đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

GRAPHICAL TRANSFORMATIONS

Exercise

1. Plot $y=|x|$ and $y=|x|+2$.

D Watch Video Solution
2. Plot $y=|x|$ and $y=|x|-2$.

- Watch Video Solution

3. Plot $y=e^{x}, y=e^{x}+1$ and $y=e^{x}-1$.

- Watch Video Solution

4. Plot $y=|x|$ and $y=|x-2|$

D Watch Video Solution

5. Plot $y=|x|$ and $y=|x+2|$

Watch Video Solution

6. Plot $y=\sin \left(x+\frac{\pi}{4}\right)$ and $y=\sin \left(x-\frac{\pi}{4}\right)$.

- Watch Video Solution

7. Plot $y=\sin x a n d y=2 \sin x$.

- Watch Video Solution

8. Plot $y=\sin x$ and $y=\frac{1}{2} \sin x$.

- Watch Video Solution

9. Plot $y=\sin x a n d y=\sin 2 x$.
10. Plot $y=\sin x$ and $y=\frac{1}{2} \sin x$.

D Watch Video Solution

11. Draw the graph of $y=e^{-x}$, when the graph of $y=e^{x}$ is known.

D Watch Video Solution

12. Draw graph of $y=\log (-x)$, when the graph of $y=\log (x)$ is given.
13. Draw the graph of $y=-e^{x}$ when the graph of $y=e^{x}$ is known.

- Watch Video Solution

14. Draw the graph of $y=-\log (x)$ when the graph of $y=\log x$ is known.

- Watch Video Solution

15. Draw the graph of $y=|\log x|$ when the graph of $y=\log (x)$ is known.
16. Draw the graph of $y=\log |x|$ when the graph of $y=\log (x)$ is known.

- Watch Video Solution

17. Draw the graph of $y=\left||x|^{2}-2\right| x|-3|$, if $y=x^{2}-2 x-3$

- Watch Video Solution

18. Draw graph for $y=|x-1|$.

- Watch Video Solution

19. Draw the graph for $|y|=(x-1)(x-2)$.

- Watch Video Solution

20. Draw the graph of $y=\left[x^{3}\right]$,
when $-2^{1 / 3} \leq x \leq 2^{1 / 3}$

- Watch Video Solution

21. Draw the graph of $y=[\sin x]$.

- Watch Video Solution

22. Draw the curve $y=e^{x}$

- Watch Video Solution

23. Draw the graph for $y=(\{x\}-1)^{2}$.

- Watch Video Solution

24. Plot $y=x+\sin x$.

- Watch Video Solution

25. Plot $y=|x|-2$ and hence $f(x)=\frac{1}{|x|-2}$
26. Let $\quad f(x)=\left\{\begin{array}{ll}x \sin \cdot \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right\}$
$g(x)=\left\{\begin{array}{ll}x^{2} \sin \cdot \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right\}$
Discuss the graph for $f(x)$ and $g(x)$, and evaluate the continuity and differentiabilityof $f(x)$ and $g(x)$.

- Watch Video Solution

27. Draw graph for $y=\max \left\{2 x, x^{2}\right\}$ and discuss the continuity and diffrentiablity.

- Watch Video Solution

28. Draw the graph of $y=2-|x-1|$.
29. Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of X.

Then (A) h is continuous for all $x(B) h$ is differentiable for all $\mathrm{x}(\mathrm{C}) h^{\prime}(x)=1$, for all $\mathrm{x}>1$ (D) h is not differentiable at two values of x

D Watch Video Solution

30. The number of real solution of the equation
$e^{x}+x=0$, is
A. 0
B. 1
C. 2

D. None of these

Answer:

- Watch Video Solution

31. The number of real solutions of the equation
$\log _{a} x=|x|, 0<a<1$, is
A. A. 0
B. B. 1
C. C. 2
D. D. None of these

Answer:

