©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

DIFFERENTIAL EQUATION

Example

1. Find the order and degree (if defined) of the following differential equations $\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}=\frac{d y}{d x}+2$

- Watch Video Solution

2. Write order and degree (if defined) of each of the following differential
equations.
$\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
3. Form the differential equation, if $y^{2}=4 a(x+a)$, where a is arbitary constant.

- Watch Video Solution

4. Find the differential equation of $x y=a e^{x}+b e^{-x}$.

- Watch Video Solution

5. Find the differential equation whose solution represents the family :
$c(y+c)^{2}=x^{3}$

- Watch Video Solution

6. Find the differential equation whose solution represents the family $y=a e^{3 x}+b e^{x}$.

Watch Video Solution

7. Find the order of the family of curves $y=\left(c_{1}+c_{2}\right) e^{x}+c_{3} e^{x+c_{4}}$

- Watch Video Solution

8. The differential equation of all non-horizontal lines in a plane is given
by (i) $\frac{d^{2} y}{d x^{2}}=0$ (ii) $\frac{d^{2} y}{d y^{2}}=0$ (iii) $\frac{d^{2} y}{d x^{2}}=0$ and $\frac{d^{2} y}{d y^{2}}=0$ (iv) All of these

- Watch Video Solution

9. The differential equation of all non-vectical lines in a plane is given by
(i) $\frac{d^{2} y}{d x^{2}}=0$
(ii) $\frac{d^{2} x}{d y^{2}}=0$
(iii) $\frac{d^{2} x}{d y^{2}}=0$ and $\frac{d^{2} y}{d x^{2}}=0$
(iv) All of these

- Watch Video Solution

10. The differential equation of all straight lines which are at a constant distance p from the origin, is
(a) $\left(y+x y_{1}\right)^{2}=p^{2}\left(1+y_{1}^{2}\right)$
(b) $\left(y-x y_{1}^{2}\right)=p^{2}\left(1+y_{1}\right)^{2}$
(c) $\left(y-x y_{1}\right)^{2}=p^{2}\left(1+y_{1}^{2}\right)$
(d) None of these

- Watch Video Solution

11. The differintial eauation of all circle of radius r, is given by
(a) $\left\{1+\left(y_{1}\right)^{2}\right\}^{2}=r^{2} y_{2}^{3}$
(b) $\left\{1+\left(y_{1}\right)^{2}\right\}^{3}=r^{2} y_{2}^{3}$
(c) $\left\{1+\left(y_{1}\right)^{2}\right\}^{3}=r^{2} y_{2}^{2}$
(d) None of these

- Watch Video Solution

12. The differential equations of all circle touching the x-axis at orgin is
(a) $\left(y^{2}-x^{2}\right)=2 x y\left(\frac{d y}{d x}\right)$
(b) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y$
(c) $\left(x^{2}-y^{2}\right)=2 x y\left(\frac{d y}{d x}\right)$
(d) None of these

- Watch Video Solution

13. The differential equation of all circle in the first quadrant touch the coordinate is
(a) $\left.(x-y)^{2}\left(+y^{\prime}\right)^{2}\right)=\left(x+y y^{\prime}\right)^{2}$
(b) $\left.(x-y)^{2}\left(+y^{\prime}\right)^{2}\right)=\left(x+y^{\prime}\right)^{2}$
(c) $(x-y)^{2}\left(+y^{\prime}\right)=\left(x+y y^{\prime}\right)^{2}$
(d) None of these
A. $(x-y) 2\left(1+\left(y^{\prime}\right)^{\wedge} 2\right)=\left(x+y y^{\prime}\right) 2$
B. $\left.(x-y) 2\left(+y^{\prime}\right) 2\right)=\left(x+y^{\prime}\right) 2$
C. $(x-y) 2\left(1+\left(y^{\prime}\right)^{\wedge} 2\right)=\left(x+y y^{\prime}\right)^{\wedge} 2$
D. None of these

Answer:

- Watch Video Solution

14. The differential equation satisfying the curve $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$ when λ begin arbitary uknowm, is
(a) $\left(x+y y_{1}\right)\left(x y_{1}-y\right)=\left(a^{2}-b^{2}\right) y_{1}$
(b) $\left(x+y y_{1}\right)\left(x y_{1}-y\right)=y_{1}$
(c) $\left(x-y y_{1}\right)\left(x y_{1}+y\right)\left(a^{2}-b^{2}\right) y_{1}$
(d) None of these
15. The differential equation of all conics whose centre klies at origin, is given by
(a) $\left(3 x y_{2}+x^{2} y_{3}\right)\left(y-x y_{1}\right)=3 x y_{2}\left(y-x y_{1}-x^{2} y_{2}\right)$
(b) $\left(3 x y_{1}+x^{2} y_{2}\right)\left(y_{1}-x y_{3}\right)=3 x y_{1}\left(y-x y_{2}-x^{2} y_{3}\right)$
(c) $\left(3 x y_{2}+x^{2} y_{3}\right)\left(y_{1}-x y\right)=3 x y_{1}\left(y-x y_{1}-x^{2} y_{2}\right)$
(d) None of these

- Watch Video Solution

16. Solve $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

- Watch Video Solution

17. Solve the differential equation: $\frac{d y}{d x}=e^{x+y}+x^{2} e^{y}$

- Watch Video Solution

18. Solve the following differential equation:
$\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0$

- Watch Video Solution

19. Solve $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$

- Watch Video Solution

20. Solve $e^{\frac{d y}{d x}}=x+1$, given that when $x=0, y=3$.

- Watch Video Solution

21. Solve $\frac{d y}{d x}=\sin ^{2}(x+3 y)+5$

- Watch Video Solution

22. Solve $(x+y)^{2} \frac{d y}{d x}=a^{2}$

- Watch Video Solution

23. Solve $(2 x+3 y-1) d x+(4 x+6 y-5) d y=0$.

- Watch Video Solution

24. The solution of $\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}$, is given by

- Watch Video Solution

25. Solve $[2 \sqrt{x y}-x] d y+y d x=0$

- Watch Video Solution

26. Solve $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$.

- Watch Video Solution

27. Solve the differential equation $2 \frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{2}}$

- Watch Video Solution

28. Solve $\left(1+2 e^{x / y}\right) d x+2 e^{x / y}(1-x / y) d y=0$.

- Watch Video Solution

29. Solve that any equation of the fomr $y f^{\prime}(x y) d x+x f^{\prime}(x y) d y=0$

- Watch Video Solution

30. Solve the differential equation $\frac{d y}{d x}=\frac{2 y-6 x-4}{y-3 x+3}$.

Watch Video Solution

31. Solve the differential equation $\frac{d y}{d x}=\frac{x+2 y-1}{x+2 y+1}$.

Watch Video Solution

32. The solution of the differential equation $\frac{d y}{d x}=\frac{\sin y+x}{\sin 2 y-x \cos y}$ is
(a) $\sin ^{2} y=x \sin y+\frac{x^{2}}{2}+C$
(b) $\sin ^{2} y=x \sin y-\frac{x^{2}}{2}+C$
(c) $\sin ^{2} y=x+\sin y+\frac{x^{2}}{2}+C$
(d) $\sin ^{2} y=x-\sin y+\frac{x^{2}}{2}+C$

Watch Video Solution

33. solve the differential equation given by
$\frac{d y}{d x}=\frac{-3 x-2 y+5}{2 x+3 y+5}$
34. Solve $\frac{d y}{d x}+2 y=\cos x$.

Watch Video Solution

35. Solve $\frac{d y}{d x}+\frac{y}{x}=\log x$.

- Watch Video Solution

36. Solve $\frac{d y}{d x}=\frac{y}{2 y \operatorname{In} y+y-x}$.

- Watch Video Solution

37. Solution of the equation $\cos ^{2} x \frac{d y}{d x}-(\tan 2 x) y=\cos ^{4} x$, where
$|x|<\frac{\pi}{4}$ and $y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}$ is
38. Solve $\frac{d y}{d x}+y \phi^{\prime}(x)=\phi(x) \cdot \phi^{\prime}(x)$, where $\quad \phi(x)$ is a given function.

- Watch Video Solution

39. Solve $(y \log x-1) y d x=x d y$.

- Watch Video Solution

40. Solve $\frac{d y}{d x}+x y=x y^{2}$

- Watch Video Solution

41. Solve $\frac{d y}{d x}=\frac{y \phi^{\prime}(x)-y^{2}}{\phi(x)}$, where $\phi(x)$ is a given function.

- Watch Video Solution

42. $\sec ^{2} y \frac{d y}{d x}+2 x \tan y=x^{3}$
43. Solve $\frac{d y}{d x}+x(x+y)=x^{3}(x+y)^{3}-1$.

- Watch Video Solution

44. Solve $\sin y \cdot \frac{d y}{d x}=\cos y(1-x \cos y)$.

- Watch Video Solution

45. Find the orthogonal trajectories of $x y=c$.

- Watch Video Solution

46. The orthogonal trajectories of the family of curves $y=C x^{2}$, (C is an arbitrary constant), is
47. The differential equation representing all possible curves that cut each member of the family of circles $x^{2}+y^{2}-2 C x=0$ (C is a parameter) at right angle, is

- Watch Video Solution

48. The orthogonal trajectories of the circle $x^{2}+y^{2}-a y=0$, (where a is a parameter), is

- Watch Video Solution

49. Solve $\left(x^{2}-a y\right) d x+\left(y^{2}-a x\right) d y=0$.

- Watch Video Solution

50. Solve $(2 x \log y) d x+\left(\frac{x^{2}}{y}+3 y^{2}\right) d y=0$.
51. Solve $\left(x^{2}-a y\right) d x+\left(y^{2}-a x\right) d y=0$.

- Watch Video Solution

52. Solve $x d x+y d y=x d y-y d x$.

- Watch Video Solution

53. Solve $\frac{y+\sin x \cos ^{2}(x y)}{\cos ^{2}(x y)} d x+\left(\frac{x}{\cos ^{2}(x y)}+\sin y\right) d y=0$

- Watch Video Solution

54. Solve $\frac{x+y \frac{d y}{d x}}{y-x \frac{d y}{d x}}=x^{2}+2 y^{2}+\frac{y^{4}}{x^{2}}$
55. The solution of
$e^{x \frac{\left(y^{2}-1\right)}{y}}\left\{x y^{2} d y+y^{3} d x\right\}+\{y d x-x d y\}=0$, is
A. $e^{x y}+e^{x / y}+c=0$
B. $e^{x y}-e^{x / y}+c=0$
C. $e^{x y}+e^{y / x}+c=0$
D. $e^{x y}-e^{y / x}+c=0$

Answer:

56. The solution of $x^{2} d y-y^{2} d x+x y^{2}(x-y) d y=0$, is
A. $\log \left|\frac{x-y}{x y}\right|=\frac{y^{2}}{2}+c$
В. $\log \left|\frac{x y}{x-y}\right|=\frac{x^{2}}{2}+c$
С. $\log \left|\frac{x-y}{x y}\right|=\frac{x^{2}}{2}+c$
D. $\log \left|\frac{x-y}{x y}\right|=x+c$

Answer:

- Watch Video Solution

57. The solution of the differential equation $y d x-x d y+x y^{2} d x=0$, is
A. $\frac{x}{y}+x^{2}=\lambda$
B. $\frac{x}{y}-\frac{x^{2}}{2}=\lambda$
C. $\frac{x}{2 y^{2}}+\frac{x^{2}}{4}=\lambda$
D. None of these

Answer: 4

- Watch Video Solution

58. The solution of differential equation $x d y\left(y^{2} e^{x y}+e^{x / y}\right)=y d x\left(e^{x / y}-y^{2} e^{x y}\right)$, is
A. $x y=\log \left(e^{x}+\lambda\right)$
B. $x^{2} / y=\log \left(e \& \&^{x / y}+\lambda\right)$
C. $x y=\log \left(e^{x / y}+\lambda\right)$
D. $x y^{2}=\log \left(e^{x / y}+\lambda\right)$

Answer:

- Watch Video Solution

59.

the
differential
equation
$(y+x \sqrt{x y}(x+y)) d x+(y \sqrt{x y}(x+y)-x d y=0 \quad$ is \quad (a) $\quad[M a t h$ Processing Error]
$(h h)(i i)(j j) \frac{(k k)(l l) x^{(m m) 2(n n)}(o o)+(p p) y^{(q q) 2(r r)}(s s)}{t t} 2(u u)(\vee)+2(\imath$
(III) (mmm)

$$
\begin{aligned}
& (n n n)(\infty o)(p p p) \frac{(q q q)(r r r) x^{(s s s) 2(t t t)}(u u u)+(v v v) y^{(w w w) 2(x x x)}(y y y)}{z z z} 2(c \\
& +2(c c c c)(d d d d) \cot ^{(e e e e)(f f f f)-1(g g g g)}(h h h h) \sqrt{(i i i i)(j j j j)(k k k k) \frac{x}{l l l l} y(} y
\end{aligned}
$$

