© 'doubtnut

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

PRODUCT OF VECTORS

Example

1. If θ is the angle between the vectors $a=2 \hat{i}+2 \hat{j}-\hat{k}$ and $b=6 \hat{i}-3 \hat{j}+2 \hat{k}$, then
A. $\cos \theta=\frac{4}{21}$
B. $\cos \theta=\frac{3}{19}$
C. $\cos \theta=\frac{2}{19}$
D. $\cos \theta=\frac{5}{21}$

(D) Watch Video Solution

2. $(a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k}$ is equal to
A. a
B. 2a
C. 3 a
D. 0

Answer: A

Watch Video Solution
3. If $|\vec{a}|=3,|\vec{b}|=4$, then the value 'lambda' for which $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{a}-\lambda \vec{b}$, is
A. $9 / 16$
B. $3 / 4$
C. 3/2
D. $4 / 3$

Answer: B

- Watch Video Solution

4. The projection of vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$, on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ is
A. $\frac{1}{\sqrt{14}}$
B. $\frac{2}{\sqrt{14}}$
C. $\sqrt{14}$
D. $\frac{-2}{\sqrt{14}}$

Answer: B

5. If $\vec{a}=5 \hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\lambda \hat{k}, f \in d \lambda$ such that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are orthogonal

- Watch Video Solution

6. If \vec{a}, \vec{b}, and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then find the value of $\vec{a} \vec{b}+\vec{b} \vec{c}+\vec{a} \vec{a}$

- Watch Video Solution

7. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

8. Find the value of c for which the vectors $\vec{a}=\left(\log _{2} x\right) \hat{i}-6 \hat{j}+3 \hat{k}$ and $\vec{b}=\left((\log)_{2} x\right) \hat{i}+2 \hat{j}+\left(2 c(\log)_{2^{x}}\right) \hat{k} \quad$ make an obtuse angle for any $x \in(0, \infty)$.

- Watch Video Solution

9. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$

- Watch Video Solution

10. Prove using vectors: The median to the base of an isosceles triangle is perpendicular to the base.

- Watch Video Solution

11. In $\triangle A B C$, prove that $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ by vector method.
12. In any triangle $A B C$, prove the projection formula $a=b \cos C+c \cos B$ using vector method.

- Watch Video Solution

13. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the vector component of \vec{a} along \vec{b}.

- Watch Video Solution

14. Express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b}=3 \hat{i}+\hat{k}$ and other is perpendicular to \vec{b}

- Watch Video Solution

15. Two forces $f_{1}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $f_{2}=\hat{i}+3 \hat{j}-5 \hat{k}$ acting on a particle at A move it to B. find the work done if the position vector of A and B are
$-2 \hat{i}+5 \hat{k}$ and $3 \hat{i}-7 \hat{j}+2 \hat{k}$.

- Watch Video Solution

16. Forces of magnitudes 5 and 3 units acting in the directions $6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-\hat{i}+6 \hat{k}$ respectively act on a particle which is displaced from the point ($2,2,-1$) to ($4,3,1$) . The work done by the forces, is

- Watch Video Solution

17. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then find (m,n)

- Watch Video Solution

18. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

19. If \vec{a} is any vector, then $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}=$
A. $|a|^{2}$
B. 0
C. $3|a|^{2}$
D. $2|a|^{2}$

Answer: D

- Watch Video Solution

20. If \vec{a}. $\vec{b}=0$ and $\vec{a} \times \vec{b}=0$, prove that $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$.

- Watch Video Solution

21. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$, then show that $\vec{b}=\overrightarrow{\text {. }}$
22. Let $\vec{a}, \vec{b}, \vec{c}$, be three non-zero vectors. If \vec{a}. $(\vec{b} \times \vec{c})=0$ and \vec{b} and \vec{c} are not parallel, then prove that $\vec{a}=\lambda \vec{b}+\mu \vec{c}$, where λ are some scalars

- Watch Video Solution

23. If $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \vec{c}$, show that $\vec{b}=\vec{c}+t \vec{a}$ for some scalar

t

- Watch Video Solution

24. For any two vectors $\vec{u} a n d \vec{v}$ prove that $(\vec{u} \vec{v})^{2}+|\vec{u} \times \vec{v}|^{2}=|\vec{u}|^{2}|\vec{v}|^{2}$ and
$\left(\overrightarrow{1}+|\vec{u}|^{2}\right)\left(\overrightarrow{1}+|\vec{v}|^{2}\right)=(1-\vec{u} \vec{v})^{2}+|\vec{u}+\vec{v}+(\vec{u} \times \vec{v})|^{2}$

- Watch Video Solution

25. The sine of the angle between the vector $a=3 \hat{i}+\hat{j}+\hat{k}$ and $b=2 \hat{i}-2 \hat{j}+\hat{k}$ is
A. $\sqrt{\frac{74}{99}}$
B. $\sqrt{\frac{55}{99}}$
C. $\sqrt{\frac{37}{99}}$
D. $\frac{5}{\sqrt{41}}$

Answer: A

- Watch Video Solution

26. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8, f \in d \vec{a} \vec{b}$

- Watch Video Solution

27. The unit vector perpendicular to the vectors $6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-6 \hat{j}-2 \hat{k}$, is
A. $\frac{2 \hat{i}-3 \hat{j}+6 \hat{k}}{7}$
B. $\frac{2 \hat{i}-3 \hat{j}-6 \hat{k}}{7}$
c. $\frac{2 \hat{i}+3 \hat{j}-6 \hat{k}}{7}$
D. $\frac{2 \hat{i}+3 \hat{j}+6 \hat{k}}{7}$

Answer: C

- Watch Video Solution

28. Find a unit vector perpendicular to the plane determined by the points (1, - 1,2$),(2,0,-1)$ and $(0,2,1)$
29. Let A, B and C be unit vectors. Suppose $A \cdot B=A \cdot C=0$ and the angle betweenn B and C is $\frac{\pi}{4}$. Then,
A. $A= \pm 2(B \times C)$
B. $A= \pm \sqrt{2}(B \times C)$
C. $A= \pm 3(B+C)$
D. $A= \pm \sqrt{3}(B \times C)$.

Answer: b

- Watch Video Solution

30. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then find \vec{c}
A. $z \hat{i}-x \hat{k}$
B. 0
C. $y \hat{j}$
D. $-z \hat{i}+x \hat{k}$

Answer: A

- Watch Video Solution

31. Let $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$; prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at righ angles such that $|\vec{b}|=1$ and $|\vec{c}|=|\vec{a}|$

- Watch Video Solution

32. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices A, B, C of a triangle $A B C$, show that the area triangle $\operatorname{ABCis} \frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$ Deduce the condition for points $\vec{a}, \vec{b}, \vec{c}$ to be collinear.
33. Show that perpendicular distance of the point \vec{c} from the line joining $\vec{a} a n d \vec{b}$ is $\underline{\mid \vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}}$

$$
|\vec{b}-\vec{a}|
$$

- Watch Video Solution

34. find the area of a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$.

- Watch Video Solution

35. Find the moment about (1,-1,-1) of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at (1,0,-2)

- Watch Video Solution

36. Three forces $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ acting on article at the point $(0,1,2)$ the magnitude of the moment of the forces about the
point $(1,-2,0)$ is
A. $2 \sqrt{35}$
B. $6 \sqrt{10}$
C. $4 \sqrt{7}$
D. none of these

Answer: B

- Watch Video Solution

37. The moment about a line through the origin having the direction of 1 12hati -4hatj -3hatk is

- Watch Video Solution

38. The moment of the couple formed by the forces $5 \hat{i}+\hat{j}$ and $-5 \hat{i}-\hat{k}$ acting at the points ($9,-1,2$) and ($3,-2,1$) respectively, is
A. $-\hat{i}+\hat{j}+5 \hat{k}$
B. $\hat{i}-\hat{j}-5 \hat{k}$
C. $2 \hat{i}-2 \hat{j}-10 \hat{k}$
D. $-2 \hat{i}+2 \hat{j}+10 \hat{k}$

Answer: B

- Watch Video Solution

39. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

40. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

41. Find the volume of the parallelopiped whose edges are represented by $a=2 \hat{i}-3 \hat{j}+4 \hat{k}, b=\hat{i}+2 \hat{j}-\hat{k}$ and $c=3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

42. Let $a=x \hat{i}+12 \hat{j}-\hat{k}, b=2 \hat{i}+2 x \hat{j}+\hat{k}$ and $c=\hat{i}+\hat{k}$. If $\mathrm{b}, \mathrm{c}, \mathrm{a}$ in that order form a left handed system, then find the value of x .
$\left[x_{1} a+y_{1} b+z_{1} c, x_{2} a+y_{2} b+z_{2} c, x_{3} a+y_{3} b+z_{3} c\right]$
$=\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|[a b c]$.

D Watch Video Solution

43. For any three vectors a, b, c prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

Watch Video Solution

44. Show that vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

45. For any three vectors a, b and c prove that
$[\mathrm{abc}]^{2}=\left|\begin{array}{lll}a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c \\ c \cdot a & c \cdot b & c \cdot c\end{array}\right|$
46. If a, b, c, I and m are vectors, prove that
$\left[\mathrm{a} \mathrm{b} \mathrm{c]}(l \times m)=\left|\begin{array}{ccc}a & b & c \\ a \cdot l & b \cdot l & c \cdot l \\ a \cdot m & b \cdot m & c \cdot m\end{array}\right|\right.$

- Watch Video Solution

47. If a and b are non-zero and non-collinear vectors, then show that $a \times b=[\mathrm{abi}] \hat{i}+[\mathrm{abj}] \hat{j}+[\mathrm{ab} k] \hat{k}$

D Watch Video Solution

48. If a, b and c are any three vectors in space, then show that $(c+b) \times(c+a) \cdot(c+b+a)=[a b c]$

- Watch Video Solution

49. If \vec{u}, \vec{v} and \vec{w} are three non-copOlanar vectors, then prove that

$$
(\vec{u}+\vec{v}-\vec{w})[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]=\vec{u}(\vec{v} \times \vec{w})
$$

A. 0
B. $u \cdot(v \times w)$
C. $u \cdot(w \times v)$
D. $3 u \cdot(v \times w)$

Answer: B

- Watch Video Solution

50. If \vec{a}, \vec{b} and are non-coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when
A. no value of λ
B. all except one value of λ
C. all except two values of λ
D. all values of λ

Answer: C

- Watch Video Solution

51. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non -coplanar and l, m, n are distinct scalars such that

$$
[l \vec{a}+m \vec{b}+n \vec{c} l \vec{b}+m \vec{c}+n \vec{a} \quad l \vec{c}+m \vec{a}+n \vec{b}]=0 \text { then }
$$

A. $x+y+z=0$
B. $x y+y z+z x=0$
C. $x^{3}+y^{3}+z^{3}=0$
D. $x^{2}+y^{2}+z^{2}=0$

Answer: A

52. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar unit vectors each inclined with other at an angle of 30°, then the volume of tetrahedron whose edges are $\vec{a}, \vec{b}, \vec{c}$ is (in cubic units)
A. $\frac{\sqrt{3 \sqrt{3}-5}}{12}$
B. $\frac{3 \sqrt{3}-5}{12}$
$5 \sqrt{2}+3$
C. $\frac{12}{12}$
D. none of these

Answer: A

- Watch Video Solution

53. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}$, then $\lambda+\mu=$ A. 0
B. 1
C. 2
D. 3

Answer: A

D Watch Video Solution

54. Q8) Ifa, $b, c(b$, care non-parallel) are unit vectors such that $a x(b \times c)=$ (1/2) then the angle which a makes with b and are en the angle which a makes with b and c are A. 30,60 B. $600,90^{\circ} \mathrm{C} .90,60$ D. $60^{\circ}, 30^{\circ} 0 \mathrm{c} 000$ 300

- Watch Video Solution

55. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b}, (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} . \vec{c}=7$.

Watch Video Solution

56. Prove that
$a \times(b \times c)+b \times(c \times a)+c \times(a \times b)=0$

- Watch Video Solution

57. Show that the vectors $\vec{a} \times(b \overrightarrow{\times} \vec{c}), \vec{b}(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.

- Watch Video Solution

58. If $[a \times b b \times c c \times a]=\lambda[a b c]^{2}$, then λ is equal to

- Watch Video Solution

59. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

- Watch Video Solution

60. about to only mathematics

- Watch Video Solution

61. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a}|\mid(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$ '

- Watch Video Solution

62. Find the set of vector reciprocal to the set off vectors $2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}-\hat{j}-2 \hat{k},-\hat{i}+2 \hat{j}+2 \hat{k}$.
63. If $a^{\prime}=\frac{b \times c}{[\mathrm{abc}]}, b^{\prime}=\frac{c \times a}{[\mathrm{abc}]}, c^{\prime}=\frac{a \times b}{[\mathrm{abc}]}$
then show that
$a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}=0$, where a, b and c are non-coplanar.

(Watch Video Solution

64. If $\left(e_{1}, e_{2}, e_{3}\right)$ and $\left(e_{1}^{\prime}, e^{\prime}{ }_{2}, e_{3}^{\prime}\right)$ are two sets of non-coplanar vectors such that $i=1,2,3$ we have $e_{i} \cdot e_{j}^{\prime}=\{1$, if $i=j \mid 0$, if $i \neq j\}$ then show that $\left[e_{1} e_{2} e_{3}\right]\left[e_{1}^{\prime} e_{2} e^{\prime}{ }_{3}\right]=1$

(Watch Video Solution

65. Solve the vector equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{r} . \vec{c}=0$ provided that \vec{c} is not perpendicular to \vec{b}
66. Solve for x , such that $A \cdot X=C$ and $A \times X=B$ with $C \neq 0$.

Watch Video Solution

67. Solve for vectors A and B, where
$A+B=a, A \times B=b, A \cdot a=1$.

Watch Video Solution

68. If $|\vec{a}|=5,|\vec{a}-\vec{b}|=8$ and $|\vec{a}+\vec{b}|=10$, then find $|\vec{b}|$
A. 1
B. $\sqrt{57}$
C. 3
D. none of these

Answer: B

69. Angle between diagonals of a parallelogram whose side are represented by $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}-\hat{k}$
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{2}\right)$
C. $\cos ^{-1}\left(\frac{4}{9}\right)$
D. $\cos ^{-1}\left(\frac{5}{9}\right)$

Answer: A

- Watch Video Solution

70. Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of length $3,4,5$ respectively. Let \vec{a} be perpendicular to $\vec{b}+\vec{c}, \vec{b}$ to $\vec{c}+\vec{a}$ and \vec{c} to $\vec{a}+\vec{b}$. Then $|\vec{a}+\vec{b}+\vec{c}|$ is :
A. $2 \sqrt{5}$
B. $2 \sqrt{2}$
C. $10 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: D

- Watch Video Solution

71. Let a,bgt0 and $\alpha=\frac{\hat{i}}{a}+\frac{4 \hat{j}}{b}+b \hat{k}$ and $\beta=b \hat{i}+a \hat{t} j+\frac{1}{b} \hat{k}$, then the maximum value of $\frac{10}{5+\alpha \cdot \beta}$ is
A. 1
B. 2
C. 4
D. 8

Answer: A

72. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
A. $\left[0, \frac{\pi}{6}\right)$
B. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
C. $\left(\frac{5 \pi}{6}, \pi\right]$
D. $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$.

