ar ab+c=0.

69. Find the center and radius of the circle

 $2z\bar{z} + (3-i)z + (3+i)z - 7 = 0$, where $i = \sqrt{-1}$.

70. Find all circles which are orthogonal to |z|=1 and |z-1|=4.

71. Let $z_1=10+6i$ and $z_2=4+6i$. If z is any complex number such the argument of $\frac{(z-z_1)}{(z-z_2)}$ is $\frac{\pi}{4}$, then prove that $|z-7-9i|=3\sqrt{2}$.

Watch Video Solution

72. 1. If |z-2+i| < 2 then find the greatest and least value of |z|

Watch Video Solution

73. In the argand plane, the vector $z = 4 - 3i, where i = \sqrt{-1}$, is turned in the clockwise sense by 180° . Find the complex number represented by the new vector.

74. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD=2AC.If he point D and M represent the complex numbers 1+i and 2-i respectively, then A represents the complex number M

76. If
$$\left|z+rac{4}{z}\right|=2$$
, find the maximum and minimum values of $|z|$.

77. If $|z| \geq 3$, then determine the least value of $\left|z + \frac{1}{z}\right|$.

78. about to only mathematics

A.
$$4k + 1$$

$$\mathsf{B.}\,4k+2$$

$$\mathsf{C.}\,4k+3$$

D.
$$4k$$

Answer: d

79. If
$$|z|=1$$
 and $w=\frac{z-1}{z+1}$ (where $z\neq -1$), then $Re(w)$ is 0 (b)
$$\frac{1}{|z+1|^2}\left|\frac{1}{z+1}\right|, \frac{1}{|z+1|^2}$$
 (d) $\frac{\sqrt{2}}{|z|1|^2}$

B.
$$\dfrac{-1}{\left|z+1\right|^2}$$
C. $\left|\dfrac{z}{z=1}\right|\cdot\dfrac{1}{\left|z+1\right|^2}$

D.
$$\frac{\sqrt{2}}{\left|z+1\right|^2}$$

Answer: a

Watch Video Solution

80. if a,b,c,a_1,b_1 and c_1 are non-zero complexnumbers satisfying

$$rac{a}{a_1} + rac{b}{b_1} + rac{c}{c_1} = 1 + i ext{ and } rac{a_1}{a} + rac{b_1}{b} + rac{c_1}{c} = 0, ext{ where } i = \sqrt{-1},$$

the value of $\displaystyle rac{a^2}{a_1^2} + rac{b^2}{b_1^2} + rac{c^2}{c_1^2}$ is

$$(a)2i(b)2+2i(c)2$$
 (d)None of these

A. 2i

B. 2+2i

C. 2

D. None of these

Answer: a

Let $z \text{ and } \omega$ be

complex

numbers.

the

If

 $Re(z)=|z-2|, Re(\omega)=|\omega-2| ext{ and } arg(z-\omega)=rac{\pi}{3}, ext{ then}$

value of Im(z+w), is

A.
$$\frac{1}{\sqrt{3}}$$

B. $\frac{2}{\sqrt{3}}$

C. $\sqrt{3}$

D. $\frac{4}{\sqrt{3}}$

Answer: d

Watch Video Solution

82. The mirror image of the curve $arg\left(\frac{z-3}{z-i}\right)=\frac{\pi}{6}, i=\sqrt{-1}$ in the real axis

A.
$$argigg(rac{z+3}{z+i}igg)=rac{\pi}{6}$$

B.
$$argigg(rac{z-3}{z+i}igg)=rac{\pi}{6}$$
C. $argigg(rac{z+i}{z+3}igg)=rac{\pi}{6}$

D.
$$arg\Big(rac{z+3}{z-3}\Big)=rac{\pi}{6}$$

Answer: d

Watch Video Solution

83. Expand $\begin{bmatrix} 3 & x \\ x & 1 \end{bmatrix}$

Watch Video Solution

84. If
$$z+rac{1}{z}=1$$
 and $a=z^{2017}+rac{1}{z^{2017}}$ and b is the lastdigit of the number $2^{2^n}-1$, when the integer $n>1$, the value of a^2+b^2 is

B. 24

Answer: c

Watch Video Solution

- **85.** if $\omega and\omega^2$ are the nonreal cube roots of unity and $[1/(a+\omega)]+[1/(b+\omega)]+[1/(c+\omega)]=2\omega^2$ and $\Big[1/(a+\omega)^2\Big]+\Big[1/(b+\omega)^2\Big]+\Big[1/(c+\omega)^2\Big]=2\omega$, then find the value of [1/(a+1)]+[1/(b+1)]+[1/(c+1)].
 - A. -2
 - B. -1
 - C. 1
 - D. 2

Answer: d

86. If a,b,c are distinct integers and $\omega(\,
eq 1)$ is a cube root of unity, then the minimum value of $\left|a+b\omega+c\omega^2\right|+\left|a+b\omega^2+c\omega\right|$ is

87. If $|z-2i| \leq \sqrt{2},$ where $i=\sqrt{-1},$ then the maximum value of

A. (a)
$$\sqrt{3}$$

B. (b)3

C. (c) $6\sqrt{2}$

D. (d)2

Answer: a

$$|3-i(z-1)|, ext{ is}$$

A.
$$\sqrt{2}$$

B.
$$2\sqrt{2}$$

$$\mathsf{C.}\,2+\sqrt{2}$$

D.
$$3+2\sqrt{2}$$

Answer: C

Watch Video Solution

- **88.** If $z_1=a+ib$ and $z_2=c+id$ are complex numbers such that $|z_1|=|z_2|=1$ and $Re(z_1\bar{z}_2)=0$, then the pair ofcomplex numbers $\omega_1=a+ic$ and $\omega_2=b+id$ satisfies
 - A. $|\omega_1|=1$
 - B. $|\omega_2|=1$
 - $\mathsf{C.}\,Re(\omega_1\overline{\omega}_2)=-0$
 - D. None of these

Answer: a,b,c

B. isosceles
C. right angled

complex

numbers

 $(z_2-z_3)=(1+i)(z_1-z_3).\ where i=\sqrt{-1},\ ext{are vertices of a triangle}$

stisfying

 z_1, z_2, z_3

Answer: b,c

D. scalene

The

A. equilateral

89.

which is

Watch Video Solution

90. Find the imaginary part of the complex number if z=(2-i)(5+i)

A. no real root

B. no purely imaginary root

C. all roots inside ert z ert = 1

D. atleast two roots

Answer: a,b,c

Watch Video Solution

circle $|z_1|={
m \ and \ \ and \ } |z_2|=2$ are then

92. Let z_1, z_2 be two complex numbers represented by points on the

- A. $\max |2z_1 + z_2| = 4$
- B. $\min |z_1 + z_2| = 1$
- $\mathsf{C.}\left|z_2+\frac{1}{z_1}\right|\leq 3$
- D. $\left|z_1+rac{2}{z_2}
 ight|\leq 2$

Answer: a,b,c,d

93. Consider a quadratic equation $az^2bz+c=0$, where a,b and c are complex numbers.

The condition that the equation has one purely real root, is

A.
$$(abarb-barac)(b barc+barbc)+(cbara-barca)^(2)=0$$

B.
$$\left(aar{b}+ar{a}b
ight)\left(bar{c}+ar{b}c
ight)+\left(car{a}-ar{c}a
ight)^2=0$$

C.
$$\left(aar{b}-ar{a}b
ight)\left(bar{c}-ar{b}c
ight)+\left(car{a}+ar{c}a
ight)^2=0$$

D.
$$\left(aar{b}+ar{a}b
ight)\left(bar{c}-ar{b}c
ight)+\left(car{a}-ar{c}a
ight)^2=0$$

Answer: b

Watch Video Solution

94. Consider a quadratic equaiton $az^2+bz+c=0$, where a,b,c are complex number.

The condition that the equaiton has one purely real roots is

A.
$$\left(aar{b}+ar{a}b
ight)\left(bar{c}-ar{b}c
ight)=\left(car{a}+ar{c}a
ight)^2$$

B.
$$\left(aar{b}-ar{a}b
ight)\left(bar{c}+ar{b}c
ight)=\left(car{a}+ar{c}a
ight)^2$$

C.
$$\left(aar{b}-ar{a}b
ight)\left(ar{b}c-ar{b}c
ight)=\left(car{a}-ar{c}a
ight)^2$$

D.
$$\left(aar{b}-ar{a}b
ight)\left(bar{c}-ar{b}c
ight)=\left(car{a}+ar{c}a
ight)^2$$

Answer: c

Watch Video Solution

95. Consider the quadratic equation $az^2 + bz + c = 0$ where a, b, c are non-zero complex numbers. Now answer the following.

The condition that the equation has both roots purely imaginary is

A.
$$\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$$

B.
$$\frac{a}{a}=rac{b}{b}=rac{c}{c}$$

C.
$$rac{a}{a}=rac{b}{b}=$$
 $-rac{c}{c}$

$$D. \frac{a}{a} = -\frac{b}{b} = \frac{c}{c}$$

Answer: d

Watch Video Solution

96. Let Papoint denoting a comples number z on the complex plane.

i. e.
$$z = Re(z) + iIm(z)$$
, where $i = \sqrt{-1}$

if
$$Re(z) = x$$
 and $Im(z) = y$, $thenz = x + iy$

If Pmovew such that

$$|Re(z)| + \mid Im(z) = aig(a \in R^+ig)$$

The locus of P is

A. a parallelogram which is not arhombus

B. a rhombus which is not a square

C. a rectangle which is not a square

D. a square

Answer: d

97. Let P point denoting a complex number z on the complex plane.

$$i. \ e. \ z = Re(z) + iIm(z), \quad \text{where} \quad i = \sqrt{-1}$$

if Re(z)=x and Im(z)=y, then z=x+iy. The area of the circle inscribed in the region denoted by |Re(z)|+|Im(z)|=10 equal to

- A. 50π sq units
- B. 100π sq units
- C. 55 sq units
- D. 110 sq units

Answer: a

Watch Video Solution

98. Let P point denoting a complex number z on the complex plane.

$$i.~e.~z = Re(z) + iIm(z),~~ ext{where}~~i = \sqrt{-1}$$

if Re(z)=x and Im(z)=y, then z=x+iy Number of integral solutions satisfying the eniquality|Re(z)|+|Im(z)|<21, .is

 $\mathsf{lf} z_1, z_2 \in C, z_1^2 + z_2^2 \in R, z_1 \big(z_1^2 - 3 z_2^2 \big) = 2$

and

A. 841

B. 839

C. 840

D. 842

Answer: c

99.