(rrrr) (d) None of these
A. $\frac{x^{2}+y^{2}}{2}+2 \tan ^{-1} \sqrt{\frac{x}{2 y}}=C$
B. $\frac{x^{2}+y^{2}}{2}+2 \tan ^{-1} \sqrt{\frac{x}{y}}=C$
C. $\frac{x^{2}+y^{2}}{\sqrt{2}}+2 \tan ^{-1} \sqrt{\frac{x}{y}}=C$
D. None of these

Answer: B

- Watch Video Solution

60. Solve $(p-x)\left(p-e^{x}\right)(p-1 / y)=0$,
where $P=\frac{d y}{d x}$.

- Watch Video Solution

61. Solve $x^{2} p^{2}+x p y-6 y^{2}=0$.

- Watch Video Solution

62. Solve $x y^{2}\left(p^{2}+2\right)=2 p y^{3}+x^{3}$.

- Watch Video Solution

63. Solve $x p^{2}-2 y p+a x=0$.

- Watch Video Solution

64. Solve $y=2 p x-p^{2}$ wherep $=\frac{d y}{d x}$

- Watch Video Solution

65. Solve $y+2 p x+y^{2} p^{3}$.

- Watch Video Solution

66. Form the differential equation of $y=p x+\frac{p}{\sqrt{1+p^{2}}}$

D Watch Video Solution

67. Solve $\sqrt{1+p^{2}}=\tan (p x-y)$. when $p=\frac{d y}{d x}$

- Watch Video Solution

68. Solve $y^{2} \log y=p x y+p^{2}$. where $p=\frac{d y}{d x}$

- Watch Video Solution

69. The population of a certain is known to increase at a rate proportional to the number of people presently living in the country. If after two years
the population has doubled, and after three years the population is 20,000 estimates the number of people initially living in the country.

- Watch Video Solution

70. A certain radioactive material is known to decay at a rate proportional to the amount present. Initially there is 50 kg of the material present and after 2 h it is observed that the material has lost 10 percent of its original mass. Based on these data answer the following questions.

The time at which the material has decayed to one half of its initial mass is

- Watch Video Solution

71. Five mice in a stable population of 500 are intentionally infected with a contagious disease to test a theory of epidemic spred that postulates the rate of change in the infected population is proportional to the product of the number of mice who have the disease with the number
that are disease free. Assuming the theory is correct, how long will it take half the popullation to contract the disease?

- Watch Video Solution

72. Find the curve for which area of triangle formed by x-axis, tangent drawn at any point on the curve and radius vector of point of tangency is constant, equal to a^{2}

- Watch Video Solution

73. Find the curve for which the intercept cut off by any tangent on y-axis is proportional to the square of the ordinate of the point of tangency.

- Watch Video Solution

74. If $\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=k$, then k is equal to
A. $\frac{d y}{d x}$
B. $y^{2} \frac{d y}{d x}$
C. $y \frac{d y}{d x}+\left(\frac{d^{2} x}{d y^{2}}\right)^{2}$
D. None of these

Answer:

- Watch Video Solution

75. The solution of $y^{2}=2 y \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}$, is

- Watch Video Solution

76. The solution of $\left(\frac{d y}{d x}\right)^{2}+(2 x+y) \frac{d y}{d x}+2 x y=0$, is
A. $\left(y+x^{2}-c_{1}\right)\left(x+\log y+y^{2}+c_{2}\right)=0$
B. $\left(y+x^{2}-c_{1}\right)\left(x-\log y-c_{2}\right)=0$
C. $\left(y+x^{2}-c_{1}\right)\left(x+\log y-c_{2}\right)=0$
D. None of these

Answer:

- Watch Video Solution

77. A curve $y=f(x)$ passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the co-ordinate axes. If the curve divides the area formed by these lines and co-ordinates axes in the ratio $m: n$, find the curve.
A. $y=c x^{m / n}$
B. $m y^{2}=c x^{m / n}$
C. $y^{3}=c x^{m / n}$
D. None of these

Answer:

78. Solve the differential equation, $\frac{a^{2}}{x y} \cdot \frac{d x}{d y}=\frac{x}{y}+\frac{y}{x}-2$, is

- Watch Video Solution

79. Find the family of curves, the subtangent at any point of which is the arithmetic mean of the co-ordinate point of tangency.
A. $(x-y)^{2}=c y$
B. $(y-x)^{2}=c y$
C. $(x-y)^{2}=c x y$
D. None of these

Answer:

- Watch Video Solution

80. The order of the differential equation of family of curver $y=C_{1} \sin ^{-1} x+C_{2} \cos ^{-1} x+C^{3} \tan ^{-1} x+C^{4} \cot ^{-1} x \quad$ (where C_{1}, C_{2}, C_{3} and C_{4} are arbitrary constants) is
A. 2
B. 3
C. 4
D. None of these

Answer:

- Watch Video Solution

81. The solution of the differential equation $\frac{d y}{d x}=\frac{1}{x y\left[x^{2} \sin y^{2}+1\right]}$ is
(a)

$$
(b)(c)(d) x^{(e) 2(f)}(g)\left(\cos (h) y^{(i) 2(j)}(k)-\sin (l) y^{(m) 2(n)}(o)-2 C(p) e^{q}(r\right.
$$

(z) (aa) [Math Processing Error] (zz) (aaa)
$(b b b)(\mathrm{c})(d d d) x^{(e e e) 2(f f f)}(g g g)\left(\cos (h h h) y^{(i i i) 2(j j j)}(k k k)-\sin (l l l) y^{(m m r}\right.$
(zzz) (aaaa) None of these
A. $x^{2}\left(\cos y^{2}-\sin y^{2}-2 c e^{-1}\right)=2$
B. $y^{2}\left(\sin x^{2}-\cos y^{2}-2 c e^{-1}\right)=2$
C. $y^{2}\left(\cos y^{2}-\sin y^{2}-e^{-y^{2}}\right)=4 c$
D. None of the above

Answer:

- Watch Video Solution

82. The curve satisfying the equation $\frac{d y}{d x}=\frac{y\left(x+y^{3}\right)}{x\left(y^{3}-x\right)}$ and passing through the point $(4,-2)$ is (a) $(b)(c)(d) y^{(e) 2(f)}(g)=-2 x(h)$ (i)
(b) $(j)(k) y=-2 x(l)$ (m) (c) $(d)(e)(f) y^{(g) 3(h)}(i)=-2 x(j)$ (k) (d) None of these
A. $y^{2}=-2 x$
B. $y=-2 x$
C. $y^{3}=-2 x$
D. None of these

Answer:

- Watch Video Solution

83. Spherical rain drop evaporates at a rate proportional to its surface area. The differential equation corresponding to the rate of change of the radius of the rain drop if the constant of proportionality is $K>0$ is
A. $\frac{d r}{d t}+k=0$
B. $\frac{d r}{d t}-k=0$
C. $\frac{d r}{d t}-k r$
D. None of these

Answer:

84. A function $y-f(x)$ satisfies the differential equation
$f(x) \sin 2 x-\cos x+\left(1+\sin ^{2} x\right) f^{\prime}(x)=0$ with $f(0)=0$. The value of $f\left(\frac{\pi}{6}\right)$ equals to :
A. $1 / 5$
B. $3 / 5$
C. $4 / 5$
D. $2 / 5$

Answer:

- Watch Video Solution

85. The general solution of the differential equation $\frac{d y}{d x}=\frac{1-x}{y}$ is a family of curves which look like which of the following :
A.

B.
C.

D.

Answer:
86. Water is drained from a vertical cylindrical tank by opening a valve at the base of the tank. It is known that the rate at which the water level drops is proportional to the square root of water depth y, where the constant of proportionality $k>0$ depends on the acceleration due to gravity and the geometry of the hole. If t is measured in minutes and $k=\frac{1}{15}$, then the time to drain the tank if the water is 4 m deep to start with is (a) 30 min (b) 45 min (c) 60 min (d) 80 min
A. 30 min
B. 45 min
C. 60 min
D. 80 min

Answer:

- Watch Video Solution

87. Number of straight lines which satisfy the differential equation $\frac{d y}{d x}+x\left(\frac{d y}{d x}\right)^{2}-y=0$ is
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

88. Consider the two statements Statement-l: $\mathrm{y}=\mathrm{sin} \mathrm{kt}$ satisfies the differential equation $y^{\prime \prime}+9 y=0$. Statement $2: \mathrm{y}=e^{k t}$ satisfy the differential equation $y^{\prime \prime}+y^{\prime}-6 y=0$. The value of k for which both the statements are correct is (A) -3 (B) 0 (C) 2 (D) 3
A. -3
B. 0
C. 2
D. 3

Answer:

- Watch Video Solution

89. If $y=\frac{x}{\log |c x|}$ (where c is an arbitrary constant) is the general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\varphi\left(\frac{x}{y}\right)$, then the function

$$
\begin{equation*}
\varphi\left(\frac{x}{y}\right) \quad \text { is } \tag{a}
\end{equation*}
$$

$(b)(c)(d) \frac{(e)(f) x^{(g) 2(h)}(i)}{j}\left((k)(l) y^{(m) 2(n)}(o)\right)(p)(q)(r) \quad$ (s)
$(t)(u)-(v) \frac{(w)(x) x^{(y) 2(z)}(a a)}{b b}\left((c c)(d d) y^{(e e) 2(f f)}(g g)\right)(h h)(i i)(j j)$
(kk) (c) $(d)(e)(f) \frac{(g)(h) y^{(i) 2(j)}(k)}{l}\left((m)(n) x^{(o) 2(p)}(q)\right)(r)(s)(t)$
(d)
$(v)(w)-(x) \frac{(y)(z) y^{(a a) 2(b b)}(c c)}{d d}\left((e e)(f f) x^{(g g) 2(h h)}(i i)\right)(j j)(k k)(l l)$ (mm)
A. $\frac{x^{2}}{y^{2}}$
B. $-\frac{x^{2}}{y^{2}}$
C. $\frac{y^{2}}{x^{2}}$
D. $-\frac{y^{2}}{x^{2}}$

Answer:

- Watch Video Solution

90. If $\int_{a}^{x} t y(t) d t=x^{2}+y(x)$, then find $y(x)$
A. $y=2-\left(2+a^{2}\right) e^{\frac{x^{2}-a^{2}}{2}}$
B. $y=1-\left(2+a^{2}\right) e^{\frac{x^{2}-a^{2}}{2}}$
C. $y=2-\left(1+a^{2}\right) e^{\frac{x^{2}-a^{2}}{2}}$
D. None of these

Answer:

91. about to only mathematics
A. is homogeneous
B. can be converted into linear differential equation with some suitable substiution
C. is the family of circles touching the x-axis at the origin
D. the family the circles touching the y-axis at the origin

Answer:

- Watch Video Solution

92. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circle with (a) variable radii and a fixed centre at (0,1) (b) variable radii and a fixed centre at $(c)(d)((e)(f) 0,-1(g))(h)$ (i) (j) Fixed radius 1 and
variable centres along the x-axis. (k) Fixed radius 1 and variable centres along the y-axis.
A. varible radii and a fixed centre at $(0,1)$
B. variable radii and fixed centre at $(0,-1)$
C. fixed radius 1 and varible centres along the x-axis
D. fixed radius 1 and varible centres along the y-axis

Answer:

- Watch Video Solution

93.