Answer: A

- Watch Video Solution

73. If $\vec{a}=3 \hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ are given vectors. A vector \vec{c} which is perpendicular to z-axis satisfying $\vec{c} \cdot \vec{a}=9$ and $\vec{c} \cdot \vec{b}=-4$. If inclination of \vec{c} with x-axis and y-axis and y-axis is α and β respectively, then which of the following is not true?
A. $\alpha>\frac{\pi}{4}$
B. $\beta>\frac{\pi}{2}$
C. $\alpha>\frac{\pi}{2}$
D. $\beta<\frac{\pi}{2}$

Answer: C

- Watch Video Solution

74. If A is 3×3 matrix and u is a vector. If $A u$ and u are thogonal for all real u, then matrix A is a
A. singular
B. non-singular
C. symmetric
D. skew-symmetric
75. Let the cosine of angle between the vectors p and q be λ such that $2 p+q=\hat{i}+\hat{j}$ and $p+2 q=\hat{i}-\hat{j}$, then λ is equal to
A. $\frac{5}{9}$
B. $-\frac{4}{5}$
C. $\frac{3}{9}$
D. $\frac{7}{9}$

Answer: B

- Watch Video Solution

76. The three vectors a, b and c with magnitude 3,4 and 5 respectively and $a+b+c=0$, then the value of $a . b+b . c+c . a$ is
B. 25
C. 50
D. -25

Answer: D

- Watch Video Solution

77. Let $\vec{u}, \vec{v} a n d \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors $\vec{v} a n d \vec{w}$ are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals $2 \mathrm{~b} . \sqrt{7}$ c. $\sqrt{14}$ d. 14
A. $\sqrt{14}$
B. $\sqrt{7}$
C. 2
D. 14
78. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between \vec{b} and the z-axis is acute and less then $\pi / 6$
A. $0<\lambda<\frac{1}{2}$
B. $\lambda>\sqrt{159}$
C. $-\frac{1}{2}<\lambda<0$
D. null set

Answer: D

- Watch Video Solution

79. The locus of a point equidistant from two points with position vectors \vec{a} and \vec{b} is
A. $\left[r-\frac{1}{2}(a+b)\right] \cdot(a+b)=0$
B. $\left[r-\frac{1}{2}(a+b)\right] \cdot(a-b)=0$
C. $\left[r-\frac{1}{2}(a+b)\right] \cdot a=0$
D. $[r-(a+b)] \cdot b=0$

Answer: B

- Watch Video Solution

80. If A is $\left(x_{1}, y_{1}\right)$ where $x_{1}=1$ on the curve $y=x^{2}+x+10$.the tangent at

Acuts the x-axisat B. The value of $O A . A B$ is
A. $-\frac{520}{3}$
B. -148
C. 140
D. 12

- Watch Video Solution

81. In a tetrahedron $O A B C$, the edges are of lengths, $|O A|=|B C|=a,|O B|=|A C|=b,|O C|=|A B|=c$. Let G_{1} and G_{2} be the centroids of the triangle ABC and AOC such that $O G_{1} \perp B G_{2}$, then the value of $\frac{a^{2}+c^{2}}{b^{2}}$ is
A. 2
B. 3
C. 6
D. 9

Answer: B

82. The $O A B C$ is a tetrahedron such that $O A^{2}+B C^{2}=O B^{2}+C A^{2}=O C^{2}+A B^{2}$,then
A. $O A \perp B C$
B. $O B \perp A C$
C. $O C \perp A B$
D. $A B \perp A C$

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 83. If a,b,c and A,B,C } \in \mathrm{R}-\{0\} \quad \text { such that } \\
& a A+b B+c D+\sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(A^{2}+B^{2}+C^{2}\right)}=0, \text { then value of } \\
& \frac{a B}{b A}+\frac{b C}{c B}+\frac{c A}{a C} \text { is }
\end{aligned}
$$

A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

84. The unit vector in XOZ plane and making angles 45° and 60° respectively with $\vec{a}=2 i+2 j-k$ and $\vec{b}=0 i+j-k$, is
A. $\frac{1}{\sqrt{2}}(-\hat{i}+\hat{k})$
B. $\frac{1}{\sqrt{2}}(\hat{i}-\hat{k})$
C. $\frac{\sqrt{3}}{2}(\hat{i}+\hat{k})$
D. none of these

Answer: B

- Watch Video Solution

85. the unit vector orthogonal to vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ and making equal angles with the x - and y -axes is
A. $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
B. $\frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k})$
C. $\frac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$
D. $\frac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$

Answer: A

- Watch Video Solution

86. Let two non-collinear vectors \vec{a} and \vec{b} inclined at an angle $\frac{2 \pi}{3}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=2$. If a point P moves so that at any time t its position vector $O P$ (where O is the origin) is given as $\overrightarrow{O P}=\left(t+\frac{1}{t}\right) \vec{a}+\left(t-\frac{1}{t}\right) \vec{b}$ then least distance of P from the origin is
A. $\sqrt{2 \sqrt{133}-10}$
B. $\sqrt{2(133)+10}$
C. $\sqrt{5+\sqrt{133}}$
D. none of these

Answer: B

- Watch Video Solution

87. If a, b, c be non-zero vectors such that a is perpendicular to b and c and $|a|=1,|b|=2,|c|=1, b \cdot c=1$ and there is a non-zero vector d coplanar with $\mathrm{a}+\mathrm{b}$ and $2 \mathrm{~b}-\mathrm{c}$ and $d \cdot a=1$, then minimum value of $|\mathrm{d}|$ is
A. $\frac{2}{\sqrt{13}}$
B. $\frac{3}{\sqrt{13}}$
C. $\frac{4}{\sqrt{5}}$
D. $\frac{4}{\sqrt{13}}$.

- Watch Video Solution

88. For any vectors $a, b,|a \times b|^{2}+(a \cdot b)^{2}$ is equal to
A. $|a|^{2}|b|^{2}$
B. $|a+b|$
C. $|a|^{2}-|b|^{2}$
D. 0

Answer: A

Watch Video Solution
89. If $a=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}+\hat{j}-\hat{k}$, then vectors perpendicular to a and b is/are
A. $\lambda(\hat{i}+\hat{j})$
B. $\lambda(\hat{i}+\hat{j}+\hat{k})$
C. $\lambda(\hat{i}+\hat{k})$
D. none of these

Answer: C

- Watch Video Solution

90. If $a \times b=b \times c \neq 0$, then the correct statement is
A. $b \mid c$
B. $a \mid \quad b$
C. $(a+c)|\quad| b$
D. none of these

Answer: C

91. If $a=\hat{i}+2 \hat{j}+3 \hat{k}, b=-\hat{i}+2 \hat{j}+\hat{k}$ and $c=3 \hat{i}+\hat{j}$. If $(a+t b) \perp c$, then t is equal to
A. 5
B. 4
C. 3
D. 2

Answer: A

Watch Video Solution
92. Let $\triangle A B C$ be a given triangle. If $|\overrightarrow{B A}-\overrightarrow{B C}| \geq|\overrightarrow{A C}|$ for any $t \in R$, then $\triangle A B C$ is
A. Equilateral
B. Right angled
C. Isosceles
D. none of these

Answer: B

- Watch Video Solution

93. If a, b, c are then $p^{t h}, q^{\text {th }}, r^{\text {th }}$, terms of an HP and $\vec{u}=(q-r) \hat{i}+(r-p) \hat{j}+(p-q) \hat{k}$ and $\vec{v}=\frac{\hat{i}}{a}+\frac{\hat{j}}{b}+\frac{\hat{k}}{c}$ then
A. u and v are parallel vectors
B. u and v are orthogonal vectors
C. $u \cdot v=1$
D. $u \times v=\hat{i}+\hat{j}+\hat{k}$.

Answer: B

94. If the vector product of a constant vector $\overrightarrow{O A}$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a straight line perpendicular to $\overrightarrow{O A} \mathrm{~b}$. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\vec{O} A$ d. none of these
A. a straight line perpendicular to $O A$
B. a circle with centre O radius equal to $|\mathrm{OA}|$
C. a straight line parallel to $O A$
D. none of these

Answer: C

- Watch Video Solution

95. The vector r satisfying the conditions that I . it is perrpendicular to $3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $18 \hat{i}-22 \hat{j}-5 \hat{k}$ II. It makes an obtuse angle with Y-axis III.
$|r|=14$.
A. $2(-2 \hat{i}-3 \hat{j}+6 \hat{k})$
B. $2(2 \hat{i}-3 \hat{j}+6 \hat{k})$
C. $4 \hat{i}+6 \hat{j}-12 \hat{k}$
D. none of these

Answer: A

- Watch Video Solution

96. The value of the following expression
$\hat{i} .(\hat{j} \times \hat{k})+j .(\hat{i} \times \hat{k})+\hat{k} .(\hat{j} \times \hat{i})$ is
A. 3
B. 2
C. 1
D. 0

Watch Video Solution

97. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if
A. $a \cdot b=0, b \cdot c=0$
B. $b \cdot c=0, c \cdot a=0$
C. $c \cdot a=0, a \cdot b=0$
D. $a \cdot b=b \cdot c=c \cdot a=0$

Answer: D

- Watch Video Solution

98. The position vectors of three vertices A, B, C of a tetrahedron OABC with respect to its vertex O are $6 \hat{i}, 6 \hat{j}, \hat{k}$, then its volume (in cu units) is

$$
\text { A. } 3
$$

B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. 6

Answer: D

- Watch Video Solution

99. A parallelepiped is formed by planes drawn parallel to coordinate axes through the points $A=(1,2,3)$ and $B=(9,8,5)$. The volume of that parallelepiped is equal to (in cubic units)
A. 192
B. 48
C. 32
D. 96

Answer: D

100. If $|a|=1,|b|=3$ and $|c|=5$, then the value of $\left[\begin{array}{lll}a-b & b-c & c-a\end{array}\right]$ is
A. 0
B. 1
C. -1
D. none of these

Answer: A

- Watch Video Solution

101. If a, b, c are three non-coplanar vectors, then $3 a-7 b-4 c, 3 a-2 b+c$ and $a+b+\lambda c$ will be coplanar, if λ is
A. -1
B. 1
C. 3
D. 2

Answer: D

- Watch Video Solution

102. Let $\vec{r}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+(\vec{c} \times \vec{a})$, where \vec{a}, \vec{b} and \vec{c} are non-zero non-coplanar vectors, If \vec{r} is orthogonal to $3 \vec{a}+5 \vec{b}+2 \vec{c}$, then the value of $\sec ^{2} y+\operatorname{cosec}^{2} x+\sec y \operatorname{cosec} x$ is
A. 3
B. 4
C. 5
D. 6

Answer: A

103. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and λ is a real number, then

$$
\left[\begin{array}{lll}
\lambda(\vec{a}+\vec{b}) & \lambda^{2} \vec{b} & \lambda \vec{c}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b}+\vec{c} & \vec{b}
\end{array}\right] \text { for }
$$

A. exactly two values of λ
B. exactly one value of λ
C. exactly three values of λ.
D. no value of λ

Answer: C

- Watch Video Solution

104. In a regular tetrahedron, let θ be angle between any edge and a face not containing the edge. Then the value of $\cos ^{2} \theta$ is
A. 1/6
B. $1 / 9$
C. 1/3
D. none of these

Answer: C

- Watch Video Solution

105. DABC be a tetrahedron such that $A D$ is perpendicular to the base $A B C$ and $\angle A B C=30^{\circ}$. The volume of tetrahedron is 18 . if value of $A B+B C+A D$ is minimum, then the length of $A C$ is
A. $6 \sqrt{2-\sqrt{3}}$
B. $3(\sqrt{6}-\sqrt{2})$
C. $6 \sqrt{2+\sqrt{3}}$
D. $3(\sqrt{6}+\sqrt{2})$.

Answer: A

106. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the value of $\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$
A. 2
B. 4
C. 16
D. 64

Answer: C

D Watch Video Solution

107. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

108. If a, b and c be any three non-zero and non-coplanar vectors, then any vector r is equal to
where, $x=\frac{[r b c]}{[a b c]}, y=\frac{[r c a]}{[a b c]}, z=\frac{[r a b]}{[a b c]}$
A. $z a+x b+y c$
B. $x z+y b+z c$
C. $y a+z b+x c$
D. none of these

Answer: B

109. If α and β are two mutaully perpendicular unit vectors $\{r \alpha+r \beta+s(\alpha \times \beta\},[\alpha+(\alpha \times \beta)]$ and $\{s \alpha+s \beta+t(\alpha \times \beta)\}$ are coplanar, then s is equal to
A. AM of r and t
B. HM of r and t
C. GM of r and t
D. none of these

Answer: C

- Watch Video Solution

110. Let $\vec{b}=-\vec{i}+4 \vec{j}+6 \vec{k}, \vec{c}=2 \vec{i}-7 \vec{j}-10 \vec{k}$. If \vec{a} be a unit vector and the scalar triple product $[\vec{a} \vec{b} \vec{c}]$ has the greatest value then \vec{a} is
A. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{5}}(\sqrt{2} \hat{i}-\hat{j}-\sqrt{2} \hat{k})$
C. $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
D. $\frac{1}{\sqrt{59}}(3 \hat{i}-7 \hat{j}-\hat{k})$
A. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{5}}(\sqrt{2} \hat{i}-\hat{j}-\sqrt{2} \hat{k})$
C. $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
D. $\frac{1}{\sqrt{59}}(3 \hat{i}-7 \hat{j}-\hat{k})$

Answer: C

D Watch Video Solution

111. Prove that vectors $\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$ $\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(c l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}$ are coplanar.
A. form an equilateral triangle
B. are coplanar
C. are collinear
D. are mutually perpendicular

Answer: B

- Watch Video Solution

112. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2$. If $\vec{r}=l(\vec{b} \times \vec{c})+m(\vec{c} \times \vec{a})+n(\vec{a} \times \vec{b})$ be perpendicular to $\vec{a}+\vec{b}+\vec{c}$, then the value of $l+m+n$ is
A. 2
B. 1
C. 0
D. none of these

- Watch Video Solution

113. If a, b and c are three mutually perpendicular vectors, then the projection of the vectors
$l \frac{a}{|a|}+m \frac{b}{|b|}+n \frac{(a \times b)}{|a \times b|}$ along the angle bisector of the vectors a and b is
A. $\frac{l+m}{\sqrt{2}}$
B. $\sqrt{l^{2}+m^{2}+n^{2}}$
C. $\frac{\sqrt{l^{2}+m^{2}}}{\sqrt{l^{2}+m^{2}+b^{2}}}$
D. none of these

Answer: A

- Watch Video Solution

114. If the volume of the parallelopiped formed by the vectors $\vec{a}, \vec{b}, \vec{c}$ as three coterminous edges is 27 units, then the volume of the parallelopiped having $\vec{\alpha}=\vec{a}+2 \vec{b}-\vec{c}, \vec{\beta}=\vec{a}-\vec{b}$ and $\vec{\gamma}=\vec{a}-\vec{b}-\vec{c}$ as three coterminous edges, is
A. 27
B. 9
C. 81
D. none of these

Answer: C

- Watch Video Solution

115. If V is the volume of the parallelepiped having three coterminous edges as \vec{a}, \vec{b} and \vec{c}, then the volume of the parallelepiped having three coterminous edges as
$\vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}$,
$\vec{\beta}=(\vec{b} \cdot \vec{a}) \vec{a}+(\vec{b} \cdot \vec{b})+(\vec{b} \cdot \vec{c}) \vec{c}$
and $\vec{\lambda}=(\vec{c} \cdot \vec{a}) \vec{a}+(\vec{c} \cdot \vec{b}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c}$ is
A. V^{3}
B. 3 V
C. V^{2}
D. 2 V

Answer: A

- Watch Video Solution

116. Let \vec{r}, \vec{a}, \vec{b} and \vec{c} be four nonzero vectors such that $\vec{r} \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ Then [abc] is equal to $|a||b||c|$ b. - $|a||b||c| c .0$ d. none of these
A. $|a||b||c|$
B. $-|a||b||c|$
C. 0
D. none of these