Watch Video Solution

 $z_2ig(3z_1^2-z_2^2ig)=11, ext{ the value of } z_1^2+z_2^2 ext{ is}$

100. Consider four complex numbers $z_1=2+2i,$,

$$z_2=2-2i, z_3=-2-2i \, ext{ and } \, z_4=-2+2iig), where i=\sqrt{-1},$$

Statement -1 z_1 , z_2 , z_3 and z_4

constitute the vertices of a

square on the complex plane because

Statement -2 The non-zero complex numbers $z,\,ar{z},\,\,-z,\,\,-ar{z}$

always constitute the vertices of a square.

Watch Video Solution

101. Consider z_1 and z_2 are two complex numbers

such that $|z_1 + z_2| = |z_1| + |z_2|$

 $\mathsf{Statement} - 1 \, amp(z_1) - amp(z_2) = 0$

Statement -2 The complex numbers z_1 and z_2 are collinear.

Check for the above statements.

102. If |z - iRe(z)| = |z - Im(z)|, then prove that z

lies on the bisectors of the quadrants, where $i = \sqrt{-1}$.

103. Find the gratest and the least values of $|z_1+z_2|,$

if $z_1 = 24 + 7i \, ext{ and } |z_2| = 6, \, \, \, ext{where } \, i = \sqrt{-1}$

104. If |z-1|=1, where z is a point on the argand plane, show that

$$rac{z-2}{z}=i an(argz), where i=\sqrt{-1}.$$

105. If $arg\Big(z^{1/2}\Big)=rac{1}{2}arg\Big(z^2+ar{z}z^{1/3}\Big), ext{ find the value of } |z|.$

106. C is the complex numbers $f\colon C o R$ is defined by $f(z)=ig|z^3-z+2ig|.$ Find the maximum value of f(z), If|z|=1.

107. Prove that the complex numbers z_1 and z_2 and the origin form an isosceles triangle with vertical angle $\frac{2\pi}{3}$, if $z_1^2+z_2^2+z_1z_2=0$.

108. If $lpha=e^{i2\pi/7}andf(x)=a_0+\sum_{k=0}^{20}a_kx^k,$ then prove that the value of $f(x)+f(\alpha x)+....+f(\alpha^6x)$ is independent of lpha.

109. Show that all the roots of the equation

$$a_1 z^3 + a_2 z^2 + a_3 z + a_4 = 3,$$

 $(where |a_i| \leq 1, i=1,2,3,4,)$ lie

outside the circle with centre at origin and radius $2\,/\,3.$

110. The points A,B,C represent the complex numbers z_1,z_2,z_3 respectively on a complex plane & the angle B&C of the triangle ABC are each equal to $\frac{1}{2}(\pi-\alpha)$. If $(z_2-z_3)^2=\lambda(z_3-z_1)(z_1-z_2)\sin^2\left(\frac{\alpha}{2}\right)$ then determine λ .

111. If z=x+iy is a complex number with $x,y\in Qand|z|=1,\,$ then show that $|z^{2n}-1|$ is a rational number for every $n\in N$.

112. If a is a complex number such that |a|=1, then find the value of a, so that equation $az^2+z+1=0$ has one purely imaginary root.

113. If $n \in N > 1$, then the sum of real part of roots of $z^n = (z+1)^n$ is equal to

114. Among the complex numbers z which satisfies $|z-25i| \leq 15$, find the complex numbers z having least modulas ?

115. Two different non-parallel lines cut the circle |z|=r at points a,b,c and d, respectively. Prove that these lines meet at the point z

Watch Video Solution

116. Find
$$\frac{dy}{dx}$$
 if $x - y = \cos x$

given by $\frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$

directly similar , if
$$egin{array}{c|c} z_1 & z_1' & 1 \ z_2 & z_2' & 1 \ z_3 & z_3' & 1 \ \end{array} = 0$$

117. Show that the triangle whose vertices are $z_1z_2z_3$ and $z_1{\,}'z_2{\,}'z_3{\,}'$ are

118. if ω is the nth root of unity and $Z_1,\,Z_2$ are any two complex numbers ,

then prove that . $\Sigma_{k=0}^{n-1}ig|z_1+\omega^kz_2ig|^2=n\Big\{|z_1|^2+|z_2|^2\Big\}$ where $n\in N$

119. If $z_1+z_2+z_3+z_4=0$ where $b_i\in R$ such that the sum of no two values being zero and $b_1z_1+b_2z_2+b_3z_3+b_4z_4=0$ where z_1,z_2,z_3,z_4 are arbitrary complex numbers such that no three of them are collinear, prove that the four complex numbers would be concyclic if $|b_1b_2||z_1-z_2|^2=|b_3b_4||z_3-z_4|^2.$

Example

2.

$$heta_i\in[0,\pi/6], i=1,2,3,4,5, \ ext{ and } \sin heta_1z^4+\sin heta_2z^3+\sin heta_3z^2+\sin heta_4z$$
 show that $rac{3}{4}<|Z|<1.$

If

3. If z and w are two non-zero complex

numbers such that z=-w.

- **4.** Find the square roots of the following
- ļ
- (i)4+3i(ii) -5+12i
- (iii) 8-15i

(iv) 7 - 24i (where $i = \sqrt{-1}$)

- Watch Video Solution
- 5. If ω is a non-real complex cube root of unity, find the values of the following. (i) ω^{1999}

(ii)
$$\omega^{998}$$

(iii)
$$\left(\dfrac{-1+i\sqrt{3}}{2}
ight)^{3n+2}, n \in N \,\, ext{and} \,\, i = \sqrt{-1}$$

(iv) $(1 + \omega)(1 + \omega)^2(1 + \omega)^4(1 + \omega)^8$...upto 2n factors

$$\text{(v)} \left(\frac{\alpha + \beta \omega + \gamma \omega^2 + \delta \omega^2}{\beta + \alpha \omega^2 + \gamma \omega + \delta \omega} \right) \!, \quad \text{where} \ \ \alpha, \beta, \gamma, \delta, \ \in R$$

roots of the unity , then find the value of $\sum_{i=1}^{n-1} \frac{\alpha_i}{2-a_i}$.

(vi)

Watch Video Solution

6. If $\alpha_0, \alpha_1, \alpha_2, ..., \alpha_{n-1}$ are the n, nth

the coefficients p and q may be complex numbers. Let A and Brepresent z_1 and z_2 in the complex plane, respectively. ١f

7. Let z_1 and z_2 be the roots of the equation $z^2+pz+q=0$, where

 $\angle AOB = \theta \neq 0$ and OA = OB, where O is the origin, prove that

$$p^2=4q{\cos^2(heta/2)}$$
 .

8. Find the multiplicative inverse of z=4-3i

Watch Video Solution

9. If $z_1 = 2 + 5i$, $z_2 = 3 - i$, where $i = \sqrt{-1}$, find

(i)
$$Z_1 \cdot Z_2$$

(ii)
$$Z_1 imes Z_2$$

(iii)
$$Z_2 \cdot Z_1$$

(iv)
$$Z_2 imes Z_1$$

(v) acute angle between Z_1 and Z_2 .

(vi) projection of $Z_1 on Z_2$.

10. Express in a complex number if z = (2-i)(5+i)

Watch Video Solution

Example Single Integer Answer Type Questions

The number of solutions of the equations 1.

$$|z-(4+8i)|=\sqrt{10} \, ext{ and } |z-(3+5i)|+|z-(5+11i)|=4\sqrt{5},$$

where $i = \sqrt{-1}$.

Watch Video Solution

Example Matching Type Questions

1. Express in the complex form if $z=i^{19}$

Subjective Type Examples

- **1.** Express in the form of complex number z=(5-3i)(2+i)
 - **Watch Video Solution**

- **2.** Express in the complex number if 3(7+7i)+(i(7+7i)
 - Watch Video Solution

- **3.** Find the multiplicative inverse of z=6-3i
 - Watch Video Solution

- **4.** Find $\frac{dy}{dx}$ if $ax by^2 = \cos x$
 - Watch Video Solution

5. if lpha and eta the roots of $z+rac{1}{z}=2(\cos\theta+I\sin\theta)$ where $0<\theta<\pi$ and $i=\sqrt{-1}$ show that |lpha-i|=|eta-i|

Watch Video Solution

Exercise For Session 1

1. If $(1+i)^{2n} + (1-i)^{2n} = -2^{n+1} ig(where, i = \sqrt{-1} \, ext{ for all those n,}$ which are

A. even

B. odd

C. multiple of 3

D. None of these

Answer:

2. If $i=\sqrt{-1}, \,\,$ the number of values of i^{-n} for a different $n\in I$ is

A. 1

B. 2

C. 3

D. 4

Answer:

Watch Video Solution

3. If $a>0 \ \ {
m and} \ \ b<0,$ $then\sqrt{a}\sqrt{b}$ is equal to (where, $i=\sqrt{-1}$)

A.
$$-\sqrt{a\cdot |b|}$$

B.
$$\sqrt{a\cdot |b|i}$$

C.
$$\sqrt{a\cdot |b|}$$

D. none of these

Answer:

Watch Video Solution

- **4.** The value of $\displaystyle\sum_{r=-3}^{1003} i^r ig(where i = \sqrt{-1}ig)$ is
 - A. 1
 - B. -1
 - C. i
 - $\mathsf{D.}-i$

Answer:

- **5.** The digit in the unit's place of $\left(153\right)^{98}$ is
 - A. 1

B. 3
C. 7
D. 9
Answer:
Watch Video Solution
6. The digit in the unit's place of $(141414)^{12121}$ is
A. 4
B. 6
C. 3
D. 1
Answer:
Watch Video Solution

Exercise For Session 4

1. Find $\frac{dy}{dx}$ if $x^2 + xy = \tan x$

Watch Video Solution

Exercise For Session 5

Watch Video Solution

Exercise For Session 2

A.
$$\frac{2a}{{(1+a)}^2+b^2}$$

1. If $\frac{1-ix}{1+ix} = a - ib$ and $a^2 + b^2 = 1$, where $a, b \in R$ and $i = \sqrt{-1}$,

$$\left(rac{1+i}{1-i}
ight)^n=rac{2}{\pi}igg(\sec^{-1}rac{1}{x}+\sin^{-1}xigg)$$
 $X
eq 0,\; -1\leq X\leq 1 \; ext{and} \; i=\sqrt{-1}, \; ext{is}$

2.