A
differentiable
function
satisfies
$f(x)=\int_{0}^{x}(f(t) \cot t-\cos (t-x)) d t$.
Which of the following hold(s) good?
A. $f(x)$ has a minimem value $1-e$
B. $\mathrm{f}(\mathrm{x})$ has a maximum value $1-e^{-1}$
C. $f^{\prime \prime}\left(\frac{\pi}{2}\right)=e$
D. $f^{\prime}(0)=1$

Answer:

- Watch Video Solution

94. Let $\frac{d y}{d x}+y=f(x)$ where y is a continuous function of x with $\mathrm{y}(0)=1$ and $f(x)=\left\{\begin{array}{ll}e^{-x} & \text { if } o \leq x \leq 2 \\ e^{-2} & \text { if } x>2\end{array}\right.$ Which of the following hold(s) good?
A. $y(1)=2 e^{-1}$
B. $y^{\prime}(1)=-e^{-1}$
C. $y(3)=-2 e^{-3}$
D. $y^{\prime}(3)=-2 e^{-3}$

Answer:

95. A curve $y=f(x)$ passes through $(1,1)$ and tangent at $P(x, y)$ cuts the x -axis and y -axis at A and B, respectively, such that $B P: A P=3$, then (a) equation of curve is $x y^{\prime}-3 y=0$ (b) normal at $(1,1)$ is $x+3 y=4$ (c) curve passes through $2, \frac{1}{8}$ (d) equation of curve is $x y^{\prime}+3 y=0$
A. equation of curve is $x y^{\prime}-3 y=0$
B. normal at $(1,1)$ is $x+3 y=4$
C. curve passes through $\left(2, \frac{1}{8}\right)$
D. equation of curve is $x y^{\prime}+3 y=0$

Answer:

- Watch Video Solution

96. Let a solution $y=y(x)$ of the differential equation $x \sqrt{x^{2}-1} d y-y \sqrt{y^{2}-1} d x=0$, satisfy $y(2)=\frac{2}{\sqrt{3}}$
A. Statement I is true, Statement II is also true, Statement
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is flase, Statement II is true.

Answer:

- Watch Video Solution

97. A curve $y=f(x)$ satisfy the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 y x=4 x^{2}$ and passes through the origin.

The function $\mathrm{y}=\mathrm{f}(\mathrm{x})$
A. is strictly increasing, $\forall x \in R$
B. is such that it has a minima but no maxima
C. is such that it has a maxima but no minima
D. has no inflection point

Answer:

- Watch Video Solution

98. A curve $y=f(x)$ satisfy the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 y x=4 x^{2}$ and passes through the origin.
The area enclosed by $y=f^{-1}(x)$, the x-axis and the ordinate at $x=2 / 3$ is
A. $2 \ln 2$
B. $\frac{4}{3} \operatorname{In} 2$
C. $\frac{2}{3} \operatorname{In} 2$
D. $\frac{1}{3} \operatorname{In} 2$

Answer:

99. A curve $y=f(x)$ satisfy the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 y x=4 x^{2}$ and passes through the origin.

The function $\mathrm{y}=\mathrm{f}(\mathrm{x})$
A. $f(x)$ is a rational function
B. $f(x)$ has the same domia and same rage
C. $f(x)$ is a transcendental function
D. $y=f(x)$ is a bjjective mapping

Answer:

- Watch Video Solution

100. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a curve passing through $(4,3)$ such that slope of normal at any point lying in the first quadrant is negative and the normal and tangent at any point P cuts the Y-axis at A and B respectively such that the mid-point of $A B$ is origin, then the number of solutions of $y=f(x)$ and $f=|5-|x||$, is

(D) Watch Video Solution

101. If a function satisfies the relation
$f(x) f^{\prime \prime}(x)-f(x) f^{\prime}(x)=\left(f^{\prime}(x)\right)^{2} \forall x \in R$ and $f(0)=f^{\prime}(0)=1$, then

The value of $\lim _{x \rightarrow-\infty} f(x)$ is

Watch Video Solution

102. For certain curve $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}=6 x-4, f(x)$ has local minimum value 5 when $x=1$

Global maximum value of $y=f(x)$ for $x \in[0,2]$ is

- Watch Video Solution

103. If $\phi(x)$ is a diferential real-valuted function satisfying $\phi^{\prime}(x)+2 \phi(x) \leq 1$. prove that $\phi(x)-\frac{1}{2}$ is a non-incerasing function

- Watch Video Solution

104. The curve for which the ratio of the length of the segment intercepted by any tangent on the Y -axis to the length of the radius vector is constant (k), is

- Watch Video Solution

105. Let $u(x)$ and $v(x)$ be two continous functions satisfying the differential equations $\quad(d u)(d x)+p(x) u=f(x) \quad$ and $\frac{d v}{d x}+p(x) v=g(x)$, respectively. If $u\left(x_{1}\right)>v\left(x_{1}\right)$ for some x_{1} and $f(x)>g(x)$ for all $x>x_{1}$, prove that any point (x, y), where $x>x_{1}$, does not satisfy the equations $y=u(x)$ and $y=v(x)$ simultaneously.

- Watch Video Solution

106. A normal is drawn at a point $P(x, y)$ of a curve. It meets the x-axis at Q. If $P Q$ has constant length k, then show that the differential equation describing such curves is $y \frac{d y}{d x}= \pm \sqrt{k^{2}-y^{2}}$. Find the equation of such a curve passing through $(0, k)$.

- Watch Video Solution

107. Find the equation of a curve passing through the point (1.1) if the perpendicular distance of the origin from the normal at any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ of the curve is equal to the distance of P from the x-axis.

- Watch Video Solution

108. A country has a food deficit of 10%. Its population grows continuously at the rate of 3% per year. Its annual food production every year is 4% more than that of the last year Assuming that the average food requirement per person remains constant, prove that the country
will become self-sufficient in food after n years, where n is the smallest integer bigger than or equal to $\frac{\log _{e} 10-\log _{e} 9}{\left(\log _{e} 1.04\right)-0.03}$

- Watch Video Solution

109. A right circular cone with radius R and height H contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionality constant $=k>0$). Find the time after which the cone will be empty.

- Watch Video Solution

110. For $x \in R, x \neq 0$, if $y(x)$ differential function such that $x \int_{1}^{x} y(t) d t=(x+1) \int_{1}^{x} t y(t) d t$, then $y(x)$ equals: (where C is a constant.)

- Watch Video Solution

111. Find a pair of curves such that (a) the tangents drawn at points with equal abscissas intersect on the y-axis. (b) the normal drawn at points with equal abscissas intersect on the x-axis. (c) one curve passes through $(1,1)$ and other passes through $(2,3)$.
A. the tangents drawn at points with equal avscissae intersect on the y-axis.
B. the normal drawn at points with equal absicssae intersect on x-axis.
C. one curve passes through (1,1) and other passes through $(2,3)$.
D.

Answer:

- Watch Video Solution

112. Given two curves: $y=f(x)$ passing through the point $(0,1)$ and $g(x)=\int_{-\infty}^{x} f(t) d t$ passing through the point $\left(0, \frac{1}{n}\right)$. The tangents
drawn to both the curves at the points with equal abscissas intersect on the x -axis. Find the curve $y=f(x)$.

- Watch Video Solution

113. A normal is drawn at a point $P(x, y)$ of a curve. It meets the x-axis and the y -axis in point A AND B, respectively, such that $\frac{1}{O A}+\frac{1}{O B}=1$, where O is the origin. Find the equation of such a curve passing through (5. 4)

- Watch Video Solution

114. A line is drawn from a point $P(x, y)$ on the curve $y=f(x)$, making an angle with the x-axis which is supplementary to the one made by the tangent to the curve at $P(x, y)$. The line meets the x -axis at A . Another line perpendicular to it drawn from $P(x, y)$ meeting the y-axis at B . If $O A=O B$, where O is the origin, theequation of all curves which pass through $(1,1)$ is
115. A tangent and a normal to a curve at any point P meet the x and y axes at A, B and C, D respectively. Find the equation of the curve passing through $(1,0)$ if the centre of circle through $O . C, P$ and B lies on the line $y=x$ (where O is the origin).

- Watch Video Solution

116. Let $f(x)$ be positive continuous and differentiable on the interval (a, b) and $\lim _{x \rightarrow a} f(x)=1, \lim _{x \rightarrow b} f(x)=3^{1 / 4}$. If $f^{\prime}(x) \geq f^{3}(x)+\frac{1}{f(x)}$ then the greatest value of $b-a$ is
A. $b-a \geq \pi / 4$
B. $b-a \leq \pi / 4$
C. $b-a \leq \pi / 24$
D. None of these

Answer:

- Watch Video Solution

Solved Examples

1. If the area bounded by $\mathrm{y}=\mathrm{f}(\mathrm{x}), x=\frac{1}{2}, x=\frac{\sqrt{3}}{2}$ and the X -axis is A sq units where $\mathrm{f}(\mathrm{x})=x+\frac{2}{3} x^{3}+\frac{2}{3} \cdot \frac{4}{5} x^{5}+\frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} x^{7}+\ldots \infty,|x|<1$, Then the value of [4A] is (where[.] is G.I.F)

- Watch Video Solution

Subjective Type Question

1. If $\left(y_{1}, y_{2}\right)$ are two solutions of the differential $\frac{d y}{d x}+p(x) . y=Q(x)$ Then prove that $y=y_{1}+C\left(y_{1}-y_{2}\right)$ is the genral solution of the equation where C is any constant. For what relation between the constant α, β will the linear combination $\alpha y_{1}+\beta y_{2}$ also be a Solution.

Exercise For Session 1

1. The differential equation of all parabolas whose axis of symmetry is along X -axis is of order.
A. 2
B. 3
C. 1
D. None of these

Answer: A

- Watch Video Solution

2. The order and degree of the differential equation of all tangent lines to the parabola $x^{2}=4 y$ is
A. 1,2
B. 2,2
C. 3,1
D. 4,1

Answer: A

- Watch Video Solution

3. The degree of the differential equation
$\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$, is
A. 1
B. 2
C. 3
D. Not defined

Watch Video Solution

4. Find the differential equation satisfying the relation $\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=\lambda x \sqrt{1+y^{2}}-y \sqrt{1+x^{2}}$.
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

5. The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$ is
A. 1
B. 2
C. 3
D. Nor defined

Answer: D

- Watch Video Solution

6. Find the differential equation of all circles touching the x-axis at the origin y-axis is the origin
A. $y^{2}-x^{2}=2 x y \frac{d y}{d x}$
B. $y^{2}-x^{2}=2 x y \frac{d x}{d y}$
C. $y^{2}-x^{2}=2 x y \frac{d y}{d x}$
D. $y^{2}-x^{2}=2 x y \frac{d x}{d y}$

Answer: A

7. Show that the differential equation that represents the family of all parabolas having their axis of symmetry coincident with the axis of $x^{\text {s }} y_{2}+y 12=0$.
A. $y y_{2}+y_{1}^{2}-y+y_{1}$
B. $y y_{2}+y_{1}^{2}=0$
C. $y y_{2}+y_{1}^{2}=y_{1}$
D. None of these

Answer: B

- Watch Video Solution

8. The differential equation of all conics whose axes coincide with the coordinate axes, is
A. (a) $x y y_{2}+x y_{1}^{2}-y y_{1}=0$
B. (b) $y y_{2}+y_{1}^{2}-y y_{1}=0$
C. (c) $x y y_{2}+(x-y) y_{1}=0$
D. (d) None of these

Answer: A

- Watch Video Solution

9. The differential equation having $y=\left(\sin ^{-1} x\right)^{2}+A\left(\cos ^{-1} x\right)+B$, where A and B are abitary constant, is
A. $\left(1-x^{2}\right) y_{2}-x y_{1}=2$
B. $\left(1-x^{2}\right) y_{2}+y y_{1}=0$
C. $\left(1-x^{2}\right) y_{2}+x y_{1}=0$
D. None of these

Answer: A

10. The differential equation of circles passing through the points of intersection of unit circle with centre at the origin and the line bisecting the first quadrant, is
A. $y_{1}\left(x^{2}+y^{2}-1\right)+\left(x+y y_{1}\right)=0$
B. $\left(y_{1}-1\right)\left(x^{2}+y^{2}-1\right)+\left(x+y y_{1}\right) 2(x-y)=0$
C. $y_{1}\left(x^{2}+y^{2}-1\right)+y y_{2}=0$
D. None of these

Answer: B

- Watch Video Solution

Exercise For Session 2

1. Solve $\frac{d y}{d x}=\frac{(x+y)^{2}}{(x+2)(y-2)}$
A. $(x+2)^{4}\left(1+2 \frac{(y-2)}{x+2}\right)=k^{\frac{2(y-2)}{x+2}}$
B. $(x+2)^{4}\left(1+\frac{(y-2)}{x+2}\right)=k^{\frac{2(y-2)}{x+2}}$
C. $(x+2)^{3}\left(1+2 \frac{(y-2)}{x+2}\right)=k^{\frac{2(y-2)}{x+2}}$
D. None of these

