© 'doubtnut

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

COORDINATE SYSTEM AND COORDINATES

Example

> 1. Draw the polar coordinates $\left(2, \frac{\pi}{3}\right),\left(-2, \frac{\pi}{3}\right),\left(-2,-\frac{\pi}{3}\right)$ and $\left(2,-\frac{\pi}{3}\right)$
on the plane.

D Watch Video Solution
2. Draw the polar oordinate $\left(3, \frac{5 \pi}{4}\right)$ on the plane.

- Watch Video Solution

3. Find the cartesian coordinates of the points whose polar coordinates are $\left(5, \pi-\tan ^{-1}\left(\frac{4}{3}\right)\right)$

D Watch Video Solution

4. Find the cartesian coordinates of the points whose

$\left(5 \sqrt{2}, \frac{\pi}{4}\right)$

- Watch Video Solution

5. Find the polar coordinates of the points whose
cartesian coordinates are
$(-2,-2)$

- Watch Video Solution

6. Find the polar coordinates of the points whose
cartesian coordinates are
$(-3,4)$
7. Transform to Cartesian coordinates the equations: $r^{2}=a^{2} \cos 2 \theta$

Watch Video Solution

8. Transform the equation $x^{2}+y^{2}=a x$ into polar form.
9. Prove that the distance of the point ($a \cos \alpha, a \sin \alpha)$ from the origin is independent of α

- Watch Video Solution

10. The distance between the points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ where $\mathrm{a}>0$

- Watch Video Solution

11. If $P(x, y)$ is a point equidistant from the points $A(6$,
$-1)$ nad $B(2,3)$, show that $x-y-3$.
12. Using distance formula, show that the points $(1,5),(2,4)$ and $(3,3)$ are collinear.

- Watch Video Solution

13. An equilateral triangle has one vertex at (0,0) and another at $(3, \sqrt{3})$. What are the coordinates of the third vertex?

D Watch Video Solution
14. By using the concept of slope, show that the points ($-2,-10,(4,0),(3,3)$ and $(-3,2)$ are the vertices f a parallelogram.

D Watch Video Solution

15. Let the opposite angular points of a square be $(3,4)$ and $(1,-1)$. Find the coordinates of the remaining angular points.

D Watch Video Solution

16. Find the circumcentre of the triangle whose vertices are $(-2,-3),(-1,0)$ and (7, -6). Also find the radius of the circumircle.

D Watch Video Solution

17. If the segments joining the points $A(a, b)$ and $B(c, d)$ subtends an angle θ at the origin, prove that : $\theta=\frac{a c+b d}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}$

- Watch Video Solution

18. Show that the triangle, the coordinates of whose verticles are given by integers, can never be an equilateral triangle.

D Watch Video Solution

19. In any triangle $A B C$, prove that
$A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$, where D is the midpoint of $B C$.
20. Let $A B C D$ be a rectangle and P be any point in its plane. Show that $P A^{2}+P C^{2}=P B^{2}+P D^{2}$ using coordinate geometry.

D Watch Video Solution

21. Prove that the points $(0,0),\left(3, \frac{\pi}{2}\right)$ and $\left(3, \frac{\pi}{6}\right)$ are the vertices of an equilateral triangle.

- Watch Video Solution

22. Find the coordinates of the point which divides the line segment joining the points $A(5,-2)$ and
$B(9,6)$ in the ratio $3: 1$

D Watch Video Solution

23. Find the lengths of the medians of a triangle whose vertices are $A(-1,3), B(1,-1)$ and $C(5,1)$.

- Watch Video Solution

24. Determine the ratio in which the straight line $x-y-2=0$ divides the line segment joining
$(3,-1)$ and $(8,9)$.
25. The coordinates of three consecutive vertices of a parallelogram are (1, 3), ($-1,2$) and (2,5). Then find the coordinates of the fourth vertex.

- Watch Video Solution

26. In what ratio does the x-axis divide the line segment joining the points $(2,-3)$ and $(5,6)$?
27. If the coordinates of the mid-points of the sides of a triangle are $(1,2)(0,-1) \operatorname{and}(2,-1)$. Find the coordinate of its vertices.

D Watch Video Solution

28. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

29. The line segment joining the mid-points of any two sides of a triangle in parallel to the third side and
equal to half of it.

D Watch Video Solution

30. Find the coordinates of a point which divides externally the line joining $(1,-3)$ and $(-3,9)$ in the ratio 1 : 3.

- Watch Video Solution

31. The line segment joining $A(6,3)$ to $B(-1,-4)$
is doubled in length by having its length added to each end , then the ordinates of new ends are
32. Using section formula show that the points (1,-1),
$(2,1)$ and $(4,5)$ are collinear.

D Watch Video Solution

33. Find the ratio in which the point $(2, y)$ divides the
line segment $(4,3)$ and $(6,3)$. hence find the value of y

D Watch Video Solution
34. Find the harmonic conjugates of the point $R(5,1)$ with respect to the points $P(2,10)$ and $Q(6,-2)$

D Watch Video Solution

35. Two vertices of a triangle are $(-1,4)$ and $(5,2)$. If its centroid is $(0,-3)$, find the third vertex.

Watch Video Solution

36. The vertices of a triangle are (1, 2), (h, -3) and (-4,
k). Find the value of $\sqrt{\left\{(h+k)^{2}+(h+3 k)^{2}\right\}}$. If the centroid of the triangle be at point ($5,-1$).

- Watch Video Solution

37. If $D(-2,3), E(4,-3)$ and $F(4,5)$ are the mid-points of the sides $B C, C A$ and $A B$ of the sides $B C, C A$ and $A B$ of triangle ABC , then find $\sqrt{\left(|A G|^{2}+|B G|^{2}-|C G|^{2}\right)}$ where, G is the centroid of $\triangle A B C$.

- Watch Video Solution

38. about to only mathematics
39. If G be the centroid of a triangle $A B C$, prove that, \hat{A}
$\mathrm{AB} 2+\mathrm{BC} 2+\mathrm{CA} 2=3(\mathrm{GA} 2+\mathrm{GB} 2+\mathrm{GC} 2)$

- Watch Video Solution

40. The vertices of a triangle are ($1, a),(2, b)$ and
$\left(c^{2}-3\right)$
Find the condition that the centroid may lie on the X axis.
41. The vertices of a triangle are
$(1, a),(2, b)$ and $\left(c^{2},-3\right)$.
(i) Prove that its
centroid can not lie on the y-axis. (ii) Find the condition that the centroid may lie on the x-axis for any value of $a, b, c \in \mathbb{R}$.

D Watch Video Solution

42. Find the coordinates of incentre of the triangle whose are (4, -2), (-2, 4) and (5, 5).

Watch Video Solution

43. If $\left(\frac{3}{2}, 0\right),\left(\frac{3}{2}, 6\right)$ and $(-1,6)$ are mid-points of the sides of a triangle, then find

Incentre of the triangle

D Watch Video Solution

44. If $\left(\frac{3}{2}, 0\right),\left(\frac{3}{2}, 6\right)$ and $(-1,6)$ are mid-points of the sides of a triangle, then find

Centroid of the triangle

- Watch Video Solution

45. If a vertex of a triangle be $(1,1)$ and the middle points of the sides through it be $(-2,3)$ and $(5,2)$, find the other vertices.

