©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

PAIR OF STRAIGHT LINES

Example

1. Find the joint equation of lines $y=x$ and $y=-x$.

- Watch Video Solution

2. Find the separate equation of lines represented by the equation
$x^{2}-6 x y+8 y^{2}=0$
3. Find the condition that the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ should be n times the slope of the other.

- Watch Video Solution

4. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ be the nth power of the, prove that, $\left(a b^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} b\right)^{\frac{1}{n+1}}+2 h=0$.

(Watch Video Solution

5. Find the product of the perpendiculars drawn from the point $\left(x_{1}, y_{1}\right)$ on the lines $a x^{2}+2 h x y+b y^{2}=0$

- Watch Video Solution

6. Find the condition that the one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$
may be perpendicular to one of the lines given by $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$

- Watch Video Solution

7. Show that the area of the triangle formed by the lines

$$
a x^{2}+2 h x y+b y^{2}=0 \text { and } 1 \mathrm{x}+\mathrm{my} \mathrm{y}+\mathrm{n}=0
$$

is $\frac{n^{2} \sqrt{\left(h^{2}-a b\right)}}{\left|\left(a m^{2}-2 h l m+b l^{2}\right)\right|}$

(Watch Video Solution

8. Show that the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
is $\frac{n^{2} \sqrt{\left(h^{2}-a b\right)}}{\left|\left(a m^{2}-2 h l m+b l^{2}\right)\right|}$

(D) Watch Video Solution

9. Show that the two straight lines
$x^{2}\left(\tan ^{2} \theta+\cos ^{2} \theta\right)-2 x y \tan \theta+y^{2} \sin ^{2} \theta=0$
Make with the axis of x angles such that the difference of their tangents is 2 .

- Watch Video Solution

10. The angle between the lines $\left(x^{2}+y^{2}\right) \sin ^{2} \alpha=(x \cos \beta-y \sin \beta)^{2}$ is

- Watch Video Solution

11. Show that the angle between the lines given by $\left(a+2 h m+b m^{2}\right) x^{2}+2\left\{(b-a) m-\left(m^{2}-1\right) h\right\} x y+\left(a m^{2}-2 h m+b\right)$ is the same whatever be the value of m,.

- Watch Video Solution

12. Show that the straight lines $x^{2}+4 x y+y^{2}=0$ and the line $x-y=4$ form an equilateral triangle .

- Watch Video Solution

13. If two of the three lines represented by $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=0$ may be at right angles then

- Watch Video Solution

14. Find the equation of the bisectors of the angle between the lines represented by $3 x^{2}-5 x y+4 y^{2}=0$

- Watch Video Solution

15. The lines $y=m x$ bisects the angle between the lines $a x^{2}+2 h x y+b y^{2}=0$ if
16. If the pair of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ are such that each pair bisects the angle between the other pair , then prove that $p q=-1$.

- Watch Video Solution

17. If the lines given by $a x^{2}+2 h x y+b y^{2}=0$ are equally inclined to the lines given by $a x^{2}+2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0$, then

- Watch Video Solution

18. Show that the pair of lines given by $a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0$ is equally inclined to the pair given by $a x^{2}+2 h x y+b y=0$.

- Watch Video Solution

19. If the lines represented by $x^{2}-2 p x y-y^{2}=0$ are rotated about the origin through an angle θ, one clockwise direction and other in anticlockwise direction, then the equation of the bisectors of the angle between the lines in the new position is

- Watch Video Solution

20. For what value of λ does the equation $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+\lambda=0$
represent a pair of straight lines ? Find their equations and the angle between them.

- Watch Video Solution

21. Prove that the equation $8 x^{2}+8 x y+2 y^{2}+26 x+13 y+15=0$ represents a pair of parallel straight lines. Also find the perpendicular distance between them .
22. Find the combined equation of the straight lines passing through the point $(1,1)$ and parallel to the lines represented by the equation. $x^{2}-5 x y+4 y^{2}+x+2 y-2=0$.

- Watch Video Solution

23. Find the point of inersection of lines represented by $2 x^{2}-7 x y-4 y^{2}-x+22 y-10=0$

- Watch Video Solution

24. Find the new equation of curve $12 x^{2}+7 x y-12 y^{2}-17 x-31 y-7=0$ after removing the first degree terms.
25. Prove that the angle between the lines joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is $\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$

- Watch Video Solution

26. Find the equation to the pair of straight lines joining the origin to the intersections of the straight line $y=m x+c$ and the curve $x^{2}+y^{2}=a^{2}$. Prove that they are at right angles if $2 c^{2}=a^{2}\left(1+m^{2}\right)$.