- D. 8
- Answer:

D.
$$\dfrac{2b}{\left(1+b\right)^2+a^2}$$

B. $\dfrac{2b}{\left(1+a\right)^2+b^2}$

 $\mathsf{C.}\,\frac{2a}{\left(1+b\right)^2+a^2}$

Watch Video Solution

- - The least positive integer n

- - - - for which
 - - (where,

- B. 4

A. 2

- C. 6

3. If
$$z=\left(3+4i\right)^6+\left(3-4i\right)^6,$$
 where $i=\sqrt{-1},$ then Find the value of Im(z) .

B. 0

C. 6

D. none of these

Answer:

4. If
$$(x+iy)^{1/3}=a+ib,$$
 where $i=\sqrt{-1},$ $then\Big(rac{x}{a}+rac{y}{b}\Big)$ is equal to

A.
$$4a^2b^2$$

B.
$$4(a^2-b^2)$$

C.
$$4a^2-b^2$$

D.
$$a^2+b^2$$

Answer:

Watch Video Solution

If

- $rac{3}{2+\cos heta+i\sin heta}=a+ib$ where $i=\sqrt{-1}$ and $a^2+b^2=\lambda a-3$, the
- A. 3
 - B. 4

C. 5

D. 6

Answer:

6. about to only mathematics

A.
$$\frac{1}{2}$$

B. 1

$$\mathsf{C.}\,\sqrt{2}$$

D. 2

Answer:

Watch Video Solution

7. The complex numbers $\sin x + i \sin 2x$ and $\cos x - i \sin 2x$ conjugate to each other, for

A.
$$x=n\pi, n\in I$$

$$\mathsf{B.}\,x=0$$

C.
$$x=\left(n+rac{1}{2}
ight), n\in I$$

D. 2

Answer:

Watch Video Solution

8. If α and β are different complex numbers with

$$|eta|=1,\;f\in d\left|rac{eta-lpha}{1-lphaeta}
ight|$$

A. 0

B. $\frac{1}{2}$

C. 1

D. 2

Answer:

Watch Video Solution

9. If x=3+4i find the value of $x^4-12x^3-70x^2-204x+225$

B. 0 C. 35 D. 15 **Answer:** Watch Video Solution **10.** If $|z_1-1|\leq, |z_2-2|\leq 2, |z_3-3|\leq 3,$ then find the greatest value of $|z_1+z_2+z_3|$ A. 6 B. 12 C. 17 D. 23 **Answer:**

A. -45

(where,
$$i=\sqrt{-1}$$
) is given by

A.
$$-\frac{\pi}{5}$$

$$\mathsf{B.} - \frac{4\pi}{5}$$

C.
$$\frac{\pi}{5}$$
D. $\frac{4\pi}{5}$

Answer:

Watch Video Solution

12. If $|z_1|=2, |z_2|=3, |z_3|=4 \,\, ext{and} \,\, |z_1+z_2+z_3|=5. \,\, ext{then} |4z_2z_3+9z_3z_1+1|$ is

11. The principal value of arg(z), where $z=1+\cos\left(\frac{8\pi}{5}\right)+i\sin\left(\frac{8\pi}{5}\right)$

B. 60

C. 120

D. 240

Answer:

Watch Video Solution

13. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, the find the value of $argigg(rac{z_1}{z_4}igg) + arg(z_2\,/\,z_3).$

A. 0

B. $\frac{\pi}{2}$

 $\mathsf{C}.\,\pi$

D. $\frac{3\pi}{2}$

Answer:

Exercise For Session 3

1. Find the real part of
$$(1-i)^{-i}$$
.

A.
$$e^{-\pi/4}\cos\left(rac{1}{2}\mathrm{log}_e\,2
ight)$$

$$\mathtt{B.} - e^{-\pi/4} \sin\!\left(\frac{1}{2}\!\log_e 2\right)$$

C.
$$e^{-\pi/4}\cos\left(\frac{1}{2}\log_e 2\right)$$

D.
$$e^{-\pi/4} \sin\!\left(rac{1}{2}\!\log_e 2
ight)$$

Answer:

- **2.** The amplitude of $e^{e^{-\,(i heta)}}$, where $heta\in R \ ext{and} \ i=\sqrt{-\,1}$, is
 - A. $\sin \theta$

 $B.-\sin\theta$

C. $e^{\cos \theta}$

D. $e^{\sin heta}$

Answer:

Watch Video Solution

3. If $z=i\log_eig(2-\sqrt{3}ig),$ where $i=\sqrt{-1}$ then the cos z is equal to

A. i

B. 2i

C. 1

D. 2

Answer:

4. If $z=(i)^i \hat{\ } (((i)))where i=\sqrt{-1}, then |z|$ is equal to 1 b. $e^{-\pi/2}$ c.

 $e^{-\pi}$ d. none of these

A. 1

B. $e^{-\pi/2}$

C. $e^{-\pi}$

D. e^{π}

Answer:

Watch Video Solution

5. $\sqrt{(-8-6i)}$ is equal to (where, $i=\sqrt{-1}$

A. (a) $1\pm 3i$

B. (b) $\pm (1 - 3i)$

C. (c) $\pm (1 + 3i)$

D. (d) \pm (3 -i)

Answer:

Watch Video Solution

- **6.** Simplify: $\frac{\sqrt{5+12i}+\sqrt{5-12i}}{\sqrt{5+12i}-\sqrt{5-12i}}$
 - $\mathsf{A.} \frac{3}{2}i$
 - $\operatorname{B.} \frac{3}{4}i$
 - $\mathsf{C.} rac{3}{4}i$
 - $\mathsf{D.}-\frac{3}{2}$

Answer:

- **7.** If $0 < amp(z) < \pi$, ${\it 'then'amp}(z) amp(-z)$ ` is equal to
 - A. 0

B.2amp(z)

C. π

 $D.-\pi$

Answer:

Watch Video Solution

8. If $|z_1| = |z_2|$ and $amp(z_1) + amp(z_2) = 0$, then

A. $z_1 = z_2$

B. $\bar{z}_1=z_2$

 $C. z_1 + z_2 = -0$

D. $\bar{z}_1 = \bar{z}_2$

Answer: B

- **9.** Solve the equation |z|=z+1+2i
 - A. $2-\frac{3}{2}i$
 - B. $\frac{3}{2}+2i$
 - $\mathsf{C.}\,rac{3}{2}-2i$
 - $\mathsf{D.}-2+\frac{3}{2}i$

Answer: C

- **10.** The number of solutions of the equation $z^2+ar{z}=0$ is .
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: D

11.

Watch Video Solution

11.
$$z_r=\cos\left(\frac{r\alpha}{n^2}\right)+i\sin\left(\frac{r\alpha}{n^2}\right), \text{ where } \ r=1,2,3,...,n \ \text{ and } \ i=\sqrt{-1}, \text{ then}$$

is equal to
$${\tt A.}\,e^{i\alpha}$$

B. $e^{-ilpha/2}$ C. $e^{ilpha\,/\,2}$

D. $\sqrt[3]{e^{i\alpha}}$

Answer:

Watch Video Solution

12. If $heta \in R$ and $i=\sqrt{-1}$, then $\left(rac{1+\sin heta + i\cos heta}{1+\sin heta - i\cos heta}
ight)^n$ is equal to

If

Answer:

A. $\cos\Bigl(rac{n\pi}{2}-n heta\Bigr)+i\sin\Bigl(rac{n\pi}{2}-n heta\Bigr)$

B. $\cos\left(\frac{n\pi}{2} + n\theta\right) + i\sin\left(\frac{n\pi}{2} + n\theta\right)$

C. $\sin\!\left(\frac{n\pi}{2}-n heta
ight)+i\cos\!\left(\frac{n\pi}{2}-n heta
ight)$

Watch Video Solution

D. $\cos\left(n\left(\frac{\pi}{2}+2\theta\right)\right)+i\sin\left(n\left(\frac{\pi}{2}+2\theta\right)\right)$

13. If $iz^4 + 1 = 0$, then prove that z can take the

value

 $\cos \pi/8 + is \in \pi/8$.

A. $\frac{1+i}{\sqrt{2}}$

B. $\cos\left(\frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{8}\right)$

 $C. \frac{1}{4i}$

D.i

Answer:

14. If
$$\omega(
eq 1)$$
 is a cube root of unity, then $(1-\omega+\omega^2)\left(1-\omega^2+\omega^4
ight)\left(1-\omega^4+\omega^8
ight)$...upto $2n$ is factors, is

15. If α , β , γ are the cube roots of p, then for any x,y,z $\frac{x\alpha+y\beta+z\gamma}{x\beta+y\gamma+z\alpha}$ =

A.
$$2^{n}$$

B.
$$2^{2n}$$

D. 1

Answer:

A.
$$rac{1}{2}ig(-1-i\sqrt{3}ig), i=\sqrt{-1}$$

B.
$$rac{1}{2}ig(1+i\sqrt{3}ig), i=\sqrt{-1}$$

D. none of these

C. $rac{1}{2}ig(1-i\sqrt{3}ig), i=\sqrt{-1}$

Answer:

Watch Video Solution

Exercise For Session 4

1. If
$$z_1,z_2,z_3$$
 and z_4 are the roots of the equation $z^4=1,\,$ the value of $\sum_{i=1}^4 z_i^3$ is

A. 0

B. 1

C. $i, i = \sqrt{-1}$

D. $1 + i, i = \sqrt{-1}$

Answer: A

2. If $z_1, z_2, z_3, \ldots, z_n$ are n nth roots of unity, then for

$$k=1,2,,\ldots,n$$

A. (a)
$$|z_k|=k\mid z_{k+1}|$$

B. (b)
$$|z_{k+1}|=k\mid z_{k1}|$$

C. (c)
$$|z_{k+1}| = |zk| + |z_{k-1}|$$

D. (d)
$$|z_k| = |z_{k+1}|$$

Answer: D

Watch Video Solution

3. If $1,\alpha_1,\alpha_2,\alpha_3,...,\alpha_{n-1}$ are n, nth roots of unity, then $(1-\alpha_1)(1-\alpha_2)(1-\alpha_3)...(1-\alpha_{n-1})$ equals to

5. If lpha is the nth root of unity then prove that $1+2lpha+3lpha^2+\ldots$ upto

n terms
$$=\frac{-n}{1-\alpha}$$

A.
$$\frac{2n}{1-lpha}$$

$$\mathsf{B.} - \frac{2n}{1-\alpha}$$

C.
$$\frac{n}{1-\alpha}$$

D.
$$-\frac{n}{1-\alpha}$$

Answer:

Watch Video Solution

6. a and b are real numbers between 0 and 1 such that the points

 $Z_1=a+i, Z_2=1+bi, Z_3=0$ form an equilateral triangle, then a and

 \boldsymbol{b} are equal to

A.
$$a=b=2+\sqrt{3}$$

B.
$$a=b=2-\sqrt{3}$$

C.
$$a = b = -2 - \sqrt{3}$$

D. none of these

Answer: B

lie on

Watch Video Solution

7. If $|z|=2,\,$ the points representing the complex numbers -1+5z will

A. a circle

B. a straight line

C. a parabola

D. an ellipse

Answer:

8. If |(z-2)/(z-3)|=2 represents a circle, then find its radius.

A. 1

B. $\frac{1}{3}$

 $\mathsf{C.}\,\frac{3}{4}$

 $\mathsf{D.}\,\frac{2}{3}$

Answer:

Watch Video Solution

9. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is 1+2i , then its perimeter is $2\sqrt{5}$ b. $6\sqrt{2}$ c. $4\sqrt{5}$ d.