D Watch Video Solution

46. If G is the centroid and l the in-centre of the triangle, with vertices $A(-36,7), B(20,7)$ and $C(0,-8)$, then, find the value of $G l$
47. If the coordinates of the mid-points of the sides of a triangle are $(1,1),(2,-3)$ and $(3,4)$, find the vertices of the triangle.

D Watch Video Solution

48. In a $\triangle A B C$ with vertices $\mathrm{A}(1,2), \mathrm{B}(2,3)$ and $\mathrm{C}(3,1)$
and
$\angle A=\angle B=\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right), \angle C=\cos ^{-1}\left(\frac{4}{5}\right)$,
then find the circumentre of $\triangle A B C$.

Watch Video Solution
49. Find the circumcentre of the triangle whose vertices are (2, 2), (4, 2) and (0, 4).

D Watch Video Solution

50. Find the circumcentre of triangle $A B C$ if $A(7,4), B(3,-2)$ and $\angle C=\frac{\pi}{3}$.

D Watch Video Solution

51. Find the orthocentre of $\triangle A B C$ if

$$
A \equiv(0,0), B \equiv(3,5) \text { and } C \equiv(4,7)
$$

52. If a triangle has it's orthocenter at $(1,1)$ and circumcentre ($3 / 2,3 / 4$) then centroid is:

D Watch Video Solution

53. The vertices of a triangle are $A\left(x_{1}, x_{1} \tan \theta_{1}\right), B\left(x_{2}, x_{2} \tan \theta_{2}\right) \operatorname{and} C\left(x_{3}, x_{3} \tan \theta_{3}\right)$. if the circumcentre of $\operatorname{Delta} A B C$ coincides with the origin and $H(x, y)$ is the orthocentre, show that $\frac{y}{x}=\frac{\sin \theta_{1}+s \int h \eta_{2}+\sin \theta_{3}}{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}$
54. The coordinates of A, B, C are
$(6,3),(-3,5)$ and $(4,-2)$ respectively and P is any point (x, y). Show that the ratio of the areas of triangles $P B C$ and $A B C$ is $\left|\frac{x+y-2}{7}\right|$.

D Watch Video Solution

55. Find the area of the pentagon whose vertices are
$A(1,1), B(7,21), C(7,-3), D(12,2), \quad$ and
$E(0,-3)$

D Watch Video Solution

56. Prove that the points $(a, 0),(0, b)$ and $(1,1)$ are collinear if, $\frac{1}{a}+\frac{1}{b}=1$.

D Watch Video Solution

57. Prove that the coordinates of the vertices of an equilateral triangle can not all be rational.

- Watch Video Solution

58. If the coordinates of two points A and B are
$(3,4)$ and $(5,-2)$ respectively. Find the coordinates of any point P, if

D Watch Video Solution

59. Find the area of the triangle formed by the straight lines $7 x-2 y+10=0,7 x+2 y-10=0$ and $9 x+y+2=0$ (without sloving the vertices of the triangle).

- Watch Video Solution

60. If Δ_{1} is the area of the triangle with vertices
$(0,0),(a \tan \alpha, b \cot \alpha),(a \sin \alpha, b \cos \alpha), \Delta_{2}$ is the area of the triangle with vertices
$\left(a \sec ^{2} \alpha, b \operatorname{cosec} 2\right),\left(a+a \sin ^{2} \alpha, b+b \cos ^{2} \alpha\right)$
and Δ_{3} is the area of the triangle with vertices
$(0,0),(a \tan \alpha,-b \cot \alpha),(a \sin \alpha, b \cos \alpha)$. Show that there is no value of α for which Δ_{1}, Δ_{2} and Δ_{3} are in GP.

- Watch Video Solution

61. Find the locus of a point which moves such that its
distance from the origin is three times its distance from x-axis.
62. The locus of the moving point P such that $2 P A=3 P B$, where A is (0.0) and B is $(4,-3)$, is

(D) Watch Video Solution

63. The sum of the squares of the distances of a moving point from two fixed points $(a, 0)$ and $(-a, 0)$ is equal to a constant quantity $2 c^{2}$. Find the equation to its locus.

- Watch Video Solution

64. A point moves so that the sum of its distances from $(a e, 0) \operatorname{and}(-a e, 0)$ is $2 a$, prove that the equation to its locus is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $b^{2}=a^{2}\left(1-e^{2}\right)$.

- Watch Video Solution

65. Find the equation of the locus of a point which moves so that the difference of its distances from the points $(3,0)$ and $(-3,0)$ is 4 units.
66. The ends of the hypotenuse of a right angled triangle are $(0,6)$ and $(6,0)$. Find the locus of the third vertex.

(D) Watch Video Solution

67. Find the equation to the locus of a point which moves so that the sum of its distances from $(3,0)$ and $(-3,0)$ is less than 9.

D Watch Video Solution

68. Find the locus of a point whose coordinate are given by $x=t+t^{2}, y=2 t+1$, where t is variable.

- Watch Video Solution

69. A stick of length 10 units rests against the floor and a wall of a room. If the stick begins to slide ontfloor then the locus of its middle point is:

- Watch Video Solution

70. Find the locus of the point of intersection of lines
$x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b(\alpha$ is
a variable).

- Watch Video Solution

71. A variable line cuts X-axis at A, Y-axix at B, where
$\mathrm{OA}=\mathrm{a}, \mathrm{OB}=\mathrm{b}$ (O as origin) such that $a^{2}+b^{2}=1$.
Find the locus of
centroid of $\triangle O A B$

D Watch Video Solution

72. A variable line cuts x-axis at A, y-axis at B where
$O A=a, O B=b$ (O as origin) such that then the locus of circumcentre of $\triangle O A B$ is-

D Watch Video Solution

73. Two points PandQ are given. R is a variable point on one side of the line $P Q$ such that
$\angle R P Q-\angle R Q P$ is a positive constant 2α. Find the locus of the point R.

- Watch Video Solution

74. Find the equation of the curve
$2 x^{2}+y^{2}-3 x+5 y-8=0$ when the origin is
transferred to the point $(-1,2)$ without changing the direction of axes.

- Watch Video Solution

75. The equation of curve referred to the new axes, axes retaining their directions, and origin $(4,5)$ is $X^{2}+Y^{2}=36$. Find the equation referred to the original axes.

- Watch Video Solution

76. Shift the origin to a suitable point so that the equation $y^{2}+4 y+8 x-2=0$ will not contain a term in y and the constant term.
77. At what point the origin be shifted, if the coordinates of a point $(-1,8)$ become $(-7,3)$?

- Watch Video Solution

78. If the axes are turned through 45°, find the transformed form of the equation $3 x^{2}+3 y^{2}+2 x y=2$.
79. Prove that if the axes be turned through $\frac{\pi}{4}$ the equation $x^{2}-y^{2}=a^{2}$ is transformed to the form $x y=\lambda$. Find the value of λ.

D Watch Video Solution

80. Though what angle should the axes be rotated so
that the equation $9 x^{2}-2 \sqrt{3} x y+7 y^{2}=10$ may be changed to $3 x^{2}+5 y^{2}=5$?