- Watch Video Solution

27. Prove that the pair of lines joining the origin to the intersection of the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 b y$ the line $\mathrm{I} \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ are coincident, if a $a^{2} l^{2}+b^{2} m^{2}=n^{2}$

- Watch Video Solution

28. The pair of lines joining origin to the points of intersection of, the two curves

$$
a x^{2}+2 h x y+b y^{2}+2 g x=0
$$

$a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$ will be at right angles, if

- Watch Video Solution

29. If the pairs of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common, then the joint equation of the other two lines is given by $3 x^{2}+8 x y-3 y^{2}=0 \quad 3 x^{2}+10 x y+3 y^{2}=0$ $y^{2}+2 x y-3 x^{2}=0 x^{2}+2 x y-3 y^{2}=0$
A. $3 x^{2}+8 x y-3 y^{2}=0$
B. $3 x^{2}+10 x y+3 y^{2}=0$
C. $x^{2}+2 x y-3 y^{2}=0$
D. $3 x^{2}+2 x y-y^{2}=0$

Answer: b

- Watch Video Solution

30. The combined equation of the lines $l_{1} a n d l_{2}$ is $2 x^{2}+6 x y+y^{2}=0$ and that of the lines m_{1} andm m_{2} is $4 x^{2}+18 x y+y^{2}=0$. If the angle between l_{1} and m_{2} is α then the angle between $l_{2} a n d m_{1}$ will be $\frac{\pi}{2}-\alpha$ (b) $2 \alpha \frac{\pi}{4}+\alpha$ (d) α
A. $\frac{\pi}{2}-\alpha$
B. $\frac{\pi}{4}+\alpha$
C. α
D. 2α

Answer: c

- Watch Video Solution

31. If the pair of lines $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ is rotated about the origin by $\pi / 6$ in the anticlockwise sense, then find the equation of the pair of lines in the new position.
A. $x^{2}-\sqrt{3} x y=0$
B. $y^{2}-\sqrt{3} x y=0$
C. $\sqrt{3} x^{2}-x y=0$
D. $\sqrt{3} y^{2}-x y=0$

Answer: c

- Watch Video Solution

32. If the pair of lines $a x^{2}-2 x y+b y^{2}=0$ and $b x^{\wedge} 2-2 x y+a y^{\wedge} 2=0^{`}$
be such that each pair bisects the angle between the other pair , then lab| equals to
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

33. The equation of line which is parallel to the line common to the pair of lines given by $3 x^{2}+x y-4 y^{2}=0$ and $6 x^{2}+11 x y+4 y^{2}=0$ and at a distance of 2 units from it is
A. $3 x-4 y=-10$
B. $x-y=2$
C. $3 x+4 y=10$
D. $2 x+y=-2$

Answer: c

34. The lines joining the origin to the point of intersection of $3 x^{2}+m x y-4 x+1=0$ and $2 x+y-1=0$ are at right angles. Then which of the following is a possible value of $m ?-4$ (b) 4 (c) 7 (d) 3
A. $g^{2}+f^{2}=c$
B. $g^{2}-f^{2}=c$
C. $g^{2}-f^{2}=2 c$
D. $g^{2}+f^{2}=c^{2}$

Answer: c

- Watch Video Solution

35. The lines joining the origin to the point of intersection of $3 x^{2}+m x y-4 x+1=0$ and $2 x+y-1=0$ are at right angles. Then which of the following is a possible value of m ?
A. -4
B. 3
C. 4
D. 7

Answer: (a,b,c,d)

D Watch Video Solution

36. The lines $(l x+m y)^{2}-3(m x-l y)^{2}=0$ and $l x+m y+n=0$ forms
A. an isosecles triangle
B. a right angled triangle
C. an equilateral triangle
D. None of these

Answer: (a,c)

37. If the equatoin $a x^{2}-6 x y+y^{2}+2 b x+2 c y+d=0$ represents a pair of lines whose slopes are m and m^{2}, then value (s) of a is /are
A. -27
B. -8
C. 8
D. 27

Answer: (a,c)

- Watch Video Solution

38. Consider the equation of a pair of straight lines as
$\lambda x y-8 x+9 y-12=0$
A. 0
B. 2
C. 4
D. 6

Answer: d

- Watch Video Solution

39. The point of intersection of lines is (α, β), then the equation whose roots are α, β, is
A. $4 x^{2}+x-8=0$
B. $6 x^{2}+x-12=0$
C. $4 x^{2}-x-8=0$
D. $6 x^{2}-x-12=0$

Answer: b

40. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then find the value of c .