Answer: B

- Watch Video Solution

2. If $\left(y^{3}-2 x^{2} y\right) d x+\left(2 x y^{2}-x^{3}\right) d y=0$, then the value of $x y \sqrt{y^{2}-x^{2}}$, is
A. $y^{2}+x$
B. $x y^{2}$
C. any contant
D. None of these
3. The solution of $\frac{d y}{d x}=\cos (x+y)+\sin (x+y)$, is given by
A. $\log \left|1+\tan \left(\frac{x+y}{2}\right)\right|=x+c$
B. $\log \mid 1+\tan ((x+y) \mid=x+c$
C. $\log \mid 1-\tan ((x+y) \mid=x+c$
D. None of these

Answer: A

- Watch Video Solution

4. The solution of $\frac{d y}{d x}=(x+y-1)+\frac{x+y}{\log (x+y)}$, is given by
A. $\{1+\log (x+y)\}-\log \{1+\log (x+y)\}=x+c$
B. $\{1-\log (x+y)\}-\log \{1-\log (x+y)\}=x+c$
C. $\{1-\log (x+y)\}^{2}-\log \{1+\log (x+y)\}=x+c$
D. None of these

Answer: A

- Watch Video Solution

5. $\left(2 x^{2}+3 y^{2}-7\right) x d x-\left(3 x^{2}+2 y^{2}-8\right) y d y=0$
A. $\left(x^{2}+y^{2}-1\right)=\left(x^{2}+y^{2}-3\right)^{5} C$
B. $\left(x^{2}+y^{2}-1\right)^{2}=\left(x^{2}+y^{2}-3\right)^{5} C$
C. $\left(x^{2}+y^{2}-3\right)^{2}=\left(x^{2}+y^{2}-1\right)^{5} C$
D. None of these

Answer: C

- Watch Video Solution

6. The solution of $\frac{d y}{d x}=\frac{(x-1)^{2}+(y-2)^{2} \tan ^{-1}\left(\frac{y-2}{x-1}\right)}{(x y-2 x-y+2) \tan ^{-1}\left(\frac{y-2}{x-1}\right)}$ is equal to
A.

$$
\left\{(x-1)^{2}+(y-1)^{2}\right\} \tan ^{-1}\left(\frac{y-2}{x-1}\right)-2(x-1)(y-2)=2(x-1
$$

B.

$$
\left\{(x-1)^{2}+(y-1)^{2}\right\}-2(x-1)(y-2) \tan ^{-1}\left(\frac{y-1}{x-1}\right)=2(x-1
$$

C.

$$
\left\{(x-1)^{2}+(y-1)^{2} \tan ^{-1}\left(\frac{y-2}{x-1}\right)-2(x-1)(y-2)=\log C(x\right.
$$

D. None of these

Answer: A

- Watch Video Solution

7. The solution of $\frac{d y}{d x}=\left(\frac{x+2 y-3}{2 x+y+3}\right)^{2}$, is
A. $(x+3)^{2}-(y-3)^{3}=C(x-y+6)^{4}$
B. $(x+3)^{3}-(y-3)^{3}=C$
C. $(x+3)^{4}+(y-3)^{4}=C$
D.

Answer: A

- Watch Video Solution

8. $\frac{d y}{d x}=-\frac{\cos x(3 \cos y-7 \sin x-3)}{\sin y(3 \sin x-7 \cos y+7)}$
A. $(\cos y-\sin x-1)^{2}(\sin x+\cos y-1)^{5}=C$
B. $(\cos y-\sin x-1)^{2}(\sin x+\cos y-1)^{3}=C$
C. $(\cos y-\sin x-1)^{2}(\sin x+\cos y-1)^{7}=C$
D. None of these

Answer: A

- Watch Video Solution

9. A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axis at A and B, then P is the mid-point of $A B$. The curve passes through the point (1,1). Determine the equation of the curve.
A. $x y=1$
B. $\frac{x}{y}=1$
C. $2 \mathrm{x}=\mathrm{xy}-1$
D. None of these

Answer: A

- Watch Video Solution

10. The family of curves whose tangent form an angle $\frac{\pi}{4}$ with the hyperbola $x y=1$,is
A. $y=x-2 \tan ^{-1}(x)+k$
B. $y=x+2 \tan ^{-1}(x)+k$
C. $y=2 x-\tan ^{-1}(x)+k$
D. $y=2 x+\tan ^{-1}(x)+k$

Answer: A

- Watch Video Solution

11. A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then the water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportional to the quantity of water in the reservoir at the time. One hour after the water is released, the quantity of water is reservoir A is $1 \frac{1}{2}$ times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water?
A. $\operatorname{lof_{3/4}(2)}$
B. $l o f_{3 / 4}(2)$
C. $\log _{1 / 2}\left(\frac{1}{2}\right)$
D. None of these

Answer: B

- Watch Video Solution

12. A curve passes through $(2,1)$ and is such that the square of the ordinate is twice the rectangle contained by the abscissa and the intercept of the normal. Then the equation of curve is
A. a. $x^{2}+y^{2}=9 x$
B. b. $4 x^{2}+y^{2}=9 x$
C. c. $4 x^{2}+2 y^{2}=9 x$
D. d. All of these

Answer: C

13. A normal at $P(x, y)$ on a curve meets the x -axis at Q and N is the foot of the ordinate at P. If $N Q=\frac{x\left(1+y^{2}\right)}{1+x^{2}}$, then the equation of curve given that it passes through the point $(3,1)$ is
$(b)(c)(d) x^{(e) 2(f)}(g)-(h) y^{(i) 2(j)}(k)=8(l)$
$(n)(o)(p) x^{(q) 2(r)}(s)+2(t) y^{(u) 2(v)}(w)=11(x)$
$(d)(e)(f) x^{(g) 2(h)}(i)-5(j) y^{(k) 2(l)}(m)=4(n)$ (o) (d) None of these
A. $5\left(1+y^{2}\right)=\left(1+x^{2}\right)$
B. $\left(1+y^{2}\right)=5\left(1+x^{2}\right)$
C. $\left(1+x^{2}\right)=\left(1+y^{2}\right)$
D. None of these

Answer: A

14. Determine all curve for which the ratios of the linght of the sagment intercepted by tangent on the y-axis to the length of the radius vector is a constant.
A. $\left(y+\sqrt{x^{2}-y^{2}}\right) x^{k-1}=c$
B. $\left(y+\sqrt{x^{2}+y^{2}}\right) x^{k-1}=c$
C. $\left(y-\sqrt{x^{2}-y^{2}}\right) x^{k-1}=c$
D. $\left(y-\sqrt{x^{2}+y^{2}}\right) x^{k-1}=c$

Answer: B

- Watch Video Solution

15. A point $P(x, y)$ nores on the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}, a>0$ for each position (x, y) of p , perpendiculars are drawn from origin upon the tangent and normal at P, the length (absolute valve) of them being $p_{1}(x)$ and $P_{2}(x)$ brespectively, then
A. $\frac{d p_{1}}{d x} \cdot \frac{d p_{2}}{d x}<0$
B. $\frac{d p_{1}}{d x} \cdot \frac{d p_{2}}{d x} \leq 0$
C. $\frac{d p_{1}}{d x} \cdot \frac{d p_{2}}{d x} \geq 0$
D. $\frac{d p_{1}}{d x} \cdot \frac{d p_{2}}{d x} \geq 0$

Answer: B

- Watch Video Solution

Exercise For Session 3

1. $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$
A. $2 y e^{\tan ^{-1} x}=e^{2 \tan ^{-1} x}+C$
B. $y e^{\tan -1 x}=e^{2 \tan -1 x}+C$
C. $2 y e^{\tan -1 x}=e^{2 \tan -1 x}+C$
D. None of these

- Watch Video Solution

2. Solution of differential equation $\frac{d y}{d x}+\frac{x}{1-x^{2}} y=x \sqrt{y}$ is
A. a) $3 \sqrt{y}+\left(1-x^{2}\right)=c\left(1-x^{2}\right)^{1 / 4}$
B. b) $\frac{3}{2} \sqrt{y}+\left(1-x^{2}\right)=c\left(1-x^{2}\right)^{3 / 2}$
C. c) $3 \sqrt{y}-\left(1-x^{2}\right)=c\left(1-x^{2}\right)^{1 / 4}$
D. d) None of these

Answer: A

- Watch Video Solution

3. Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$
A. $e^{x 2}=\left(x^{2}-1\right) e^{x 2} \tan y+c$
B. $e^{x 2} \tan y=\frac{1}{2}\left(x^{2}-1\right) e^{x 2}+c$
C. $e^{x 2} \tan y=\left(x^{2}-1\right) \tan y+c$
D. None of these

Answer: B

- Watch Video Solution

4. The solution of $3 x\left(1-x^{2}\right) y^{2} \frac{d y}{d x}+\left(2 x^{2}-1\right) y^{3}=a x^{3}$ is
A. $y^{2}=a x+c \sqrt{1-x^{2}}$
B. $y^{3}=a x+c x \sqrt{1-x^{3}}$
C. $y^{2}=a x+c \sqrt{1-x^{2}}$
D. None of these

Answer: B

5. The solution of $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$, is
A. a) $x=\frac{1}{2 x} \log y+C$
B. b) $x^{2}+\log y=C$
C. c) $\frac{1}{x \log y}=\frac{1}{2 x^{2}}+C$
D. d) None of these

Answer: C

- Watch Video Solution

6. The solution of $\frac{d y}{d x}+y f^{\prime}(x)-f(x) . f^{\prime}(x)=0, y \neq f(x)$ is
A. $y=f(x)+1+c e^{-f(x)}$
B. $y-c e^{-f(x)}$
C. $y=f(x)-1+c e^{-f(x)}$
D. None of these

D Watch Video Solution

7. The solution of $\left(x^{2}-1\right) \frac{d y}{d x} \cdot \sin y-2 x \cdot \cos y=2 x-2 x^{3}$ is
A. $\left(x^{2}-1\right) \cos y=\frac{x^{4}}{2}-x^{2}+C$
B. $\left(x^{2}-1\right) \sin y=\frac{x^{4}}{2}-x^{2}+C$
C. $\left(x^{2}-1\right) \cos y=\frac{x^{4}}{2}-\frac{x^{2}}{2}+C$
D. $\left(x^{2}-1\right) \sin y=\frac{x^{4}}{2}-\frac{x^{2}}{2}+C$

Answer: A

- Watch Video Solution

8. The Curve possessing the property that the intercept made by the tangent at any point of the curve on they-axis is equal to square of the abscissa of the point of tangency, is given by
A. $y^{2}=x+c$
B. $y=2 x^{2}+c x$
C. $Y=-x^{2}+c x$
D. None of these

Answer: C

- Watch Video Solution

9. The tangent at a point P of a curve meets the y-axis at A, and the line parallel to y-axis at A, and the line parallel to y-axis through P meets the x axis at B . If area of $\triangle O A B$ is constant (O being the origin), Then the curve is
A. $c x^{2}-x y+k=0$
B. $y^{2}+2 x^{2}=c x$
C. $3 x^{2}+4 y^{2}=k$
D. $x y-x^{2} y^{2}+k x=0$

- Watch Video Solution

10. The value of k such that the family of parabolas $y=c x^{2}+k$ is the orthogonal trajectory of the family of ellipse $x^{2}+2 y^{2}-y=c$, is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: D

- Watch Video Solution

Exercise For Session 4

1. The solution of $x d y+y d x+2 x^{3} d x=0$ is
A. $x y+x^{4}=c$
B. $x y+\frac{1}{2} x^{4}=c$
C. $\frac{x^{2}}{y}+\frac{x^{4}}{4}=c$
D. None of these

Answer: B

- Watch Video Solution

2. The solution of $y d x-x d y+\left(1+x^{2}\right) d x+x^{2} \sin y d y=0$, is given by
A. $2 x-y^{2}+\cos y+c=0$
B. $y+1-x^{2}+x \cos y+c=0$
C. $\frac{x}{y}+\frac{1}{y}-y+\cos y+c=0$
D. $\frac{y}{x}+\frac{1}{x}-x+\cos y+c=0$

- Watch Video Solution

3. The solution of the differential equation
$\left\{1+x \sqrt{x^{2}+y^{2}}\right\} d x+\left\{\left(x^{2}+y^{2}\right)-1\right\} y d y=0$ is equal to
A. $\left(1+x \sqrt{x^{2}+y^{2}}\right) d x+\left(-1+\sqrt{x^{2}+y^{2}}\right) y d y=0$,
B. $2 x-y+\frac{2}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=c$
C. $2 y-x^{2}+\frac{2}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=c$
D. None of these