32. number of solution of the equation $|x|=\cos x$
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

33. How many roots does the following equation possess
$3^{|x|}(|2-|x||)=1 ?$
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

34. The number of real solution of the equation
$x^{2}=1-|x-5|$ is:
A. (a) 1
B. (b) 2
C. (c) 4
D. (d) None of these

Answer:

- Watch Video Solution

35. Number of solutions $2^{\sin (|x|)}=4^{|\cos x|} \in[-\pi, \pi]$ is equal to
A. 2
B. 4
C. 6
D. 8

Answer:

D Watch Video Solution

36. Number of roots of $|\sin | x||=x+|x| \operatorname{in}[-2 \pi, 2 \pi]$, is
A. 2
B. 3
C. 4
D. 6

- Watch Video Solution

37. The equation $3^{x-1}+5^{x-1}=34$ has
A. (a)one solution
B. (b)two solutions
C. (c)three solutions
D. (d)four solutions

Answer:

38. Number of solutions of the equation $\cos [x]=e^{2 x-1}, x \in[0,2 \pi]$, where[.] denotes the greatest integer function is
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

39. Let $g(x)=\sqrt{x-2 k}, \forall 2 k \leq x<2(k+1)$, where $k \in$ integer. Check whether $g(x)$ is periodic or not.
A. $g(x)=\sqrt{x+2},-2 \leq x<0$
B. $g(x)=\sqrt{x-2}, 2 \leq x<4$
C. $g(x)=\sqrt{x}, 0 \leq x<2$
D. period of $g(x)$ is 2 .

Answer:
40. The graph of $f(x)$ is given below.

Then, (a) Graph of $-f(x)+2$ is

Then, (a) Graph of $-f(x)+2$ is

(b) Graph of $-f(x-1)$ is

(c) Graph of $f(|x|)$ is

(d) Graph of $f(x+1)-2$ is

A. Then, (a) Graph of $-f(x)+2$ is
B. Graph of $-f(x-1)$ is
C. Graph of $f(|x|)$ is
D. Graph of $f(x+1)-2$ is

Answer:

- Watch Video Solution

41. Number of solutions of the equation,
$[y+[y]]=2 \cos x$
is:
(where
$y=1 / 3)[\sin x+[\sin x+[\sin x]]]$ and []$=$ greatest integer function) 0 (b) 1 (c) 2 (d) ∞

- Watch Video Solution

42. The sum of roots of the equation $\cos ^{-1}(\cos x)=[x],[$.$] denotes the greatest integer$ function, is $2 \pi+3$ (b) $\pi+3$ (c) $\pi-3$ (d) $2 \pi-3$