- Watch Video Solution

41. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$,then value of $|c|$ is

- Watch Video Solution

42. Find the slope of tangent to the curve if $a x^{2}+2 h x y+b y^{2}=0$

- Watch Video Solution

43. Statement I The combined equation of l_{1}, l_{2} is $3 x^{2}+6 x y+2 y^{2}=0$ and that of $m_{1}, m_{2} i s 5 x^{2}+18 x y+2 y^{2}=0$. If angle between $l_{1}, m_{2} i s \theta$, then angle between $l_{2}, m_{1} i s \theta$.

Statement II. If the pairs of lines $l_{1} l_{2}=0, m_{1} m_{2}=0$ are equally inclinded that angle between l_{1} and $m_{2}=$ angle between l_{2} and m_{1}.

- Watch Video Solution

44. Statement ।. The equation $2 x^{2}-3 x y-2 y^{2}+5 x-5 y+3=0$ represents a pair of perpendicular straight lines.
Statement II A pair of lines given by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ are perpendicular if $a+b=0$

- Watch Video Solution

45. If the lines represented by $2 x^{2}-5 x y+2 y^{2}=0$ be the sides of a parallelogram and the line $5 x+2 y=1$ be one of its diagonal. Find the equation of the other diagonal, and area of the parallelogram .

- Watch Video Solution

$(a+2 h+b) x^{2}-2(a-b) x y+(a-2 h+b) y^{2}=0$ represents a pair of lines each inclined at an angle of 45° to one or other of the lines given by , $a x^{2}+2 h x y+b y^{2}=0$

- Watch Video Solution

47. If $u \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a pair of straight lines, prove that the equation of the third pair of straight lines passing through the points where these meet the axes is $a x^{\wedge} 2-2 h x y+b y 2+2 g x+2 f y+c+c 4 f g x y=0$.

- Watch Video Solution

48. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines, prove that
$h=\sqrt{a b}$ and $g \sqrt{b}=f \sqrt{a}$ or $(h=-\sqrt{a b}$ and $g \sqrt{b}=-f \sqrt{a})$.
The distance between them is $2 \sqrt{\left(\frac{\left(g^{2}-a c\right)}{a(a+b)}\right)}$.

- Watch Video Solution

49. Find $\frac{d y}{d x}$ if $x-3 y=x^{4}$

- Watch Video Solution

50. A point moves so that the distance between the foot of perpendiculars from it on the lines $a x^{2}+2 h x y+b y^{2}=0$ is a constant $2 d$. Show that the equation to its locus is $\left(x^{2}+y^{2}\right)\left(h^{2}-a b\right)=d^{2}\left\{(a-b)^{2}+4 h^{2}\right\}$.

- Watch Video Solution

51. Show that if two of the lines $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=0(a \neq 0)$ make complementary angles with X -axis in anti-clockwise sense, then a (a-
c) $+d(b-d)=0$.

- Watch Video Solution

52. Show that the equation $a\left(x^{4}+y^{4}\right)-4 b x y\left(x^{2}-y^{2}\right)+6 c x^{2} y^{2}=0$ represents two pairs of lines at right angles and that if $2 b^{2}=a^{2}+3 a c$, the two pairs will coincide.

- Watch Video Solution

53. if one of the lines given by the equation $a x^{2}+2 h x y+b y^{2}=0$ coincides with one of the lines given by $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ and the other lines representted by them be perpendicular , then .

$$
\frac{h a^{\prime} b^{\prime}}{b^{\prime}-a^{\prime}}=\frac{h^{\prime} a b}{b-a}=\frac{1}{2} \sqrt{\left(-a a^{\prime} \prime\right)} .
$$

- Watch Video Solution

1. The lines given by the equation $\left(2 y^{2}+3 x y-2 x^{2}\right)(x+y-1)=0$ form a triangle which is
A. equilateral
B. isosceles
C. right angled
D. obtuse angled