Answer: A

- Watch Video Solution

4. Solution of the differential equation $\frac{x d y}{x^{2}+y^{2}}=\left(\frac{y}{x^{2}+y^{2}}-1\right) d x$, is
A. $\tan ^{-1}\left(\frac{x}{y}\right)+x=c$
B. $\tan ^{-1}\left(\frac{y}{x}\right)+x=c$
C.
D. $\tan ^{-1}\left(\frac{y}{x}\right)+x^{2}=c$

Answer: B

- Watch Video Solution

5. The solution of the differential equation
$y e^{x / y} d x=\left(x e^{x / y}+y^{2} \sin y\right) d y$ is
A. $e^{x / y}=-\cos y+c$
B. $e^{x / y}=+2 \cos y=c$
C. $e^{x / y}=x \cos y+c$
D. $e^{x / y}=2 \cos y+c$
6. The solution of $x \sin \left(\frac{y}{x}\right) d y=\left\{y \sin \left(\frac{y}{x}\right)-x\right\} d x$, is given by
A. $\log x+\cos \left(\frac{y}{x}\right)=\log C$
B. $\log x-\cos \left(\frac{y}{x}\right)=\log C$
C. $\log \left(\frac{x}{y}\right)-\cos \left(\frac{y}{x}\right)=\log C$
D. None of these

Answer: B

- Watch Video Solution

7. The solution of $\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}$, is given by
A. $\sin ^{-1}\left(\sqrt{x^{2}+y^{2}}\right)=a \tan ^{-1}+c$
B. $\sin ^{-1}\left(\sqrt{x^{2}+y^{2}}\right)=\frac{1}{a} \tan ^{-1}\left(\frac{y}{x}\right)+c$
C. $\sin ^{-1}\left(\sqrt{x^{2}+y^{2}}\right)=\tan ^{-1}\left(\frac{y}{x}\right)+c$
D. None of these

Answer: D

- Watch Video Solution

8. Solve the following differential equation: $\left(1+e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$
A. $x-y e^{x / y}=c$
B. $x+y e^{x / y}=c$
C. $y-\frac{x}{y} e^{x / y}=c$
D. None of these

Answer: B

9. Solution of the differential equation $\frac{x+y \frac{d y}{d x}}{y-x \frac{d y}{d x}}=\frac{x \sin ^{2}\left(x^{2}+y^{2}\right)}{y^{3}}$.
A. $-\cot \left(x^{2}+y^{2}\right)=\left(\frac{x}{y}\right)^{2}+C$
B. $\tan \left(x^{2}+y^{2}\right)=x^{2} y^{2}+C$
C. $\cot \left(x^{2}+y^{2}\right)=\frac{x}{y}+C$
D. None of these

Answer: A

- Watch Video Solution

10. The solution of $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{(1+\log x+\log y)^{2}}$ is given by
A. $x y(1+\log (x y))=C$
B. $x y^{2}(1+\log (x y))=C$
C. $x y(1+\log (x y))^{2}=C$
D. $x y\left(1+(\log x y)^{2}\right)-\frac{x^{2}}{2}=C$

Answer: D

- Watch Video Solution

Exercise For Session 5

1. Show that the curve for which the normal at every point passes through a fixed point is a circle.
A. a circle
B. an ellipse
C. a hyperbola
D. Nono of these

Answer: A

2. If the tangent at any point P of a curve meets the axis of $\Xi n T$. find the curve for which $O P=P T, O$ being the origin.
A. $x=c y^{2}$
B. $x=c y^{2}$ or $x=c / y^{2}$
C. $x=c y$ or $x=c / y$
D. None of these

Answer: C

- Watch Video Solution

3. According to Newton's law, rate of cooling is proportional to the difference between the temperature of the body and the temperature of the air. If the temperature of the air is $20^{\circ} \mathrm{C}$ and body cools for 20 min from $100^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ then the time it will take for it temperature to drop to 30° is
A. 30 min
B. 40 min
C. 60 min
D. 80 min

Answer: C

- Watch Video Solution

4. Let $f(x, y)$ be a curve in the $x-y$ plane having the property that distance from the origin of any tangent to the curve is equal to distance of point of contact from the y-axis. It $f(1,2)=0$, then all such possible curves are
A. $x^{2}+y^{2}=5 x$
B. $x^{2}-y^{2}=5 x$
C. $x^{2} y^{2}=5 x$
D. All of these

- Watch Video Solution

5. Given the curves $\mathrm{y}=\mathrm{f}(\mathrm{x})$ passing through the point $(0,1)$ and $y=\int_{-\infty}^{x}$ $\mathrm{f}(\mathrm{t})$ passing through the point $\left(0, \frac{1}{2}\right)$ The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve $y=f(x)$, is
A. $f(x)=x^{2}+x+1$
B. $f(x)=\frac{x^{2}}{e^{2}}$
C. $f(x)=e^{2 x}$
D.

Answer: C

6. A curve passing through $(1,0)$ is such that the ratio of the square of the intercept cut by any tangent on the y-axis to the Sub-normal is equal to the ratio of the product of the Coordinates of the point of tangency to the product of square of the slope of the tangent and the subtangent at the same point, is given by
A. $x=e^{ \pm 2 \sqrt{y} / x}$
B. $x=e^{ \pm \sqrt{y} / x}$
C. $x=e^{ \pm \sqrt{y} / x}-1$
D. $x y+e^{ \pm y / x}-1=0$

Answer: A

- Watch Video Solution

7. Consider a curve $y=f(x)$ in $x y$-plane. The curve passes through (0,0) and has the property that a segment of tangent drawn at any point
$P(x, f(x))$ and the line $\mathrm{y}=3$ gets bisected by the line $x+y=1$ then the equation of curve, is
A. $y^{2}=9(x-y)$
B. $(y-3)^{2}=9(1-x-y)$
C. $(y+3)^{2}=9(1-x-y)$
D. $(y-3)^{2}-9(1+x+y)$

Answer: B

- Watch Video Solution

8. Consider the curved mirror $y=f(x)$ passing through $(0,6)$ having the property that all light rays emerging from origin, after getting reflected from the mirror becomes parallel to x-axis, then the equation of curve, is
A. $y^{2}=4(x-y)$ or $y^{2}=36(9+x)$
B. $y^{2}=4(1-x)$ or $y^{2}=36(9-x)$
C. $y^{2}=4(1+x)$ or $y^{2}=36(9-x)$
D. None of these

Answer: D

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. If the differential equation of the family of curve given by $y=A x+B e^{2 x}$, where A and B are arbitary constants is of the form $(1-2 x) \frac{d}{d x}\left(\frac{d y}{d x}+l y\right)+k\left(\frac{d y}{d x}+l y\right)=0$, then the ordered pair (k, l) is
A. $(2,-2)$
B. $(-2,2)$
C. $(2,2)$
D. $(-2,-2)$

Answer: A

- Watch Video Solution

2. about to only mathematics
A. $y=x \tan ^{-1}\left(\operatorname{In} \frac{e}{x}\right)$
B. $y=x \tan ^{-1}(\operatorname{In} 2)$
C. $y=\frac{1}{x} \tan ^{-1}\left(\operatorname{In} \frac{e}{x}\right)$
D. None of these

Answer: A

- Watch Video Solution

3. The x-intercept of the tangent to a curve is equal to the ordinate of the point of contact. The equation of the curve through the point $(1,1)$ is
A. $y e^{\frac{x}{y}}=e$
B. $x e^{\frac{x}{y}}=e$
C. $x e^{\frac{y}{x}}=e$
D. $y e^{\frac{y}{x}}=e$

Answer: A

- Watch Video Solution

4. A function $y=f(x)$ satisfies the condition $f^{\prime}(x) \sin x+f(x) \cos x=1, f(x)$ being bounded when $x \rightarrow 0$. If
$I=\int_{0}^{\frac{\pi}{2}} f(x) d x$ then
(A) $\frac{\pi}{2}<I<\frac{\pi^{2}}{4}$
(B) $\frac{\pi}{4}<I<\frac{\pi^{2}}{2}$
$1<I<\frac{\pi}{2}$ (D) $0<I<1$
A. $\frac{\pi}{2}<I<\frac{\pi^{2}}{4}$
B. $\frac{\pi}{4}<I<\frac{\pi^{2}}{2}$
C. $1<I<\frac{\pi}{2}$
D. $0<I<1$

- Watch Video Solution

5. A curve is such that the area of the region bounded by the co-ordinate axes, the curve \& the coordinate of any point on it is equal to the cube of that ordinate. The curve represents
A. a pair of straight lines
B. a circle
C. a parabola
D. am ellipse

Answer: C

6. The value of the constant ' m ' and ' c ' for which $y=m x+c$ is a solution of the differential equation $\left(d^{2} \frac{y}{d x^{2}}\right)-3(\mathrm{dy} / \mathrm{dx})-4 \mathrm{y}=-4 \mathrm{x}$ is:
A. is $m=-1, c=3 / 4$
B. is $m=1, c=-3 / 4$
C. no such real m,c
D. is $m=1, c=3 / 4$

Answer: B

- Watch Video Solution

7. Find the real value of m for which the substitution $y=u^{m}$ will transform the differential equation $2 x^{4} y \frac{d y}{d x}+y^{4}=4 x^{6}$ in to a homogeneous equation.
A. $m=0$
B. $m=1$
C. $1 \mathrm{~m}=3 / / 2^{\prime}$
D. No value of m

Answer: C

- Watch Video Solution

8. The solution of the differential equation, $x^{2} \frac{d y}{d x} \cos \frac{1}{x}-y \sin \frac{1}{x}=-1$, where $y \rightarrow-1 \operatorname{as} x \rightarrow \infty$ is
A. $y=\sin \frac{1}{x}-\cos \frac{1}{x}$
B. $y=\frac{x+1}{x \sin \frac{1}{x}}$
C. $y=\sin \frac{1}{x}+\cos \frac{1}{x}$
D. $y=\frac{x+1}{x \cos \frac{1}{x}}$

Answer: A

9. A wet porous subtance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half its moisture during the first hour, then the time when it would have lost 99.9 \% of its moisture is (weather conditions remaining same)
A. (a) more than 100 h
B. (b) more than 10 h
C. (c) approximately 10 h
D. (d) None of these

Answer: C

- Watch Video Solution

10. A curve C passes through origin and has the property that at each point (x, y) on it the normal line at that point passes through $(1,0)$. The equation of a common tangent to the curve C and the parabola $y^{2}=4 x$
A. $x=0$
B. $y=0$
C. $y=x+1$
D. $x+y+1=0$

Answer: A

- Watch Video Solution

11.

A function

$$
y=f(x)
$$

satisfies
$(x+1) f^{\prime}(x)-2\left(x^{2}+x\right) f(x)=\frac{e^{x^{2}}}{x+1}, A a x>-1 . \quad$ If $\quad f(0)=5$, then $f(x)$ is
A. $\left(\frac{3 x+5}{x+1}\right) \cdot e^{x^{2}}$
B. $\left(\frac{6 x+5}{x+1}\right) \cdot e^{x^{2}}$
C. $\left(\frac{6 x+5}{(x+1)^{2}}\right) \cdot e^{x^{2}}$
D. $\left(\frac{5 x-6 x}{x+1}\right) \cdot e^{x^{2}}$

- Watch Video Solution

12. The curve with the property that the projection of the ordinate on the normal is constant and has a length equal to a is
A. $x-\operatorname{aIn}\left(\sqrt{y^{2}-a^{2}}+y\right)=C$
B. $x+a \sqrt{a^{2}-y^{2}}=C$
C. $(y-a)^{2}=C x$
D. $a y=\tan ^{-1}(x+c)$

Answer: A

- Watch Video Solution

13. The differential equation corresponding to the family of curves $y=e^{x}(a x+b)$ is
A. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-y=0$
B. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-y=0$
C. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$
D. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-y=0$

Answer: B

- Watch Video Solution

14. The equation to the orthogonal trajectories of the system of parabolas $y=a x^{2}$ is
A. $\frac{x^{2}}{2}+y^{2}=C$
B. $x^{2}-\frac{x^{2}}{2}=C$
C. $\frac{x^{2}}{2}-y^{2}=C$
D. $x^{2}-\frac{y^{2}}{2}=C$
15. A function satisfying $\int_{0}^{1} f(t x) d t=n f(x)$, where $x>0$ is

- Watch Video Solution

16. The substituion $y=z^{\alpha}$ transforms the differential equation $\left(x^{2} y^{2}-1\right) d y+2 x y^{3} d x=0$ into a homogeneous differential equation for
A. $\alpha=-1$
B. 0
C. $\alpha=1$
D. No value of α

Answer: A

17. A curve passing through $(2,3)$ and satisfying the differential equation $\int_{0}^{t} t y(t) d=x^{2} y(x),(x>0)$ is
A. $x^{2}+y^{2}=13$
B. $y^{2}=\frac{9}{2} x$
C. $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$
D. $x y=6$

Answer: D

- Watch Video Solution

18. Which one of the following curves represents the solution of the initial value problem $\frac{d y}{d x}=100-y$, where $y(0)=50$
A.