Answer: C

- Watch Video Solution

117. If \vec{a}, \vec{b} and \vec{c} are any three vectors forming a linearly independent system, then $\forall \theta \in R$
$\vec{p}=\vec{a} \cos \theta+\vec{b} \sin \theta+\vec{c}(\cos 2 \theta)$
$\vec{q}=\vec{a} \cos \left(\frac{2 \pi}{3}+\theta\right)+\vec{b} \sin \left(\frac{2 \pi}{3}+\theta\right)+\vec{c}(\cos 2)\left(\frac{2 \pi}{3}+\theta\right)$
and $\vec{r}=\vec{a} \cos \left(\theta-\frac{2 \pi}{3}\right)+\vec{b} \sin \left(\theta-\frac{2 \pi}{3}\right)+\vec{c} \cos 2\left(\theta-\frac{2 \pi}{3}\right)$
then $[\vec{p} \vec{q} \vec{r}]$
A. $[\mathrm{a} b \mathrm{c}] \cos \theta$
B. $[\mathrm{a} b \mathrm{c}] \cos 2 \theta$
C. $[\mathrm{a} b \mathrm{c}] \cos 3 \theta$
D. none of these

Answer: D

- Watch Video Solution

118. Let $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors and \bar{d} be a non-zero vector, which is perpendicularto $\bar{a}+\bar{b}+\bar{c}$. Now, if $\bar{d}=(\sin x)(\bar{a} \times \bar{b})+(\cos y)(\bar{b} \times \bar{c})+2(\bar{c} \times \bar{a})$ then minimum value of $x^{2}+y^{2}$ is equal to
A. π^{2}
B. $\frac{\pi^{2}}{2}$
C. $\frac{\pi^{2}}{4}$
D. $\frac{5 \pi^{2}}{4}$

Answer: D

119. let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 , respectively, if $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then the acute angle between \vec{a} and \vec{c} is \qquad
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. none of these

Answer: C

- Watch Video Solution

120. Let $a=2 \hat{i}+\hat{j}+\hat{k}, b=\hat{i}+2 \hat{j}-\hat{k}$ and c is a unit vector coplanar to them. If c is perpendicular to a , then c is equal to
A. $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$
B. $-\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
C. $\frac{1}{\sqrt{5}}(\hat{i}-2 \hat{j})$
D. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$

Answer: A

Watch Video Solution

121. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then
$|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3
122. Let \hat{a} and \hat{b} be two unit vectors such that $\hat{a} . \hat{b}=\frac{1}{3}$ and $\hat{a} \times \hat{b}=\hat{c}$, Also $\vec{F}=\alpha \hat{a}+\beta \hat{b}+\lambda \hat{c}$,
where, α, β, λ are scalars. If $\alpha=k_{1}(\vec{F} \cdot \hat{a})-k_{2}(\vec{F} . \hat{b})$ then the value of $2\left(k_{1}+k_{2}\right)$ is
A. $2 \sqrt{3}$
B. $\sqrt{3}$
C. 3
D. 1

Answer: C

123. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. Ifd is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals
A. $\pm \frac{(\hat{i}+\hat{j}+2 \hat{k})}{\sqrt{6}}$
B. $\pm \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$
C. $\pm \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: A

- Watch Video Solution

124. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}\right)$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$ (D) π
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: A

- Watch Video Solution

125. The unit vector which is orthogonal to the vector $5 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (a) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ (b) $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ (c)

$$
\frac{3 \hat{j}-\hat{k}}{\sqrt{10}} \text { (d) } \frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}
$$

A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$.

Answer: C

- Watch Video Solution

126. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c} then find value of $\sin \theta$.
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: A

127. The value for $[a \times(b+c), b \times(c-2 a), c \times(a+3 b)]$ is equal to
A. $[a b c]^{2}$
B. $7[a b c]^{2}$
C. $-5\left[\begin{array}{lll}a \times b & b \times c & c \times a\end{array}\right]$
D. none of these

Answer: B

- Watch Video Solution

128. If a, b, c and p, q, r are reciprocal systemm of vectors, then $a \times p+b \times q+c \times r$ is equal to
A. [abc]
B. $[p+q+r]$
C. 0
D. $a+b+c$

D Watch Video Solution

129. Solve $\vec{a} \cdot \vec{r}=x, \vec{b} \cdot \vec{r}=y, \vec{c} \cdot \vec{r}=z w h e r e \vec{a}, \vec{b}, \vec{c}$ are given non coplasnar vectors.

- Watch Video Solution

130. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$, then the pair ofcomplex nunmbers $\omega_{1}=a+i c$ and $\omega_{2}=b+i d$ satisfies
A. $\left|w_{1}\right|=r$
B. $\left|w_{2}\right|=r$
C. $w_{1} \cdot w_{2}=0$
D. none of these

D Watch Video Solution

131. If unit vectors \hat{i} and \hat{j} are at right angles to each other and $p=3 \hat{i}+4 \hat{j}, q=5 \hat{i}, 4 r=p+q$ and $2 s=p-q$, then
A. $|r+k s|=|r-k s|$ for all real k
B. r is perpendicular to s
C. $r+s$ is perpendicular to $r-s$
D. $|r|=|s|=|p|=|q|$

Answer: A::B::C

- Watch Video Solution

132. Let $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that
$\vec{a} \cdot \vec{a}=\vec{b} \cdot \vec{b}=\vec{c} \cdot \vec{c}=3$ and $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=27$, then
A. a,b and c are necessarily coplanar
B. a,b and c represent sides of a triangle in magnitude and direction
C. $a \cdot b+b \cdot c+c \cdot a$ has the least value $-9 / 2$
D. a,b and c represent orthogonal triad of vectors

Answer: A::B::C

- Watch Video Solution

133. If \vec{a} and \vec{b} are non - zero vectors such that $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$ then
A. $2 a \cdot b=|b|^{2}$
B. $a \cdot b=|b|^{2}$
C. Least value of $a \cdot b+\frac{1}{|b|^{2}+2}$ is $\sqrt{2}$
D. Least value of $a \cdot b+\frac{1}{|b|+2}$ is $\sqrt{2}-1$

Answer: A::D

134. If vector $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is $a . \alpha=(4 n+1) \pi+\tan ^{-1} 2$ b. $\alpha=(4 n+1) \pi-\tan ^{-1} 2 c . \alpha=(4 n+2) \pi+\tan ^{-1} 2 d . \alpha=(4 n+2) \pi-\tan ^{-1} 2$
A. $\alpha=(4 n+1) \pi+\tan ^{-1} 2$
B. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
C. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
D. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

Answer: B::D

- Watch Video Solution

135. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive
integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$
A. 2
B. 3
C. 4
D. 5

Answer: B::C::D

- Watch Video Solution

136. Which of the following expressions are meaningful? a. $\vec{u} .(\vec{v} \times \vec{w})$ b.
$\vec{u} \cdot \vec{v} \cdot \vec{w} \mathrm{c} \cdot(\vec{u} \vec{v}) \cdot \vec{w} \mathrm{~d} \cdot \vec{u} \times(\vec{v} \cdot \vec{w})$
A. $u \cdot(v \times w)$
B. $(u \cdot v) \cdot w$
C. $(u \cdot v) w$
D. $u \times(v \cdot w)$

Answer: A::C

- Watch Video Solution

137. If $a+2 b+3 c=0$, then $a \times b+b \times c+c \times a$ is equal to
A. $2(a \times b)$
B. $6(b \times c)$
C. $3(c \times a)$
D. 0

Answer: A::B::C

138. Let $\alpha=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplanar vectors with $a \neq b$ and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. α
B. β
C. γ
D. none of these

Answer: A: B::C

- Watch Video Solution

139. If \vec{a} is perpendicular to \vec{b} and \vec{r} is non-zero vector such that
$p \vec{r}+(\vec{r} \vec{a}) \vec{b}=\vec{c}$, then $\vec{r}=\frac{\vec{c}}{p}-\frac{(\vec{a} \vec{c}) \vec{b}}{p^{2}}$ (b) $\frac{\vec{a}}{p}-\frac{(\vec{b}) \vec{a}}{p^{2}} \frac{\vec{a}}{p}-\frac{(\vec{a} \vec{b}) \vec{c}}{p^{2}}$ (d)
$\frac{\vec{c}}{p^{2}}-\frac{(\vec{a} \vec{c}) \vec{b}}{p}$
A. $[r a c]=0$
B. $p^{2} r=p a-(c \cdot a) b$
C. $p^{2} r=p b-(a \cdot b) c$
D. $p^{2} r=p c-(b \cdot c) a$

Answer: A: D

- Watch Video Solution

140. If $\alpha(a \times b)+\beta(b \times c)+\gamma(c \times a)=0$, then
A. a,b,c are coplanar if all of $\alpha, \beta, \gamma \neq 0$
B. a,b,c are coplanar if any one of $\alpha, \beta, \gamma \neq 0$
C. a,b,c are non-coplanar for any $\alpha, \beta, \gamma \neq 0$
D. none of these

- Watch Video Solution

141. If $a=\hat{i}+\hat{j}+\hat{k}$ and $b=\hat{i}-\hat{j}$, then vectors

$$
((a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k}),\{(b \cdot \hat{i}) \hat{i}+(b \hat{j}) \hat{j}+(b \cdot \hat{k}) \hat{k}\} \text { and }(\hat{i}+\hat{j}-2 \hat{k})
$$

A. are mutually perpendicular
B. are coplanar
C. form a parallepiped of volume 6 units
D. form a parallelopiped of volume 3 units

Answer: A: C

- Watch Video Solution

142. The volume of the parallelepiped whose coterminous edges are represented by the vectors $2 \vec{b} \times \vec{c}, 3 \vec{c} \times \vec{a}$ and $4 \vec{a} \times \vec{b}$ where
$\vec{b}=\sin \left(\theta+\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta+\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta+\frac{4 \pi}{3}\right) \hat{k}$,
$\vec{c}=\sin \left(\theta-\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta-\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta-\frac{4 \pi}{3}\right) \hat{k}$
is 18 cubic units, then the values of θ, in the interval $\left(0, \frac{\pi}{2}\right)$, is/are
A. $\frac{\pi}{9}$
B. $2 \frac{\pi}{9}$
C. $\frac{\pi}{3}$
D. $4 \frac{\pi}{9}$

Answer: A::B::D

- Watch Video Solution

143. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$ and $\vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
(a) parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
(b)orthogonal to $\hat{i}+\hat{j}+\hat{k}$
(c)orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$ (d)orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. parallel to $\hat{i}+\hat{j}+\hat{k}$

Answer: A::B::C

- Watch Video Solution

144. If a, b, c are three non-zero vectors, then which of the following statement(s) is/are ture?
A. $a \times(b \times c), b \times(c \times a), c \times(a \times b)$ from a right handed system.
B. $c,(a \times b) \times c, a \times b$ from a right handed system.
C. $a \cdot b+b \cdot c+c \cdot a<0$, iff $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
D. $\frac{(a \times b) \cdot(b \times c)}{(b \times c) \cdot(a \times c)}=-1$, if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$.

Answer: B::C::D

145. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. Ifox $+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $l=m$
B. $n^{2}=1-2 l^{2}$
C. $n^{2}=-\cos 2 \alpha$
D. $m^{2}=\frac{1+\cos 2 \alpha}{2}$

Answer: A::B::C::D

- Watch Video Solution

146. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have
A. $(a \cdot c)|b|^{2}=(a \cdot b)(b \cdot c)$
B. $a \cdot b=0$
C. $a \cdot c=0$
D. $b \cdot c=0$

Answer: A:C

- Watch Video Solution

147. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$ then which of the following may be true?
A. a,b,c and d are necessarily coplanar
B. a lies in the plane of c and d
C. b lies in the plane $o a$ and d
D. clies in the plane of a and d

Answer: B::C::D

148. The angles of triangle, two of whose sides are represented by vectors
$\sqrt{3}(\vec{a} \times \vec{b})$ and $\vec{b}-(\hat{a} \vec{b}) \hat{a}$, where \vec{b} is a non zero vector and \hat{a} is unit vector in the direction of \vec{a}, are
A. $\tan ^{-1}(\sqrt{3})$
B. $\tan ^{-1}(1 / \sqrt{3})$
C. $\cot ^{-1}(0)$
D. $\tan ^{-1}(1)$

Answer: A::B::C

- Watch Video Solution

149. Let the vectors $\mathrm{PQ}, \mathrm{OR}, \mathrm{RS}, \mathrm{ST}, \mathrm{TU}$ and UP represent the sides of a regular hexagon.

Statement I: $P Q \times(R S+S T) \neq 0$
Statement II: $P Q \times R S=0$ and $P Q \times S T \neq 0$
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

- Watch Video Solution

150. p, q and r are three vectors defined by
$p=a \times(b+c), q=b \times(c+a)$ and $r=c \times(a+b)$
Statement l: p,q and r are coplanar.
Statement II: Vectors p,q,r are linearly independent.
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

D Watch Video Solution

151. Assertion : If $\in a / \ A B C$, vec $(B C)=$ vecp/|vecp|-vecq/|vecq| and vec(AC)= (2vecp)/|vecp|,|vecp|!=|veq|thenthevalueof $\cos 2 A+\cos 2 B+\cos 2 C$ is -1., Reason $:$ If $\in / _$ABC, /_C=90^O then $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1^{`}$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: B

D Watch Video Solution

152. Statement I: If a is perpendicular to b and c , then $a \times(b \times c)=0$ Statement II: if a is perpendicular to b and c , then $b \times c=0$
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

- Watch Video Solution

153. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to
A. $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
B. $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
c. $\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
D. $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

Answer: B

- Watch Video Solution

154. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to
A. -41
B. $-\frac{41}{7}$
C. 41
D. 287

Answer: A

- Watch Video Solution

155. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to
A. a and a_{2} are collinear
B. a_{1} and c are collinear
C. a, a_{1} and b are coplanar
D. a, a_{1} and a_{2} are coplanar

Answer: C

D Watch Video Solution

156. Let a, b be two vectors perependicular to each other and $|a|=2,|b|=3$ and $c \times a=b$. Q. When $|c-a|$ is least the value of α (when α is angle between a and c) equals
A. $\tan ^{-1}(2)$
B. $\frac{\tan ^{-1}(3)}{4}$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. None of these
157. Let a, b be two vectors perependicular to each other and $|a|=2,|b|=3$ and $c \times a=b$. Q. When $|c-a|$ is least the value of α (when α is angle between a and c) equals
A. $\frac{1}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{2}$
D. 4

Answer: C

- Watch Video Solution

158. Consider a triangulat pyramid $A B C D$ the position vector of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$. Let G
be the point of intersection of the medians of the $\triangle(B C D)$.
Q. The length of the vector AG is
A. $\sqrt{17}$
B. $\frac{\sqrt{51}}{3}$
c. $\frac{3}{\sqrt{6}}$
D. $\frac{\sqrt{59}}{4}$

Answer: B

- Watch Video Solution

159. Consider a triangulat pyramid $A B C D$ the position vector of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$. Let G be the point of intersection of the medians of the $\triangle(B C D)$.
Q. Area of the $\triangle(A B C)$ (in sq. units) is
A. 24
B. $8 \sqrt{6}$
C. $4 \sqrt{6}$
D. None of these

Answer: C

- Watch Video Solution

160. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle $B C T$. The length of the perpendicular from the vertex D on the opposite face
A. $\frac{14}{\sqrt{6}}$
B. $\frac{2}{\sqrt{6}}$
c. $\frac{3}{\sqrt{6}}$
D. None of these

D Watch Video Solution

161. If $A P, B Q$ and $C R$ are the altitudes of acute $\triangle A B C$ and $9 A P+4 B Q+7 C R=0 Q . \angle A C B$ is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\cos ^{-1}\left(\frac{1}{3 \sqrt{7}}\right)$
D. $\cos ^{-1}\left(\frac{1}{\sqrt{7}}\right)$