Answer: C

- Watch Video Solution

2. Area of the triangle formed by the lines
$y^{2}-9 x y+18 x^{2}=0$ and $y=9$ is
A. $27 / 4$
B. 0
C. $9 / 4$
D. 27

Answer: A

- Watch Video Solution

3. The equation $3 x^{2}+2 h x y+3 y^{2}=0$ represents a pair of straight lines passing through the origin. The two lines are
A. real and distinct, if $h^{2}>3$
B. real and distinct, if $h^{2}>9$
C. real and coincident, if $h^{2}=3$
D. real and coincident, if $h^{2}>3$

Answer: B

- Watch Video Solution

4. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the positive direction of the axes. Then find the relation for a, b and h.
A. $a+b=2|h|$
B. $a+b=-2 h$
C. $a-b=2|h|$
D. $(a-b)^{2}=4 h^{2}$

Answer: B

- Watch Video Solution

5. If the slope of the line given by $a^{2} x^{2}+2 h x y+b^{2} y^{2}=0$ be three times of the other , then h is equal to
A. (a) $2 \sqrt{3} a b$
B. (b) $-2 \sqrt{3} a b$
C. (c) $\frac{2}{\sqrt{3}} a b$
D. (d) $-\frac{2}{\sqrt{3}} a b$

Answer: C::D

- Watch Video Solution

6. Find the separate equation of two straight lines whose joint equation is $\mathrm{ab}\left(x^{2}-y^{2}\right)+\left(a^{2}-b^{2}\right) x y=0$

- Watch Video Solution

7. Find the coordinates of the centroid of the triangle whose sides are $12 x^{2}-20 x y+7 y^{2}=0$ and $2 x-3 y+4=0$
8. If the lines $a x^{2}+2 h x y+b y^{2}=0$ be two sides of a parallelogram and the line $1 x+m y=1$ be one of its diagonal, show that the equation of the other diagonal is $\mathrm{y}(\mathrm{bl}-\mathrm{hm})=\mathrm{x}(\mathrm{am}-\mathrm{hl})$.

- Watch Video Solution

9. Find the condition that one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ may coincide with one of the lines given by $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$

- Watch Video Solution

Exercise For Session 2

1. The angle between the pair of straight lines $y^{2} \sin ^{2} \theta-x y \sin ^{2} \theta+x^{2}\left(\cos ^{2} \theta-1\right)=0$ si
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$

Answer: B

- Watch Video Solution

2. The angle between the lines $a y^{2}-\left(1+\lambda^{2}\right) x y-a x^{2}=0$ is same as the angle between the line:
A. (a) $5 x^{2}+2 x y-3 y^{2}=0$
B. (b) $x^{2}-2 x y-3 y^{2}=0$
C. (c) $x^{2}-y^{2}=100$
D. (d) $x y=0$

Answer: C::D

3. Which of the following pair of straight lines intersect at right angles ?
A. $2 x^{2}=y(x+2 y)$
B. $(x+y)^{2}=x(y+3 x)$
C. $2 y(x+y)=x y$
D. $y=+2 x$

Answer: A

Watch Video Solution

4. if $h^{2}=a b$, then the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are
A. Parallel
B. perpendicular
C. coincident
D. None of these

Answer: C

D Watch Video Solution

5. Equation $a x^{3}-9 x^{2} y-x y^{2}+4 y^{3}=0$ represents three straight lines. If the two of the lines are perpendicular, then a is equal to
A. -5
B. 5
C. -4
D. 4

Answer: B::C

D Watch Video Solution

6. Find the angle between the lines whose joint equation is $2 x^{2}-3 x y+y^{2}=0$
7.

Show
that
the
lines
$(1-\cos \theta \tan \alpha) y^{2}-\left(2 \cos \theta+\sin ^{2} \theta \tan \alpha\right) x y+\cos \theta(\cos \theta+\tan \alpha) x^{2}=$ include an angle α between them .

- Watch Video Solution

8. Find the angle between the lines repersented by the equation $x^{2}-2 p x y+y^{2}=0$

- Watch Video Solution

9. Show that the lines $x^{2}-4 x y+y^{2}=0$ and $x+y=1$ form an equilateral triangle and find its area.

- Watch Video Solution

10. Find $\frac{d y}{d x}$ if $a x^{2}+2 h x y+b y^{2}=0$

- Watch Video Solution

Exercise For Session 3

1. If the coordinate axes are the bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$, then
A. (a) $a=b$
B. (b) $h=0$
C. (c) $a^{2}=b=0$
D. (d) $a+b^{2}=0$

Answer: B

- Watch Video Solution

2. The equation of the bisectors of angle between the lines $x^{2}-4 x y+y^{2}=0$ is

Watch Video Solution

3. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between lines $x y=0$, then $\cos ^{-1}(m)$ is
A. 0
B. $\pi / 2$
C. π
D. $3 \pi / 2$