D Watch Video Solution

81. If (x, y) and (x, y) are the coordinates of the same point referred to two sets of rectangular axes with the same origin and it $u x+v y$, where u and v are independent of $x a n d y$, becomes $V X+U Y$, show that $u^{2}+v^{2}=U^{2}+V^{2}$.

D Watch Video Solution

$\begin{array}{lll}\text { 82. What does the } & \text { equation } \\ 2 x^{2}+4 x y-5 y^{2}+20 x-22 y-14=0 & \text { become }\end{array}$
when referred to the rectangular axes through the
point $(-2,-3)$, the new axes being inclined at an angle at 45° with the old axes?

© Watch Video Solution

83. Given the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=1$.

Through what angle should the axes be rotated so that the term $x y$ is removed from the transformed equation.

- Watch Video Solution

84. Find λ if $(\lambda, \lambda+1)$ is an interior point of $\triangle A B C$ where, $A \equiv(0,3), B \equiv(-2,0)$ and $C \equiv(6,1)$.
85. Prove that the locus of the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t), \quad$ and $\quad(1,0)$, where t is a parameter, is circle.

$$
\begin{aligned}
& \text { A. }(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2} \\
& \text { B. }(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2} \\
& \text { C. }(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2} \\
& \text { D. }(3 x+1)^{2}+3 y^{2}=a^{2}-b^{2}
\end{aligned}
$$

Answer: B

86. Find the incentre of the triangle with vertices $A 91, \sqrt{3}), B(0,0)$ and $C(2,0)$.
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: D

D Watch Video Solution
87. The orthocentre of the triangle with vertices $(0,0),(3,4), \quad$ and $(4,0)$ is $\left(3, \frac{5}{4}\right)$ (b) $(3,12)$
$\left(3, \frac{3}{4}\right)(\mathrm{d})(3,9)$
A. $\left(3, \frac{5}{4}\right)$
B. $(3,12)$
C. $\left(3, \frac{3}{4}\right)$
D. $(3,9)$

Answer: C

88. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in GP, with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
A. lie on a straight line
B. lie on an ellipse
C. lie on a circle
D. are vertices of a triangle

Answer: A
89. Let A be the image of $(2,-1)$ with respect to Y - axis

Without transforming the oringin, coordinate axis are turned at an angle 45° in the clockwise direction.

Then, the coordiates of A in the new system are

$$
\begin{aligned}
& \text { A. }\left(-\frac{1}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right) \\
& \text { B. }\left(-\frac{3}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \\
& \text { C. }\left(\frac{1}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) \\
& \text { D. }\left(\frac{3}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Answer: A

90. Let S_{1}, S_{2}, \ldots be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the lengh of a diagonal of S_{n+1}. If the length of a side of S_{1} is 10 cm and the area of S_{n} less than 1 sq cm . Then, find the value of n.
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D
91. If all the vertices of a triangle have integral coordinates, then the triangle may be (a) right-angle
(b) equilateral (c) isosceles (d) none of these
A. right angled
B. equilateral
C. isosceles
D. scalene

Answer: A::C::D
92. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$. The coordinates of vertex A can be

D Watch Video Solution

93. If $A\left(\alpha, \frac{1}{\alpha}\right), B\left(\beta, \frac{1}{\beta}\right), C\left(\gamma, \frac{1}{\gamma}\right)$ be the
vertices of a $\triangle A B C$, where α, β are the roots of
$x^{2}-6 a x+2=0, \beta, \gamma$ are the roots of
$x^{2}-6 b x+3=0$ and γ, α are the roots of $x^{2}-6 c x+6=0, \mathrm{a}, \mathrm{b}, \mathrm{c}$ being positive.

The coordinates of orthocentre of $\triangle A B C$ is
A. 1
B. 2
C. 3
D. 5

Answer: B

- Watch Video Solution

94. If $A\left(\alpha, \frac{1}{\alpha}\right), B\left(\beta, \frac{1}{\beta}\right), C\left(\gamma, \frac{1}{\gamma}\right)$ be the
vertices of a $\Delta A B C$, where α, β are the roots of
$x^{2}-6 a x+2=0, \beta, \gamma$ are the roots of
$x^{2}-6 b x+3=0$ and γ, α are the roots of
$x^{2}-6 c x+6=0, \mathrm{a}, \mathrm{b}, \mathrm{c}$ being positive.
The coordinates of orthocentre of $\triangle A B C$ is
A. $\left(1, \frac{11}{9}\right)$
B. $\left(\frac{1}{3}, \frac{11}{18}\right)$
C. $\left(2, \frac{11}{18}\right)$
D. $\left(\frac{2}{3}, \frac{11}{19}\right)$

Answer: C

D Watch Video Solution

95. If $A\left(\alpha, \frac{1}{\alpha}\right), B\left(\beta, \frac{1}{\beta}\right), C\left(\gamma, \frac{1}{\gamma}\right)$ be the
vertices of a $\triangle A B C$, where α, β are the roots of
$x^{2}-6 a x+2=0, \beta, \gamma$ are the roots of
$x^{2}-6 b x+3=0$ and γ, α are the roots of $x^{2}-6 c x+6=0, \mathrm{a}, \mathrm{b}, \mathrm{c}$ being positive.

The coordinates of orthocentre of $\triangle A B C$ is

$$
\begin{aligned}
& \text { А. }\left(-\frac{1}{2},-2\right) \\
& \text { В. }\left(-\frac{1}{3},-3\right) \\
& \text { С. }\left(-\frac{1}{5},-5\right) \\
& \text { D. }\left(-\frac{1}{6},-6\right)
\end{aligned}
$$

Answer: D

96. If the points $(-2,0),\left(-1, \frac{1}{\sqrt{3}}\right)$ and
$(\cos \theta, \sin \theta)$ are collinear, then the number of value of $\theta \in[0,2 \pi]$ is

(D) Watch Video Solution

97. Statement I : The area of the triangle formed by
the points $A(100,102), B(102,105), C(104,107)$ is same
as the area formed by $\mathrm{A}^{\prime}(0,0), \mathrm{B}^{\prime}(2,3), \mathrm{C}^{\prime}(4,5)$.
Statement II : The area of the triangle is constant wih respect to translation.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for

Statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation for

Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

98. Statement I: If centroid and circumcentre of a
triangle are known its orthocentre can be found
Statement II : Centroid, orthocentre and circumcentre of a triangle are collinear.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for

Statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation for

Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: B

D Watch Video Solution

99. The four points $A(\alpha, 0), B(\beta, 0), C(\gamma, 0)$ and
$D(\delta, 0)$ are such that α, β are the roots of equation $a x^{2}+2 h x+b=0$, and γ, δ are the roots of equation $a^{\prime} x^{2}+2 h^{\prime} x+b^{\prime}=0$. Show that the sum of the ratios in which C and D divide $A B$ is zero, if $a b^{\prime}+a^{\prime} b=2 h h^{\prime}$.
100. If m_{1} and m_{2} are roots of equation
$x^{2}+(\sqrt{3}+2) x+\sqrt{3}-1=0$ the the area of the triangle formed by lines $y=m_{1} x, y=m_{2} x, y=c$ is:

D Watch Video Solution

101. x coordinates of two points B and C are the roots of equation $x^{2}+4 x+3=0$ and their y coordinates
are the roots of equation $x^{2}-x-6=0$. If x
coordinate of B is less than the x coordinate of C and
y coordinate of B is greater than the y coordinate of

C and coordinates of a third point A be $(3,-5)$, find the length of the bisector of the interior angle at A.