B.

Answer: B

Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The differential equation $x \frac{d y}{d x}+\frac{3}{\frac{d y}{d x}}=y^{2}$
A. is of order 1
B. is of degree 2
C. is linear
D. is non-linear

Answer: A::B::D

- Watch Video Solution

2. The function $f(x)$ satisfying the equation
$f^{2}(x)+4 f^{\prime}(x) f(x)+\left(f^{\prime}(x)\right)^{2}=0$
A. $f(x)=C \cdot e^{(2-\sqrt{3}) x}$
B. $f(x)=C \cdot e^{(2+\sqrt{3}) x}$
C. $f(x)=C \cdot e^{(\sqrt{3}-2) x}$
D. $f(x)=C \cdot e^{-(2+\sqrt{3}) x}$
3. Which of the following pair (s) is / are orthogonal ?
A. $16 x^{2}+y^{2}=c$ and $y^{16}=k x$
B. $y=x+c e^{-x}$ and $x+2=y+k e^{-y}$
C. $y=C x^{2}$ and $x^{2}+2 y^{2}=k$
D. $x^{2}-y^{2}=C$ and $x y=k$

Answer: A::B::C::D

- Watch Video Solution

4. Family of curves whose tangent at a point with its intersection with the curve $x y=c^{2}$ form an angle of $\frac{\pi}{4}$ is
A. $y^{2}-2 x y-x^{2}=k$
B. $y^{2}+2 x y-x^{2}=k$
C. $y=x-2 c \tan ^{-1}\left(\frac{x}{c}\right)+k$
D. $y=c \operatorname{In}\left|\frac{c+x}{c-x}\right|-x+k$

Answer: B::C::D

- Watch Video Solution

5. The general solution of the differential equation,
$x\left(\frac{d y}{d x}\right)=y \cdot \log \left(\frac{y}{x}\right)$ is
A. $y=x e^{1-c}$
B. $y=x e^{1+c}$
C. $y=e x \cdot e^{C x}$
D. $y=x e^{C x}$

Answer: C

6. Which of the following equation (s) is/are linear?
A. $\frac{d y}{d x}+\frac{y}{x}=\operatorname{In} x$
B. $y\left(\frac{d y}{d x}\right)+4 x=0$
C. $d x+d y=0$
D. $\frac{d^{2} y}{d x^{2}}=\cos x$

Answer: A::C::D

- Watch Video Solution

7. The equation of the curve satisfying the differential equation $y\left(\frac{d y}{d x}\right)^{2}+(x-y) \frac{d y}{d x}-x=0$ can be a (a) circle (b) Straight line (c) Parabola (d) Ellipse
A. $x-y+1=0$
B. $x^{2}+y^{2}=25$
C. $x^{2}+y^{2}-5 x-10=0$
D. $x+y-7=0$

Answer: A::B

- Watch Video Solution

8. Identify the statement(s) which is/are true.
A. $f(x, y)=e^{y / x}+\frac{\tan (y)}{x}$ is homogeneous of degree zero.
B. $x . \log \frac{y}{x} d x+\frac{y^{2}}{x} \sin ^{-1} \frac{y}{x} d y=0 \quad$ is homogeneous deffierntial equation.
C. $f(x, y)=x^{2}+\sin x . \cos y$ is not homogenous.
D. $\left(x^{2}+y^{2}\right) d x-\left(x y^{2}-y^{3}\right) d y=0$ is a homogeneous defferential equation.

Answer: A::B::C::D

9. The graph of the function $y=f(x)$ passing through the point $(0,1)$ and satisfying the differential equation $\frac{d y}{d x}+y \cos x=\cos x$ is such that (a) it is a constant function. (b) it is periodic (c) it is neither an even nor an odd function. (d) it is continuous and differentiable for all $(e)(f) x \dot{g}(\mathrm{~h})$
A. it is a constanat function
B. it is periodic
C. it is nither an even nor an odd function
D. it is continuous and differrntiable for all x

Answer: A::B::D

- Watch Video Solution

10. A function $y=f(x)$ satisfies the differential $\frac{d y}{d x} \cdot \sin x-y \cos x+\frac{\sin ^{2} x}{x^{2}}=0$ such that $y \rightarrow 0$ as $x \rightarrow \infty$. Then:
A. (a) $\lim _{x \rightarrow 0} f(x)=1$
B. (b) $\int_{0}^{\pi / 2} f(x) d x$ is lesser than $\frac{\pi}{2}$
C. (c) $\int_{0}^{\pi / 2} f(x) d x$ is greater than unity
D. (d) $f(x)$ is an odd function

Answer: A::B::C::D

- Watch Video Solution

11. Identify the statement(s) which is/are true.
A. $\lim _{x \rightarrow 0} f(x)=1$
B. $\int_{0}^{\pi / 2} f(x) d x$ is less than $\frac{\pi}{2}$
C. $\int_{0}^{\pi / 2} f(x) d x$ is greater than unity
D. $f(x)$ is an odd function

Answer: A::B::C::D

12. Let $y=(A+B x) e^{3 x}$ is a Solution of the differential equation $\frac{d^{2} y}{d x^{2}}+m \frac{d y}{d x}+n y=0, m, n \in I$, then
A. $m=-6$
B. $n=-6$
C. $m=9$
D. $\mathrm{n}=9$

Answer: A: D

- Watch Video Solution

13. A curve C has the property that its intial ordinate of any tangent drawn is less the abscissa of the point of tangency by unity.

Statement I. Differential equation satisfying tha curve is linear.
Statement II. Degree of differential equation is one.
A. Statement I is true ,and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: b

- Watch Video Solution

Exercise Statement I And Ii Type Questions

1. Statement I Differential equation corresponding to all lines, $a x+b y+c=0$ has the order 3.

Statement II Gereral solution of a differential equation of nth order contains n independent arbitaray constanis.
A. Statement I is true ,and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: d

D Watch Video Solution

2. Statement I Integral curves denoted by the first order linear differential equation $\frac{d y}{d x}-\frac{1}{x} y=-x$ are family of parabolas passing throught the origin.

Statement II Every differential equation geomrtrically represents a family of curve having some common property.
A. Statement I is true ,and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: d

- Watch Video Solution

3. Statement I The solution of $(y d x-x d y) \cos \left(\frac{x}{y}\right)=n y^{2} d x$ is $\sin \left(\frac{x}{y}\right)=C e^{n x}$ Statement II Such type of differential equation can only be solved by the substitution $\mathrm{x}=\mathrm{vy}$.
A. Statement I is true ,and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: d

D Watch Video Solution

4. Statement 1: The order of the differential equation whose general solution is $y==c_{1} \cos 2 x+c_{2} \sin ^{2} x+c_{3} \cos ^{2} x+c_{4} e^{2 x}+c_{5} e^{2 x+c_{6}}$ is
5. Statement 2 : Total number of arbitrary parameters in the given general solution in the statement (1) is 3.
A. Statement I is true ,and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

- Watch Video Solution

5. Consider differential equation $\left(x^{2}+1\right) \cdot \frac{d^{2} y}{d x^{2}}=2 x \cdot \frac{d y}{d x}$

Statement I For many member of this family $y \rightarrow \infty$ as $x \rightarrow \infty$.

Statement II Any solution of this differential equation is a polynomial of odd degree with positive coefficient of maximum power.
A. Statement I is true , and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: a

- Watch Video Solution

6. Statement I Order of differential equation of family of parabola whose axis is parallel to y-axis and latusrectum is fixed is 2 . Statement II Order of first equation is same as actual number of arbitary constant present in differential equation.
A. Statement I is true , and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

7. Statement I The differential equation of all non-vertical lines in a plane is $\frac{d^{2} x}{d y^{2}}=0$.

Satement II The general equation of all non-vertical lines in a plane is ax+by=1, where $b \neq 0$.
A. Statement I is true ,and Statement II is the correct explanation for Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: d

- Watch Video Solution

8. Statement I The order of differential equation of all conics whose centre lies at origin is , 2 .

Statement II The order of differential equation is same as number of arbitary unknowns in the given curve.
A. Statement I is true ,and Statement II is the correct explanation for

Statement I.
B. Statement I is true, Statement II is true and Statement II is the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: d

- Watch Video Solution

9. Statement $\mathrm{l} \mathrm{y}=\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos \mathrm{x}$ is general solution of $\mathrm{y}=\mathrm{y}=\mathrm{y}$.

Statement II $\mathrm{y}=\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos \mathrm{x}$ is a trigonometic function.
A. Statement I is true ,and Statement II is the correct explanation for

Statement I.
B. Statement I is true, Statement II is true and Statement II is not the correct explanation for Statment I
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: b

- Watch Video Solution

Exercise Passage Based Questions

1. Let $y=f(x)$ satisfies the equation
$f(x)=\left(e^{-x}+e^{x}\right) \cos x-2 x+\int_{0}^{x}(x-t) f^{\prime}(t) d t$
y satisfies the differential equation
A. $\frac{d y}{d x}+y=e^{x}(\cos x-\sin x)-e^{-x}(\cos x+\sin x)$
B. $\frac{d y}{d x}-y=e^{x}(\cos x-\sin x)-e^{-x}(\cos x+\sin x)$
C. $\frac{d y}{d x}+y=e^{x}(\cos x+\sin x)-e^{-x}(\cos x-\sin x)$
D. $\frac{d y}{d x}-y=e^{x}(\cos x-\sin x)+e^{-x}(\cos x-\sin x)$

Answer: A

- Watch Video Solution

2. Let $y=f(x)$ satisfies the equation
$f(x)=\left(e^{-x}+e^{x}\right) \cos x-2 x+\int_{0}^{x}(x-t) f^{\prime}(t) d t$
y satisfies the differential equation
A. -1
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

3. Let $y=f(x)$ satisfies the equation
$f(x)=\left(e^{-x}+e^{x}\right) \cos x-2 x+\int_{0}^{x}(x-t) f^{\prime}(t) d t$ y satisfies the differential equation
A. $e^{-x}(\cos x-\sin x)+\frac{e^{x}}{5}(3 \cos +\sin x)+\frac{2}{5} e^{-x}$
B. $e^{-x}(\cos x+\sin x)+\frac{e^{x}}{5}(3 \cos -\sin x)-\frac{2}{5} e^{-x}$
C. $e^{-x}(\cos x-\sin x)+\frac{e^{x}}{5}(3 \cos -\sin x)+\frac{2}{5} e^{-x}$
D. $e^{-x}(\cos x+\sin x)+\frac{e^{x}}{5}(3 \cos -\sin x)-\frac{2}{5} e^{-x}$

Answer: C

4. For certain curve $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}=6 x-4, f(x)$ has local minimum value 5 when $x=1$

Global maximum value of $y=f(x)$ for $x \in[0,2]$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

5. For certain curve $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}=6 x-4, f(x)$ has local minimum value 5 when $x=1$

Global maximum value of $y=f(x)$ for $x \in[0,2]$ is
A. 5
B. 7
C. 8
D. 9

Answer: A

- Watch Video Solution

6. For certain curve $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}=6 x-4, f(x)$ has local minimum value 5 when $x=1$

Global maximum value of $y=f(x)$ for $x \in[0,2]$ is
A. 5
B. 7
C. 8
D. 9

D Watch Video Solution

7. If any differentisl equation in the form
$f\left(f_{1}(x, y) d\left(f_{1}(x, y)+\phi\left(f_{2}(x, y) d\left(f_{2}(x, y)\right)+\ldots .=0\right.\right.\right.$
then each term can be intergrated separately.
For example,
$\int \sin x y d(x y)+\int\left(\frac{x}{y}\right) d\left(\frac{x}{y}\right)=-\cos x y+\frac{1}{2}\left(\frac{x}{y}\right)^{2}+C$
The solution of the differential equation
$x d y-y d x=\sqrt{x^{2}-y^{2}} d x$ is
A. (a) $C x=e^{\sin ^{-1} \frac{y}{x}}$
B. (b) $x e^{\sin ^{-1 \frac{y}{x}=c}}$
C. (c) $x+e^{\sin ^{-1 \frac{y}{x}=c}}$
D. (d)None of these
8. If any differentisl equation in the form
$f\left(f_{1}(x, y) d\left(f_{1}(x, y)+\phi\left(f_{2}(x, y) d\left(f_{2}(x, y)\right)+\ldots .=0\right.\right.\right.$
then each term can be intergrated separately.
For example,
$\int \sin x y d(x y)+\int\left(\frac{x}{y}\right) d\left(\frac{x}{y}\right)=-\cos x y+\frac{1}{2}\left(\frac{x}{y}\right)^{2}+C$
The solution of the differential equation
$\left(x y^{4}+y\right) d x-x d y=0$ is
A. $\frac{x^{3}}{4}+\frac{1}{2}\left(\frac{x}{y}\right)^{2}=C$
B. $\frac{x^{4}}{4}+\frac{1}{3}\left(\frac{x}{y}\right)^{3}=C$
C. $\frac{x^{4}}{4}-\frac{1}{2}\left(\frac{x}{y}\right)^{3}=C$
D. $\frac{x^{4}}{4}-\frac{1}{2}\left(\frac{x}{y}\right)^{2}=C$

Answer: B

9. If any differential equation in the form
$f\left(f_{1}(x, y) d\left(f_{1}(x, y)+\phi\left(f_{2}(x, y) d\left(f_{2}(x, y)\right)+\ldots=0\right.\right.\right.$ then each term can be intergrated separately.