Answer: A:C
4. The bisectors of the angles between the lines $(a x+b y)^{2}=c(b x-a y)^{2}, c>0 \quad$ are \quad respectively \quad parallel and perpendicular to the line
A. $b x-a y+\mu=0$
B. $a x+b y+\lambda=0$
C. $a x=b y+v=0$
D. $b x+a y+\tau=0$

Answer: B

- Watch Video Solution

5. If the pairs of straight lines $a x^{2}+2 h x y-a y^{2}=0$ and $b x^{2}+2 g x y-b y^{2}=0$ be such that each bisects the angles between the other, then
6. Prove that the lines $2 x^{2}+6 x y+y^{2}=0$ are equally inclined to the lines $4 x^{2}+18 x y+y^{2}=0$

- Watch Video Solution

7. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$

- Watch Video Solution

8. Prove that the bisectors of the angle between the lines $a x^{2}+a c x y+c y^{2}=0$ and $\left(3+\frac{1}{c}\right) x^{2}+x y+\left(3+\frac{1}{a}\right) y^{2}=0$ are always the same.

- Watch Video Solution

9. The lines represented by $x^{2}+2 \lambda x y+2 y^{2}=0$ and the lines represented by $(1+\lambda) x^{2}-8 x y+y^{2}=0$ are equally inclined, then $\lambda=$

- Watch Video Solution

Exercise For Session 4

1. Prove that the equartion $3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18=0$ represents two straight lines. Find also their point of intersection and the angle between them.
A. $\left(1, \frac{1}{2}\right)$
B. $\left(1,-\frac{1}{2}\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $\left(-\frac{3}{2},-\frac{5}{2}\right)$

Answer: D

(D) Watch Video Solution

2. If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1}(m)$, then find the value of m.
A. $-\frac{1}{5}$
B. $\frac{1}{5}$
C. $-\frac{3}{5}$
D. $\frac{3}{5}$

Answer: B

- Watch Video Solution

3.

The
equation
of
second
degree
$x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$ represents a pair of straight lines.The distance between them is
A. 2
B. $2 \sqrt{3}$
C. 4
D. $4 \sqrt{3}$

Answer: A

- Watch Video Solution

4. Find the area of the parallelogram formed by the lines

$$
2 x^{2}+5 x y+3 y^{2}=0 \text { and } 2 x^{2}+5 x y+3 y^{2}+3 x+4 y+1=0
$$

- Watch Video Solution

5. Find the locus of the incentre of the triangle formed by $x y-4 x-4 y+16=0$ and $x+y=a(a>4, a \neq \sqrt{2}$ and aistheparam
6. If the equation $2 h x y+2 g x+2 f y+c=0$ represents two straight lines, then show that they form a rectangle of area $\frac{|f g|}{h^{2}}$ with the coordinate axes.

- Watch Video Solution

7. Find the area of the triangle formed by the lines represented by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ and axis of x.

- Watch Video Solution

8. Find the combined equation of the straight lines passing through the point (1,1) and parallel to the lines represented by the equation. $z^{2}-5 x y+4 y^{2}+x+2 y-2=0$.

- Watch Video Solution

1. If the straight lines joining origin to the points of intersection of the line $\mathrm{x}+\mathrm{y}=1$ with the curve $x^{2}+y^{2}+x-2 y-m=0$ are perpendicular to each other, then the value of m should be
A. $-\frac{1}{2}$
B. 0
C. $\frac{1}{2}$
D. 1

Answer: A

- Watch Video Solution

2. The angle between the pair of straight lines formed by joining the points of intersection of $x^{2}+y^{2}=4$ and $y=3 x+c$ to the origin is a right angle. Then c^{2} is equal to
A. -1
B. 6
C. 13
D. 20

Answer: A

- Watch Video Solution

3. If θ is an angle by which axes are rotated about origin and equation $a x^{2}+2 h x y+b y^{2}=0$
does not contain $x y$ term in the new system, then prove that $\tan 2 \theta=\frac{2 h}{a-b}$.
A. $\frac{(a-b)}{2 h}$
B. $\frac{2 h}{(a+b)}$
C. $\frac{(a+b)}{2 h}$
D. $\frac{2 h}{(a-b)}$