 $6\sqrt{5}$

A.
$$2\sqrt{5}$$

$$\mathrm{B.}~6\sqrt{2}$$

C.
$$4\sqrt{5}$$

D. $6\sqrt{5}$

Answer:

Watch Video Solution

10. If z is a comlex number in the argand plane, the equation

$$|z-2|+|z+2|=8$$
 represents

A. a parabola

B. an ellipse

C. a hyperbola

D. a circle

Answer: D

11. If |z-2-3i|+|z+2-6i|=4 where $i=\sqrt{-1}$ then find the locus of P(z)

A. an ellipse

B. ϕ

C. line segment of points $2+3i \; {
m and} \; -26i$

D. none of these

Answer:

- **12.** locus of the point z satisfying the equation ert z 1 ert + ert z i ert = 2 is
 - A. a straight line
 - B. a circle
 - C. an ellipse
 - D. a pair of straight lines

Answer:

Watch Video Solution

13. If $z,iz \ {
m and} \ z+iz$ are the vertices of a triangle whose area is 2units, the value of |z| is

- A. 1
- B. 2
- C. 4
- D. 8

Answer:

Watch Video Solution

14. If $\left|z-\frac{4}{z}\right|=2$ then the greatest value of |z| is:

A. (A)
$$\sqrt{5}-1$$

B. (B)
$$\sqrt{5} + 1$$

C. (C)
$$\sqrt{5}$$

Answer:

Watch Video Solution

Exercise Single Option Correct Type Questions

1. if cos (1-i) = a+ib, where a , b
$$\,\in\,\,$$
 R and $i=\sqrt{-1}$, then

A.
$$a=rac{1}{2}igg(e-rac{1}{e}igg)\!\cos 1, b=rac{1}{2}igg(e+rac{1}{e}igg)\!\sin 1$$

B.
$$a=rac{1}{2}igg(e+rac{1}{e}igg)\!\cos 1,$$
 $b=rac{1}{2}igg(e-rac{1}{e}igg)\!\sin 1$

C.
$$a = \frac{1}{2} \left(e + \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e + \frac{1}{e} \right) \sin 1$$

D.
$$a = \frac{1}{2} \left(e - \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e - \frac{1}{e} \right) \sin 1$$

Answer: B

Watch Video Solution

- **2.** Number of roots of the equation $z^{10}-z^5-992=0$ with negative real part is
 - A. 3
 - B. 4
 - C. 5
 - D. 6

Answer: C

Watch Video Solution

3. If z and \bar{z} represent adjacent vertices of a regular polygon of n sides where centre is origin and if $\frac{Im(z)}{Re(z)}=\sqrt{2}-1$, then n is equal to:

B. (B) 16

C. (C) 24

D. (D) 32

Answer: D

Watch Video Solution

4. If
$$\prod_{p=1}^r e^{ip\theta}=1$$
, where \prod denotes the continued product and

$$i=\sqrt{-1}$$
, the most general value of $heta$ is (where, n is an integer)

A. (a)
$$\dfrac{2n\pi}{r(r-1)}, n \in I$$

B. (b)
$$\dfrac{2n\pi}{r(r+1)}, \, n \in I$$

C. (c)
$$\dfrac{4n\pi}{r(r-1)}, n \in I$$

D. (d)
$$rac{4n\pi}{r(r+1)}, n \in I$$

Answer: D

5. If
$$(3+i)(z+ar{z})-(2+i)(z-ar{z})+14i=0$$
, where $i=\sqrt{-1}$, then z $ar{z}$ is equal to

Answer: A

Watch Video Solution

6. The centre of a square ABCD is at z=0, A is z_1 . Then, the centroid of

$$riangle ABC$$
 is (where, $i=\sqrt{-1}$)

A. (a)
$$z_1(\cos\pi\pm i\sin\pi)$$

B. (b) $\frac{z_1}{3}(\cos\pi\pm i\sin\pi)$

C. (c) $z_1 \Big(\cos \Big(rac{\pi}{2} \Big) \pm i \sin \Big(rac{\pi}{2} \Big) \Big)$

D. (d) $rac{z_1}{3} \Big(\cos \Big(rac{\pi}{2} \Big) \pm i \sin \Big(rac{\pi}{2} \Big) \Big)$

Answer: D

Watch Video Solution

7. If $z=rac{\sqrt{3}-i}{2}$, where $i=\sqrt{-1}$, then $\left(i^{101}+z^{101}
ight)^{103}$ equals to

A. iz

B.z

C. \bar{z}

D. None of these

Answer: B

8. Let α and β be two fixed non-zero complex numbers and 'z' a variable complex number. If the lines $\alpha \bar{z}+\bar{a}z+1=0$ and $\beta \bar{z}+\bar{\beta}z-1=0$ are mutually perpendicular, then

A.
$$ab+ar{a}ar{b}=0$$

B.
$$ab-ar{a}ar{b}=0$$

C.
$$ar{a}b-aar{b}=0$$

D.
$$aar{b}+ar{a}b=0$$

Answer: D

9. If
$$lpha=\cos\Bigl(rac{8\pi}{11}\Bigr)+i\sin\Bigl(rac{8\pi}{11}\Bigr)$$
 then $Re\bigl(lpha+lpha^2+lpha^3+lpha^4+lpha^5\bigr)$ is

A.
$$\frac{1}{2}$$

$$\mathsf{B.}-rac{1}{2}$$

D. None of these

Answer: B

Watch Video Solution

10. The set of points in an Argand diagram which satisfy both $|z| \leq 4$ and

$$0 \leq arg(z) \leq rac{\pi}{3}$$
 , is

A. (a)a circle and a line

B. (b)a radius of a circle

C. (c)a sector of a circle

D. (d)an infinite part line

Answer: C

11. If $f(x) = gig(x^3ig) + xhig(x^3ig)$ is divisiblel by $x^2 + x + 1$, then

A. g(x) is divisible by (x-1) but not h(x) but not h(x)

B. h(x) is divisible by (x-1) but not g(x)

C. both g(x) and h(x) are divisible by (x-1)

D. None of above

Answer: C

12. If the points represented by complex numbers

$$z_1=a+ib, z_2=c+id$$
 and z_1-z_2 are collinear, where $i=\sqrt{-1}$,

then

A. ad+bc=0

B. ad-bc=0

C. ab+cd=0

D. ab-cd=0

Answer: B

Watch Video Solution

- **13.** Let C and R denote the set of all complex numbers and all real numbers respectively. Then show that $f\colon C\to R$ given by f(z)=|z| for all $z\in C$ is neither one-one nor onto.
 - A. f is injective but not surjective
 - B. f is surjective but not injective
 - C. f is nither injective nor surjective
 - D. f is both injective and surjective

Answer: C

14. Let α and β be two distinct complex numbers, such that $|\alpha|=|\beta|$. If real part of α is positive and imaginary part of β is negative, then the complex number $(\alpha+\beta)/(\alpha-\beta)$ may be

- A. zero
- B. real and negative
- C. real and positive
- D. purely imaginary

Answer: D

- **15.** The complex number z satisfies the condition $\left|z-\frac{25}{z}\right|=24$. The maximum distance from the origin of co-ordinates to the points z is
 - A. 25
 - B. 30

D. None of these

Answer: A

Watch Video Solution

- **16.** The points A,B and C represent the complex numbers $z_1,z_2,$ $(1-i)z_1+iz_2$ respectively, on the complex plane (where, $i=\sqrt{-1}$). The \triangle ABC, is
 - A. isosceles but not right angled
 - B. right angled but not isosceles
 - C. isosceles and right angled
 - D. None of the above

Answer: C

17. The system of equations $|z+1-i|=\sqrt{2} \ ext{and} \ |z|=3$ has how many solutions?

A. no solution

B. one solution

C. two solution

D. None of these

Answer: A

Watch Video Solution

18. Dividing f(z) by z-i, we obtain the remainder 1-i and dividing it by z+i, we get the remainder 1+i. Then, the remainder upon the division of f(z) by z^2+1 , is

A. i+z

B. 1+z

C. 1-z

D. None of these

Answer: C

Watch Video Solution

19. The centre of circle represented by |z+1|=2|z-1| in the complex plane is

A. 0

 $\mathsf{B.}\,\frac{5}{3}$ c. $\frac{1}{3}$

D. None of these

Answer: B

20. If
$$x=9^{\frac{1}{3}}9^{\frac{1}{9}}9^{\frac{1}{27}}.....ad$$
 inf $y=4^{\frac{1}{3}}4^{-\frac{1}{9}}4^{\frac{1}{27}}.....ad$ inf and $z=\sum_{r=1}^\infty \left(1+i\right)^{-r}$ then , the argument of the complex number $w=x+yz$ is

B.
$$-\tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$$
C. $-\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. $\pi - \tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$

Answer: B

Watch Video Solution

21. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is 1+2i , then its perimeter is $2\sqrt{5}$ b. $6\sqrt{2}$ c. $4\sqrt{5}$ d. $6\sqrt{5}$

A.
$$2\sqrt{5}$$

B. $4\sqrt{5}$

 $C.6\sqrt{5}$

D. $8\sqrt{5}$

Answer: C

Watch Video Solution

22. Let
$$|Z_r-r| \leq r,$$
 $Aar=1,2,3....,n.$ Then $\left|\sum_{r=1}^n z_r
ight|$ is less than

A. n

B. 2n

C. n(n+1)

D. $\frac{n(n+1)}{2}$

Answer: C

Match Video Colution

valcii video Solution

23. If
$$\arg\left(rac{z_1-rac{z}{|z|}}{rac{z}{|z|}}
ight)=rac{\pi}{2} \ ext{and} \ \left|rac{z}{|z|}-z_1\right|=3$$
, then $|z_1|$ equals to a.

$$\sqrt{3}$$
 b. $2\sqrt{2}$ c. $\sqrt{10}$ d. $\sqrt{26}$

A.
$$\sqrt{3}$$

B.
$$2\sqrt{2}$$

C.
$$\sqrt{10}$$

D.
$$\sqrt{26}$$

Answer: C

Watch Video Solution

24. about to only mathematics

A. a pair of straight lines

B. circle

C. parabola

D. ellipse

Answer: C

Watch Video Solution

25. about to only mathematics

A.
$$rac{n\cdot 3^{n-1}}{3^n-1}+rac{1}{2}$$

B.
$$\frac{n \cdot 3^{n-1}}{3^n - 1} - 1$$

C.
$$\frac{n \cdot 3^{n-1}}{3^n - 1} + 1$$

D. None of these

Answer: D

26. If
$$z=(3+7i)(\lambda+i\mu)$$
, when $\lambda,\mu\in I-\{0\}$ and $i=\sqrt{-1}$, is purely imaginary then minimum value of $|z|^2$ is

B. 58

c.
$$\frac{3364}{3}$$

D. 3364

Answer: D

Watch Video Solution

27. Given
$$z=f(x)+ig(x)$$
 where $f,g\colon (0,1)\to (0,1)$ are real valued functions. Then which of the following does not hold good?