- Watch Video Solution

43. Sketch the graph of $y=\log _{0.5}|x|$.

- Watch Video Solution

44. Sketch the graph of $y=\left|\left|\frac{1}{x}\right|-3\right|$.

- Watch Video Solution

45. Find the number of solutions of the equations
$y=|\sin x|$ and $x^{2}+y^{2}=1$.

- Watch Video Solution

46. Find the number of solutions of $4\{x\}=x+[x]$.
47. Sketch the graph of $\left|\sin x+\frac{1}{2}\right|$.

- Watch Video Solution

48. Sketch the graph of $y=\frac{2^{x}}{2^{|x|}}$

- Watch Video Solution

49. Sketch the region for $y=\sin (x-[x])$.

- Watch Video Solution

50. Sketch the region for $\mid y \models \sin x$.
51. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(a) $f(x)+1$

D Watch Video Solution

52. Consider the following function f whose graph is given below.

Draw the graph of following functions.
$f(x)-1$

- Watch Video Solution

53. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(c) $-f(x)$

- Watch Video Solution

54. Consider the following function f whose graph is given below.

Draw the graph of $[f(x)]$

- Watch Video Solution

55. Consider the following function f whose graph is given below.

Draw the graph of $f(-x)$

- Watch Video Solution

56. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(f) $f(|x|)$

- Watch Video Solution

57. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(g) $2 f(x)$

- Watch Video Solution

58. Consider the following function f whose graph is given below.

Draw the graph of following functions.
$f(2 x)$

- Watch Video Solution

59. Consider the following function f whose graph is given below.

Draw the graph of $[f(x)]$

- Watch Video Solution

60. Consider the following function f whose graph is given below.

Draw the graph of following functions.
(g) $f(x-[x])$

D Watch Video Solution

$$
\begin{aligned}
& \text { 61. } \begin{array}{c}
\text { Sketch }
\end{array} \text { the } \quad \text { graph } \\
& y=\max (\sin x, \cos x), \forall x \in\left(-\pi, \frac{3 \pi}{2}\right)
\end{aligned}
$$

62. Sketch the graph for $y=\min \{\tan x, \cot x\}$.

D Watch Video Solution

63. Sketch the graph of $y=\min \{|x|,|x-1|,|x+1|\}$.

- Watch Video Solution

64. Sketch the graph of $y=\sin ^{-1} x, \forall x \in[-1,1]$.

- Watch Video Solution

65. Sketch the graph for $y=\cos ^{-1} x, \forall x \in[-1,1]$.

D Watch Video Solution

66. Sketch the graph for $y=\tan ^{-1} x, \forall x \in R$.

- Watch Video Solution

67. Sketch the graph for $y=\sin ^{-1}(\sin x)$.

- Watch Video Solution

68. Sketch the graph for $y=\cos ^{-1}(\cos x)$.

D Watch Video Solution

69. Draw the graph of $y=\tan ^{-1}(\tan x)$

- Watch Video Solution

70. Find the value of x graphically which satisfy $\left|\frac{x^{2}}{x-1}\right| \leq 1$.

- Watch Video Solution

71. Find $\frac{d y}{d x}$ if $x=e^{y}$

- Watch Video Solution

72. Find the values of x graphically which satisfy, $-1 \leq[x]-x^{2}+4 \leq 2$, where [.] denotes the greatest integer function.

- Watch Video Solution

73. Find the number of solutions of $2 \cos x=|\sin x|$ when
$x \in[0,4 \pi]$.

D Watch Video Solution

74. Sketch the curves
(i) $y=\sqrt{x-[x]}$
(where [.] denotes the greatest integer function).

D Watch Video Solution

75. Sketch the curves
(iii) $y=|[x]+\sqrt{x-[x]}|$
(where [.] denotes the greatest integer function).
(where [.] denotes the greatest integer function).

D Watch Video Solution

76. Sketch the curves
(iii) $y=|[x]+\sqrt{x-[x]}|$
(where [.] denotes the greatest integer function).
(where [.] denotes the greatest integer function).