- Watch Video Solution

4. The lines joining the origin to the points of intersection of $2 x^{2}+3 x y-4 x+1=0$ and $3 x+y=.1$ given by
A. $x^{2}-y^{2}-5 x y=0$
B. $x^{2}-y^{2}+5 x y=0$
C. $x^{2}+y^{2}-5 x y=0$
D. $x^{2}+y^{2}+5 x y=0$

Answer: A

- Watch Video Solution

5. The equation of the line joining the origin to the point of intersection of the lines $2 x^{2}+x y-y^{2}+5 x-y+2=0$ is
A. $x+y=0$
B. $x-y=0$
C. $x-2 y=0$
D. $2 x+y=0$

Answer: A

- Watch Video Solution

6. The lines joining the origin to the points of intersection of the line $3 x$ -
$2 y-1$ and the curve $3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$, are

(Watch Video Solution

7. If the straight lines joining the origin and the points of intersection of $y=m x+1$ and $x^{2}+y^{2}=1$ are perpendicular to each other, then find the value of m.
8. Prove that the straight lines joining the origin to the point of intersection of the straight line $h x+k y=2 h k$ and the curve $(x-k)^{2}+(y-h)^{2}=c^{2}$ are perpendicular to each other if $h^{2}+k^{2}=c^{2}$.

- Watch Video Solution

9. Show that for all values of λ, the lines joining the origin to the points common to $x^{2}+2 h x y-y^{2}+g x+f y=0$ and $f x-g y=\lambda$ are at right angles .

- Watch Video Solution

10. Find the equations of the straight lines joining the origin to the points of intersection of $x^{2}+y^{2}-4 x-2 y=4 \quad$ and $x^{2}+y^{2}-2 x-4 y=4$.

Exercise Single Option Correct Type Questions

1. If the sum of the slopes of the lines given by $4 x^{2}+2 \lambda x y-7 y^{2}=0$ is equal to the product of the slope, then λ is equal to
A. a) -4
B. b) -2
C. c) 2
D. d) 4

Answer: B

- Watch Video Solution

2. The equation $3 a x^{2}+9 x y+\left(a^{2}-2\right) y^{2}=0 \quad$ represents two perpendicular straight lines for
A. a) only one value of a
B. b) for all values of a
C. c) for only two values of a
D. d) for no value of a

Answer: C

D Watch Video Solution

3. The image of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror $y=0$ is
A. $a x^{2}+2 h x y+b y^{2}=0$
B. $b x^{2}-2 h x y+a y^{2}=0$
C. $b x^{2}+2 h x y+a y^{2}=0$
D. $a x^{2}-2 h x y+b y^{2}=0$
4. Number of points lying on the line $7 x+4 y+2=0$ which is equidistant from the lines $15 x^{2}+56 x y+48 y^{2}=0$ is
A. 0
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

5. Orthocentre of the triangle formed by the lines $x y-3 x-5 y+15=0$ and $3 x+5 y=15$ is

$$
\text { A. }(-5,-3)
$$

B. $(5,3)$
C. (-3,-5)
D. $(3,5)$

Answer: B

- Watch Video Solution

6. Two of the straight lines given by $3 x^{3}+3 x^{2} y-3 x y^{2}+d y^{3}=0$ are at right angles, if d equal to
A. -4
B. -3
C. -2
D. -1

Answer: B

7. Two lines are given by $(x-2 y)^{2}+k(x-2 y)=0$. The value of k, so that the distance between them is 3 , is:
A. (a) $\sqrt{5}$
B. (b) $2 \sqrt{5}$
C. (c) $3 \sqrt{5}$
D. (d) $4 \sqrt{5}$

Answer: C

- Watch Video Solution

8. The point of intersection of the two lines given by $2 x^{2}-5 x y+2 y^{2}-3 x+3 y+1=0$ is
A. A. $(-2,2)$
B. B. $(-3,3)$
C. C. $(3,3)$
D. D. $(2,2)$

Answer: C

- Watch Video Solution

9. Let $0<p<q$ and $a \neq 0$ such that the equation $p x^{2}+4 \lambda x y+q y^{2}+4 a(x+y+1)=0$ represents a pair of straight lines, then a can lie in the interval
A. $\alpha \leq p \leq \beta$
B. $p \leq \alpha$
C. $p \leq \alpha$ or $p \geq \beta$
D.