For example,
$\int \sin x y d(x y)+\int\left(\frac{x}{y}\right) d\left(\frac{x}{y}\right)=-\cos x y+\frac{1}{2}\left(\frac{x}{y}\right)^{2}+C$
Solution of differential equation
$\left(2 x \cos y+y^{2} \cos x\right) d x+\left(2 y \sin x-x^{2} \sin y\right) d y=0$ is
A. $x^{2} \cos y+y^{2} \sin x=C$
B. $x \cos y+y \sin x=C$
C. $x^{2} \cos ^{2} y+y^{2} \sin ^{2} x=C$
D. None of the above

Answer: A

- Watch Video Solution

10. Differential equation $\frac{d y}{d x}=f(x) g(y)$ can be solved by separating variable $\frac{d y}{g(y)}=f(x) d x$.
The equation of the curve to the point $(1,0)$ which satsifies the differential equation $\left(1+y^{2}\right) d x=x y d y=0$ is
A. $x^{2}+y^{2}=1$
B. $x^{2}-y^{2}=1$
C. $x^{2}+y^{2}=2$
D. None of these

Answer: B

- Watch Video Solution

11. Differential equation $\frac{d y}{d x}=f(x) g(x)$ can be solved by separating variable $\frac{d y}{g(y)}=f(x) d x$.
Solution of the differential equation $\frac{d y}{d x}+\frac{1+y^{2}}{\sqrt{1-x^{2}}}=0$ is
A. $\tan ^{-1} y+\sin ^{-1} x=C$
B. $\tan ^{-1} x+\sin ^{-1} y=C$
C. $\tan ^{-1} y \cdot \sin ^{-1} x=C$
D. $\tan ^{-1} y-\sin ^{-1} x=C$

Answer: A

- Watch Video Solution

12. Differential equation $\frac{d y}{d x}=f(x) g(x)$ can be solved by separating variable $\frac{d y}{g(y)}=f(x) d x$.
If $\frac{d y}{d x}=1+x+y+x y$ and $y(-1)=0$, then y is equal to
A. $e^{\frac{1-x^{2}}{2}}$
B. $e^{\frac{1+x^{2}}{2}-1}$
C. $\ln (1+x)-1$
D. None of these

- Watch Video Solution

13. Let C be the set of curves having the property that the point of intersection of tangent with y-axis is equidistant from the point of tangency and origin (0,0)

If $C_{1}, C_{2} \in C$ such that
C_{1} : Curve is passing through $(1,0)$
C_{2} : Curve is passing through $(-1,0)$
The number of common tangents for C_{1} and C_{2} is
A. 1
B. 2
C. 3
D. None of these

Answer: C

14. Let C be the set of curves having the property that the point of intersection of tangent with y-axis is equidistant from the point of tangency and origin (0,0)

$$
\text { If } C_{3} \in C
$$

C_{3} : is passing through (2,4). If $\frac{x}{a}+\frac{y}{b}=1$. is tangent to C_{3}, then
A. $25 a+10 b^{2}-a b^{2}=0$
B. $25 a+10 b-13 a b=0$
C. $13 a+25 b-16 a b=0$
D. $29 a+b-13 a b=0$

Answer: A

- Watch Video Solution

15. Let C be the set of curves having the property that the point of intersection of tangent with y-axis is equidistant from the point of tangency and origin (0,0)

If common tangents of C_{1} and C_{2} form an equilateral triangle, where C_{1}, C_{2} in C and C_{1} : Curve passes through $\mathrm{f}(2,0)$, then C_{2} may passes through
A. $(-1 / 3,1 / 3)$
B. $(-1 / 3,1)$
C. $(-2 / 3,4)$
D. $(-2 / 3,2)$

Answer: A

- Watch Video Solution

Differential Equations Exerise 5

1. Match the following :

(A) $\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}$

(B) Solution of $\cos ^{2} x \frac{d y}{d x}-\tan 2 x \cdot y=\cos ^{4} x$, where $\|x\|<\frac{\pi}{4}$ and $y\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{8}$	(q) $\sqrt{x^{2}+y^{2}}=a \sin \left\{C+\tan ^{-1}\left(\frac{y}{x}\right)\right\}$
(C) The equation of all possible curves that will cut each member of the family	
of circles $x^{2}+y^{2}-2 c x=0$ at right angle	(r) $x^{2}+y^{2}+C y=0$
(D) Solution of the equation $x \int_{0}^{x} y(t) d t=(x+1) \int_{0}^{x} t y(t) d t, x>0$ is	(s) $y=\frac{\sin 2 x}{2\left(1-\tan ^{2} x\right)}$

Watch Video Solution

2. Match the following :

Column I		Column II
A) Cincular plaie is expanded ty beat from radins 5 cm to 5.06 cm . Approximate increase in ares is	(p)	4
(B) Side of cube increasing by $1^{\text {a }}$ is then percentage increase in volume is	(q)	0.6π
(C) If the rate of decrease of $\frac{x^{2}}{2}-2 x+5$ is twice the rate of decrease of x, then x is equal to	(r)	3
D) Rate of increase in area of equilateral triangle of side 15 cm . When each side is increasing at the rate of 0.1 cm s : is	(s)	$\frac{3 \sqrt{3}}{4}$

Watch Video Solution

3. Match the following :

Column I
(A) The differential equation of the family of curves $y=C^{x}(A \cos x+B \sin x)$, where A, B are arbitrary constants, has the degree n and order m. Then, the values of n and m are,
$\begin{array}{ll}\text { (B) The degree and order of the differential equation of the family of all parabolas whose } & \text { (q) } 1,1\end{array}$ axis is the r-axis, are respectively
(C) The order and degree of the differential equations of the family of circles touching the
(r) 2,2 x-axis at the origin, are respectively
(D) The degree and order of the differential equation of the family of ellipse having the same foci, are respectively.
(s) 1,2

D Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Find the constant of intergration by the general solution of the differential equation $\left(2 x^{2} y-2 y^{4}\right) d x+\left(2 x^{3}+3 x y^{3}\right) d y=0$ if curve passes through (1,1).

- Watch Video Solution

2. A tank initially contains 50 gallons of fresh water. Brine contains 2 pounds per gallon of salt, flows into the tank at the rate of 2 gallons per
minutes and the mixture kept uniform by stirring, runs out at the same rate. If it will take for the quantity of salt in the tank to increase from 40 to 80 pounds (in seconds) is 206λ, then find λ

- Watch Video Solution

3. If $f: R-\{-1\} \rightarrow R$ and f is differentiable function satisfies $f(x+f(y)+x f(y))=y+f(x)+y \cdot f(x) \forall x, y \in R-\{-1\} \quad$ then find the value of $2010[1+f(2009)]$

- Watch Video Solution

4. If $\phi(x)$ is a differential real-valued function satisfying $\phi^{\prime}(x)+2 \phi(x) \leq 1$, then the value of $2 \phi(x)$ is always less than or equal to

- Watch Video Solution

5. The degree of the differential equation satisfying by the curves
$\sqrt{1+x}-a \sqrt{1+y}=1$, is

Watch Video Solution

6. Let $f(x)$ be a differentiable bounded function satisfying $2 f^{5}(x) \cdot f^{\prime}(x)+2\left(f^{\prime}(x)\right)^{3} \cdot f^{5}(x)=f^{\prime \prime}(x)$. If $f(x)$ is bounded in between $y=k_{1}$, and $y=k_{2}$, then the number of intergers between k_{1} and k_{2} is/are (where $f(0)=f^{\prime}(0)=0$).

- Watch Video Solution

7. Let $y(x)$ be a function satisfying $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+e^{2 x}=0, \mathrm{y}(0)=$ and $y^{\prime}(0)=1$. If maximum value of $y(x)$ is $y(\alpha)$, then integral part of 2α is \qquad
8. Find the time required for a cylindrical tank of radius r and height H to empty through a round hole of area a at the bottom. The flow through the hole is according to the law $v(t)=k \sqrt{2 g h(t)}$, where $v(t)$ and $h(t)$, are respectively, the velocity of flow through the hole and the height of the water level above the hole at time t, and g is the acceleration due to gravity.

- Watch Video Solution

Exercise Subjective Type Questions

1. A hemi-spherical tank of radius 2 m is initially full of water and has an outlet of $12 \mathrm{~cm}^{2}$ cross-sectional area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law $v(t)=0.6 \sqrt{2 g h(t)}$, where $v(t)$ and $h(t)$ are, respectively, the velocity of the flow through the outlet and the height of water level above the outlet and the height of water level above the outlet at time t, and g is the acceleration due to gravity. Find the time it takes to empty the tank.
2. Let $f: R^{+} \rightarrow R \quad$ satisfies the functional equation $f(x y)=e^{x y-x-y}\left\{e^{y} f(x)+e^{x} f(y)\right\}, \forall x, y \in R^{+}$. If $\mathrm{f}^{\prime}(1)=\mathrm{e}$, determine $f(x)$.

- Watch Video Solution

3. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be curve passing through $(1, \sqrt{3})$ such that tangent at any point P on the curve lying in the first quadrant has positive slope and the tangent and the normal at the point P cut the x-axis at A and B respectively so that the mid-point of $A B$ is origin. Find the differential equation of the curve and hence determine $f(x)$.

- Watch Video Solution

4. If y_{1} and y_{2} are the solutions of the differential equation $\frac{d y}{d x}+P y=Q$, where P and Q are functions of x alond and $y_{2}=y_{1} z$,
then move that $z=1+c e^{-\int\left(\frac{Q}{y_{1}}\right) d x}$, where c is an arbitrary constant.

- Watch Video Solution

Differential Equations Exerise 7

1. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a differentiable function $\forall \xi n R$ and satisfies:
$f(x)=x+\int_{0}^{1} x^{2} z f(z) d z+\int_{0}^{1} x z^{2} f(z) d z$.

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. If $f: R-\{-1\} \rightarrow R$ and f is differentiable function satisfies:
$f((x)+f(y)+x f(y))=y+f(x)+y f(x) \forall x$,
$y \in R-\left\{{ }_{-} 1\right\}$ Find $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

2. A solution curve of the differential equation $\left(x^{2}+x y+4 x+2 y+4\right)\left(\frac{d y}{d x}\right)-y^{2}=0$ passes through the point
$(1,3)$ Then the solution curve is
A. intesects $y=x+2$ exactly at one points
B. interesects $\mathrm{y}=\mathrm{x}+2$ exactly at two points
C. intersects $y=(x+2)^{2}$
D. does not intersect $y=(x+3)^{2}$

Answer: A: D

- Watch Video Solution

3.