Exercise For Session 1

1. Plot the following functions.
$y=x^{2}+1$

- Watch Video Solution

2. Plot the following functions.
$y=x^{2}-1$
3. Plot the following functions.
$y=x^{3}+1$

- Watch Video Solution

4. Plot the following functions.
$y=x^{3}-1$

- Watch Video Solution

5. Plot the following functions.
$y=\sin x+1$
6. Plot the following functions.
$y=\sin x-1$

- Watch Video Solution

7. Plot the following functions.
$y=\left(\log _{e} x\right)+1$

D Watch Video Solution

8. Plot the following functions.
$y=\left(\log _{e} x\right)-1$

Exercise For Session 2

1. Consider the following function f whose graph is given below.

- Watch Video Solution

2. Draw the graph of the following function.
$f(x+1)$
3. Draw the graph of the following function.
$f(x+1)$

- Watch Video Solution

4. Draw the graph of the following function.
$-f(x)$

- Watch Video Solution

5. Draw the graph of the following function.
$f(-x)$
6. Draw the graph of the following function.
$2 f(x)$

- Watch Video Solution

7. Draw the graph of the following function. $\frac{1}{2} f(x)$

- Watch Video Solution

8. Consider the following function f whose graph is given
below.

Draw the graph of following functions.
$f(2 x)$

- Watch Video Solution

9. Draw the graph of the following function.
$\frac{1}{2} f(x)$

- Watch Video Solution

1. Consider the following function f, whose graph is given below.

Draw the graph of the following functions.
(i) $|f(x)|$
(ii) $f(|x|)$
(iii) $|f(|x|)-1|$
2. Plot the following.
$y=\left|x^{2}-2 x-3\right|$

- Watch Video Solution

3. Plot the following.
$y=x^{2}-2|x|-3$

- Watch Video Solution

4. Plot the following.
$y=\left|\log _{2} x\right|$
5. Plot the following.
$y=\left|\log _{2}\right| x| |$

- Watch Video Solution

6. Plot the following.
$y=\log _{2}|1-x|$

D Watch Video Solution

7. Plot the following.
$y=\log _{2}(2-x)^{2}$
8. Plot the following.
$y=|\cos | x| |$

- Watch Video Solution

9. Plot the following.
$y=\left|2-2^{2}\right|$

- Watch Video Solution

10. Plot the following.
$y=\sin (|x|)$
11. Plot the following.
$y=|\cos | x| |$

- Watch Video Solution

12. Plot the following.
$|f(x)|=\log _{e} x$

- Watch Video Solution

13. Plot the graph, $|f(x)|=\log _{2}(-x)$

- Watch Video Solution

14. Find the number of solutions of $\sin \pi x=\left|\log _{2}(x)\right|$

- Watch Video Solution

15. Find the number of solutions of
$2^{|x|}=\sin x^{2}$

D Watch Video Solution

16. Find the number of solutions of the equation $\sin x=x^{2}+x+1$.

D Watch Video Solution

Exercise For Session 4

1. Plot the following, where [.] denotes integer function.
$f(x)=\left[x^{2}\right], \quad$ whe $\quad-2 \leq x \leq 2$

- Watch Video Solution

2. Plot the following, where [.] denotes integer function.
$f(x)=[|x|]$

D Watch Video Solution

3. Plot the following, where [.] denotes integer function.
$f(x)=[|x-2|]$.
4. Plot the following, where [.] denotes integer function.
$f(x)=[|x|-2]$

D Watch Video Solution

5. Plot the following. $f(x)=\sin ^{-1}(\sin |x|)$

- Watch Video Solution

6. Plot the following, where [.] denotes greatest integer function.
$f(x)=\left[\cos ^{-1} x\right]$
7. Plot the following, where [.] denotes integer function.
$f(x)=\cos (x-[x])$

- Watch Video Solution

8. Plot the following, where [.] denotes integer function.
$f(x)=\left[\sin ^{-1}(\sin x)\right]$

- Watch Video Solution

$$
\begin{aligned}
& \text { 9. Plot } \quad \text { the } \\
& f(x)=\min (x-[x],-x-[-x]) .
\end{aligned}
$$

- Watch Video Solution

10. Find the area enclosed by the curves $\max (|x|,|y|)=1$

- Watch Video Solution

11. Find the area enclosed by the curves $\max (2|x|, 2|y|)=1$

- Watch Video Solution

12. Find the area enclosed by the curves
$\max (|x+y|,|x-y|)=1$

Exercise Single Option Correct Type Questions

1. The number of real solutions of the equation
$e^{|x|}-|x|=0$, is
A. o
B. 1
c. 2
D. None of these.
A. 0
B. 1
C. 2
D. None of these