Answer: B

- Watch Video Solution

162. If $A P, B Q$ and $C R$ are the altitudes of acute
$\triangle A B C$ and $9 A P+4 B Q+7 C R=0 \angle A B C$ is equal to
A. a. $\frac{\cos ^{-1}(2)}{\sqrt{7}}$
B. b. $\frac{\pi}{2}$
C. c. $\cos ^{-1}\left(\frac{\sqrt{7}}{3}\right)$
D. d. $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

163. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. Volume of parallelopiped with edges a, b, c is
A. $p+(q+r) \cos \theta$
B. $(p+q+r) \cos \theta$
C. $2 p-(q+r) \cos \theta$
D. None of these

Answer: A

- Watch Video Solution

164. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$
Q. The value of $\left(\frac{q}{p}+2 \cos \theta\right)$ is
A. 1
B. 0
C. $2[a b c]$
D. None of these

Answer: B

165. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$
Q. The value of $\left(\frac{q}{p}+2 \cos \theta\right)$ is
A. $(1+\cos \theta)(\sqrt{1-2 \cos \theta})$
B. $2 \frac{\sin (\theta)}{2} \sqrt{(1+2 \cos \theta)}$
C. $(1-\sin \theta) \sqrt{1+2 \cos \theta})$
D. None of these

Answer: B

- Watch Video Solution

166. Given
that
$\vec{u}=\hat{i}-2 \hat{j}+3 \hat{k} ; \vec{v}=2 \hat{i}+\hat{j}+4 \hat{k} ; \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k} a n d(\vec{u} \vec{R}-15) \hat{i}+(\vec{v} \vec{R}-30) \hat{j}+($

Then find the greatest integer less than or equal to $|\vec{R}|^{\circ}$

- Watch Video Solution

167. The position vector of a point P is $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, where $x, y, z \in N$ and $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$. If $\vec{r} \cdot \vec{a}=20$ and the number of possible of P is 9λ, then the value of λ is:

- Watch Video Solution

168. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° Suppose that $|\vec{u}-\hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x -axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$

- Watch Video Solution

169. Let $A(2 \hat{i}+3 \hat{j}+5 \hat{k}), B(-\hat{i}+3 \hat{j}+2 \hat{k})$ and $C(\lambda \hat{i}+5 \hat{j}+\mu \hat{k})$ are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of $2 \lambda-\mu$ is equal to

- Watch Video Solution

170. Three vectors $a(|a| \neq 0), b$ and c are such that $a \times b=3 a \times c$, also $|a|=|b|=1$ and $|c|=\frac{1}{3}$. If the angle between b and c is 60° and $|b-3 x|=\lambda|a|$, then the value of λ is

- Watch Video Solution

171. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \vec{b}=0=\vec{a} \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi / 3$, then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is $1 / 2 \mathrm{~b} .1 \mathrm{c} .2 \mathrm{~d}$. none of these

- Watch Video Solution

172. The area of the triangle whose vertices are $A(1,-1,2), B(1,2,-1), C(3$, $-1,2$) is \qquad .

Watch Video Solution

173. Let $\vec{O} A=\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC are noncollinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

174. If , \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying

$$
\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+[(a-2) \beta+c] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right](\vec{x} \times \vec{y})=
$$ are three distinct distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

175. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is a. -1 b. $\sqrt{10}+\sqrt{6} c$. $\sqrt{59}$ d. $\sqrt{60}$

- Watch Video Solution

176. Let $a=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, b=\hat{i}+2 \alpha \hat{j}-2 \hat{k}$ and $c=2 \hat{i}-\alpha \hat{j}+\hat{k}$. Then the value of 6α, such that $\{(a \times b) \times(b \times c)\} \times(c \times a)=a$, is

- Watch Video Solution

177. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

178. A, B, C and D are four points in space. Then, $A C^{2}+B D^{2}+A D^{2}+B C^{2} \geq$

- Watch Video Solution

179. Prove that the perpendicular let fall from the vertices of a triangle to the opposite sides are concurrent.

- Watch Video Solution

180. Using vector method, prove that the angel in a semi circle is a right angle.

- Watch Video Solution

181. The corner P of the square $O P Q R$ is folded up so that the plane $O P Q$ is perpendicular to the plane $O Q R$, find the angle between $O P$ and $Q R$.
182. In a $\triangle A B C$, prove by vector method that $\cos 2 A+\cos 2 B+\cos 2 C \geq \frac{-3}{2}$.

- Watch Video Solution

183. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the $x y$ - plane. All vectors in the sme plane having projections 1 and 2 along \vec{b} and \vec{c}., respectively, are given by \qquad

- Watch Video Solution

184. If a, b and c are three coplanar vectors. If a is not parallel to b, show that $c=\frac{\left|\begin{array}{ll}c \cdot a & a \cdot b \\ c \cdot b & b \cdot b\end{array}\right| a+\left|\begin{array}{cc}a \cdot a & c \cdot a \\ a \cdot b & c \cdot b\end{array}\right|}{\left|\begin{array}{ll}a \cdot a & a \cdot b \\ a \cdot b & b \cdot b\end{array}\right|}$.
185. In $\triangle A B C, D$ is the mid point of the side $A B$ and E is centroid of $\triangle C D A$. If $O E \cdot C D=0$, where O is the circumcentre of $\triangle A B C$, using vectors prove that $A B=A C$.

- Watch Video Solution

186. Let I be the incentre of $\triangle A B C$. Using vectors prove that for any
$a(P A)^{2}+b(P B)^{2}+c(P C)^{2}=a(I A)^{2}+b(I B)^{2}+c(I C)^{2}+(a+b+c)(I P)^{2}$
where a, b, c have usual meanings.

- Watch Video Solution

187. If two circles intersect in two points, prove that the line through the centres is the perpendicular bisector of the common chord.
188. Prove by vector method that $\cos (A+B)=\cos A \cos B-\sin A \sin B$

D Watch Video Solution

189. A circle is inscribed in an n-sided regular polygon $A_{1}, A_{2}, \ldots . A_{n}$ having each side a unit for any arbitrary point P on the circle, pove that
$\sum_{i=1}^{n}\left(P A_{i}\right)^{2}=n \frac{a^{2}}{4} \frac{1+\cos ^{2}\left(\frac{\pi}{n}\right)}{\sin ^{2}\left(\frac{\pi}{n}\right)}$

- Watch Video Solution

190. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the vertices of a cyclic quadrilateral ABCD, prove that

$$
\underline{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}+\underline{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d} \times \vec{b}|}=0
$$

$$
(\vec{b}-\vec{a}) \vec{d}-\vec{a} \quad(\vec{b}-\vec{c}) \vec{d}-\vec{c}
$$

191. In a $\triangle A B C$ points D, E, F are taken on the sides $B C, C A$ and $A B$ respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle A B C$

- Watch Video Solution

192. Let the area of a given triangle ABC be Δ. Points A_{1}, B_{1}, and C_{1}, are the mid points of the sides $B C, C A$ and $A B$ respectively. Point A_{2} is the mid point of $C A_{1}$. Lines $C_{1} A_{1}$ and $A A_{2}$ meet the median $B B_{1}$ points E and D respectively. If Δ_{1} be the area of the quadrilateral $A_{1} A_{2} D E$, using vectors or otherwise find the value of $\frac{\Delta_{1}}{\Delta}$

- Watch Video Solution

193. If \vec{a}, \vec{b}, and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$.

- Watch Video Solution

194. If a, b, c and d are four coplanr points, then prove that $[a b c]=[b c d]+[a b d]+[c a d]$.

- Watch Video Solution

195. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) . \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

$$
\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}
$$

- Watch Video Solution

197. A pyramid with vertex at point P has a regular hexagonal base $A B C D E F$. Position vectors of points A and B are \hat{i} and $\hat{i}+2 \hat{j}$, respectively. The centre of the base has the position vector $\hat{i}+\hat{j}+\sqrt{3} \hat{k}$.

Altitude drawn from P on the base meets the diagonal $A D$ at point G. Find all possible vectors of G . It is given that the volume of the pyramid is $6 \sqrt{3}$ cubic units and AP is 5 units.

- Watch Video Solution

198. Let \hat{a}, \hat{b}, and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α, between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ. If
$A(\hat{a} \cos \alpha, 0), B(\hat{b} \cos \beta, 0)$ and $C(\hat{c} \cos \gamma, 0)$, then show that in triangle
$A B C, \frac{|\hat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}$

- Watch Video Solution

199. Let a and b be given non-zero and non-collinear vectors, such that $c \times a=b-c$. Express c in terms for a, b and aXb .

- Watch Video Solution

JEE Type Solved Examples: Passage Based Type Questions

1. Let A, B, C respresent the vertices of a triangle, where A is the origin and B and C have position b and c respectively. Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that $(A M) /(A B)=(B N) /(B C)=$ $(C P) /(C A)=a l p h a Q \cdot A N+B P+C M$ is
A. a. $3 \alpha(b+c)$
B. b. $\alpha(b+c)$
C. c. $(1-\alpha)(b+c)$
D. d. 0

Answer: D

- Watch Video Solution

2. Let A, B, C respresent the vertices of a triangle, where A is the origin and B and C have position b and c respectively. Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that ${ }^{`}(A M) /(A B)=(B N) /(B C)=$ $(C P) /(C A)=$ alpha $Q \cdot A N+B P+C M$ is
A. concurrent
B. sides of a triangle
C. non coplanar
D. None of these

Answer: B

- Watch Video Solution

3. Let A, B, C represent the vertices of a triangle, where A is the origin and B and C have position b and c respectively.* Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that $\frac{A M}{A B}=\frac{B N}{B C}=\frac{C P}{C A}=\alpha$. If \triangle represent the area enclosed by the three vectors $A N, B P$ and $C M$, then the value of α, for which Δ is least
A. a. does not exist
B. b. $\frac{1}{2}$
C. c. $\frac{1}{4}$
D. d. None of these

Answer: B

1. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

2. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} . \vec{b}=\sqrt{6}$

- Watch Video Solution

3. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}-3 \hat{j}-5 \hat{k}$ are at right angles.

- Watch Video Solution

4. If $\vec{r} . \hat{i}=\vec{r} . \hat{j}=\vec{r}$. $\hat{\text { kand }}|\vec{r}|=3$, then find the vector \vec{r}
5. Find the angle between the vectors $a+b$ and $a-b$, if $a=2 \hat{i}-\hat{j}+3 \hat{k}$ and $b=3 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

6. Find the angle between the vectors $\hat{i}+3 \hat{j}+7 \hat{k}$ and $7 \hat{i}-\hat{j}+8 \hat{k}$.

- Watch Video Solution

7. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $2 \hat{i}-\hat{j}+5 \hat{k}$, is $\frac{1}{\sqrt{30}}$,then find the value of x

- Watch Video Solution

8. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$, then find the angle between \vec{a} and \vec{b}
9. If three unit vectors \vec{a}, \vec{b}, and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=0$, then find the angle between \vec{a} and \vec{b}

- Watch Video Solution

10. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ make an acute angle
$\forall x \in R$, then find the values of a

- Watch Video Solution

11. Find the vector component of a vector $2 \hat{i}+3 \hat{j}+6 \hat{k}$ along and perpendicular to the non-zero vector $2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

12. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9} j-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done by the forces in units.

- Watch Video Solution

Exercise For Session 2

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

- Watch Video Solution

2. Find the values of y and μ for which $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\gamma \hat{j}+\mu \hat{k})=\overrightarrow{0}$

- Watch Video Solution

3. If $a=2 \hat{i}+3 \hat{j}-\hat{k}, b=-\hat{i}+2 \hat{j}-4 \hat{k}, c=\hat{i}+\hat{j}+\hat{k}$, then find the value of $(a \times b) \cdot(a \times c)$.

- Watch Video Solution

4. Prove that $(\vec{a} . \hat{i})(\vec{a} \times \hat{i})+(\vec{a} . j)(\vec{a} \times \hat{j})+(\vec{a} . \hat{k})(\vec{a} \times \hat{k})=0$.

- Watch Video Solution

5. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $(\vec{a}-\vec{d})$ is parallel to $(\vec{b}-\vec{c})$.

- Watch Video Solution

6. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then find the value of $|\vec{b}|$

- Watch Video Solution

7. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}

- Watch Video Solution

8. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

- Watch Video Solution

9. If $|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35, f \in d \vec{a} . \vec{b}$

- Watch Video Solution

10. Find a unit vector perpendicular to the plane of two vectors $a=\hat{i}-\hat{j}+2 \hat{k}$ and $b=2 \hat{i}+3 \hat{j}-\hat{k}$.
11. Find a vector of magnitude 15 , which is perpendicular to both the vectors $(4 \hat{i}-\hat{j}+8 \hat{k})$ and $(-\hat{j}+\hat{k})$.

- Watch Video Solution

12. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \quad \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$.

- Watch Video Solution

13. Let A, B and C be unit vectors. Suppuse that $A . B=A . C=O$ and that the angle between Band C is $\pi / 6$ then prove that
$A= \pm 2(B \times C)$

- Watch Video Solution

14. Find the area of the triangle whose adjacent sides are determined by the vectors $\vec{a}=(-2 \hat{i}-5 \hat{k})$ and $\vec{b}=(\hat{i}-2 \hat{j}-\hat{k})$.

- Watch Video Solution

15. Find the area of parallelogram whose adjacent sides are represented by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-2 \hat{j}-\hat{k}$.

- Watch Video Solution

16. A force $F=2 \hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is $2 \hat{i}-\hat{j}$.

Find the moment of force F about the origin.

- Watch Video Solution

17. Find the moment of \vec{F} about point $(2,-1,3)$, where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point ($1,-1,2$).
18. Forces $2 \hat{i}+\hat{j}, 2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\hat{i}+2 \hat{j}-\hat{k}$ act at a point P, with position vector $4 \hat{i}-3 \hat{j}-\hat{k}$. Find the moment of the resultant of these force about the point Q whose position vector is $6 \hat{i}+\hat{j}-3 \hat{k}$.

(Watch Video Solution

Exercise For Session 3

1. If $\vec{a} a n d \vec{b}$ are two vectors such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$

- Watch Video Solution

2. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.
3. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$

- Watch Video Solution

4. The position vectors of the four angular points of a tetrahedron are
$A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k}) \operatorname{andD}(2 \hat{i}+3 \hat{j}+2 \hat{k})$ Find the volume of the tetrahedron $A B C D$

- Watch Video Solution

5. Find the altitude of a parallelopiped whose three conterminous edges are verctors $A=\hat{i}+\hat{j}+\hat{k}, B=2 \hat{i}+4 \hat{j}-\hat{k}$ and $C=\hat{i}+\hat{j}+3 \hat{k}$ with A and B as the sides of the base of the parallelopiped.
6. right handed system.

- Watch Video Solution

7. Show that the vectors $\hat{i}-\hat{j}-6 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}$ and $2 \hat{i}-5 \hat{j}+3 \hat{k}$ are coplanar.

- Watch Video Solution

8. Prove that $[a b c][u v w]=\left|\begin{array}{lll}a \cdot u & b \cdot u & c \cdot u \\ a \cdot v & b \cdot v & c \cdot v \\ a \cdot w & b \cdot w & c \cdot w\end{array}\right|$

- Watch Video Solution

9. If $[a b c]=2$, then find the value of $[(a+2 b-c)(a-b)(a-b-c)]$.

- Watch Video Solution

10. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar vectors, then find the value of $\frac{\vec{a} \vec{b} \times \vec{c}}{.}+\frac{\vec{b} \vec{c} \times \vec{a}}{.}+\frac{\vec{c} \vec{b} \times \vec{a} .}{.}$
$\vec{b} \vec{c} \times \vec{a} \quad \vec{c} \vec{a} \times \vec{b} \quad \vec{a} \vec{b} \times \vec{c}$

- Watch Video Solution

Exercise For Session 4
1.