- Watch Video Solution

102. The distance between the two parallel lines is 1
unit. A point A is chosen to lie between the lines at a distance ' d ' from one of them Triangle ABC is equilateral with B on one line and C on the other parallel line. The length of the side of the equilateral triangle is
103. In a $A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)$,
point A lies on the line $y=2 x+3$, where α, β are integers, and the area of the triangle is S such that $[S]=2$ where [.] denotes the greatest integer function. Then the possible coordinates of A can be $(-7,-11)(-6,-9)(2,7)(3,9)$

- Watch Video Solution

104. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S.

If a, b, c and d denote the lengths of sides of the quadrilateral, prove that $2 \leq a_{2}+b_{2}+c_{2}+d_{2} \leq 4$

(Watch Video Solution

105. The circumcentre of a triangle having vertices
$A(a, a \tan \alpha), B(b, b \tan \beta), C(c, c \tan \gamma)$ is at origin, where $\alpha+\beta+\gamma=\pi$. Then the orthocentre lies on

- Watch Video Solution

Exercise For Session 1

1. The polar coordinates of the point whose cartesian
coordinates are $(-1,-1)$ is
A. $\left(\sqrt{2}, \frac{\pi}{4}\right)$
B. $\left(\sqrt{2}, \frac{3 \pi}{4}\right)$
C. $\left(\sqrt{2},-\frac{\pi}{4}\right)$
D. $\left(\sqrt{2},-\frac{3 \pi}{4}\right)$

Answer: D

- Watch Video Solution

2. The cartesian coordinates of the point whose polar
coordinates are $\left(13, \pi-\tan ^{-1}\left(\frac{5}{12}\right)\right)$ is
A. $(12,5)$
B. $(-12,5)$

C. $(-12,-5)$

D. $(12,-5)$

Answer: B

(D) Watch Video Solution

3. The transform equation of $r^{2} \cos ^{2} \theta=a^{2} \cos 2 \theta$ to cartesian form is $\left(x^{2}+y^{2}\right) x^{2}=a^{2} \lambda$, then value of λ is
A. $y^{2}-x^{2}$
B. $x^{2}-y^{2}$
C. $x y$

Answer: B

D Watch Video Solution

4. The coordinates of P^{\prime} in the figure is

A. $\left(3, \frac{\pi}{3}\right)$
B. $\left(3,-\frac{\pi}{3}\right)$
C. $\left(-3,-\frac{\pi}{3}\right)$
D. $\left(-3, \frac{\pi}{3}\right)$

Answer: B

D Watch Video Solution
5. The cartesian coordinates of the point Q in the figure is

A. $(\sqrt{3}, 1)$
B. $(-\sqrt{3}, 1)$
C. $(-\sqrt{3},-1)$
D. $(\sqrt{3},-1)$

Answer: B
6. A point lies on X-axis at a distance 5 units from Y axis. What are its coordinates?

- Watch Video Solution

7. A point lies on Y-axis at a distance 4 units from X axis. What are its coordinates?

D Watch Video Solution

8. A point lies on negative direction of X-axis at a distance 6 units from Y-axis. What are its coordinates
9. Transform the equation $\mathrm{y}=\mathrm{x} \tan \alpha$ to polar form.

- Watch Video Solution

10. Transform the equation $r=2 a \cos \theta$ to cartesian
form.

- Watch Video Solution

Exercise For Session 2

1. If the distance between the points $(a, 2)$ and $(3,4)$ be 8 , then a equals to
A. $2+3 \sqrt{3}$
B. $2-3 \sqrt{15}$
C. $2 \pm 3 \sqrt{15}$
D. $3 \pm 2 \sqrt{15}$

Answer: D

(D) Watch Video Solution

2. The three points $(-2,2),(8,-2)$ and $(-4,-3)$ are the
A. an isosceles triangle
B. an equilateral triangle
C. a right angled triangle
D. None of these

Answer: C

D Watch Video Solution
3. The distance between the points $\left(3, \frac{\pi}{4}\right)$ and $\left(7, \frac{5 \pi}{4}\right)$
A. 8
B. 10
C. 12
D. 14

Answer: B

D Watch Video Solution
4. Let $A(6,-1), B(1,3)$ and $C(x, 8)$ be three points such that $A B=B C$ then the value of x are
A. 3,5
B. $-3,5$
C. $3,-5$
D. $-3,-5$

Answer: B

- Watch Video Solution

5. The points $(a+1,1),(2 a+1,3)$ and $(2 a+2,2 a)$ are collinear if
A. $a=-1,2$
B. $a=\frac{1}{2}, 2$
C. $a=2,1$
D. $a=-\frac{1}{2}, 2$

Answer: D

D Watch Video Solution

6. Let $A=(3,4)$ and B is a variable point on the
lines $|x|=6$. IF $A B \leq 4$, then find the number of position of B with integral coordinates.
A. 5
B. 6
C. 10
D. 12

(D) Watch Video Solution

7. The number of points on X-axis which are at a distance c units $(c<3)$ from $(2,3)$ is
A. 1
B. 2
C. 0
D. 3

Answer: C
8. The point on the axis of y which its equidistant
from ($-1,2$) and (3, 4), is
A. $(0,3)$
B. $(0,4)$
C. $(0,5)$
D. $(0,-6)$

Answer: C

D Watch Video Solution
9. Find the distance between the points $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$, where t_{1} and t_{2} are the roots of the equation $x^{2}-2 \sqrt{3} x+2=0$ and $a>0$.

D Watch Video Solution

10. If P and Q are two points whose coordinates are $\left(a t^{2}, 2 a t\right) a n d\left(\frac{a}{t^{2}}, \frac{2 a}{t}\right)$ respectively and S is the
point ($\mathrm{a}, \mathrm{0}$). Show that $\frac{1}{S P}+\frac{1}{s Q}$ is independent of t.
11. Show that the points $(3,4),(8,-6)$ and $(13,9)$ are the vertices of a right angled triangle.

- Watch Video Solution

12. Show that four points
$(0,-1),(6,7),(-2,3) \operatorname{and}(8,3)$ are the vertices of a rectangle. Also, find its area.

- Watch Video Solution

13. Find the circumcentre and circumradius of the triangle whose vertices are $(-2,3),(2,-1)$ and (4,

D Watch Video Solution

14. The vertices of a triangle are
$A(1,1), B(4,5)$ and $C(6,13)$. Find $\cos A$.

D Watch Video Solution
15. The opposite vertices of a square are $(2,6)$ and (0 ,
$-2)$. Find the coordinates of the other vertices.
16. If the point (x, y) is equidistant from the points $\left(a_{b}, b-a\right)$ and $(a-b, a+b)$, prove that $b x=a y$.