Answer: a

D Watch Video Solution

2. The number of real solutions of the equation $3^{-|x|}-2^{|x|}=0$ is:
A. (a) 0
B. (b) 1
C. (c) 2
D. (d) 3

Answer: c

3. The number of solutions of $3^{|x|}=|2-|x||$, is
A. 0
B. 2
C. 4
D. infinite
A. 0
B. 2
C. 4
D. infinite

Answer: B
4. The total number of roots of the equation $\left|x-x^{2}-1\right|=\left|2 x-3-x^{2}\right|$ is
A. o
B. 1
C. 2
D. infinity many
A. 0
B. 1
C. 2
D. infinity many
5. The equation $e^{x}=m(m+1), m<0$ has
A. no real root
B. exactly one real root
C. two real root
D. None of the above

Answer: B

D Watch Video Solution
6. The number of real solutions of the equation $1-x=[\cos x]$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

7. The number of roots of the equation $1+3^{\frac{x}{2}}=2^{x}$ is
A. 0
B. 1
C. 2
D. Noe of the above

Answer: B

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The equation $x^{2}-2=[\sin x]$, where $[$.$] denotes the$ greatest integer function, has
A. infinity many roots
B. exactly one integer root
C. exactly one irrational root
D. exactly two roots

Answer: B::C::D

- Watch Video Solution

2. Consider the function $f(x)= \begin{cases}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{cases}$
where [.] denotes the fractional integral function and I is
the set of integers.

Then
find
$g(x) \max \cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.
A. $x^{2},-2 \leq x \leq-1$
B. $1-x,-1<x \leq-\frac{1}{4}$
C. $\frac{1}{2}+x,-\frac{1}{4}<x<0$
D. $1+x, 0 \leq x<1$

Answer: A::B::C::D

- Watch Video Solution

3. Let $f(x)$ be defined on [$-2,2$] and be given by $f(x)=\left\{\begin{array}{ll}-1, & -2 \leq x \leq 0 \\ x-1, & 1<x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$

Then find $g(x)$.
A. $-x,-2 \leq x \leq 0$
B. $x,-2 \leq x \leq 0$
C. $0,0<x \leq 1$
D. $2(x-1), 1<x \leq 2$

Answer: A::C::D

- Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement । The graph of $y=\sec ^{2} x$ is symmetrical about the Y -axis.

Statement II The graph of $y=\operatorname{tax}$ is symmetrical about the origin.
A. Both Statement I and Statement II are correct and

Statement II is the correct explanation of Statement
B. Both Statement I and Statement II are correct but

Statement II is not the correct explanation of

Statement I

C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

2. Statement I The equation $|(x-2)+a|=4$ can have
four distinct real solutions for x if a belongs to the interval
$(-\infty, 4)$.

Statemment II The number of point of intersection of the curve represent the solution of the equation.
(a)Both Statement I and Statement II are correct and

Statement II is the correct explanation of Statement I
(b)Both Statement I and Statement II are correct but

Statement II is not the correct explanation of Statement I
(c)Statement I is correct but Statement II is incorrect
(d)Statement II is correct but Statement I is incorrect
A. Both Statement I and Statement II are correct and

Statement II is the correct explanation of Statement

I
B. Both Statement I and Statement II are correct but

Statement II is not the correct explanation of

Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: D

- Watch Video Solution

Exercise Passage Based Questions

1. Let $f(x)=f_{1}(x)-2 f_{2}(x)$, where
where $f(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x| \leq 1 \\ \max \left\{x^{2},|x|\right\}, & |x|>1\end{cases}$
and $f_{2}(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x|>1 \\ \max \left\{x^{2},|x|\right\}, & |x| \leq 1\end{cases}$
$g(x)= \begin{cases}\min \{f(t):-3 \leq t \leq x, & -3 \leq x<0\} \\ \max \{f(t): 0 \leq t \leq x, & 0 \leq x \leq 3\}\end{cases}$
For $-3 \leq x \leq-1$, the range of $\mathrm{g}(\mathrm{x})$ is

$$
\begin{aligned}
& \text { A. } x^{2}-2 x+1 \\
& \text { B. } x^{2}+2 x-1 \\
& \text { C. } x^{2}+2 x+1 \\
& \text { D. } x^{2}-2 x-1
\end{aligned}
$$