Find
the value
of
$\alpha \times(\beta \times \gamma)$,
where
$\alpha=2 \hat{i}-10 \hat{j}+2 \hat{k}, \beta=3 \hat{i}+\hat{j}+2 \hat{k}, \gamma=2 \hat{i}+\hat{j}+3 \hat{k}$.

- Watch Video Solution

2. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{k}-3 \hat{j}$.

- Watch Video Solution

3. Show that $(b \times c) \cdot(a \times d)+(a \times b) \cdot(c \times d)+(c \times a) \cdot(b \times d)=0$

- Watch Video Solution

4. Prove that $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

- Watch Video Solution

5. Prove that $[a \times b, a \times c, d]=(a \cdot d)[a, b, c]$

- Watch Video Solution

6. If \vec{a}, \vec{b}, and \vec{c} are non-coplanar unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non-parallel, then prove that the angel between \vec{a} and $\vec{b}, i s 3 \pi / 4$.

- Watch Video Solution

7. Find a set of vectors reciprocal to the set $\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+j+\hat{k}$

- Watch Video Solution

8. If a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ are recoprocal system of vectors, then prove that
$a^{\prime} \times b^{\prime}+b^{\prime} \times c^{\prime}+c^{\prime} \times a^{\prime}=\frac{a+b+c}{[a b c]}$.

- Watch Video Solution

9. Solve: $\vec{r} \times \vec{b}=\vec{a}$, where \vec{a} and \vec{b} are given vectors such that $\vec{a} . \vec{b}=0$.
10. Find vector \vec{r} if $\vec{r} . \vec{a}=m$ and $\vec{r} \times \vec{b}=\vec{c}$, where $\vec{a} . \vec{b} \neq 0$

- Watch Video Solution

Exercise (Single Option Correct Type Questions)

1. If a has magnitude 5 and points North-East and vector b has magnitude 5 and point North-West, then $|a-b|$ is equal to
A. 25
B. 5
C. $7 \sqrt{3}$
D. $5 \sqrt{2}$

Answer: D

2. If $|a+b|>|a-b|$, then the angle between a and b is
A. acute
B. obtuse
C. $\frac{\pi}{2}$
D. π

Answer: A

Watch Video Solution

3. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}=\vec{b}+\vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{2}$, then
A. $a^{2}=b^{2}+c^{2}$
B. $b^{2}=a^{2}+c^{2}$
C. $c^{2}=a^{2}+b^{2}$
D. $2 a^{2}-b^{2}=c^{2}$

Answer: A

- Watch Video Solution

4. If the angle between the vectors a and b be θ and $a \cdot b=\cos \theta$ then the true statement is
A. a and b are equal vectors
B. a and b are like vectors
$C . a$ and b are unlike vectors
D. a and b are unit vectors

Answer: D

- Watch Video Solution

5. If the vectors $\hat{i}+\hat{j}+\hat{k}$ makes angle α, β and γ with vectors \hat{i}, \hat{j} and \hat{k} respectively, then
A. $\alpha=\beta \neq \gamma$
B. $\alpha=\gamma \neq \beta$
C. $\beta=\gamma \neq \alpha$
D. $\alpha=\beta=\gamma$

Answer: D

- Watch Video Solution

6. $(r \cdot \hat{i})^{2}+(r \cdot \hat{j})^{2}+(r \cdot \hat{k})^{2}$ is equal to
A. $3 r^{2}$
B. r^{2}
C. 0
D. None of these

- Watch Video Solution

7. If \hat{a} and \hat{b} are two unit vectors inclined at an angle θ, then $\sin \left(\frac{\theta}{2}\right)$
A. $\frac{1}{2}|a-b|$
B. $\frac{1}{2}|a+b|$
C. $|a-b|$
D. $|a+b|$

Answer: A

D Watch Video Solution

8. If $\vec{A}=4 \hat{i}+6 \hat{j}$ and $\vec{B}=3 \hat{j}+4 \hat{k}$, then find the component of $\vec{A} B$
A. $\frac{18}{10 \sqrt{3}}(3 \hat{j}+4 \hat{k})$
B. $\frac{18}{25}(3 \hat{j}+4 \hat{k})$
C. $\frac{18}{\sqrt{3}}(3 \hat{j}+4 \hat{k})$
D. $(3 \hat{j}+4 \hat{k})$

Answer: B

- Watch Video Solution

9. If vectors $a=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and vector $b=-2 \hat{i}+2 \hat{j}-\hat{k}$, then (projection of vector a on b vectors $) /($ projection of vector b on a vector) is equal to
A. $\frac{3}{7}$
B. $\frac{7}{3}$
C. 3
D. 7

Answer: B

10. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$
A. $\left|\begin{array}{ll}a \cdot b & a \cdot a \\ b \cdot b & b \cdot a\end{array}\right|$
B. $\left|\begin{array}{ll}a \cdot a & a \cdot b \\ b \cdot a & b \cdot b\end{array}\right|$
C. $\left|\begin{array}{l}a \cdot b \\ b \cdot a\end{array}\right|$
D. None of these

Answer: b
11. The moment of the force F acting at a point P, about the point C is
A. $F \times C P$
B. $C P \cdot F$
C. a vector having the same direction as F
D. $C P \times F$

Answer: D

D Watch Video Solution

12. The moment of a force represented by $F=\hat{i}+2 \hat{j}+3 \hat{k}$ about the point $2 \hat{i}-\hat{j}+\hat{k}$ is equal to
A. $5 \hat{i}-5 \hat{j}+5 \hat{k}$
B. $5 \hat{i}+5 \hat{j}-6 \hat{k}$
C. $-5 \hat{i}-5 \hat{j}+5 \hat{k}$
D. $-5 \hat{i}-5 \hat{j}+2 \hat{k}$

Answer: D

13. A force of magnitude 6 acts along the vector ($9,6,-2$) and passes through a point $A(4,-1,-7)$. Then moment of force about the point $O(1,-3,2)$ is
A. $\frac{150}{11}(2 \hat{i}-3 \hat{j})$
B. $\frac{6}{11}(50 \hat{i}-75 \hat{j}+36 \hat{k})$
C. $150(2 \hat{i}-3 \hat{k})$
D. $6(50 \hat{i}-75 \hat{j}+36 \hat{k})$

Answer: A

- Watch Video Solution

14. A force $F=2 \hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is $2 \hat{i}-\hat{j}$.

Find the moment of force F about the origin.
A. $\hat{i}+2 \hat{j}-4 \hat{k}$
B. $\hat{i}-2 \hat{j}-4 \hat{k}$
C. $\hat{i}+2 \hat{j}+4 \hat{k}$
D. $\hat{i}-2 \hat{j}+4 \hat{k}$

Answer: C

- Watch Video Solution

15. If a, b and c are any three vectors and their inverse are a^{-1}, b^{-1} and c^{-1} and $[a b c] \neq 0$, then $\left[a^{-1} b^{-1} c^{-1}\right]$ will be
A. zero
B. one
C. non-zero
D. $[\mathrm{abc}]$

Answer: C

16. If a, b and c are three non-coplanar vectors, then find the value of $\frac{a \cdot(b \times c)}{c \times(a \cdot b)}+\frac{b \cdot(c \times a)}{c \cdot(a \times b)}$.
A. a) 0
B. b) 2
C. c) -2
D. d) None of these

Answer: A

- Watch Video Solution

17. $a \times(b \times c)$ is coplanar with
A. b and c
B. a and C
C. a and b are unlike vectors
D. a, b and c

D Watch Video Solution

18. If $u=\hat{i}(a \times \hat{i})+\hat{j}(a \times \hat{j})+\hat{k}(a \times \hat{k})$, then
A. $u=0$
B. $u=\hat{i}+\hat{j}+\hat{k}$
C. $u=2 a$
D. $u=a$

Answer: a

- Watch Video Solution

19. If $a=\hat{i}+2 \hat{j}-2 \hat{k}, b=2 \hat{i}-\hat{j}+\hat{k}$ and $c=\hat{i}+3 \hat{j}-\hat{k}$, then $a \times(b \times c)$ is equal to
A. $20 \hat{i}-3 \hat{j}+7 \hat{k}$
B. $20 \hat{i}-3 \hat{j}-7 \hat{k}$
C. $20 \hat{i}+3 \hat{j}-7 \hat{k}$
D. None of these

Answer: A

- Watch Video Solution

20. If $a \times(b \times c)=0$, then
A. $|a|=|b| \cdot|c|=1$
B. $b \mid=$
C. $a|\mid b$
D. $b c$

Answer: B

21. A vectors which makes equal angles with the vectors $\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k}), \frac{1}{5}(-4 \hat{i}-3 \hat{k}), \hat{j}$ is:
A. a) $5 \hat{i}+5 \hat{j}+\hat{k}$
B. b) $5 \hat{i}+\hat{j}-5 \hat{k}$
C. c) $5 \hat{i}+\hat{j}+5 \hat{k}$
D. d) $\pm(5 \hat{i}-\hat{j}-5 \hat{k})$

Answer: D

- Watch Video Solution

22. [Find by vector method the horizontal force and the force inclined at an angle of 60° to the vertical whose resultant is a vertical force P.]
A. $P, 2 P$
B. $P, P \sqrt{3}$
C. $2 P, P \sqrt{3}$
D. None of these

Answer: D

- Watch Video Solution

23. If $x+y+z=0,|x|=|y|=|z|=2$ and θ is angle between y and z , then the value of $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta$ is equal to
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. 1

Answer: B

- Watch Video Solution

24. The values of x for which the angle between the vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute and the angle between b and y -axis lies between $\frac{\pi}{2}$ and π are:
A. $x>0$
B. $x<0$
C. $x>1$ only
D. $x<-1$ only

Answer: B

- Watch Video Solution

25. If a, b and c are non-coplanar vectors and $d=\lambda a+\mu b+\nu c$, then λ is equal to
A. $\frac{[d b c]}{[b a c]}$
B. $\frac{[b c d]}{[b c a]}$
C. $\frac{[b d c]}{[a b c]}$
D. $\frac{[c b d]}{[a b c]}$

Answer: B

- Watch Video Solution

26. If the vectors $3 \vec{p}+\vec{q} ; 5 \vec{p}-3 \vec{q}$ and $2 \vec{p}+\vec{q} ; 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular then $\sin (\vec{p}, \vec{q})$ is :
A. а) $\frac{\sqrt{55}}{4}$
B. b) $\frac{\sqrt{55}}{8}$
C. c) $\frac{3}{16}$
D. d) $\frac{\sqrt{247}}{16}$

Answer: B

27. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$.If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n}=0$ and $\vec{v} \cdot \hat{n}=0$ then $|\vec{w} \cdot \hat{n}|$ is equal to
A. 1
B. 2
C. 3
D. 0

Answer: C

- Watch Video Solution

28. Given a parallelogram $A B C D$. If $|\overrightarrow{A B}|=a,|\overrightarrow{A D}|=b \&|\overrightarrow{A C}|=c$, then $\rightarrow \vec{A}$
$D B . A B$ has the value
A. $\frac{3 a^{2}+b^{2}-c^{2}}{2}$
B. $\frac{a^{2}+3 b^{2}-c^{2}}{2}$
c. $\frac{a^{2}-b^{2}+3 c^{2}}{2}$
D. None of these

Answer: A

- Watch Video Solution

29. For two particular vectors \vec{A} and \vec{B} it is known that $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$.

What must be true about the two vectors?
A. Atleast one of the two vectors must be the zero vector
B. $A \times B=B \times A$ is true for any two vectors
C. One of the two vectors is a scalar multiple of the other vector
D. The two vectors must be perpendicular to each other

Answer: C

30. For some non zero vector \vec{v}, if the sum of \vec{v} and the vector obtained from \vec{v} by rotating it by an angle 2α equals to the vector obtained from \vec{v} by rotating it by α then the value of α, is
A. $2 n \pi \pm \frac{\pi}{3}$
B. $n \pi \pm \frac{\pi}{3}$
C. $2 n \pi \pm \frac{2 \pi}{3}$
D. $n \pi \pm \frac{2 \pi}{3}$

Answer: A

- Watch Video Solution

31. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio $1: 3$, then find the angle between \vec{C} End $\vec{C} A($ where $|\vec{C} A|=12)$
A. $\frac{-3 \sqrt{7}}{8}$
$3 \sqrt{8}$
B. $\frac{}{17}$
C. $\frac{3 \sqrt{7}}{8}$
D. $\frac{-3 \sqrt{8}}{17}$

Answer: C

- Watch Video Solution

32. Given an equilateral triangle $A B C$ with side length equal to 'a'. Let M and N be two points respectively $A B$ In the side $A B$ and $A C$ such that
$\overrightarrow{A N}=K \overrightarrow{A C}$ and $\overrightarrow{A M}=\frac{A B}{3}$ If $\overrightarrow{B N}$ and $\overrightarrow{C M}$ are orthogonalthen the value of K is equal to
A. $\frac{1}{5}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

- Watch Video Solution

33. In a quadrilateral $A B C D, A C$ is the bisector of the $(A B, A D)$ which is $\frac{2 \pi}{3}$, $15|A C|=3|A B|=5|A D|$, then $\cos (B A, C D)$ is equal to
$-\sqrt{14}$
A. $\overline{7 \sqrt{2}}$
B. $-\frac{\sqrt{21}}{7 \sqrt{3}}$
C. $\frac{2}{\sqrt{7}}$
D. $\frac{2 \sqrt{7}}{14}$

Answer: C

34. If the distance from the point $\mathrm{P}(1,1,1)$ to the line passing through the points $Q(0,6,8)$ and $R(-1,4,7)$ is expressed in the form $\sqrt{\frac{p}{q}}$, where p and q are co-prime, then the value of $\frac{(q+p)(p+q-1)}{2}$ is equal to
A. 4950
B. 5050
C. 5150
D. None of these

Answer: A

- Watch Video Solution

35. Given the vectors $\vec{u}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{v}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{w}=\hat{i}-\hat{k}$ If the volume of the parallelopiped having $-c \vec{u}, \vec{v}$ and $c \vec{w}$ as concurrent edges, is 8 then c can be equal to

$$
\text { A. a) } \pm 2
$$

B. b) 4
C. c) 8
D. d) cannot be determine

Answer: A

D Watch Video Solution

36. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1) \operatorname{and} \vec{b}=(1,-2,3)$ and satisfies the condition $\vec{\bullet}(\hat{i}+2 \hat{j}-7 \hat{k})=10$. Then vector \vec{c} is equal to $(7,5,1)$ b. $-7,-5,-1$ c. $1,1,-1 d$. none of these
A. $(7,5,1)$
B. $(-7,,-5,-1)$
C. $(1,1,-1)$
D. None of these

Answer: B

37. Let $\vec{a}=\hat{j}+\hat{j}, \vec{b}=\hat{j}+\hat{k}$ and $\vec{c}=\alpha \vec{a}+\beta \vec{b}$. If the vectors, $\hat{i}-2 \hat{j}+\hat{k}, 3 \hat{i}+2 \hat{j}-\hat{k}$ and \vec{c} are coplanar then $\frac{\alpha}{\beta}$ is
A. 1
B. 2
C. 3
D. -3