D Watch Video Solution

17. if a and bbetween 0 and 1 such that the points $(a, 1) \cdot(1, b)$ and $(0, O)$ from If 'a' and 'b' are real numbers an equilateral triangle then the values of ' a ' and 'b' respectively
18. An equilateral triangle has two vertices at the points $(3,4)$ and $(-2,3)$, find the coordinates of the third vertex.

D Watch Video Solution

19. If P be any point in the plane of square $A B C D$, prove that
$P A^{2}+P C^{2}=P B^{2}+P D^{2}$

D Watch Video Solution

1. The coordinates of the middle points of the sides of a triangle are (4, 2), (3, 3) and (2, 2), then coordinates of centroid are
A. $(3,7 / 3)$
B. $(3,3)$
C. $(4,3)$
D. $(3,4)$

Answer: A

- Watch Video Solution

2. The incentre of the triangle whose vertices are (-36,
7), $(20,7)$ and $(0,-8)$ is
A. $(0,-1)$
B. $(-1,0)$
C. $(1,1)$
D. $\left(\frac{1}{2}, 1\right)$

Answer: B
3. If the orthocentre and centroid of a triangle are (-3 ,
5) and (3,3) then its circumcentre is
A. $(6,2)$
B. $(3,-1)$
C. $(-3,5)$
D. $(-3,1)$

Answer: A

- Watch Video Solution

4. An equilateral triangle has each side to a. If the coordinates of its vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ then the square of the determinat $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ equals
A. $3 a^{4}$
B. $\frac{3 a^{4}}{2}$
C. $\frac{3}{4} a^{4}$
D. $\frac{3}{8} a^{4}$

Answer: C

5. The vertices of a triangle are $\mathrm{A}(0,0), \mathrm{B}(0,2)$ and $\mathrm{C}(2$,

0). The distance between circumcentre and orthocentre is
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. 2
D. $\frac{1}{2}$

Answer: A
6. Area of the triangle with vertices $(a, b),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ where a, x_{1}, x_{2} are in G.P. with common ratio r and b, y_{1}, y_{2}, are in G.P with common ratio s , is

$$
\begin{aligned}
& \text { A. (a) } a b(r-1)(s-1)(s-r) \\
& \text { B. (b) } \frac{1}{2} a b(r+1)(s+1)(s-r) \\
& \text { C. (c) } \frac{1}{2} a b(r-1)(s-1)(s-r) \\
& \text { D. (d) } a b(r+1)(s+1)(r-s)
\end{aligned}
$$

Answer: C

$(x+1,2),(1, x+2),\left(\frac{1}{x+1}, \frac{2}{x+1}\right)$
collinear, then x is equal to
A. -4
B. -8
C. 4
D. 8

Answer: A

D Watch Video Solution
8. The vertices of a triangle are $(6,0),(0,6)$ and $(6,6)$.

The distance between its circumcentre and centroid is :
A. $2 \sqrt{2}$
B. 2
C. $\sqrt{2}$
D. 1

Answer: C
9. The centroid of the triangle with vertices
$(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: D

D Watch Video Solution
10. The vertices of a triangle are (0,0), (1,0) and (0,1).

Then excentre opposite to $(0,0)$ is

$$
\begin{aligned}
& \text { А. }\left(1-\frac{1}{\sqrt{2}}, 1+\frac{1}{\sqrt{2}}\right) \\
& \text { В. }\left(1+\frac{1}{\sqrt{2}}, 1+\frac{1}{2}\right) \\
& \text { С. }\left(1+\frac{1}{\sqrt{2}}, 1-\frac{1}{\sqrt{2}}\right) \\
& \text { D. }\left(1-\frac{1}{\sqrt{2}}, 1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Answer: B
11. If $\alpha, \beta \gamma$ are the real roots of the equation $x^{3}-3 p x^{2}+3 q x-1=0$, then find the centroid of the triangle whose vertices are $\left(\alpha, \frac{1}{\alpha}\right),\left(\beta, \frac{1}{\beta}\right)$ and $\left(\gamma, \frac{1}{\gamma}\right)$.

- Watch Video Solution

12. If $(1,4)$ is the centroid of a triangle and the coordinates of its any two vertices are $(4,-8)$ and $(-9,7)$, find the area of the triangle.

D Watch Video Solution

13. Find the coordinates of the orthocentre of the triangle whose vertices are (1, 2), $(2,3)$ and $(4,3)$.

D Watch Video Solution

14. Show that the area of the triangle with vertices
$(\lambda, \lambda-2),(\lambda+3, \lambda) \quad$ and $\quad(\lambda+2, \lambda+2) \quad$ is independent of λ.

- Watch Video Solution

15.

Prove that the
points
$(a, b+c),(b, c+a) \operatorname{and}(c, a+b)$ are collinear.

- Watch Video Solution

16. Prove that the points (a, b), (c, d) and ($a-c, b-d$) are collinear, if $\mathrm{ad}=\mathrm{bc}$.

D Watch Video Solution

17. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are collinear show that
$\frac{y_{2}-y_{3}}{x^{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{1}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0$
D Watch Video Solution
18. The coordinates of points A, B, C and D are $(-3,5),(4,-2),(x, 3 x)$ and $(6,3)$ respectively and Area of $\frac{\Delta A B C}{\triangle B C D}=\frac{2}{3}$, find x .

D Watch Video Solution

19. Find the area of the hexagon whose consecutive vertices are $(5,0),(4,2),(1,3),(-2,2),(-3,-1)$ and $(0,-4)$

D Watch Video Solution

1. The equation of the locus of points equidistant from ($-1-1$) and $(4,2)$ is
A. $3 x-5 y-7=0$
B. $5 x+3 y-9=0$
C. $4 x+3 y+2=0$
D. $x-3 y+5=0$

Answer: B
2. The equation of the locus of a point which moves so that its distance from the point ($a k, 0$) is k times its distance from the point $\left(\frac{a}{k}, 0\right)(k \neq 1)$ is

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}=a^{2} \\
& \text { B. } 2 x^{2}-y^{2}=2 a^{2} \\
& \text { C. } x y=a^{2} \\
& \text { D. } x^{2}+y^{2}=a^{2}
\end{aligned}
$$

Answer: D

3. If the coordinates of a vartiable point P be $\left(t+\frac{1}{t}, t-\frac{1}{t}\right)$, where t is the variable quantity, then the locus of P is
A. $x y=8$
B. $2 x^{2}-y^{2}=8$
C. $x^{2}-y^{2}=4$
D. $2 x^{2}+3 y^{2}=5$

Answer: C

D Watch Video Solution
4. If the coordinates of a variable point be $(\cos \theta+\sin \theta, \sin \theta-\cos \theta)$, where θ is the parameter, then the locus of P is
A. $x^{2}-y^{2}=4$
B. $x^{2}+y^{2}=2$
C. $x y=3$
D. $x^{2}+2 y^{2}=3$

Answer: B
(D) Watch Video Solution
5. If a point moves such that twice its distance from the axis of x exceeds its distance from the axis of y by 2 , then its locus is
A. $x-2 y=2$
B. $x+2 y=2$
C. $2 y-x=2$
D. $2 y-3 x=5$