 $\mathsf{a}.z = \frac{1}{1-ix} + i\frac{1}{1+ix}$

$$\mathsf{b.}\,z = \frac{1}{1+ix} + i\frac{1}{1-ix}$$

 $\mathsf{c.}\,z = \frac{1}{1+ix} + i\frac{1}{1+ix}$ d. $z = \frac{1}{1 - ix} + i \frac{1}{1 - ix}$

B. (-1,0)

Answer: B

Watch Video Solution

A. $z=rac{1}{1-ix}+iigg(rac{1}{1+ix}igg)$

B. $z=rac{1}{1+ix}+iigg(rac{1}{1-ix}igg)$

 $\mathsf{C.}\,z = rac{1}{1+ix} + iigg(rac{1}{1+ix}igg)$

D. $z=rac{1}{1-ix}+iigg(rac{1}{1-ix}igg)$

28. If
$$z^3+(3+2i)z+(-1+ia)=0$$
 has one real roots, then the

value of
$$a$$
 lies in the interval $(a\in R)$ $(\,-\,2,1)$ b. $(\,-\,1,0)$ c. $(0,1)$ d.

in
$$a$$
 lies in the interval $(a \in \mathbf{R})$ $(-2,1)$ b. $(-1,0)$ c. $(0,1)$

$$(\ -2,3)$$

Answer: B

Watch Video Solution

29. If m and n are the smallest positive integers satisfying the relation

$$\left(2CiSrac{\pi}{6}
ight)^m=\left(4CiSrac{\pi}{4}
ight)^n$$
 , where $i=\sqrt{-1}, (m+n)$ equals to

A. (a) 60

B. (b)72

C. (c)96

D. (d)36

Answer: B

Watch Video Solution

30. Number of imaginergy complex numbers satisfying the equation,

$$z^2=ar z\cdot 2^{1-\,|z|}$$
 is

- A. 0
- B. 1
- C. 2
- D. 3

Answer: C

Watch Video Solution

Exercise More Than One Correct Option Type Questions

- **1.** If $\dfrac{z+1}{z+i}$ is a purely imaginary number (where $(i=\sqrt{-1})$, then z lies on а
 - A. straight line
 - B. circle
 - C. circle with radius = $\frac{1}{\sqrt{2}}$
 - D. circle passing through the origin

Answer: B::C::D

Watch Video Solution

2. Find the multiplicative inverse of z=2-3i

Watch Video Solution

3. If the complex numbers is $(1+ri)^3=\lambda(1+i)$, when $i=\sqrt{-1}$, for some real λ , the value of r can be

A.
$$\cos \frac{\pi}{5}$$

$$\mathsf{B.}\cos ec\frac{3\pi}{2}$$

$$\mathsf{C.}\cot\frac{\pi}{12}$$

D.
$$\tan \frac{\pi}{12}$$

Answer: B::C::D

4. If $z \in C$, which of the following relation(s) represents a circle on an

Argand diagram? (where, $i=\sqrt{-1}$)

A.
$$|z-1| + |z+1| = 3$$

B.
$$|z - 3| = 2$$

$$\mathsf{C.}\left|z-2+i\right|=\frac{7}{3}$$

D.
$$(z-3+i)(ar{z}-3-i)=5$$

Answer: B::C::D

Watch Video Solution

5. about to only mathematics

A. $1+\omega$

B. -1

C. 0

Answer: A::C::D

Watch Video Solution

6. If z is a complex number which simultaneously satisfies the equations

$$3|z-12|=5|z-8i| \ \ {
m and} \ \ |z-4|=|z-8|$$
, where $\ i=\sqrt{-1}$, then

Im(z) can be

A. 8

B. 17

C. 7

D. 15

Answer: A::B

7. If $P(z_1), Q(z_2), R(z_3)$ and $S(z_4)$ are four complex numbers representing the vertices of a rhombus taken in order on the complex plane, which one of the following is held good?

A.
$$\dfrac{z_1-z_4}{z_2-z_3}$$
 is purely real

B.
$$\dfrac{z_1-z_3}{z_2-z_4}$$
 is purely imaginary

$$\mathsf{C}.\, |z_1-z_3| \neq |z_2-z_4|$$

D.
$$ampigg(rac{z_1-z_4}{z_2-z_4}igg)
eq ampigg(rac{z_2-z_4}{z_3-z_4}igg)$$

Answer: A::B::C

Watch Video Solution

8. If
$$a|z-3| = \min{\{|z1,|z-5|\}}, then Re(z)$$
 equals to 2 b. $\frac{5}{2}$ c. $\frac{7}{2}$ d. 4

A. 2

B. 2.5

C. 3.5

Answer: A::D

Watch Video Solution

9. about to only mathematics

A.
$$|z|=a$$

$$\mathsf{B}.\,|z|=2a$$

$$\operatorname{C.}arg(z) = \frac{\pi}{3}$$

D.
$$arg(z)=rac{\pi}{2}$$

Answer: A::C

10. If z=x+iy, where $i=\sqrt{-1}$, then the equation $\left|\left(\frac{2z-i}{z+1}\right)\right|=m$ represents a circle, then m can be

A.
$$\frac{1}{2}$$

B. 1

C. 2

D. $\in (3, 2\sqrt{3})$

Answer: A::B::D

Watch Video Solution

11. Equation of tangent drawn to circle |z|=r at the point $A(z_0)$, is

A.
$$Reigg(rac{z}{z_0}igg)=1$$

B.
$$Im\left(\frac{z}{z_0}\right) = 1$$

$$\mathsf{C.}\,Im\Big(\frac{z_0}{z}\Big)=1$$

D.
$$z\overline{z_0} + z_0 ar{z} = 2r^2$$

Answer: A::D

Watch Video Solution

12. z_1 and z_2 are the roots of the equaiton $z^2-az+b=0$ where

$$\left|z_{1}
ight|=\left|z_{2}
ight|=1$$
 and a,b are nonzero complex numbers, then

- A. (a) $|a| \leq 1$
- B. (b) $|a| \leq 2$
- C. (c) $arg(a)=argig(b^2ig)$
- D. (d) $argig(a^2ig)=arg(b)$

Answer: B::D

13. If α is a complex constant such that $az^2 + z + \alpha = 0$ has a ral root, then lpha+lpha=1 lpha+lpha=0 lpha+lpha=-1 the absolute value of the real root is 1

A.
$$\alpha + \overline{\alpha} = 1$$

B.
$$\alpha + \overline{\alpha} = 0$$

$$\mathsf{C}.\, \alpha + \overline{\alpha} = -1$$

D. the absolute value of real root is 1

Answer: A::C::D

Watch Video Solution

- If the 14. equation $z^3 + (3+i)z^2 - 3z - (m+i) = 0, \;\; ext{where} \;\; i = \sqrt{-1} \;\; ext{and} \;\; m \in R,$
- has atleast one real root, value of m is

A. 1

B. 2

C. 3

D. 5

Answer: A::D

Watch Video Solution

15. If $z^3+(3+2i)z+(\,-1+ia)=0$ has one real roots, then the value of a lies in the interval $(a \in R)$ $(\,-2,1)$ b. $(\,-1,0)$ c. (0,1) d. $(\,-2,3)$

A. (-2,1)

B. (-1,0)

C. (0,1)

D. (-2,3)

Answer: A::B::D

Exercise Passage Based Questions

1.

$$arg(ar{z}) + arg(-z) = egin{cases} \pi, & ext{if arg (z)} & < 0 \ -\pi, & ext{if arg (z)} & > 0 \end{cases}, ext{where} - \pi < arg(z) \leq \pi$$

If arg(z)>0, then arg (-z)-arg(z) is equal to

A.
$$-\pi$$

$$\mathsf{B.}-\frac{\pi}{2}$$

$$\mathsf{C.}\,\frac{\pi}{2}$$

D. π

Answer: A

$$arg(ar{z}) + arg(-z) = egin{cases} \pi, & ext{if arg (z)} & < 0 \ -\pi, & ext{if arg (z)} & > 0 \end{cases}, ext{where} - \pi < arg(z) \leq \pi$$

. If
$$arga(4z_1)-arg(5z_2)=\pi, \;\; ext{then} \; \left|rac{z_1}{z_2}\right| ext{ is equal to}$$

B. 1.25

D. 2.5

C. 1.5

- 4. Sum of four consecutive powers of i(iota) is zero.
- i.e., $i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0, \ \forall n \in I.$

If $\sum_{n=1}^{25} i^{n!} = a + ib$, where $i = \sqrt{-1}$, then a-b, is

B. even number

C. composite number

D. perfect number

Answer: A

- **5.** Sum of four consecutive powers of i(iota) is zero.
- i.e., $i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0, \ orall n \in I.$

If
$$\sum_{r=-2}^{95}i^r+\sum_{r=0}^{50}i^{r!}=a+ib,$$
 where $i=\sqrt{-1}$, the unit digit of $a^{2011}+b^{2012}$, is

- A. (a)2
- B. (b)3

C. (c)5

D. (d)6

Answer: C

Watch Video Solution

- 6. Sum of four consecutive powers of i(iota) is zero.
- i.e., $i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0, \ \forall n \in I.$
- If $\sum_{r=4}^{100} i^{r!} + \prod_{r=1}^{101} i^r = a+ib$, where $i=\sqrt{-1}$, then a+75b, is
 - A. 11
 - B. 22
 - C. 33
 - D. 44

Answer: B

7. For any two complex numbers z_1 and z_2 ,

$$|z_1-z_2| \geq \left\{ egin{array}{l} |z_1|-|z_2| \ |z_2|-|z_1| \end{array}
ight.$$

and equality holds iff origin $z_1 \mod z_2$ are collinear and z_1, z_2 lie on the same side of the origin .