Answer: D

- Watch Video Solution

38. A rigid body rotates about an axis through the origin with an angular velocity $10 \sqrt{3} \mathrm{rad} / \mathrm{s}$. If ω points in the direction of $\hat{i}+\hat{j}+\hat{k}$, then the equation to the locus of the points having tangential speed $20 \mathrm{~m} / \mathrm{s}$.
A. $x^{2}+y^{2}+z^{2}-x y-y z-x z-1=0$
B. $x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 x z-1=0$
C. $x^{2}+y^{2}+z^{2}-x y-y z-x z-2=0$
D. $x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 x z-2=0$

Answer: C

- Watch Video Solution

39. A rigid body rotates with constant angular velocity omaga about the line whose vector equation is, $r=\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$. The speed of the particle at the instant it passes through the point with position vector $(2 \hat{i}+3 \hat{j}+5 \hat{k})$ is equal to
A. $\omega \sqrt{2}$
B. 2ω
C. $\frac{\omega}{\sqrt{2}}$
D. None of these

- Watch Video Solution

40. Consider $\triangle A B C$ with $A=(\vec{a}) ; B=(\vec{b})$ and $C=(\vec{c})$. If $\vec{b} \cdot(\vec{a}+\vec{c})=\vec{b} \cdot \vec{b}+\vec{a} \cdot \vec{c} ;|\vec{b}-\vec{a}|=3 ;|\vec{c}-\vec{b}|=4$ then the angle between the medians $A \vec{M}$ and $B \vec{D}$ is
A. $\pi-\cos ^{-1}\left(\frac{1}{5 \sqrt{13}}\right)$
B. $\pi-\cos ^{-1}\left(\frac{1}{13 \sqrt{5}}\right)$
C. $\cos ^{-1}\left(\frac{1}{5 \sqrt{13}}\right)$
D. $\cos ^{-1}\left(\frac{1}{13 \sqrt{5}}\right)$

Answer: A

41. Given unit vectors m, n and p such that angle between m and n. Angle between p and $(m \times n)=\frac{\pi}{6}$, then $[\mathrm{n} \mathrm{p} \mathrm{m}]$ is equal to
A. $\frac{\sqrt{3}}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. None of these

Answer: A

- Watch Video Solution

42. If \vec{a} and \vec{b} are two unit vectors, then vector $(\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})$ is parallel to the vector
A. $a+b$
B. $a-b$
C. $2 a-b$
D. ${ }^{\wedge}+2 b$

Answer: B

- Watch Video Solution

43. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non coplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to
A. $[r a \hat{a}](\hat{a}+\hat{b}]$
B. $[r \hat{a} \hat{b}] \hat{a}+(r \cdot \hat{a})(\hat{a} \times \hat{b})$
c. $[r \hat{a} \hat{b}] \hat{b}+(r \cdot \hat{b})(\hat{a} \times \hat{b})$
D. $[r \hat{a} \hat{b}] \hat{b}+(r \cdot \hat{a})(\hat{a} \times \hat{b})$

Answer: C

- Watch Video Solution

44. If vector $\vec{i}+2 \vec{j}+2 \vec{k}$ is rotated through an angle of 90°, so as to cross the positivedirection of y-axis, then the vector in the new position is
A. $-\frac{2}{\sqrt{5}} \hat{i}+\sqrt{5} \hat{j}-\frac{4}{\sqrt{5}} \hat{k}$
B. $-\frac{2}{\sqrt{5}} \hat{i}-\sqrt{5} \hat{j}+\frac{4}{\sqrt{5}} \hat{k}$
C. $4 \hat{i}-\hat{j}-\hat{k}$
D. None of these

Answer: A

- Watch Video Solution

45. 10 different vectors are lying on a plane out of which four are parallel with respect to each other. Probability that three vectors chosen from them will satisfy the equation $\lambda_{1} a+\lambda_{2} b+\lambda_{3} c=0$, where λ_{1}, λ_{2} and $\lambda_{3} \neq=0$ is

$$
.{ }^{6} C_{2} \times .{ }^{4} C_{1}
$$

A. (a) $\frac{{ }^{10} C_{3}}{}$
B. (b) $\frac{\left(.{ }^{6} C_{3} \times \cdot{ }^{4} C_{1}\right)+,{ }^{6} C_{3}}{.{ }^{10} C_{3}}$
C. (c) $\frac{\left(.{ }^{6} C_{3}+\times .{ }^{4} C_{1}\right)+,{ }^{4} C_{3}}{.{ }^{10} C_{3}}$
D. (d) $\frac{\left({ }^{6} C_{3}+.{ }^{4} C_{1}\right)+,{ }^{6} C_{2} \times .{ }^{4} C_{1}}{.{ }^{10} C_{3}}$

Answer: D

- Watch Video Solution

46. If \hat{a} is a unit vector and projection of x along \hat{a} is 2 units and $(\hat{a} \times x)+b=x$, then x is equal to
A. $\frac{1}{2}(\hat{a}-b+(\hat{a} \times b))$
B. $\frac{1}{2}(2 \hat{a}+b+(\hat{a} \times b))$
C. $(\hat{a}+(\hat{a} \times b))$
D. None of these

Answer: B

D Watch Video Solution

47. If a, b and c are any three non-zero vectors, then the component of $a \times(b \times c)$ perpendicular to b is
A. $a \times(b \times c)+\frac{(a \times b) \cdot(c \times a)}{|b|^{2}} b$
B. $a \times(b \times c)+\frac{(a \times c) \cdot(a \times b)}{|b|^{2}} b$
C. $a \times(b \times c)+\frac{(a \times b) \cdot(b \times a)}{|b|^{2}} b$
D. $a \times(b \times c)+\frac{(a \times b) \cdot(b \times c)}{|b|^{2}} b$

Answer: D

- Watch Video Solution

48. The position vector of a point P is $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, where $x, y, z \in N$ and $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$. If $\vec{r} \cdot \vec{a}=20$ and the number of possible of
P is 9λ, then the value of λ is:
A. a) 81
B. b) 9
C. c) 100
D. d) 36

Answer: A

- Watch Video Solution

49. Let $\mathrm{a}, \mathrm{b}>0$ and $\vec{\alpha}=\frac{\hat{i}}{a}+4 \frac{\hat{j}}{b}+b \hat{k}$ and $\beta=b \hat{i}+a \hat{j}+\frac{\hat{k}}{b}$ then the maximum value of $\frac{30}{5+\alpha \cdot \beta}$
A. 3
B. 2
C. 4
D. 8

D Watch Video Solution

50. If \vec{a}, \vec{b} and \vec{c} are any three vectors forming a linearly independent system, then $\forall \theta \in R$
$\vec{p}=\vec{a} \cos \theta+\vec{b} \sin \theta+\vec{c}(\cos 2 \theta)$
$\vec{q}=\vec{a} \cos \left(\frac{2 \pi}{3}+\theta\right)+\vec{b} \sin \left(\frac{2 \pi}{3}+\theta\right)+\vec{c}(\cos 2)\left(\frac{2 \pi}{3}+\theta\right)$
and $\vec{r}=\vec{a} \cos \left(\theta-\frac{2 \pi}{3}\right)+\vec{b} \sin \left(\theta-\frac{2 \pi}{3}\right)+\vec{c} \cos 2\left(\theta-\frac{2 \pi}{3}\right)$ then $[\vec{p} \vec{q} \vec{r}$]
A. $[a b c] \sin \theta$
B. $[\mathrm{a}$ b c $] \cos 2 \theta$
C. $[\mathrm{ab} \mathrm{c}] \cos 3 \theta$
D.

Answer: D

51. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$ If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: B

- Watch Video Solution

52. If in a $\triangle A B C, B C=\frac{e}{|e|}-\frac{f}{|f|}$ and $A C=\frac{2 e}{|e|}:|e| \neq|f|$, then the value of $\cos 2 A+\cos 2 B+\cos 2 C$ must be
A. (a)- 1
B. (b) 0
C. (c) 2
D. (d) $\frac{-3}{2}$

Answer: A

- Watch Video Solution

53. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. $\operatorname{If\alpha a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $\alpha=\beta=-\cos \theta, y^{2}=\cos 2 \theta$
B. $\alpha=\beta=\cos \theta, y^{2}=\cos 2 \theta$
C. $\alpha=\beta=\cos \theta, y^{2}=-\cos 2 \theta$
D. $\alpha=\beta=-\cos \theta, y^{2}=-\cos 2 \theta$

Answer: C

- Watch Video Solution

54. In triangle $A B C$ the mid point of the sides $A B, B C$ and $A C$ respectively (I , $0,0),(0, \mathrm{~m}, 0)$ and $(0,0, \mathrm{n})$. Then, $\frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{+} n^{2}}$ is equal to
A. 2
B. 4
C. 8
D. 16

Answer: C

55. The angle between the lines whose directionn cosines are given by
$2 l-m+2 n=0, l m+m n+n l=0$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

56. A line makes an angle θ both with x-axis and y-axis. A possible range of θ is
A. $\left[0, \frac{\pi}{4}\right]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$.

Answer: C

- Watch Video Solution

57. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3 ,
respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$
58. Find the perpendicular distance of a corner of a cube of unit side length from a diagonal not passing through it.
A. $\sqrt{\frac{3}{2}}$
B. $\sqrt{\frac{2}{3}}$
C. $\sqrt{\frac{3}{4}}$
D. $\sqrt{\frac{4}{3}}$

Answer: B

- Watch Video Solution

59. If p, q are two-collinear vectors such that $(b-c) p \times q+(c-a) p+(a-b) q=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lengths of sides of a triangle, then the triangle is

A. right angled

B. obtuse
C. equilateral
D. right angled isosceles triangle

Answer: C

D Watch Video Solution

60. Let $a=\hat{i}+\hat{j}+\hat{k}, b=-\hat{i}+\hat{j}+\hat{k}, c=\hat{i}-\hat{j}+\hat{k}$ and $d=\hat{i}+\hat{j}-\hat{k}$. Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to
A. X -axis
B. Y-axis
C. Both X and Y axes
D. Both y and z-axes

Answer: D

61. A parallelepiped is formed by planes drawn parallel to coordinate axes through the points $A=(1,2,3)$ and $B=(9,8,5)$. The volume of that parallelepiped is equal to (in cubic units)
A. 192
B. 48
C. 32
D. 96

Answer: D

- Watch Video Solution

62. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-coplanar vectors and d be a non-zerro vector, which is perrpendicular to $a+b+c$. now,
$d=(\sin x)(a \times b)+(\cos y)(b \times c)+2(c \times a)$, then the minimum value of $\left(x^{2}+y^{2}\right)$ is
A. π^{2}
B. $\frac{\pi^{2}}{2}$
C. $\frac{\pi^{2}}{4}$
D. $\frac{5 \pi^{2}}{4}$

Answer: D

D Watch Video Solution

63. If $\alpha(a \times b)+\beta(b \times c)+\gamma(c \times a)=0$, then
A. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are coplanar if all of $\alpha, \beta, \gamma \neq 0$
B. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-coplanar if any one $\alpha, \beta \gamma=0$
C. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-coplanar for any α, β, γ.
D. None of these

D Watch Video Solution

64.

Let
area
of
faces
$\triangle O A B=\lambda_{1}, \triangle O A C=\lambda_{2}, \triangle O B C=\lambda_{3}, \triangle A B C=\lambda_{4}$ and $h_{1}, h_{2}, h_{3}, h_{4}$ be perpendicular height from 0 to face $\triangle A B C, \mathrm{~A}$ to the face $\triangle O B C, \mathrm{~B}$ to the face $\triangle O A C, \mathrm{C}$ to the face $\triangle O A B$, then the face $\frac{1}{3} \lambda_{1} h_{4} \cdot \frac{1}{3} \lambda_{2} h_{3}+\frac{1}{3} \lambda_{3} h_{2}+\frac{1}{3} \lambda_{4} h_{1}$
A. (a) $\frac{2}{3}|[A B A C O A]|$
B. (b) $\frac{1}{3}|[\mathrm{AB} \mathrm{ACOA}]|$
C. (c) $\left.\left.\frac{2}{3} \right\rvert\,[\mathrm{OA}$ OB OC $] \right\rvert\,$
D. (d) none of these

Answer: A

65. Given four non zero vectors $\bar{a}, \bar{b}, \bar{c}$ and \bar{d}. The vectors \bar{a}, \bar{b} and \bar{c} are coplanar but not collinear pair by pairand vector \bar{d} is not coplanar with vectors \bar{a}, \bar{b} and \bar{c} and $\bar{a} \bar{b}=\bar{b} \bar{c}=\frac{\pi}{3},(\bar{d} \bar{b})=\beta$,If $(\bar{d} \bar{c})=\cos ^{-1}(m \cos \beta+n \cos \alpha)$ then $m-n$ is :
A. $\cos ^{-1}(\cos \beta-\cos \alpha)$
B. $\sin ^{-1}(\cos \beta-\cos \alpha)$
C. $\sin ^{-1}(\sin \beta-\sin \alpha)$
D. $\cos ^{-1}(\tan \beta-\tan \alpha)$

Answer: A

- Watch Video Solution

66. The shortest distance between a diagonal of a unit cube and the edge skew to it, is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{6}}$

Answer: A

- Watch Video Solution

67. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k} a n d \vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is a.- 1 b. $\sqrt{10}+\sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$
A. -1
B. $\sqrt{35}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: B

68. If the two adjacent sides of two rectangles are represented by vectors
$\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b}$ and $\vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b}$, respectively, then the angel between the vector $\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is a. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ b. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ c. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ d. cannot be evaluate
A. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. $\pi-\cos ^{-1}\left(\frac{19}{\sqrt{43}}\right)$

Answer: B

- Watch Video Solution

69. Let $\vec{a}, \vec{b}, \vec{c}$ are three vectors along the adjacent edges ofa tetrahedron, if $|\vec{a}|=|\vec{b}|=|\vec{c}|=2$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=2$ then volume of
tetrahedron is (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{2}{\sqrt{3}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $2 \frac{\sqrt{2}}{3}$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{2 \sqrt{2}}{3}$

Answer: D

- Watch Video Solution

70. If the angle between the vectors $\vec{a}=\hat{i}+(\cos x) \hat{j}+\hat{k}$ and
$\vec{b}=\left(\sin ^{2} x-\sin x\right) \hat{i}-(\cos x) \hat{j}+(3-4 \sin x) \hat{k}$
is obutse and x in $\left(0, \frac{\pi}{2}\right)$, then the exhaustive set of values of ' x ' is equal to-
A. $x \in\left(0, \frac{\pi}{6}\right)$
B. $x \in\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$
C. $x \in\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$
D. $x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

Answer: B

- Watch Video Solution

71. If position vectors of the points A, B and C are a, b and c respectively and the points D and E divides line segment $A C$ and $A B$ in the ratio 2:1 and 1:3, respectively. Then, the points of intersection of BD and EC divides EC in the ratio
A. $2: 1$
B. 1:3
C. $1: 2$

D. $3: 2$

Answer: D

- Watch Video Solution

Exercise (More Than One Correct Option Type Questions)

1. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector
(B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$
A. a unit vector
B. in the plane of a and b
C. equally inclined to a and b
D. perpendicular to $a \times b$

Watch Video Solution

2. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} . \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|u|$
B. $|u|+|u \cdot a|$
C. $|u|+|u \cdot b|$
D. $|u|+u \cdot(a+b)$

Answer: A:C

- Watch Video Solution

3. The scalars I and m such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to
A. $l=\frac{(c \times b) \cdot(a \times b)}{(a \times b)^{2}}$
B. $I=\frac{(c \times s a) \cdot(b \times a)}{(b \times a)^{2}}$
C. $m=\frac{(c \times s a) \cdot(b \times a)}{(b \times a)^{2}}$
D. $n=\frac{(c \times s a) \cdot(b \times a)}{(b \times a)^{2}}$

Answer: A:C

- Watch Video Solution

4. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$, then $(a) \vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
$\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})(\mathrm{c}) \vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})(\mathrm{d}) \vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$
A. $\hat{r}=\frac{2}{3}(a+a \times b)$
B. $\hat{r}=\frac{1}{3}(a+a \times b)$
C. $\hat{r}=\frac{2}{3}(a-a \times b)$
D. $\hat{r}=\frac{1}{3}(-a+a \times b)$
5. $a_{1}, a_{2}, a_{3}, \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0 f$ or all $x \in R$, then
A. vectors $a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $b=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other
B. vectors $a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $b=-\hat{i}+\hat{j}+\hat{k}$ are perpendicular to each other
C. if vectors $a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then one of the ordered triplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. if vectors $2 a_{1}+3 a_{2}+6 a_{3}$, then $\left|a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$.