Answer: D

10. If the equation of the pair of straight lines passing through the point $(1,1)$, one making an angle θ with the positive direction of the x-axis and the other making the same angle with the positive direction of the y-axis, is $x^{2}-(a+2) x y+y^{2}+a(x+y-1)=0, a \neq 2$, then the value of $\sin 2 \theta$ is $a-2$ (b) $a+22(a+2)$ (d) $\frac{2}{a}$
A. $a-2$
B. $a+2$
C. $\frac{2}{(a+2)}$
D. $\frac{2}{a}$

Answer: C

- Watch Video Solution

1. The equation of image of pair of lines $y=|x-1|$ with respect to y-axis is :
A. $y=|x+1|$
B. $y=|x-1|+3$
C. $x^{2}-y^{2}+2 x+1=0$
D. $x^{2}-y^{2}+2 x-1=0$

Answer: A:C

- Watch Video Solution

2. If the equation $a x^{2}+b y^{2}+c x+c y=0$ represents a pair of straight lines, then
A. a) $a+b=0$
B. b) $c=0$
C. c) $a+c=0$
D. d) $c(a+b)=0$

Answer: A: B::D

- Watch Video Solution

3. If $x^{2}+\alpha y^{2}+2 \beta y=a^{2}$ represents a pair of perpendicular straight lines, then
A. $\alpha=1, \beta=a$
B. $\alpha=1, \beta=-a$
C. $\alpha=-1, \beta=-a$
D. $\alpha=-1, \beta=a$

Answer: C::D

- Watch Video Solution

4. If the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on the y -axis , then prove that $2 f g h=b g^{2}+c h^{2}$.
A. $f^{2}=b c$
B. $a b c=2 f g h$
C. $b g^{2} \neq c h^{2}$
D. $2 f g h=b g^{2}+c h^{2}$

Answer: A:D

- Watch Video Solution

5. Two pairs of straight lines have the equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if
A. $a=-3(2 h+3 b)$
B. $a=8(h-2 b)$
C. $a=2(b+h)$
D. $a=-3(b+h)$

Answer: A: B

- Watch Video Solution

6. The three sides of a triangle are given by $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$.

If the points $(-2, a)$ lies inside and $(b, 1)$ lies outside the triangle, then
A. $2<a<\frac{10}{3}$
B. $-2<a<\frac{10}{3}$
C. $-1<b<\frac{9}{2}$
D. $-1<b<1$
A. $2<a<\frac{10}{3}$
B. $-2<a<\frac{10}{3}$
C. $-1<b<\frac{9}{2}$
D. $-1<b<1$

Answer: A:D

- Watch Video Solution

Exercise Passage Based Questions

1. Consider the equation of a pair of straight lines as
$x^{2}-3 x y+\lambda y^{2}+3 x=5 y+2=0$
The value of λ is
A. 1
B. 2
C. 3
D. 4

Answer: B

2. Consider the equation of a pair of straight lines as $x^{2}-3 x y+\lambda y^{2}+3 x=5 y+2=0$

The point of intersection of line is (α, β), then the value of $\alpha^{2}+\beta^{2}$ is
A. 2
B. 5
C. 10
D. 17

Answer: C

- Watch Video Solution

3. Consider the equation of a pair of straight lines as
$x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0$
The angle between the lines is θ then the value of $\cos 2 \theta$ is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: D

- Watch Video Solution

4. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}(x, y)=0$ denote the equation of the bisectors of $f_{i}(x, y)=0$ for all $\mathrm{i}=1,2,3, \ldots \ldots$.
$f_{3}(x, y)=0 i s$
A. (a) $h x^{2}-(a-b) x y-h y^{2}=0$
B. (b) $(a-b) x^{2}+4 h x y-(a-b) y^{2}=0$
C. (c) $a x^{2}+2 h x y+b y^{2}=0$
D. (d)None of the above

- Watch Video Solution

5. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}(x, y)=0$ denote the equation of the bisectors of $f_{i}(x, y)=0$ for all $\mathrm{i}=1,2,3, \ldots .$.
$f_{3}(x, y)=0 i s$
A. $f_{1}(x, y)=0$
B. $f_{2}(x, y)=0$
C. $h x^{2}-(a-b) x y-h y^{2}=0$
D. None of the above

Answer: A

6. Let $f_{1}(x, y) \equiv a x^{2}+2 h x y+b y^{2}=0$ and let $f_{i+1}(x, y)=0$ denote the equation of the bisectors of $f_{i}(x, y)=0$ for all $\mathrm{i}=1,2,3, \ldots \ldots$.
The value of $\sum_{n=2}^{5} \frac{f_{n+2}(x, y)}{f_{n}(x, y)} i s$
A. 14
B. 4
C. 54
D. 6