If $\left|z-rac{1}{z}\right|=2$ and sum of greatest and least values of |z| is λ , then λ^2 , is

- A. 2
- B. 4
- C. 6
- D. 8

Answer: D

Watch Video Solution

8. For any two complex numbers z_1 and z_2 , $|z_1-z_2| \geq \left\{ egin{array}{l} |z_1|-|z_2| \\ |z_2|-|z_1| \end{array}
ight.$ and equality holds iff origin z_1 and z_2 are collinear and z_1,z_2 lie on the

same side of the origin . If $\left|z-\frac{2}{z}\right|=4$ and sum of greatest and least values of |z| is λ , then λ^2 , is

B. 18

C. 24

D. 30

Answer: C

Watch Video Solution

9. For any two complex numbers
$$z_1 ext{and} z_2$$
, $|z_1-z_2| \geq \left\{ egin{array}{l} |z_1|-|z_2| \ |z_2|-|z_1| \end{array}
ight.$

and equality holds iff origin $z_1 \quad {
m and} \quad z_2$ are collinear and $z_1, \, z_2$ lie on the same side of the origin .

If $\left|z-\frac{3}{z}\right|=6$ and sum of greatest and least values of |z| is 2λ , then λ^2 , is

B. 18

C. 24

D. 30

Answer: A

Watch Video Solution

10. Consider the two complex numbers z and w, such that

$$w=rac{z-1}{z+2}=a+ib, ext{ where } a,b\in R ext{ and } i=\sqrt{-1}.$$

If $z=CiS\theta$, which of the following does hold good?

A.
$$\sin \theta = \frac{9b}{1 - 4a}$$

$$\mathrm{B.}\cos\theta = \frac{1-5a}{1+4a}$$

C.
$$(1+5a)^2 + (3b)^2 = (1-4a)^2$$

D. All of these

Answer: C

- **11.** Express in the complex form z = (7 i)(2 + i)
 - Watch Video Solution

- **12.** Express in the complax form if z = (4-3i)(2+i)
 - Watch Video Solution

Exercise Single Integer Answer Type Questions

- 1. The number of values of z (real or complex) e simultaneously satisfying the equations system of
- $1+z+z^2+z^3+...z^{17}=0$ and $1+z+z^2+z^3+...+z^{13}=0$ is

2. Number of complex numbers satisfying $z^3=ar{z}$ is

3. Let z=9+ai, where $i=\sqrt{-1}$ and a be non-zero real.

4. Numbers of complex numbers z, such that |z|=1

If $Imig(z^2ig)=Imig(z^3ig)$, sum of the digits of a^2 is

- and $\left|rac{z}{ar{z}}+rac{ar{z}}{z}
 ight|=1$ is
 - Watch Video Solution

5. If x=a+bi is a complex number such that $x^2=3+4i$ and $x^3=2+1i, where i=\sqrt{-1}, then (a+b)$ equal to

Watch Video Solution

- **6.** If $z=rac{\pi}{4}(1+i)^4igg(rac{1-\sqrt{\pi}i}{\sqrt{\pi}+i}+rac{\sqrt{\pi}-i}{1+\sqrt{\pi}i}igg), thenigg(rac{|z|}{amp(z)}igg)$ equal
 - Watch Video Solution

- Suppose A is a complex number and $n \in N,$ such that $A^n=\left(A+1
 ight)^n=1, ext{ then the least value of } n ext{ is } 3 ext{ b. } 6 ext{ c. } 9 ext{ d. } 12$
 - Watch Video Solution

8. Let $z_r, r=1,2,3,...,50$ be the roots of the equation $\sum_{r=0}^{30} \left(z
ight)^r=0$. If

$$\sum_{r=1}^{50}rac{1}{z_r-1}=\ -5\lambda$$
 , then λ equals to

9. If
$$p=\sum_{p=1}^{32}{(3p+2)}\Bigg(\sum_{q=1}^{10}{\left(\sin{rac{2q\pi}{11}}-i\cos{rac{2q\pi}{11}}
ight)}\Bigg)^p$$
 , where $i=\sqrt{-1}$

and if $(1+i)P=n(n!), n \in N$, then the value of n is

Watch Video Solution

10. Find the least positive integer n for which $\left(\frac{1+i}{1-i}\right)^n$

Watch Video Solution

Complex Number Exercise 5

Column I			Column II	
(A)	If $\left z - \frac{1}{z}\right = 2$ and if greatest and least values of $ z $ are G and L respectively, then $G - L$, is	(p)	natural number	
В)	If $z + \frac{2}{z} = 4$ and if greatest and least values of $ z $ are G and L respectively, then $G - L$, is	(p)	prime number	
2)	If $\left z - \frac{3}{z}\right = 6$ and if greatest and least values of $ z $ are G and L respectively, then $G - L$, is	(r)	composite number	
-		(s)	perfect number	

1.

0

-	September 1997 and the			
_	Column I		Column !	
(A)	If $\sqrt{(6+8i)} + \sqrt{(-6+8i)} = z_1, z_2, z_3, z_4$ (where $i = \sqrt{-1}$), then $ z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2$ is divisible by	(p)	7	
(B)	If $\sqrt{(5-12i)} + \sqrt{(-5-12i)} = z_1, z_2, z_3, z_4$ (where $i = \sqrt{-1}$), then $ z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2$ is divisible by	(q)	8	
(C)	If $\sqrt{(8+15i)} + \sqrt{(-8-15i)} = z_1, z_2, z_3, z_4$ (where $i = \sqrt{-1}$), then $ z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2$ is divisible by	(r)	13	
		(s)	17	

2.

Watch Video Solution

	Column I	Column II		
(A)	If λ and μ are the unit's place digits of $(143)^{861}$ and $(5273)^{1358}$ respectively, then $\lambda + \mu$ is divisible by	(p)	2	
(B)	If λ and μ are the unit's place digits of $(212)^{7820}$ and $(1322)^{1594}$ respectively, then $\lambda + \mu$ is divisible by	(q)	3	
(C)	If λ and μ are the unit's place digits of $(136)^{786}$ and $(7138)^{13491}$ respectively, then $\lambda + \mu$ is divisible by	(r)	4	
		(s)	5	
		(t)	6	

3.

Exercise Statement I And Ii Type Questions

1. Statement-13 + 7i > 2 + 4i, where $i = \sqrt{-1}$.

Statement-2 3 > 2 and 7 > 4

Watch Video Solution

- Which statement 2.
 - $\mathbf{statement-1}(\cos heta + i \sin heta)^3 = \cos 3 heta + i \sin 3 heta, i = \sqrt{-1}$ $\mathbf{statement-2} \Big(\cos rac{\pi}{4} + i \sin rac{\pi}{4} \Big)^2 = i$
 - Watch Video Solution

is an ellipse. statement-2 Sum of focal distances of any point on ellipse is constant for an ellipse.

3. statement-1 Locus of z satisfying the equation |z-1|+|z-8|=5

correct.?

is

4. Let z_1, z_2 and z_3 be three complex numbers in AP.

Statement-1 Points representing z_1, z_2 and z_3 are collinear **Statement-2** Three numbers a,b and c are in AP, if b-a=c-b

Watch Video Solution

5. Statement-1 If the principal argument of a complex number z is 0, the principal argument of z^2 is 2θ .

Statement- $2arg(z^2) = 2arg(z)$

Watch Video Solution

Complex Number Exercise 6

1. ${f statement-1}$ Let z_1,z_2 and z_3 be htree complex numbers, such that

$$z_1^2 + z_2^2 + z_3^2 + z_1 z_2 + z_2 z_3 + z_3 z_1 = 0$$

Exercise Subjective Type Questions

1. If z_1 , z_2 , z_3 are any three complex numbers on Argand plane, then $z_1(Im(\bar z_2z_3))+z_2(Im\bar z_3z_1))+z_3(Im\bar z_1z_2))$ is equal to

 $|3z_1+1|=|3z_2+1|=|3z_3+1|$ and $1+z_1+z_2+z_3=0$, then z_1,z_2

will represent vertices of an equilateral triangle on the complex plane.

statement- $2z_1, z_2, z_3$ represent vertices of an triangle, if

Watch Video Solution

2. The roots z_1, z_2, z_3 of the equation $x^3 + 3ax^2 + 3bx + c = 0$ in which a, b, c are complex numbers correspond to points A, B, C. Show triangle will be an equilateral triangle if $a^2 = b$.

3. If $1, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots $x^5-1=0$, then value of $\frac{\omega-\alpha_1}{\omega^2-\alpha_1}\cdot\frac{\omega-\alpha_2}{\omega^2-\alpha_2}\cdot\frac{\omega-\alpha_3}{\omega^2-\alpha_3}\cdot\frac{\omega-\alpha_4}{\omega^2-\alpha_4}$ is (where ω is imaginary cube root of unity)

4. If z_1andz_2 both satisfy z+ar zr=2|z-1| and $arg(z_1-z_2)=rac{\pi}{4}$, then find I m(z 1+z 2) .

5. For every real number $c\geq 0$, find all complex numbers z which satisfy the equation $|z|^2-2iz+2c(1+i)=0$, where $i=\sqrt{-1}$ and passing through (-1,4).

Watch Video Solution

6. Express in the complex form if $(5i)\left(\frac{-3i}{5}\right)$

Find the point of intersection of 7. the curves $arg(z-3i)=rac{3\pi}{4} and arg(2z+1-2i)=\pi/4.$

8. Show that if a and b are real, the principal value of arg a is 0 or π

show

that

Watch Video Solution

according as a is positive or negative and that of bi is $\frac{\pi}{2}$ or $-\frac{\pi}{2}$ according as b is positive or negative.

|z| < 1 and $|\omega| < 1$,

Watch Video Solution

Watch Video Solution

9.