Answer: C

- Watch Video Solution

6. The equation $4 x y-3 x^{2}=a^{2}$ become when the axes are turned through an angle $\tan ^{-1} 2$ is

$$
\begin{aligned}
& \text { A. } x^{2}+4 y^{2}=a^{2} \\
& \text { B. } x^{2}-4 y^{2}=a^{2} \\
& \text { C. } 4 x^{2}+y^{2}=a^{2} \\
& \text { D. } 4 x^{2}-y^{2}=a^{2}
\end{aligned}
$$

Answer: B
A. $\frac{1}{4}$
B. $\frac{1}{16}$
C. $\frac{1}{64}$
D. $\frac{1}{256}$

Answer: C

8. Find the locus of a point equidistant from the point
$(2,4)$ and the y-axis.

- Watch Video Solution

9. Find the equation of the locus of the points twice
as from ($-\mathrm{a}, 0$) as from ($\mathrm{a}, 0$).

- Watch Video Solution

10. $O A$ and $O B$ are two perpendicular straight lines. A
straight line $A B$ is drawn in such a manner that
$O A+O B=8$. Find the locus of the mid point of AB .

- Watch Video Solution

11. The ends of a rod of length I move on two mutually perpendicular lines. Find the locus of the point on the rod which divides it in the ratio $1: 2$.

- Watch Video Solution

12. The coordinates of three points O, A, B are $(0,0)$,
$(0,4)$ and $(6,0)$ respectively. A point P moves so that the area of $\triangle P O A$ is always twice the area of
$\triangle P O B$. Find the equation to both parts of the locus of P.
13. What does the equation
$(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$ become if the origin is
shifted to the point $\left(\frac{a b}{a-b}, 0\right)$ without rotation?

D Watch Video Solution

14. The equation $x^{2}+2 x y+4=0$ is transformed to the parallel axes through the point $(6, \lambda)$. For what value of λ its new form passes through the new origin?
15. Show that if the axes be turned through $7 \frac{1^{\circ}}{2}$, the equation $\quad \sqrt{3} x^{2}+(\sqrt{3}-1) x y-y^{2}=0 \quad$ become free of $x y$ in its new form.

D Watch Video Solution

16. Find the angle through which the axes may be turned so that the equation $A x+B y+C=0$ may reduce to the form $\mathrm{x}=$ constant, and determine the value of this constant.
$12 x^{2}+7 x y-12 y^{2}-17 x-31 y-7=0$
rectangular axes through the point (1, -1) inclined at an angle $\tan ^{-1}\left(\frac{4}{3}\right)$ to the original axes.

D Watch Video Solution

Exercise Single Option Correct Type Questions

1. Vertices of a variable triangle are
$(3,4),(5 \cos \theta, 5 \sin \theta)$ and $(5 \sin \theta,-5 \cos \theta)$, where
$\theta \in R$. Locus of its orthocentre is
A. $x^{2}+y^{2}+6 x+8 y-25=0$

$$
\begin{aligned}
& \text { B. } x^{2}+y^{2}-6 x+8 y-25=0 \\
& \text { C. } x^{2}+y^{2}+6 x-8 y-25=0 \\
& \text { D. } x^{2}+y^{2}-6 x-8 y-25=0
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. If a rod $A B$ of length 2 units slides on coordinate axes in the first quadrant. An equilateral triangle $A B C$ is completed with C on the side away from O . Then, locus of C is

$$
\text { A. } x^{2}+y^{2}-x y+1=0
$$

B. $x^{2}+y^{2}-x y \sqrt{3}+1=0$
C. $x^{2}+y^{2}+x y \sqrt{3}-1=0$
D. $x^{2}+y^{2}-x y \sqrt{3}-1=0$

Answer: D

D Watch Video Solution

3. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and
$5 x+5 y$ units, where $x>0, y>0$. The triangle is
A. right angled
B. acute angled
C. obtuse angled
D. isosceles

Answer: C

D Watch Video Solution

4. Let P and Q be the points on the line joining
$A(-2,5)$ and $\mathrm{B}(3,1)$ such that $A P=P Q=Q B$.
Then, the mid-point of $P Q$ is
A. $\left(\frac{1}{2}, 3\right)$
B. $\left(-\frac{1}{4}, 4\right)$
C. $(2,3)$
D. $(-1,4)$

Answer: A

D Watch Video Solution

5. A triangle $A B C$ right angled at A has points A and B as $(2,3)$ and $(0,-1)$ respectively. If $B C=5$ units, then the point C is
A. $(4,2)$
B. $(-4,2)$
C. $(-4,4)$
D. $(4,-4)$

(D) Watch Video Solution

6. The locus of a point P which divides the line joining
(1, 0) and $(2 \cos \theta, 2 \sin \theta)$ internally in the ratio $2: 3$ for all θ is
A. a straight line
B. a circle
C. a pair of straight lines
D. a parabola
7. The points with coordinates $(2 a, 3 a),(3 b, 2 b)$ and (c, c) are collinear
A. for no value of a, b, c
B. for all values of a, b, c
C. if $\mathrm{a}, \frac{c}{5}, \mathrm{~b}$ are in HP
D. if $a, \frac{2 c}{5}, b$ are in HP

Answer: D
8. The vertices of a triangle are $(0,3),(-3,0)$ and $(3,0)$.

The coordinates of its orthocentre are
A. $(0,-2)$
B. $(0,2)$
C. $(0,3)$
D. $(0,-3)$

Answer: C

9. $A B C$ is an equilateral triangle such that the vertices

B and C lie on two parallel at a distance 6. If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle.
A. 8
B. $\sqrt{\frac{88}{3}}$
C. $\frac{4 \sqrt{7}}{\sqrt{3}}$
D. None of these

Answer: C
10. A, B, C are respectively the points (1,2), (4, 2), (4, 5).

If T_{1}, T_{2} are the points of trisection of the line segment BC , the area of the Triangle $A T_{1} T_{2}$ is
A. 1
B. $\frac{3}{2}$
C. 2
D. $\frac{5}{2}$

Answer: B
11. (i) The points $(-1,0),(4,-2)$ and $(\cos 2 \theta, \sin 2 \theta)$ are

collinear

(ii) The points $(-1,0)$, (4, -2$)$ and $\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}, \frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$ are collinear

A. both statemnts are equivalent
B. statement (i) has more solution than statement
(ii) for θ
C. statement (ii) has more solution than
statement (i) for θ
D. None of the above

Answer: B
12. If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ are the values of n for which $\sum_{r=0}^{n-1} x^{2 r}$ is divisible by $\sum_{r=0}^{n-1} x^{r}$, then the triangle having vertices $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right)$ cannot be (Option 1) an isosceles triangle Option 2) a right angled isosceles triangle Option 3) a right angled triangle Option 4) an equilateral triangle
A. an isosceles triangle
B. a right angled isosceles triangle
C. a right angled triangle
D. an equilateral triangle

D Watch Video Solution

13. A triangle $A B C$ with vertices
$A(-1,0), B\left(-2, \frac{3}{4}\right)$, and $C\left(-3,-\frac{7}{6}\right)$ has its orthocentre at H. Then, the orthocentre of triangle $B C H$ will be $(-3,-2)$ (b) 1,3$)(-1,2)$
(d) none of these
A. $(-3,-2)$
B. $(1,3)$
C. $(-1,2)$

D. None of these

Answer: D

D Watch Video Solution

14.