Answer: B

- Watch Video Solution

7. Consider a pair of perpendicular straight lines $2 x^{2}+3 x y+b y^{2}-11 x+13 y+c=0$ The value fo c is
A. -2
B. 2
C. -3
D. 3

Answer: A

- Watch Video Solution

8. Find $\frac{d y}{d x}$ if $2 x^{2}+3 x y+b y-11 x+13 y+c=0$

- Watch Video Solution

9. Consider a pair of perpendicular straight lines
$2 x^{2}+3 x y+b y-11 x+13 y+c=0$
The value fo c is
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

Exercise Single Integer Answer Type Questions

1. If the lines joining the origin to the intersection of the line $y=n x+2$ and the curve $x^{2}+y^{2}=1$ are at right angles, then the value of n^{2} is

- Watch Video Solution

2. Area of the triangle formed by the line $x+y=3$ and angle bisectors of the pair of straight lines $x^{2}-y^{2}+2 y=1$ is 2 squinits b . 4 squinits c . 6 squinits d. 8squinits
3. Statement I. The four straight lines given by
$6 x^{2}+5 x y-6 y^{2}=0$ and $6 x^{2}+5 x y-6 y^{2}-x+5 y-1=0$ are the sides of a square .

Statement II . The lines represented by general equation of second degree $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ are perpendicular if $a+b=0$.
A. A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. B. Statement I is true, Statement II is true, Statement II is not a correct explanation for statement I
C. C. Statement I is true, Statement II is false
D. D. Statement I is false , Statement II is true

Answer: b

2. Statement I. Two of the straight lines represented by $d x^{3}+c x^{2} y+b x y^{2}+a y^{3}=0$ will be at right angles if $d^{2}+b d+b c+a^{2}=0$

Statement II. Product of the slopes of two perpendicular line is -1
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for statement I
C. Statement I is true , Statement II is false
D. Statement I is false , Statement II is true

Answer: b

- Watch Video Solution

3. Statement I. if $\alpha \beta=-1$ then the pair of straight lines $x^{2}-2 \alpha x y-y^{2}=0$ and $y^{2}+2 \beta x y-x^{2}=0$ are the angle bisector of each other.

Statement II. Pair of angle bisector lines of the pair of lines $a x^{2}+2 h x y+b y^{2}=0 i s h\left(x^{2}-y^{2}\right)=(a-b) x y$.
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for statement I
C. Statement I is true , Statement II is false
D. Statement I is false , Statement II is true

Answer: a

- Watch Video Solution

4. Statement 1: If $-2 h=a+b$, then one line of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes in the positive quadrant. Statement 2 : If $a x+y(2 h+a)=0$ is a factor of $a x^{2}+2 h x y+b y^{2}=0$, then $b+2 h+a=0$
A. Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true, Statement II is not a correct explanation for statement I
C. Statement I is true , Statement II is false
D. Statement I is false , Statement II is true

Answer: b

- Watch Video Solution

1. The straight lines represented by $(y-m x)^{2}=a^{2}\left(1+m^{2}\right)$ and $(y-n x)^{2}=a^{2}\left(1+n^{2}\right)$ from a rectangle (b) rhombus trapezium (d) none of these

- Watch Video Solution

2. Prove that the equation $\mathrm{m}\left(x^{3}-3 x y^{2}\right)+y^{3}-3 x^{2} y=0$ represents three straight lines equally inclined to each other.

- Watch Video Solution

3.

$A x+B y+C=0$ an equilateral triangle of area $\frac{C^{2}}{\sqrt{3}\left(A^{2}+B^{2}\right)}$.

- Watch Video Solution

4. Find $\frac{d y}{d x}$ if $x \cos x=2 \sin y$

Watch Video Solution

5. Find $\frac{d y}{d x}$ if $y=a x^{2}+2 h x y+b y^{2}$

- Watch Video Solution

6. Find $\frac{d y}{d x}$ if $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

$$
\text { A. } 3 a^{2}+2 a b+3 b^{2}=0
$$

B. $3 a^{2}+10 a b+3 b^{2}=0$
C. $3 a^{2}-2 a b+3 b^{2}=0$
D. $3 a^{2}-10 a b+3 b^{2}=0$

Answer: A

- Watch Video Solution

2. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is
A. $-\frac{1}{2}$
B. -2
C. 1
D. 2

Answer: C

1

\square
\square
1

$$
J
$$

I
\square