 $|z-\omega|^2 \leq (|z|-|\omega|)^2 + (araz-ara\omega)^2$

10. If $z_1 and z_2$ are two complex numbers and c>0 , then prove that

$$\left|z_{1}+z_{2}\right|^{2}\leq\left(1+c\right)\left|z_{1}\right|^{2}+\left(1+c^{-1}\right)\left|z_{2}\right|^{2}.$$

11. Find the circumstance of the triangle whose vertices are given by the complex numbers z_1 , z_2 and z_3 .

12. Find the circumstance of the triangle whose vertices are given by the complex numbers z_1 , z_2 and z_3 .

- **1.** Find $\frac{dy}{dx}$ if $y = \cos(\sin x)$
 - Watch Video Solution

- **2.** Express in the form of complax number z=(2-i)(3+i)
 - Watch Video Solution

- **3.** Two different non-parallel lines meet the circle |z|=r. One of them at points a and b and the other which is tangent to the circle at c. Show that the point of intersection of two lines is $\frac{2c^{-1}-a^{-1}-b^{-1}}{c^{-2}-a^{-1}b^{-1}}$.
 - Watch Video Solution

4. A,B and C are the points respectively the complex numbers z_1, z_2 and z_3 respectivley, on the complex plane and the circumcentre of $\triangle ABC$ lies at the origin. If the altitude of the triangle through the vertex. A

meets the circumcircle again at P, prove that P represents the complex number $\left(-\frac{z_2z_3}{z_1}\right)$.

5. Let z,z_0 be two complex numbers. It is given that |z|=1 and the numbers $z,z_0,z=(0),1$ and 0 are represented in an Argand diagram by the points P, P_0 ,Q,A and the origin, respectively. Show that $\triangle POP_0$ and $\triangle AOQ$ are congruent. Hence, or otherwise, prove that

 $|z-z_0|=|z\overline{z_0}-1|=|z\overline{z_0}-1|.$

6. Express in a complex form if $z=i^7$

Let a, b and c be any three nonzero complex number. If

$$|z|=1$$
 and $|z'|$ satisfies the equation $az^2+bz+c=0$, prove that

- |z|=1 and ${}^{\prime}z^{\prime}$ satisfies the equation $az^2+bz+c=0,$ prove that $a.\ \bar{a}$ = $c.\ \bar{c}$ and $|\mathbf{a}||\mathbf{b}|=\sqrt{ac{(\bar{b})}^2}$
 - Watch Video Solution

8. Let z_1, z_2 and z_3 be three non-zero complex numbers and $z_1 \neq z_2$. If

$$egin{array}{c|ccc} |z_1| & |z_2| & |z_3| \ |z_2| & |z_3| & |z_1| \ |z_3| & |z_1| & |z_2| \ \end{array} = 0$$
, prove that

(i) z_1, z_2, z_3 lie on a circle with the centre at origin.

(ii)
$$argigg(rac{z_3}{z_2}igg)=argigg(rac{z_3-z_1}{z_2-z_1}igg)^2.$$

Watch Video Solution

9. Prove that the roots of the equation

$$8x^3 - 4x^2 - 4x + 1 = 0$$
 are $\cos \frac{\pi}{7}, \cos \frac{3\pi}{7}$ and $\cos \frac{5\pi}{7}$.

Evaluate $\sec \frac{\pi}{7} + \sec \frac{3\pi}{7} + \sec \frac{5\pi}{7}$

Water video Solution

10. If the complex number z is to satisfy

$$|z|=3, |z-\{a(1+i)-i\}| \leq 3$$
 and $|z+2a-(a+1)i|>3$, where

 $i=\sqrt{-1}$ simultaneously for atleast one z, then find all $a\in R$.

11. Find $\frac{dy}{dx}$ if $x - 5y = \tan y$

Exercise Questions Asked In Previous 13 Years Exam

1. If ω is a cube root of unity but not equal to 1, then minimum value of $|a+b\omega+c\omega^2|$, (where a,b and c are integers but not all equal), is

A. 0

$$\mathsf{B.}\;\frac{\sqrt{3}}{2}$$

C. 1

D. 2

Answer: C

Watch Video Solution

2. If one of the vertices of the square circumscribing the circle

$$|z-1|=\sqrt{2}$$
 is $2+\sqrt{3}\iota$. Find the other vertices of square

Watch Video Solution

3. If $z_1 and z_2$ are two nonzero complex numbers such that = $|z_1+z_2|=|z_1|+|z_2|, ext{ then } argz_1-argz_2 ext{ is equal to } -\pi ext{ b. } rac{\pi}{2} ext{ c. } 0 ext{ d.}$

$$\frac{\pi}{2}$$
 e. π

 $A. - \pi$

$$\mathsf{B.} - \pi/2$$

C.
$$\pi/2$$

D. 0

Answer: D

Watch Video Solution

- **4.** If the cube roots of unity are $1, \omega, \omega^2$, then the roots of the equation
- $(x-1)^3+8=0$ are a. $-1,1+2\omega,1+2\omega^2$ b. $-1,1-2\omega,1-2\omega^2$ c.
- -1, -1, -1 d. none of these
 - A. -1, $1 + 2\omega$, $1 + 2\omega^2$
 - B. $-1, 1-2\omega, 1-2\omega^2$
 - C. -1 1 1
 - D. None of these

Answer: B

5. If
$$\omega=z/[z-(1/3)i]$$
 and $|\omega|=1$, then find the locus of z.

A. a straight line

B. a parabola

C. an ellipse

D. a circle

Answer: A

Watch Video Solution

6. If $w=lpha+ieta,\,$ where eta
eq0 and z
eq1 , satisfies the condition that

$$\left(rac{w-\overline{w}z}{1-z}
ight)$$
 is a purely real, then the set of values of z is $|z|=1, z
eq 2$

(b) |z|=1andz
eq 1 (c) $z=ar{z}$ (d) None of these

A.
$$\{z\colon |z|=1\}$$

B.
$$\{z\colon z=ar{z}\}$$

$$\mathsf{C}.\,\{z\!:\!z\neq1\}$$

D.
$$\{z: |z| = 1, z \neq 1\}$$

Answer: D

Watch Video Solution

7. Find the value of
$$\sum_{k=1}^{10} \left[\sin \left(\frac{2\pi k}{11} \right) - i \cos \left(\frac{2\pi k}{11} \right) \right], where $i=\sqrt{-1}$.$$

- A. i
- B. 1
- C. -1
- $\mathsf{D.}-i$

Answer: D

8. If $z^2+z+1=0$ where z is a complex number, then the value of

$$\left(z+rac{1}{z}
ight)^2+\left(z^2+rac{1}{z^2}
ight)^2+....\ +\left(z^6+rac{1}{z^6}
ight)^2$$
 is

A. 18

B. 54

C. 6

D. 12

Answer: D

Watch Video Solution

 $(4+3i)e^{rac{i\pi}{4}}$ (d) $(3+4i)e^{rac{i\pi}{4}}$

9. A man walks a distance of 3 units from the origin towards the North-East $\left(N45^0E\right)$ direction.From there, he walks a distance of 4 units towards the North-West $\left(N45^0W\right)$ direction to reach a point P. Then, the position of P in the Argand plane is (a) $3e^{\frac{i\pi}{4}}+4i$ (b) $(3-4i)e^{\frac{i\pi}{4}}$

A.
$$3e^{i\pi/4}+4i$$

B.
$$(3-4i)e^{i\pi/4}$$

C.
$$(4+3i)e^{i\pi/4}$$

D.
$$(3+4i)e^{i\pi/4}$$

Answer: D

Watch Video Solution

10. If |z|=1 $and z
eq \pm 1$, then all the values of $\dfrac{z}{1-z^2}$ lie on a line not passing through the origin $|z|=\sqrt{2}$ the x-axis (d) the y-axis

A. a line not passing through the origin

B.
$$|z|=\sqrt{2}$$

C. the X-axis

D. the Y-axis

Answer: D

11. If
$$|z+4| \leq 3$$
, the maximum value of $|z+1|$ is

A. 4

B. 10

C. 6

D. 0

Answer: C

12. Let A, B, C be three sets of complex number as defined below:

$$A = \{z \colon\! Im \geq 1\}, B = \{z \colon\! |z-2-i| = 3\}, C \colon\! ig\{z \colon\! Re((1-i)z) = \sqrt{2}ig\}$$

The number of elements in the set $A\cap B\cap C$ is

A. 0

- B. 1
- C. 2
- $D. \infty$

Answer: B

Watch Video Solution

13. Let A,B and C be three sets of complex numbers as defined below:

$$A = \{z: Im(z) > 1\}$$

$$B = \{z \colon |z-2-i| = 3\}$$

$$C = \{z : Re(1-i)z\} = 3\sqrt{2}$$
where $i = \sqrt{-1}$

Let z be any point in $A\cap B\cap C$. Then, $|z+1-i|^2+|z-5-i|^2$ lies

- between
 - A. 25 and 29
 - B. 30 and 34
 - C. 35 and 39
 - D. 40 and 44

Answer: C

Watch Video Solution

14. Express in the form of complex number i^9+i^{19}

Watch Video Solution

15. A particle P starts from the point $z_0=1+2i$, where $i=\sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by 6+7i (b) -7+6i 7+6i (d) -6+7i

A. 6+7i

B. -7 + 6i

$$\mathsf{D.}-6+7i$$

Answer: D

Watch Video Solution

16. If the conjugate of a complex numbers is $\frac{1}{i-1}$, where $i=\sqrt{-1}$.

Then, the complex number is

A.
$$\frac{-1}{i-1}$$

$$\mathsf{B.}\,\frac{1}{i+1}$$

$$\mathsf{C.}\,\frac{-1}{i+1}$$

D.
$$\frac{1}{i-1}$$

Answer: C

17. Let z=x+iy be a complex number where x and y are integers. Then ther area of the rectangle whose vertices are the roots of the equaiton $\bar{z}z^3+z\bar{z}^3=350.$

- A. 48
- B. 32
- C. 40
- D. 80

Answer: A

Watch Video Solution

18. Let $z=\cos heta + i\sin heta$. Then the value of $\sum_{m o 1-15} Imgig(z^{2m-1}ig)$ at

$$heta=2^\circ$$
 is:

- A. $\frac{1}{\sin 2^{\circ}}$
- B. $\frac{1}{3\sin 2^{\circ}}$

$$\mathsf{C.}\,\frac{1}{2\mathrm{sin}\,2^\circ}$$

D.
$$\frac{1}{4{\sin 2^{\circ}}}$$

Answer: D

Watch Video Solution

19. If
$$\left|z-rac{4}{z}
ight|=2$$
 then the greatest value of $|z|$ is:

A.
$$2+\sqrt{2}$$

B.
$$\sqrt{3} + 1$$

C.
$$\sqrt{5} + 1$$

D. 2

Answer: C

20. Let z_1 and z_2 be two distinct complex numbers and $z=(1-t)z_1+tz_2$, for some real number t with 0< t<1 and $i=\sqrt{-1}$. If $\arg(w)$ denotes the principal argument of a non-zero compolex number w, then