Answer: A::B::C::D

- Watch Video Solution

6. If \vec{a} and \vec{b} are two vectors and angle between them is θ, then
A. $|a \times b|^{2}+(a \cdot b)^{2}=|a|^{2}|b|^{2}$
B. $|a \times b|=(a \cdot b), \quad$ if $\quad \theta=\frac{\pi}{4}$
C. $a \times b=(a \cdot b) \hat{n}$, (where \hat{n} is a normal unit vector), if $\theta=\frac{\pi}{4}$
D. $|a \times b| \cdot(a+b)=0$

Answer: A::B::C::D

- Watch Video Solution

7. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
A. $\left[0, \frac{\pi}{6}\right]$
B. $\left(\frac{5 \pi}{6}, \pi\right]$
C. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
D. $\left(\frac{\pi}{2}, \frac{5 \pi}{6}\right]$

- Watch Video Solution

8.

\vec{b}, \vec{c}
being
non-collinear
if
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$, then
A. A. $x=1$
B. B. $x=-1$
C. C. $y=(4 n+1) \frac{\pi}{2}, n \in I$
D. D. $y=(2 n+1) \frac{\pi}{2}, n \in I$

Answer: A:C

Watch Video Solution
9. If in triangle $A B C, \vec{A} B=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|} \operatorname{and} d \vec{A} C=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
a. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
b. $\sin A=\cos C$
c. projection of $A C$ on $B C$ is equal to $B C$
d. projection of $A B$ on $B C$ is equal to $A B$
A. $1+\cos 2 A+\cos 2 B+\cos 3 C=0$
B. $\sin A=\cos C$
C. projection of $A C$ on $B C$ is equal to $B C$
D. projection of $A B$ on $B C$ is equal to $A B$

Answer: A:B::C

- Watch Video Solution

10. If a, b and c be the three non-zero vectors satisfying the condition $a \times b=c$ and $b \times c=a$, then which of the following always hold(s) good?
A. a, b and c are orthogonal in pairs
B. $[\mathrm{a} b \mathrm{c}]=|\mathrm{b}|$
C. $[\mathrm{a}$ b c $]=\left|c^{2}\right|$
D. $|b|=|c|$

Answer: A::C

- Watch Video Solution

11. Given the following informations about the non-zero vectors A, B and C
(i) $(A \times B) \times A=0:(i i) B \cdot B=4$
(iii) $A \cdot B=-6:(i v) B \cdot C=6$
which one of the following holds good?
A. $A \times B=0$
B. $A \cdot(B \times C)=0$
C. $A \cdot A=8$
D. $A \cdot C=-1$

- Watch Video Solution

12. Let a, b and c are non-zero vectors such that they are not orthogonal pairwise and such that $V_{1}=a \times(b \times c)$ and $V_{2}=(a \times b) \times c$, are collinear then which of the following holds goods?

Option1. a and b are orthogonal
Option 2. a and care collinear
Option 3. b and c are orthogonal
Option 4. $b=\lambda(a \times c)$ when λ is a scalar
A. a and bare orthogonal
B. a and c are collinear
C. b and c are orthogonal
D. $b=\lambda(a \times c)$ when λ is a scalar

D Watch Video Solution

13.

Given
three
vectors
$U=2 \hat{i}+3 \hat{j}-6 \hat{k}, V=6 \hat{i}+2 \hat{j}+2 \hat{k}$ and $W=3 \hat{i}-6 \hat{j}-2 \hat{k} \quad$ which of the following hold good for the vectors U, V and W ?
A. U, V and W are linearly dependent
B. $(U \times V) \times W=0$
C. U, V and W form a triplet of mutually perpendicular vectors
D. $U \times(V \times W)=0$

Answer: B::C::D

- Watch Video Solution

14. Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}=\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c}, whose projection on \vec{a} is of magnitude $\sqrt{2 / 3}$, is $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $2 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $-2 \hat{i}-\hat{j}+5 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}-\hat{j}+5 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: A: C

- Watch Video Solution

15. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \times \vec{b}=3(\vec{a} \times \vec{c})$ Also $|\vec{a}|=|\vec{b}|=1,|\vec{c}|=\frac{1}{3}$ If the angle between \vec{b} and \vec{c} is 60° then
A. $b=3 c+a$
B. $b=3 c-a$
C. $a=6 c+2 b$
D. $a=6 c-2 b$

Answer: A::B

- Watch Video Solution

16. Let a, b and c be non-zero vectors and $|a|=1$ and r is a non-zero vector such that $r \times a=b$ and $r \cdot a=1$, then
A. $a \perp b$
B. $r \perp b$
C. $r \cdot a=\frac{1-[a b c]}{a \cdot b}$
D. $[\mathrm{r} a \mathrm{~b}]=0$

Answer: A::B::C

17. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$ then the following is (are) true
A. (a) $\lambda_{1}=a \cdot c$
B. (b) $\lambda_{2}=|a \times b|$
C. (c) $\lambda_{3}=|(a \times b) \times c|$
D. $(\mathrm{d}) \lambda_{1}+\lambda_{2}+\lambda_{3}=(a+b+a \times b) \cdot c$

Answer: A: D

- Watch Video Solution

18. Given three non-coplanar vectors $O A=a, O B=b, O C=c$. Let S be the centre of the sphere passing through the points $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ if $\mathrm{OS}=\mathrm{x}$, then
A. x must be linear combination of a, b, c
B. \times must be linear combination of $b \times c, c \times a$ and $a \times b$
C. $x=\frac{a^{2}(b \times c)+b^{2}(c \times a)+c^{2}(a \times b)}{2[a b c]}, a=|a|, b=|b| . C=|c|$
D. $x=a+b+c$

Answer: A::B::C

(Watch Video Solution

19. If $a=\hat{i}+\hat{j}+\hat{k}$ and $b=\hat{i}-\hat{j}$, then the vectors
$(a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k},(b \cdot \hat{i}) \hat{i}+(b \cdot \hat{j}) \hat{j}+(b \cdot \hat{k}) \hat{k}$ and $\hat{i}+\hat{j}-2 \hat{k}$
A. are mutually perpendicular
B. are coplanar
C. form a parallepiped of volume 3 units
D. form a parallelopiped of volume 6 units

Answer: A::D

- Watch Video Solution

20. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k} \quad$ and $\quad \vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. parallel to $\hat{i}+\hat{j}+\hat{k}$

Answer: A::B::C

- Watch Video Solution

21. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, then which of the following statement(s) is/are true?
A. $a \times(b \times c), b \times(c \times a), c \times(a \times b)$ form a right handed system
B. $c,(a \times b) \times, a \times b$ form a right handed system
C. $a \cdot b+b \cdot c+c \cdot a<0, \quad$ if $a+b+c=0$
D. $\frac{(a \times b) \cdot(b \times c)}{(b \times c) \cdot(a \times c)}=-1, \quad$ if $a+b+c=0$

Answer: B::C::D

- Watch Video Solution

22. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. If $\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $l=m$
B. $n^{2}=1-2 l^{2}$
C. $n^{2}=-\cos 2 \alpha$
D. $m^{2}=\frac{1+\cos 2 \alpha}{2}$

Answer: A::B::C::D

- Watch Video Solution

23. If a, b, c are three non-zero vectors, then which of the following statement(s) is/are ture?
A. $a \times(b \times c), b \times(c \times a), c \times(a \times b)$ form a right handed system
B. $c,(a \times b) \times, a \times b$ form a right handed system
C. $a \cdot b+b \cdot c+c \cdot a<0, \quad$ if $a+b+c=0$
D. $\frac{(a \times b) \cdot(b \times c)}{(b \times c) \cdot(a \times c)}=-1, \quad$ if $a+b+c=0$

Answer: C::D

- Watch Video Solution

24. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $b-\frac{a \times b}{|b|^{2}}$
B. $2 b-\frac{a \times b}{|b|^{2}}$
C. $|a| b-\frac{a \times b}{|b|^{2}}$
D. $|b| b-\frac{a \times b}{|b|^{2}}$

Answer: A::B::C::D

- Watch Video Solution

25. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$
A. 2
B. 3
C. 4
D. 5

Answer: B::C::D

26. If a is perpendicular to b and p is non-zero scalar such that $p r+(r \cdot b) a=c$, then r satisfy
A. $[\mathrm{rac}]=0$
B. $p^{2} r=p a-(c \cdot a) b$
C. $p^{2} r=p b-(a \cdot b) c$
D. $p^{2} r=p c-(b \cdot c) a$

Answer: A:D

- Watch Video Solution

27. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{l}, and $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda-1)\left(\vec{a}_{1}-\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+\vec{a}_{3}+\delta \vec{a}_{4}=0$, then

$$
\text { A. } \lambda=1
$$

B. $\mu=\frac{-2}{3}$
C. $\lambda=\frac{2}{3}$
D. $\delta=\frac{1}{3}$

Answer: A::B::D

D Watch Video Solution

28. A vector(d) is equally inclined to three vectors $a=\hat{i}-\hat{j}+\hat{k}, b=2 \hat{i}+\hat{j}$ and $c=3 \hat{j}-2 \hat{k}$. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be three vectors in the plane a, b:b, c:c, a respectively, then
A. $x \cdot d=14$
B. $y \cdot d=3$
C. $z \cdot d=0$
D. $r \cdot d=0$, where $r=\lambda x+\mu y+\delta z$

Answer: C::D

29. If a, b, c are non-zero, non-collinear vectors such that a vectors such that a vector $p=a b \cos (2 \pi-(a, c)) c$ and $a q=a c \cos (\pi-(a, c))$ then $\mathrm{b}+\mathrm{q}$ is
A. (a)parallel to a
B. (b)perpendicular to a
C. (c)coplanar with b and c
D. (d)coplanar with a and c

Answer: B::C

- Watch Video Solution

30. Given three vectors \vec{a}, \vec{b} and \vec{c} are non-zero and non-coplanar vectors.

Then which of the following are coplanar.

$$
\text { A. } a+b, b+c, c+a
$$

B. $a-b, b+c, c+a$
C. $a+b, b-c, c+a$
D. $a+b, b+c, c-a$

Answer: B::C::D

- Watch Video Solution

31. If $r=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ and $r \cdot(\hat{i}+2 \hat{j}-\hat{k}=3$ are equations of a line and a plane respectively, then which of the following is incorrect?
A. line is perpendicular to the plane
B. line lies in the plane
C. line is parallel to the plane but not lie in the plane
D. line cuts the plane obliquely

Answer: C::D

32. If vectors \vec{a} and \vec{b} are two adjecent sides of a paralleogram, then the vector representing the altitude of the parallelogram which is perpendicular to \vec{a} is
A. $b+\frac{b \times a}{|a|^{2}}$
B. $\frac{a \cdot b}{|b|^{2}} b$
C. $b-\frac{a \cdot b}{|b|^{2}} b$
D. $\frac{a \times(b \times a)}{|a|^{2}}$

Answer: C::D

- Watch Video Solution

33. Let a, b, c be three vectors such that each of them are non-collinear, $a+b$ and $b+c$ are collinear with c and a respectively and $a+b+c=k$. Then ($|k|$, $|k|)$ lies on
A. $y^{2}=4 a x$
B. $x^{2}+y^{2}-a x-b y=0$
C. $x^{2}-y^{2}=1$
D. $|x|+|y|=1$

Answer: A::B

- Watch Video Solution

34. If a, b and c are non-collinear unit vectors also b, c are non-collinear and $2 a \times(b \times c)=b+c$, then
A. angle between a and c is 60°
B. angle between b and c is 30°
C. angle between a and b is 120°
D. b is perpendicular to c
35. If $a=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}): b=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k}): c=c_{1} \hat{i}+c_{2} \hat{j}+c_{2} \hat{k}$ and
matrix $A=\left[\begin{array}{ccc}\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ 6 & \frac{2}{7} & \frac{3}{7} \\ \overline{7} & \overline{7} & \text { c. } \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ and $A T^{T}=I$, then c
A. (a) $\frac{3 \hat{i}+6 \hat{j}+2 \hat{k}}{7}$
B. (b) $\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{7}$
C. (c) $\frac{-3 \hat{i}+6 \hat{j}-2 \hat{k}}{7}$
D. (d) $-\frac{3 \hat{i}+6 \hat{j}+2 \hat{k}}{7}$

Answer: B::C

- Watch Video Solution

1. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular totehdirectin of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$ Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s 2 \hat{i}+2 \hat{j}+2 \hat{k}$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: C

- Watch Video Solution

2. Statement-I $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are three mutually perpendicular unit vector, then $a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$ and $a_{3} \hat{i}+b_{3} \hat{j}+3 \hat{k}$ may be mutually perpendicular unit vectors.

Statement-II Value of determinant and its transpose are the same .
A. (a)Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. (b)Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. (c)Statement-I is correct but Statement-II is incorrect
D. (d)Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

3. Consider three vectors \vec{a}, \vec{b} and \vec{c} Statement 1 $\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \cdot \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \cdot \vec{b}) \hat{j}+((\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k} \quad$ Statement $\quad 2:$ $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

4. Statement 1: Distance of point $D(1,0,-1)$ from the plane of points $A($
$1,-2,0), B(3,1,2)$ and $C(-1,1,-1)$ is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D is $\sqrt{229}$

2
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: D

- Watch Video Solution

5. Statement 1: If $\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{C}=\hat{i}+2 \hat{j}+\hat{k}$, then

$$
|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \vec{C}|=243
$$

$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: D

- Watch Video Solution

6. Statement-I The number of vectors of unit length and perpendicular to both the vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is zero.

Statement-II a and b are two non-zero and non-parallel vectors it is true that $a \times b$ is perpendicular to the plane containing a and b
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: D

D Watch Video Solution

7. Statement-I $\left(S_{1}\right)$: If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are non-collinear points. Then, every point (x, y) in the plane of $\triangle A B C$, can be expressed in
the form $\left(\frac{k x_{1}+l x_{2}+m x_{3}}{k+l+m}, \frac{k y_{1}+l y_{2}+m y_{3}}{k+l+m}\right)$
Statement-II $\left(S_{2}\right)$ The condition for coplanarity of four $A(a), B(b), C(c)$, $D(d)$ is that there exists scalars I, m, n, p not all zeros such that $l a+m b+n c+p d=0$ where $l+m+n+p=0$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

8. If a, b are non-zero vectors such that $|a+b|=|a-2 b|$, then

Statement-I Least value of $a \cdot b+\frac{4}{|b|^{2}+2}$ is $2 \sqrt{2}-1$.
Statement-II The expression $a \cdot b+\frac{4}{|b|^{2}+2}$ is least when magnitude of b is $\sqrt{2 \tan \left(\frac{\pi}{8}\right)}$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

9.