Answer: b

- Watch Video Solution

2. Let $f(x)=f_{1}(x)-2 f_{2}(x)$, where
where $f(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x| \leq 1 \\ \max \left\{x^{2},|x|\right\}, & |x|>1\end{cases}$
and $f_{2}(x)= \begin{cases}\min \left\{x^{2},|x|\right\}, & |x|>1 \\ \max \left\{x^{2},|x|\right\}, & |x| \leq 1\end{cases}$
and
$g(x)=\left\{\begin{array}{l}\min \{f(t):-3 \leq t \leq x, \quad-3 \leq x<0\} \\ \max \{f(t): 0 \leq t \leq x, \quad 0 \leq x \leq 3\}\end{array}\right.$
For $-3 \leq x \leq-1$, the range of $\mathrm{g}(\mathrm{x})$ is
A. 1 point
B. 2 points
C. 3 points
D. None of these

Answer: A

- Watch Video Solution

3. $f(x)=\left\{\begin{array}{ll}x-1, & -1 \leq x \leq 0 \\ x^{2}, & 0 \leq x \leq 1\end{array}\right.$ and $g(x)=\sin x$

Consider the functions
$h_{1}(x)=f(|g(x)|)$ and $h_{2}(x)=|f(g(x))|$.
Which of the following is not true about $h_{1}(x)$?
A. It is a periodic function with period π
B. The range is $[0,1]$
C. Domain R
D. None of these

Answer: D
4. $f(x)=\left\{\begin{array}{ll}x-1, & -1 \leq x \leq 0 \\ x^{2}, & 0 \leq x \leq 1\end{array}\right.$ and $g(x)=\sin x$

Consider the functions
$h_{1}(x)=f(|g(x)|)$ and $h_{2}(x)=|f(g(x))|$.
Which of the following is not true about $h_{1}(x)$?
A. The domain is R
B. It is periodic with period 2π
C.
D. The range is $[0,1]$

Answer: B

1. Let $f(x)=x+2|x+1|+x-1 \mid \dot{I} f f(x)=k$ has exactly one real solution, then the value of k is 3 (b) 0 (c) 1
(d) 2

D Watch Video Solution

2. The number of roots of the equation $x \sin x=1, x \in[-2 \pi, 0) \cup(0,2 \pi]$ is (a) 2 (b) 3 (c) 4 (d)

0
3. The number of solutions of $\tan x-m x=0, m>1$, in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is (a) 1 (b) 2 (c) 3 (d) m

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. Find the number of solutions of the equation $\frac{x^{2}}{1-|x-2|}=1$, graphically.

- Watch Video Solution

2. Find the number of solutions for $\sin x \tan 4 x=\cos x$,

(Watch Video Solution

3. Find number of solutions for equation $\left[\sin ^{-1} x\right]=x-[x]$, where $[$.$] denotes the greatest$ integer function.

- Watch Video Solution

4. If x and y satisfy the equations $\max (|x+y|,|x-y|)=1$ and $|y|=x-[x], \quad$ the number of ordered paris (x, y).
5.

Find the area
$|x+y-1|+|2 x+y+1|=1$.

- Watch Video Solution

6. Find $f(x)$ when it is given by
$f(x)=\max \left\{x^{3}, x^{2}, \frac{1}{64}\right\}, \forall x \in[0, \infty)$.

- Watch Video Solution

7. Find a formula for the function f graphed as

- Watch Video Solution

8. Find $\frac{d y}{d x}$ if $2 y=\cos y-2 x$

- Watch Video Solution

9. Draw the graph for $y=\sqrt{\{x\}}$ and $|y|=\sqrt{\{x\}}$.
10. Draw the graph for $y=-[x]+\sqrt{\{x\}}$.

- Watch Video Solution