$\sum_{i-1}^{4}\left(x 1^{2}+y 1^{2}\right) \leq 2 x_{1} x_{3}+2 x_{2} x_{4}+2 y_{2} y_{3}+2 y_{1} y_{4}$, the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$ are the vertices of a rectangle collinear the vertices of a trapezium none of these
A. the vertices of a rectangle
B. collinear
C. the vertices of a trapezium

D. None of these

Answer: A

D Watch Video Solution

15. Without change of axes the origin is shifted to (h,
k), then from the equation
$x^{2}+y^{2}-4 x+6 y-7=0$, the term containing
linear powers are missing, then point (h, k) is
A. (a) $(3,2)$
B. (b) $(-3,2)$

C. (c) $(2,-3)$

D. (d) $(-2,-3)$

Answer: C

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. If $(-6,-4),(3,5),(-2,1)$ are the vertices of a parallelogram, then the remaining vertex can be $(0,-1)(b) 7,9)(-1,0)(d)(-11,-8)$
A. $(0,-1)$
B. $(-1,0)$
C. $(-11,-8)$
D. $(7,10)$

Answer: B::C::D

- Watch Video Solution

2. If the point $P(x, y)$ be equidistant from the points

$$
\begin{aligned}
& (a+b, b-a) \text { and }(a-b, c+b), \text { prove that } \\
& \left.\frac{a-b}{a}+b\right)=\frac{x-y}{x+y} .
\end{aligned}
$$

A. $a x=b y$
B. $b x=a y$

$$
\text { C. } x^{2}-y^{2}=2(a x+b y)
$$

D. P can be (a, b)

Answer: B::D

- Watch Video Solution

3. about to only mathematics
A. centroid
B. incentre
C. circumcentre
D. orthocentre

Answer: A::C::D

D Watch Video Solution

4. Show that the following points are the vertices of a rectangle.
(i) $A(-4,-1), B(-2,-4), C(4,0)$ and $D(2,3)$
(ii) $A(2,-2), B(14,10), C(11,13)$ and $D(-1,1)$
(iii) $A(0,-4), B(6,2), C(3,5)$ and $D(-3,-1)$
A. parallelogram
B. rectangle
C. rhombus

D. square

Answer: A::B

D Watch Video Solution

5. The medians $A D$ and $B E$ of the triangle $A B C$ with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular if
A. (a) $b=a \sqrt{2}$
B. (b) $a=b \sqrt{2}$
C. (c) $b=-a \sqrt{2}$
D. (d) $a=-b \sqrt{2}$

Answer: B::D

D Watch Video Solution

6. The points $A(x, y), B(y, z)$ and $C(z, x)$ represents the vertices of a right angled triangle, if
A. (a) $x=y$
B. (b) $y=z$
C. (c) $z=x$
D. (d) $x=y=z$

Answer: A::B::C
7. Let the base of a triangle lie along the line $x=a$ and be of length a. The area of this triangles is a^{2}, if the vertex lies on the line
A. $x=-a$
B. $x=0$
C. $x=\frac{a}{2}$
D. $x=2 a$

Answer: B::D

Exercise Passage Based Questions

1. $A B C$ is a triangle right angled at
$A, A B=2 A C, A=(1,2), B(-3,1)$. The vertices
of the triangles are in anticlockwise sense. BCEF is a
square with vertices in clockwise sense. Area of triangle ACF is:
A. $51 / 8$
B. $51 / 4$
C. $31 / 5$
D. 21/4

Answer: B
2. $A B C$ is a triangle right angled at $A, A B=2 A C, A=(1,2), B(-3,1)$. The vertices of the triangles are in anticlockwise sense. BCEF is a square with vertices in clockwise sense. Area of triangle ACF is:
A. $-\frac{1}{4}$
B. $-\frac{3}{4}$
C. $-\frac{5}{4}$
D. $-\frac{7}{4}$

Answer: D

D Watch Video Solution

3. Let $O(0,0), A(2,0), \operatorname{and} B\left(1 \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which satisfy
$d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.
A. $\sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. 3
D. $2-\sqrt{3}$

Answer: D

D Watch Video Solution

4. Let $O(0,0), A(2,0), \operatorname{andB}\left(1 \frac{1}{\sqrt{3}}\right)$ be the
vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which satisfy $d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the
corresponding line. Sketch the region R and find its
area.

$$
\begin{aligned}
& \text { A. } 4-\sqrt{3} \\
& \text { B. } 4+\sqrt{3} \\
& \text { C. } 4+3 \sqrt{3} \\
& \text { D. } 2+4 \sqrt{(2-\sqrt{3})}
\end{aligned}
$$

Answer: D

- Watch Video Solution

5. Let $O(0,0), A(2,0)$, $\operatorname{and} B\left(1 \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all
those points P inside $O A B$ which satisfy $d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $2 \sqrt{3}$
D. $4+\sqrt{3}$

Answer: A

1. If the area of the triangle formed by the points
$(2 a, b),(a+b, 2 b+a)$ and (2b, 2a) be Δ_{1} and the area of the triangle whose vertices are
$(a+b, a-b),(3 b-a, b+3 a)$ and $(3 a-b, 3 b-a)$ be Δ_{2}, then the value of Δ_{2} / Δ_{1} is

D Watch Video Solution

2. The diameter of the nine point circle of the triangle with vertices $(3,4),(5 \cos \theta, 5 \sin \theta)$ and
($5 \sin \theta,-5 \cos \theta$), where $\theta \in R$, is
3. The ends of the base of an isosceles triangle are
$(2 \sqrt{2}, 0)$ and $(0, \sqrt{2})$. One side is of length $2 \sqrt{2}$. If Δ be the area of triangle, then the value of $[\Delta]$ is (where [.] denotes the greatest integer function)

- Watch Video Solution

4. If (x, y) is the incentre of the triangle formed by the points $(3,4),(4,3)$ and $(1,2)$, then the value of x^{2} is

5. Let P and Q be points on the line joining $A(-2,5)$

and $B(3,1)$ such that $A P=P Q=Q B$. If mid-point of $P Q$

is (a, b), then the value of $\frac{b}{a}$ is

D Watch Video Solution

Exercise 5

1. Consider the triangle with vertices

$A(0,0), B(5,12)$ and $C(16,12)$.

Column I

Column II
A. $\operatorname{If}(\lambda, \mu)$ are the coordinates of centroid of
(p) 3 triangle $A B C$, then $(\lambda+\mu)$ is divisible by
B. If (λ, μ) are the coordinates of circumcentre of (q) 5 triangle $A B C$, then 2λ is divisible by
C. If (λ, μ) are the coordinates of incentre of
(r) 7 triangle $A B C$, then μ is divisible by
D. If (λ, μ) are the coordinates of excentre
(s) $\quad 9$ opposite to vertex B, then $\lambda+\mu$ is divisible by

- Watch Video Solution

2. The vertices of a triangle are $A(-10,8), B(14,8)$ and $C(-10,26)$. Let $\mathrm{G}, \mathrm{I}, \mathrm{H}, \mathrm{O}$ be the centroid, incentre, orthocentre, circumcentre respectively of

$\triangle A B C$.