A.
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

$$\mathtt{B.}\,arg(z-z_1)=arg(z-z_2)$$

$$\left. \mathsf{C.} \left| egin{matrix} z - z_1 & ar{z} - ar{z}_1 \ z_2 - z_1 & ar{z}_2 - ar{z}_1 \end{array}
ight| = 0$$

D.
$$arg(z-z_1)=arg(z_2-z_1)$$

Answer: A:B:C::D

Watch Video Solution

21. about to only mathematics

A. 0

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

22. If lpha and eta are the roots of the equation x^2 -x+1=0 , then

$$lpha^{2009} + eta^{2009} = \,$$
 (1) 4 (2) 3 (3) 2 (4) 1

A. -1

B. 1

C. 2

D. -2

Answer: B

$$|z-1| = |z+1| = |z-i|$$
 is

- **A.** 1
- B. 2
- $\mathsf{C}.\,\infty$
- D. 0

Answer: A

- **24.** If z is any complex number satisfying $|z-3-2i| \leq 2$, where $i=\sqrt{-1}$, then the minimum value of |2z-6+5i|, is
 - Watch Video Solution

25. The set
$$\left\{Re\left(\frac{2iz}{1-z^2}\right): zisacomplex
umber, |z|=1, z=\pm 1\right\}$$
 is _____.

A.
$$(-\infty, -1] \cap [1, \infty)$$

B.
$$(\,-\infty,0)\cup(0,\infty)$$

$$\mathsf{C.}\,(\,-\infty,\,-1]\cup[1,\infty)$$

D.
$$[2,\infty)$$

Answer: A

Watch Video Solution

26. The maximum value of
$$\left|arg\left(\frac{1}{1-z}\right)\right|f \text{ or } |z|=1, z
eq 1$$
 is given by.

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$

C.
$$\frac{\pi}{-}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{2\pi}{3}$$

Answer: C

Watch Video Solution

27. about to only mathematics

Watch Video Solution

28. Let
$$lpha$$
 and eta be real numbers and z be a complex number. If $z^2+\alpha z+\beta=0$ has two distinct non-real roots with Re(z)=1, then it is

necessary that

A.
$$eta\in(\,-1,0)$$

$$\operatorname{B.}|\beta|=1$$

C.
$$eta \in (1,\infty)$$

D.
$$eta \in (0,1)$$

Answer: C

Watch Video Solution

29. If ω is a cube root of unity and $(1+\omega)^7=A+B\omega$ then find the values of A and B`

- A. (1,1)
- B. (1,0)
- C. (-1,1)
- D. (0,1)

Answer: A

Watch Video Solution

30. Let z be a complex number such that the imaginary part of z is nonzero and $a=z^2+z+z+1$ is real. Then a cannot take the value.

D.
$$\frac{3}{4}$$

Answer: D

Watch Video Solution

31. If $z \neq 1$ and $\dfrac{z^2}{z-1}$ is real, then the point represented by the complex number z lies

A. on a circle with centre at the origin

B. either on the real axis or on a circle not passing through the origin

C. on the imaginary axis

D. either on the real axis or on a circle passing through the origin

Answer: D

32. If z is complex number of unit modulus and argument
$$\theta$$
 then arg $\left(\frac{1+z}{1+\bar{z}}\right)$ equals

A.
$$rac{\pi}{2}- heta$$

B.
$$heta$$

C.
$$\pi- heta$$

$D. - \theta$

Answer: B

33.

Watch Video Solution

 $\left(x-x_{0}
ight)^{2}+\left(y-y_{0}
ight)^{2}=r^{2} \,\, ext{and} \,\, \left(x-x_{0}
ight)^{2}+\left(y-y_{0}
ight)^{2}=4r^{2}$ respectively. If $z_0=x_0+iy_0$ satisfies the equation $\left.2|z_0|^2=r^2+2\right.$ then $|\alpha|$ is equal to

Let complex numbers α and $\frac{1}{\alpha}$ lies on

circle

A.
$$\frac{1}{\sqrt{2}}$$

B. $\frac{1}{2}$

C.
$$\frac{1}{\sqrt{7}}$$
D.
$$\frac{1}{3}$$

Answer: C

Watch Video Solution

34. Let w =
$$(\frac{\sqrt{3}}{2} + \frac{\iota}{2})$$
 and $P = \{w^n : n = 1, 2, 3, \dots \}$, Further

$$H_1=\left\{z\in C\!:\!Re(z)>rac{1}{2}
ight\} ext{ and } H_2=\left\{z\in c\!:\!Re(z)<-rac{1}{2}
ight\}$$
 Where C is set of all complex numbers. If $z_1\in P\cap H_1, z_2\in P\cap H_2$ and

O represent the origin, then $\angle Z_1OZ_2$ =

A.
$$\frac{\pi}{2}$$

$$\mathsf{B.}\;\frac{\pi}{6}$$

C.
$$\frac{2\pi}{3}$$

D.
$$\frac{5\pi}{6}$$

Answer: C

Watch Video Solution

35. Express in the form of complex number if $z=i^{-39}$

Watch Video Solution

36. Express in the form of complex number $\left(1-i\right)^4$

Watch Video Solution

37. If z is a complex number such that $|z| \geq 2$, then the minimum value of $\left|z+\frac{1}{2}\right|$ (1) is equal to $\frac{5}{2}$ (2) lies in the interval (1, 2) (3) is strictly greater than $\frac{5}{2}$ (4) is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$

A. is strictly greater than
$$\frac{5}{2}$$

B. is equal to
$$\frac{5}{2}$$

C. is strictly greater than
$$\frac{3}{2}$$
 but less than $\frac{5}{2}$

D. lies in the interval (1,2)

Answer: D

Watch Video Solution

38. A complex number z is said to be unimodular if |z|=1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1z_2^-}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a

A. circle of radius z

B. circle of radius $\sqrt{2}$

C. straight line parallel to X-axis

D. straight line parallel to y-axis

Answer: A

Watch Video Solution

, then the set of possible value(s) of n is are

39. Let $\omega \neq 1$ be a complex cube root of unity. If $\left(3-3\omega+2\omega^{2}
ight)^{4n+3}+\left(2+3\omega-3\omega^{2}
ight)^{4n+3}+\left(-3+2\omega+3\omega^{2}
ight)^{4n+3}=0$

A. 1

B. 2

C. 3

D. 4

Answer: A::B::D

40. For any integer k, let $\alpha_k = \frac{\cos(k\pi)}{7} + i\frac{\sin(k\pi)}{7}, where i = \sqrt{-1}$.

Value of the expression
$$rac{\sum k=112|lpha_{k+1}-lpha_k|}{\sum k=13|lpha_{4k-1}-lpha_{4k-2}|}$$
 is

Watch Video Solution

41. A value of heta for which $\dfrac{2+3i\sin{ heta}}{1-2i\sin{ heta}}$ purely imaginary, is

A.
$$\frac{\pi}{6}$$

$$\mathsf{B.}\sin^{-1}\!\left(\frac{\sqrt{3}}{4}\right)$$

$$\mathsf{C.}\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

D.
$$\frac{\pi}{3}$$

Answer: C

42. Let $0 \neq a, 0 \neq b \in R$. Suppose

$$S=igg\{z\in C, z=rac{1}{a+ibt}t\in R, t
eq 0igg\}, \qquad ext{where} \qquad i=\sqrt{-1}. \qquad ext{If}$$

z=x+iy and $z\in S$, then (x,y) lies on

A. the circle with radius $\dfrac{1}{2a}$ and centre $\left(\dfrac{1}{2a},0\right)$ for a>0,b
eq 0

B. the circle with radius $-rac{1}{2a}$ and $\operatorname{centre}igg(-rac{1}{2a},0igg)$ for

C. the X-axis for $a \neq 0, b = 0$

 $a < 0, b \neq 0$

D. the Y-axis for a=0, b
eq 0

Answer: A::C::D

Watch Video Solution

43. Let ω be a complex number such that $2\omega+1=z$ where $z=\sqrt{-3}$. If $|(1,1,1),\,(1,\,-\omega^2-1,\omega^2),\,(1,\omega^2,\omega^7)|=3k$, then k is equal to

A. 1

C. z

D. -1

Answer: B

Watch Video Solution

Complex Number Exercise 8

1. Match the statements in Column I with those in Column II.

Column I		Column II	
(A)	The set of points z satisfying $ z - i z = z + i z $, where $i = \sqrt{-1}$, is contained in or equal to	(p)	an ellipse with eccentricity 4/5
(B)	The set of points z satisfying $ z + 4 + z - 4 = 10$ is contained in or equal to	(q)	the set of points z satisfying Im $(z) = 0$
(C)	If $ w = 2$, the set of points $z = w - \frac{1}{w}$ is contained in or equal to	(r)	the set of points z satisfying $ \operatorname{Im}(z) \le 1$
(D)	If $ w = 1$, the set of points $z = w + \frac{1}{w}$ is contained in or equal to	(s)	the set of points satisfying $ \text{Re}(z) \le 2$
		(t)	the set of points z satisfying $ z \le 3$

2. Let $z_k=\cos\left(rac{2k\pi}{10} ight)+i\sin\left(rac{2k\pi}{10} ight)$,k=1,2,...,9. Then match the column

Column I			Column II		
(A)	For each z_k there exists a z_j such that $z_k \cdot z_j = 1$	(1)	True		
(B)	There exists a $k \in \{1, 2,, 9\}$ such that $z_1 \cdot z = z_k$ has no solution z in the set of complex numbers	(2)	False		
(C)	$\frac{ 1-z_1 1-z_2 \dots 1-z_9 }{10} $ equals to	(3)	1		
(D)	$1 - \sum_{k=1}^{9} \cos\left(\frac{2k\pi}{10}\right) \text{ equals to}$	(4)	2		

A.
$$\begin{pmatrix} A & B & C & D \\ (a) & 1 & 2 & 4 & 3 \end{pmatrix}$$

B.
$$\begin{pmatrix} A & B & C & D \\ (b) & 2 & 1 & 3 & 4 \end{pmatrix}$$

c.
$$\begin{pmatrix} A & B & C & D \\ (b) & 1 & 2 & 3 & 4 \end{pmatrix}$$

D.
$$\begin{pmatrix} A & B & C & D \\ (b) & 2 & 1 & 4 & 3 \end{pmatrix}$$

Answer: C