Let $f:(0 . \infty) \rightarrow R$ be a differentiable function such that $f^{\prime}(x)=2-$ Then
A. $\lim _{x \rightarrow 0+} \int \cdot\left(\frac{1}{x}\right)=1$
B. $\lim _{x \rightarrow 0+} x f^{\prime}\left(\frac{1}{x}\right)=1$
C. $\lim _{x \rightarrow 0+} x^{2}\left(\frac{1}{x}\right)=1$
D. $|f(x)| \leq 2$ for all $x \in(0,2)$

Answer: A::D

- Watch Video Solution

4. Let $y(x)$ be a solution of the differential equation $\left(1+e^{x}\right) y^{\prime}+y e^{x}=1$. If $y(0)=2$, then watch of the following statements is (are) true?
A. $y(-4)=0$
B. $y(-2)=0$
C. $y(x)$ has a critical point in the interval $(-1,0)$
D. $\mathrm{y}(\mathrm{x})$ has no critical point in the interval $(-1,0)$
5. Consider the family of all circles whose centers lie on the straight line $y=x$. If the family of circles is represented by the differential equation $P y^{\prime \prime}+Q y^{\prime}+1=0$, where P, Q are functions of x, y and y^{\prime} (here $y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$, then which of the following statements is (are) true?
A. $P=y+x$
B. $P=y-x$
C. $P+Q=1-x+y+y^{\prime}+\left(y^{\prime}\right)^{\wedge}(2)^{\prime}$
D. $P-Q=x+y-y^{\prime}-\left(y^{\prime}\right)^{\wedge}(2)^{\prime}$

Answer: B::C::D

- Watch Video Solution

6. The function $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$ in $(-1,1)$ satisfying $f(0)=0$. Then $\int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x$ is (a) $(b)(c)(d) \frac{\pi}{e} 3(f)(g)-(h) \frac{(i) \sqrt{(j) 3(k)}(l)}{m} 2(n)(o)(p)$ (q) (b) $(r)(s)(t) \frac{\pi}{u} 3(v)(w)-(x) \frac{(y) \sqrt{(z) 3(a a)}(b b)}{c c} 4(d d)(e e)(f f) \quad$ (gag)
(c) $\quad(d)(e)(f) \frac{\pi}{g} 6(h)(i)-(j) \frac{(k) \sqrt{(l) 3(m)}(n)}{o} 4(p)(q)(r)$
$(t)(u)(v) \frac{\pi}{w} 6(x)(y)-(z) \frac{(a a) \sqrt{(b b) 3(c c)}(d d)}{e e} 2(f f)(g g)(h h)$ (ii)
A. $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$
B. $\frac{\pi}{3}-\frac{\sqrt{3}}{4}$
C. $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
D. $\frac{\pi}{6}-\frac{\sqrt{3}}{2}$

Answer: B

- Watch Video Solution

7. Let $f:\left[\frac{1}{2}, 1\right] \rightarrow R$ (the set of all real numbers) be a positive, nonconstant, and differentiable function such that $\left.f^{\prime}(x)<2 f(x)\right) \operatorname{and} f\left(\frac{1}{2}\right)=1$. Then the value of $\int_{\frac{1}{2}}^{1} f(x) d x$ lies in the interval (a) $(2 e-1,2 e)$ (b) $(3-1,2 e-1)\left(\frac{e-1}{2}, e-1\right)$ $\left(0, \frac{e-1}{2}\right)$
A. (2e-1,2e)
B. (e-1,2e-1)
C. $\left(\frac{e-1}{2}, e-1\right)$
D. $\left(0, \frac{e-1}{2}\right)$

Answer: D

- Watch Video Solution

8. A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the slope of the curve at each point (x, y) be $\frac{y}{x}+\sec \left(\frac{y}{x}\right), x>0$. Then, the equation of the curve
A. $\sin \left(\frac{y}{x}\right)=\log x+\frac{1}{2}$
B. $\operatorname{cosec} \frac{y}{x}=\log x+2$
C. $\sec \left(\frac{2 y}{x}\right)=\log x+2$
D. $\cos \left(\frac{2 y}{x}\right)=\log x+\frac{1}{2}$

Answer: A

- Watch Video Solution

9. Let $f:[0,1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $f(0)=f(1)=0$ and satisfies $f^{\prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ If the function $e^{-x} f(x)$ assumes its minimum in the interval $[0,1]$ at $x=\frac{1}{4}$, which of the following is true?
(A) $f^{\prime}(x)<f(x), \frac{1}{4}<x<\frac{3}{4}$
(B) $f^{\prime}(x)>f(x), 0<x<\frac{1}{4}$
(C) $f^{\prime}(x)<f(x), 0<x<\frac{1}{4}$
(D) $f^{\prime}(x)<f(x), \frac{3}{4}<x<1$
A. $f^{\prime}(x)<f(x), \frac{1}{4}<x<\frac{3}{4}$
B. $f^{\prime}(x)>f(x), 0<x<\frac{1}{4}$
C. $f^{\prime}(x)<f(x), 0<x<\frac{1}{4}$
D. $f^{\prime}(x)<f(x), \frac{3}{4}<x<1$

Answer: C

- Watch Video Solution

10. Let $f:[0,1] \rightarrow R$ be a function. Suppose the function f is twice differentiable,

$$
f(0)=f(1)=0 \quad \text { and } \quad \text { satisfies }
$$

$f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ Which of the following is true for $0<x<1$?
A. (a) $0<f(x)<\infty$
B. (b) $-\frac{1}{2}<f(x)<\frac{1}{2}$
C. (c) $-\frac{1}{4}<f(x)<1$
D. (d) $-\infty<f(x)<0$

Answer: D

- Watch Video Solution

11. Let $f:[0,1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $f(0)=f(1)=0$ and satisfies $f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ Which of the following is true for $0<x<1 \quad$? (A) $0<f(x)<\infty \quad$ (B) $-\frac{1}{2}<f(x)<\frac{1}{2}$
$-\frac{1}{4}<f(x)<1$ (D) $-\infty<f(x)<0$
A. g is increasing on $(1, \infty)$
B. g is decreasing on $(0,1)$
C. g is increasing on $(1,2)$ and decreasing on $(2, \infty)$
D. g is decreasing on $(1,2)$ and increasing on $(2, \infty)$

Answer: B

(D) Watch Video Solution

12. Let $f:[0,1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $f(0)=f(1)=0$ and satisfies
$f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ Consider the statements.
I. There exists some $x \in R$ such that, $f(x)+2 x=2\left(1+x^{2}\right)$
(II) There exists some $x \in R$ such that, $2 \mathrm{f}(\mathrm{x})+1=2 \mathrm{x}(1+\mathrm{x})$
A. Both I and II are true
B. I is true and II is false
C. I is false and II is true
D. Both I and II are false

Answer: C

- Watch Video Solution

13. If $y(x)$ satisfies the differential equation $y^{\prime}-y \tan x=2 x \sec x$ and

$$
\begin{equation*}
y(0)=0 \tag{a}
\end{equation*}
$$ then

$(b)(c) y\left((d)(e)(f) \frac{\pi}{g} 4(h)(i)(j)\right)=(k) \frac{(l)(m) \pi^{(n) 2(o)}(p)}{q}((r) 8 \sqrt{(s) 2(t)}($
(y)
(b)
[Math
Processing
Error] (xx)
(c)
$(d)(e) y\left((f)(g)(h) \frac{\pi}{i} 3(j)(k)(l)\right)=(m) \frac{(n)(o) \pi^{(p) 2(q)}(r)}{s} 9(t)(u)(v)$
(w) (d) [Math Processing Error] (ddd)
A. $y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{8 \sqrt{2}}$
B. $y^{\prime}((\mathrm{pi}) /(4))=\left(\left(\mathrm{pi}^{\wedge}(2)\right) /(18)\right)^{\prime}$
C. $\mathrm{y}^{\prime}((\mathrm{pi}) /(3))=\left(\left(\mathrm{pi}^{\wedge}(2)\right) /(9)\right)^{\prime}$
D. $y^{\prime}\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$

Answer: D

- Watch Video Solution

14. Let $y^{\prime}(x)+y(x) g^{\prime}(x)=g(x) g^{\prime}(x), y(0), x \in R$, where $f^{\prime}(x)$ denotes $\frac{d y(x)}{d x}$, and $g(x)$ is a given non-constant differentiable function
on R with $g(0)=g(2)=0$. Then the value of $y(2)$ is \qquad

- Watch Video Solution

15. Let $f: R \rightarrow R$ be a continuous function which satisfies $f(x)=$ $\int_{0}^{x} f(t) d t$. Then the value of $f(1 n 5)$ is

- Watch Video Solution

16. Let a solution $y=y(x)$ of the differential equation $x \sqrt{x^{2}-1} d y-y \sqrt{y^{2}-1} d x=0$ satisfy $y(2)=\frac{2}{\sqrt{3}}$
Statement I $y(x)=\sec \left(\sec ^{-1} x-\frac{\pi}{6}\right)$
Statement II $\mathrm{y}(\mathrm{x})$ is given by $\frac{1}{y}=\frac{2 \sqrt{3}}{x}-\sqrt{1-\frac{1}{x^{2}}}$
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: C

- Watch Video Solution

17. If a curve $y=f(x)$ passes through the point $(1,-1)$ and satisfies the differential equation,$y(1+x y) d x=x d y$, then $f\left(-\frac{1}{2}\right)$ is equal to:
A. $-\frac{2}{5}$
B. $-\frac{4}{5}$
C. $\frac{2}{5}$
D. $\frac{4}{5}$

Answer: D

18. Let $y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$, Then $\mathrm{y}(\mathrm{e})$ is equal to
A.e
B. 0
C. 2
D. 2 e

Answer: C

- Watch Video Solution

19. Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$. If $p(0)=100$, then $\mathrm{p}(\mathrm{t})$ equals
(1) $400-300 e^{t / 2}$
(2) $300-200 e^{-t / 2}$
(3) $600-500 e^{t / 2}$
$40-300 e^{-t / 2}$
A. $400-300 e^{\frac{t}{2}}$
B. $300-200 e^{\frac{t}{2}}$
C. $600-500 e^{\frac{t}{2}}$
D. $400-300 e^{\frac{t}{2}}$

Answer: A

- Watch Video Solution

20. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{d P}{d x}=100-12 \sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is (1) 3000 (2) 3500 (3) 4500 (4) 2500
A. 2500
B. 3000
C. 3500
D. 4500

Answer: C

D Watch Video Solution

21. The population $p(t)$ at time t of a certain mouse species satisfies the differential equation $d \frac{p(t)}{d t}=0.5 p(t)-450$ If $p(0)=850$, then the time at which the population becomes zero is \qquad
(1) $2 \ln 18$ (2) $\ln 9(3) \frac{1}{2} \ln 18(4) \ln 18$
A. $2 \log 18$
B. $\log 9$
C. $\frac{1}{2} \log 18$
D. $\log 18$

Answer: A

- Watch Video Solution

22. If $\frac{d y}{d x}=y+3$ and $\mathrm{y}(0)=2$, then $\mathrm{y}(\log 2)$ is equal to
A. 5
B. 13
C. -2
D. 7

Answer: D

- Watch Video Solution

23. Let I be the purchase value of an equipment and $V(t)$ be the value after it has been used for t years. The value $\mathrm{V}(\mathrm{t})$ depreciates at a rate given by differential equation $\frac{d V(t)}{d t}=-\mathrm{k}(\mathrm{T}-\mathrm{t})$, where $k>0$ is a constant and T is the total life in years of the equipment. Then the scrap value $V(T)$
of the equipment is : (1) $T^{2}-\frac{1}{k}$ (2) $I-\frac{k T^{2}}{2}$ (3) $I-\frac{k(T-t)^{2}}{2}$
$e^{-k T}$
A. $I-\frac{k T^{2}}{2}$
B. $I-\frac{k\left(T-t^{2}\right)}{2}$
C. $e^{-k T}$
D. $T^{2}-\frac{1}{k}$

Answer: A

- Watch Video Solution

24. Solution of the differential equation
$\cos x d y=y(\sin x-y) d x, 0<x<\frac{\pi}{2}$ is
A. $\sec x=(\tan x+C) y$
B. $y \sec x=\tan x+C$
C. $y \tan x=\sec x+C$
D. $\tan x=(\sec x+C) y$
25. The differential equation which represents the family of curves $y=c_{1} e^{c_{2} x}$ where c_{1} and c_{2} are arbitary constants is
A. $y^{\prime}=y^{2}$
B. $y^{\prime \prime}=y^{\prime} y$
C. $y y^{\prime \prime}=y^{\prime}$
D. $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$

Answer: D

- Watch Video Solution

26. The differential equation of the family of circles with fixed radius 5 units and centre on the line $\mathrm{y}=2$ is
A. (a) $(x-2) y^{\prime 2}=25-(y-2)^{2}$
B. (b) $(y-2) y^{\prime 2}=25-(y-2)^{2}$
C. (c) $(y-2) y^{\prime 2}=25-(y-2)^{2}$

$$
\text { D. (d) }(x-2) y^{\prime 2}=25-(y-2)^{2}
$$

Answer: C

- Watch Video Solution