Column I

Column II

A. The inradius r is
(p) a prime number
B. The circumradius R is
(q) an even number
C. The area of $\triangle I G H$ is
D. The area of $\triangle O G I$ is
(r) a composite number
(s) a perfect number

D Watch Video Solution

1. The vertices of a triangle an $A(1,2), B(-1,3)$ and $C(3,4)$. Let D, E, F divide $B C, C A, A B$ respectively in the same ratio.

Statement I : The centroid of triangle DEF is (1,3).
Statement II : The triangle ABC and DEF have the same centroid.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for

Statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation for

Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

D Watch Video Solution

2. Statement 1 : Let the vertices of a $A B C$ be
$A(-5,-2), B(7,6)$, and $C(5,-4)$. Then the coordinates of the circumcenter are $(1,2)$. Statement

2: In a right-angled triangle, the midpoint of the hypotenuse is the circumcenter of the triangle.
3. A line segment $A B$ is divided internally and externally in the same ratio at P and Q respectively and M is the mid-point of $A B$. Statement $I: M P, M B$, $M Q$ are in G.P. Statement II : AP, $A B$ and $A Q$ are in H.P.
A. True
B. False
C.
D.

Answer: A

- Watch Video Solution

Exercise 7

1. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of a $\triangle A B C$ and (x, y) be a point on the internal bisector of angle A, then prove that
$b\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|+c\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$
where, $A C=b$ and $A B=c$.

- Watch Video Solution

2. Find the area of the triangle whose vertices are
$(2,3,0),(2,1,1)$ and ($0,0,6$)

D Watch Video Solution

3. If by change of axes without change of origin, the
$a_{1} x_{1}^{2}+2 h_{1} x_{1} y_{1}+b_{1} y_{1}^{2}$, prove that $a+b=a_{1}+b_{1}$

D Watch Video Solution
4. If by change of axes without change of origin, the expression $a x^{2}+2 h x y+b y^{2}$ becomes
$a_{1} x_{1}^{2}+2 h_{1} x_{1} y_{1}+b_{1} y_{1}^{2}$, prove that
$(a-b)^{2}+4 h^{2}=\left(a_{1}-b_{1}\right)^{2}+4 h_{1}^{2}$

D Watch Video Solution

Exercise Subjective Type Questions

1. If a, b, c be the pth, q th and r th terms respectively of a HP, show that the points (bc, p), (ca, q) and (ab, r) are collinear.

- Watch Video Solution

2. A line L intersects three sides $B C, C A$ and $A B$ of a triangle in P, Q, R respectively, show that $\frac{B P}{P C} \cdot \frac{C Q}{Q A} \cdot \frac{A R}{R B}=-1$

- Watch Video Solution

3. If the points $\left(\frac{a^{3}}{a-1}, \frac{a^{2}-3}{a-1}\right),\left(\frac{b^{3}}{b-1}, \frac{b^{2}-3}{b-1}\right)$,
$\left(\frac{c^{3}}{c-1}, \frac{c^{2}-3}{c-1}\right)$ are collinear for 3 distinct values
a, b, c and $a \neq 1, b \neq 1, c \neq 1$, then find the value of $a b c-(a b+b c+c a)+3(a+b+c)$.

- Watch Video Solution

4. If $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are n points in a plane whose coordinates are
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)$ respectively.
$A_{1} A_{2}$ is bisected in the point $G_{1}: G_{1} A_{3}$ is divided at
G_{2} in the ratio $1: 2, G_{3} A_{5}$ at G_{4} in the1: 4 and so on untill all the points are exhausted. Show that the
coordinates of the final point so obtained are $\frac{x_{1}+x_{2}+\ldots \ldots+x_{n}}{n}$ and $\frac{y_{1}+y_{2}+\ldots .+y_{n}}{n}$

- Watch Video Solution

5. If by change of axes without change of origin, the expression

$$
a x^{2}+2 h x y+b y^{2}
$$

becomes
$a_{1} x_{1}^{2}+2 h_{1} x_{1} y_{1}+b_{1} y_{1}^{2}$, prove that
$a b-h^{2}=a_{1} b_{1}-h_{1}^{2}$

D Watch Video Solution

1. If a vertex of a triangle is $(1,1)$ and the mid-points of two side through this vertex are $(-1,2)$ and $(3,2)$, then centroid of the triangle is

$$
\begin{aligned}
& \text { A. }\left(\frac{1}{3}, \frac{7}{3}\right) \\
& \text { B. }\left(1, \frac{7}{3}\right) \\
& \text { C. }\left(-\frac{1}{3}, \frac{7}{3}\right) \\
& \text { D. }\left(-1, \frac{7}{3}\right)
\end{aligned}
$$

Answer: B
2. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle $O P Q$. Find the point R inside the triangle $O P Q$ such that the triangles $O P R, P Q R, O Q R$ are of equal areas.
A. $\left(\frac{4}{3}, 3\right)$
B. $\left(3, \frac{2}{3}\right)$
C. $\left(3, \frac{4}{3}\right)$
D. $\left(\frac{4}{3}, \frac{2}{3}\right)$

Answer: C

3. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with $A C$ as its hypotenuse. If the area of the triangle is 1 , then the set of values which k
can take is given by (1) $\{1,3\}$ (2) $\{0,2\}$ (3) $\{-1,3\}$
(4) $\{-3,-2\}$
A. $\{1,3\}$
B. $\{0,2\}$
C. $\{-1,3\}$
D. $\{-3,-2\}$

Answer: C
4. Three distinct point A, B and C are given in the 2dimensional coordinates plane such that the ratio of the distance of any one of them from the point $(1,0)$ to the distance from the point $(-1,0)$ is equal to $\frac{1}{3}$
. Then, the circumcentre of the triangle $A B C$ is at the point
A. (a) $\left(\frac{5}{4}, 0\right)$
B. (b) $\left(\frac{5}{2}, 0\right)$
C. (c) $\left(\frac{5}{3}, 0\right)$
D. (d) $(0,0)$

Answer: A
5. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as $(0,1),(1,1)$ and $(1,0)$ is
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $1+\sqrt{2}$
D. $1-\sqrt{2}$

Answer: B
6. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$ is
A. 820
B. 780
C. 901
D. 861

Answer: B
(D) Watch Video Solution
7. Let k be an integer such that the triangle with vertices $(k,-3 k),(5, k)$ and $(-k, 2)$ has area $28 s q$. units. Then the orthocentre of this triangle is at the point : (1) $\left(1,-\frac{3}{4}\right)$ (2) $\left(2, \frac{1}{2}\right)$ (3) $\left(2,-\frac{1}{2}\right)$
(4) $\left(1, \frac{3}{4}\right)$
A. $\left(2, \frac{1}{2}\right)$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left(1, \frac{3}{4}\right)$
D. $\left(1,-\frac{3}{4}\right)$

Answer: A
\square