Statement-I
$a=3 \hat{i}-3 \hat{j}+\hat{k}, b=-\hat{i}+2 \hat{j}+\hat{k}$ and $c=\hat{i}+\hat{j}+\hat{k}$ and $d=2 \hat{i}-\hat{j}$, then there exist real numbers α, β, γ such that $a=\alpha b+\beta c+\gamma d$

Statement-II a, b, c, d are four vectors in a 3-dimensional space. If b, c, d are non-coplanar, then there exist real numbers α, β, γ such that $a=\alpha b+\beta c+\gamma d$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: B

- Watch Video Solution

10. Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points $A, B, C a n d D$ and $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$. Then points $A, B, C, a n d D$ are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $(\vec{P} Q, \vec{P}$ Rand $\vec{P} S)$ are coplanar. Then $\vec{P} Q=\lambda \vec{P} R+\mu \vec{P} S$, where λ and μ are scalars.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

11. If $a=\hat{i}+\hat{j}-\hat{k}, b=2 \hat{i}+\hat{j}-3 \hat{k}$ and r is a vector satisfying $2 r+\rtimes a=b$. Statement-I r can be expressed in terms of a, b and $a \times b$.

Statement-II $r=\frac{1}{7}(7 \hat{i}+5 \hat{j}-9 \hat{k}+a \times b)$.

A. (a)Both Statement-I and Statement-II are correct and Statement-II is

 the correct explanation of Statement-IB. (b)Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. (c)Statement-I is correct but Statement-II is incorrect
D. (d)Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

12. Let \hat{a} and \hat{b} be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\hat{a} \times(\hat{b} \times \hat{c})) \cdot(\hat{a} \times \hat{c})=5$ then

Statement-I $[\hat{a} \hat{b} \hat{c}]=10$
Statement-II [x y z]=0, if $x=y$ or $y=z$ or $z=x$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: B

- Watch Video Solution

Exercise (Passage Based Questions)

1. Consider three vectors $\vec{p}=\hat{i}+\hat{j}+\hat{k}, \vec{q}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{r}=\hat{i}+\hat{j}+3 \hat{k}$ and let \vec{s} be a unit vector, then \vec{p}, \vec{q} and \vec{r} are
A. linealy dependent
B. can form the sides of a possible triangle
C. such that the vectors ($q-r$) is orthogonal to p
D. such that each one of these can be expressed as a linear combination of the other two

Answer: C

D Watch Video Solution

2. Consider three vectors $p=\hat{i}+\hat{j}+\hat{k}, q=2 \hat{i}+4 \hat{j}-\hat{k}$ and $r=\hat{i}+\hat{j}+3 \hat{k}$ and let s be a unit vector, then
Q. If $(p \times q) \times r=u p+v q+w r$, then $(u+v+w)$ is equal to
A. 8
B. 2
C. -2
D. 4

Answer: B

3. Consider three vectors $p=\hat{i}+\hat{j}+\hat{k}, q=2 \hat{i}+4 \hat{j}-\hat{k}$ and $r=\hat{i}+\hat{j}+3 \hat{k}$ and let s be a unit vector, then Q . The magnitude of the vector $(p \cdot s)(q \times r)+(q \cdot s)(r \times p)+(r \cdot s)(p \times q)$ is
A. A. 4
B. B. 8
C. C. 18
D. D. 2

Answer: A

- Watch Video Solution

4. Consider the three vectors p, q, r such that $p=\hat{i}+\hat{j}+\hat{k}$ and $q=\hat{i}-\hat{j}+\hat{k}, p \times r=q+c p$ and $p \cdot r=2$
Q. The value of [p qr] is

$$
5 \sqrt{2} c
$$

A. $\frac{}{|r|}$
B. $-\frac{8}{3}$
C. 0
D. greater than 0

Answer: B

- Watch Video Solution

5. Consider the three vectors p, q, r such that $p=\hat{i}+\hat{j}+\hat{k}$ and $q=\hat{i}-\hat{j}+\hat{k}, p \times r=q+c p$ and $p \cdot r=2$
Q.The value of [p q r] is
A. $c(\hat{i}-2 \hat{j}+\hat{k})$
B. a unit vector
C. independent, as [p q r]
D. $-\frac{\hat{i}-2 \hat{j}+\hat{k}}{2}$
6. Consider the three vectors p, q, r such that $p=\hat{i}+\hat{j}+\hat{k}$ and $q=\hat{i}-\hat{j}+\hat{k}, p \times r=q+c p$ and $p \cdot r=2$
Q.The value of [p q r] is
A. are collinear
B. are coplanar
C. represent the coterminus edges of a tetrahedron whose volume is c cu. Units
D. represent the coterminus edges of a parallelopiped whose volume is c cu. Units

Answer: C

- Watch Video Solution

7. Let P, Q are two points on the curve $y=\log _{\frac{1}{2}}(x-0.5)+\log _{2} \sqrt{4 x^{2} 4 x+1}$ and P is also on the $x^{2}+y^{2}=10, Q$ lies inside the given circle such that its abscissa is an integer.
A. $(1,2)$
B. $(2,4)$
C. $(3,1)$
D. $(3,5)$

Answer: C

- Watch Video Solution

8. Let P and Q are two points on the curve $y=\log _{\frac{1}{2}}^{1}(x-0.5)+\log _{2} \sqrt{4 x^{2}-4 x+1}$ and P is also on the circle $x^{2}+y^{2}=10 . \mathrm{Q}$ lies inside the given circle such that its abscissa is an integer.
Q. $O P \cdot O Q, O$ being the origin is
A. 4 or 7
B. 4 or 2
C. 2 or 3
D. 7 or 8

Answer: A

- Watch Video Solution

9. Let P, Q are two points on the curve $y=\log _{\frac{1}{2}}(x-0.5)+\log _{2} \sqrt{4 x^{2}-4 x+1}$ and P is also on the $x^{2}+y^{2}=10, Q$ lies inside the given circle such that its abscissa is an integer.so x coordinate of P are
A. 1
B. 4
C. 0
D. 3

D Watch Video Solution

10. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. (a) $r=\frac{\Delta_{1}}{2 \Delta} a+\frac{\Delta_{2}}{2 \Delta} b+\frac{\Delta_{3}}{2 \Delta} c$
B. (b) $r=\frac{2 \Delta_{1}}{\Delta} a+\frac{2 \Delta_{2}}{\Delta} b+\frac{2 \Delta_{3}}{\Delta} c$
C. (c) $r=\frac{\Delta}{\Delta_{1}} a+\frac{\Delta}{\Delta_{2}} b+\frac{\Delta}{\Delta_{3}} c$
D. (d) $r=\frac{\Delta_{1}}{\Delta} a+\frac{\Delta_{2}}{\Delta} b+\frac{\Delta_{3}}{\Delta} c$

Answer: D

11. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. $r=\frac{[r b c]}{2[a b c]} a+\frac{[r b c]}{2[a b c]} b+\frac{[r b c]}{2[a b c]} c$
B. $r=\frac{2[r b c]}{[a b c]} a+\frac{2[r b c]}{[a b c]} b+\frac{2[r b c]}{[a b c]} c$
C. $r=\frac{1}{[a b c]}([r b c] a+[r c a] b+[r a b] c)$
D. None of these

Answer: D

12. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. $a=\frac{1}{[a b c]}[(a \cdot a)(b \times c)+(b \cdot b)(c \times a)+c \cdot c(a \times b)]$
B. $a=\frac{1}{[a b c]}[(a \cdot a)(b \times c)+(b \cdot a)(c \times a)+(a \cdot a)(a \times b)]$
C. $a=[(a \cdot a)(b \times c)+(a \cdot b)(c \times a)+(c \cdot a)(a \times b)]$
D. None of these

Answer: C

- Watch Video Solution

13. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. $(p \times q)[a \times b b \times c c \times a]$
B. $2(p \times q)[a \times b b \times c c \times a]$
C. $4(p \times q)[a \times b b \times c c \times a]$
D. $(p \times q) \sqrt{[a \times b b \times c c \times a]}$

Answer: B

14. Let $g(x)=\int_{0}^{x}\left(3 t^{2}+2 t+9\right) d t$ and $f(x)$ be a decreasing function $\forall x \geq 0$ such that $A B=f(x) \hat{i}+g(x) \hat{j}$ and $A C=g(x) \hat{i}+f(x) \hat{j}$ are the two smallest sides of a triangle $A B C$ whose circumcentre lies outside the triangle $\forall c>0$. Q. Which of the following is true (for $x \geq o$)
A. (a) $f(x)>0, g(x)<0$
B. (b) $f(x)<0, g(x)<0$
C. (c) $f(x)>0, g(x)>0$
D. (d) $f(x)<0, g(x)>0$

Answer: D

- Watch Video Solution

15. Let $g(x)=\int_{0}^{x}\left(3 t^{2}+2 t+9\right) d t$ and $f(x)$ be a decreasing function $\forall x \geq 0$ such that $A B=f(x) \hat{i}+g(x) \hat{j}$ and $A C=g(x) \hat{i}+f(x) \hat{j}$ are the two smallest sides of a triangle $A B C$ whose circumcentre lies outside the triangle $\forall c>\odot Q$. Which of the following is true (for $x \geq 0$)
A. 0
B. 1
C.e
D. does not exist

Answer: A

- Watch Video Solution

16. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the vector, such that $|x|=|y|=|z|=\sqrt{2}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ make angles of 60° with each other also, $x \times(y \times z)=a$ and $y \times(z \times x)=b x \times y=c$, . The value of z is
A. $(a+b) \times x-(a+b)$
B. $(a+b)-(a+b) \times c$
C. $\frac{1}{2}\{(a+b) \times c-(a+b)\}$
D. None of these

- Watch Video Solution

17. Let x, y, z be the vector, such that $|x|=|y|=|z|=\sqrt{2}$ and x, y, z make angles of 60° with each other. If $x \times(y \times z)=a$.

The value of y is:
A. $\frac{1}{2}[(a+b)+(a+b) \times c]$
B. $2[(a+b)+(a+b) \times c]$
C. $4[(a+b)+(a+b) \times c]$
D. None of these

Answer: A

18. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the vector, such that $|x|=|y|=|z|=\sqrt{2}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ make angles of 60° with each other also, $x \times(y \times z)=a$ and $y \times(z \times x)=b x \times y=c$, . The value of z is
A. $\frac{1}{2}[(b-a) \times c+(a+b)]$
B. $\frac{1}{2}[(b-a)+c \times(a+b)]$
C. $[(b-a) \times c+(a+b)]$
D. None of these

Answer: B

- Watch Video Solution

19. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. Volume of parallelopiped with edges a, b, c is
A. $p+(q+r) \cos \theta$
B. $(p+q+r) \cos \theta$
C. $2 p-(q+r) \cos \theta$
D. None of these

Answer: A

- Watch Video Solution

20. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. The value of $\left(\frac{q}{p}+2 \cos \theta\right)$ is
A. 1
B. 2[abc]
C. 0
D. None of these

Answer: C

Watch Video Solution

21. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non-zero scalars satisfying $a \times b+b \times c=p a+q b+r c$. Now, answer the following questions. $\mathrm{Q} .|(q+p) \cos \theta+r|$ is equal to
A. $(1+\cos \theta)(\sqrt{1-2 \cos \theta})$
B. $2 \frac{\sin (\theta)}{2} \sqrt{(1+2 \cos \theta)}$
C. $(1-\sin \theta) \sqrt{1+2 \cos \theta})$
D. None of these

Answer: B

- Watch Video Solution

Product of Vectors Exercise 5 : Matching Type Questions

1. Volume of parallelopiped formed by vectors $a \times b, b \times c$ and $c \times a$ is 36 sq.units. then the volumn formed by the vector $a b$ and c is

- Watch Video Solution

2. Match the statement of Column I with values of Column II

Column I

(A) In a $\triangle A B C$, if $2 a^{2}+b^{2}+c^{2}=2 a c+2 a b$, then
(B) In a $\triangle A B C$, if $a^{2}+b^{2}+c^{2}=\sqrt{2} b(c+a)$, then
(C) In a $\triangle A B C$, if
$a^{2}+b^{2}+c^{2}=b c+c a \sqrt{3}$,
(q) $\triangle A B C$ is right
(r) $\triangle A B C$ is scalane then
(s) $\triangle A B C$ is scalane right angled triangle
(t) Angles B, C, A are in AP

- Watch Video Solution

1. Let \hat{u}, \hat{v} and \hat{w} are three unit vectors, the angle between \hat{u} and \hat{v} is twice that of the angle between \hat{u} and \hat{w} and \hat{v} and \hat{w}, then [$\hat{u} \hat{v} \hat{w}]$ is equal to

- Watch Video Solution

2. If \hat{a}, \hat{b} and \hat{c} are the three unit vector and α, β and γ are scalars such that $\hat{c}=\alpha \hat{a}+\beta \hat{b}+\gamma(\hat{a} \times \hat{b})$. If is given that $\hat{a} \cdot \hat{b}=o$ and \hat{c} makes equal angle with both \hat{a} and \hat{b}, then evaluate $\alpha^{2}+\beta^{2}+\gamma^{2}$.

- Watch Video Solution

3. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad
4. Let \hat{c} be a unit vector coplanar with $a=\hat{i}-\hat{j}+2 \hat{k}$ and $b=2 \hat{i}-\hat{j}+\hat{k}$ such that \hat{c} is perpendicular to a. If P be the projection of \hat{c} along, where $p=\frac{\sqrt{11}}{k}$ then find k.

- Watch Video Solution

5. Let a, b and c are three vectors hacing magnitude 1,2 and 3 respectively satisfying the relation $[a b c]=6$. If \hat{d} is a unit vector coplanar with b and c such that $b \cdot \hat{d}=1$, then evaluate $|(a \times c) \cdot d|^{2}+|(a \times c) \times \hat{d}|^{2}$.

- Watch Video Solution

6. Let $A(2 \hat{i}+3 \hat{j}+5 \hat{k}), B(-\hat{i}+3 \hat{j}+2 \hat{k})$ and $C(\lambda \hat{i}+5 \hat{j}+\mu \hat{k})$ are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of $2 \lambda-\mu$ is equal to

- Watch Video Solution

7. If V is the volume of the parallelepiped having three coterminous edges
as \vec{a}, \vec{b} and \vec{c}, then the volume of the parallelepiped having three coterminous edges as
$\vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}$,
$\vec{\beta}=(\vec{b} \cdot \vec{a}) \vec{a}+(\vec{b} \cdot \vec{b})+(\vec{b} \cdot \vec{c}) \vec{c}$
and $\vec{\lambda}=(\vec{c} \cdot \vec{a}) \vec{a}+(\vec{c} \cdot \vec{b}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c}$ is

- Watch Video Solution

8. If \vec{a}, \vec{b} are vectors perpendicular to each other and $|\vec{a}|=2,|\vec{b}|=3, \vec{c} \times \vec{a}=\vec{b}$, then the least value of $2|\vec{c}-\vec{a}|$ is

- Watch Video Solution

9. M and N are mid-point of the diagnols $A C$ and $B D$ respectivley of quadrilateral $A B C D$, then $A B+A D+C B+C D=$
10. If $a \times b=c, b \times c=a, c \times a=b$. If vectors a, b and c are forming a right handed system, then the volume of tetrahedron formed by vectors $3 a-2 b+2 c,-a-2 c$ and $2 a-3 b+4 c$ is

- Watch Video Solution

11. Let \vec{a} and \vec{c} be unit vectors inclined at $\pi / 3$ with each other. If $(\vec{a} \times(\vec{b} \times \vec{c})) \cdot(\vec{a} \times \vec{c})=5$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to

- Watch Video Solution

12. Volume of parallelopiped formed by vectors $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq.units, then the volume of the parallelopiped formed by the vectors \vec{a}, \vec{b} and \vec{c} is.

- Watch Video Solution

13. If α and β are two perpendicular unit vectors such that $x=\hat{\beta}-(\alpha \times x)$, then the value of $4|x|^{2}$ is.

- Watch Video Solution

14. The volume of the tetrahedron whose vertices are the points with position vectors $\hat{i}+\hat{j}+\hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, \hat{i}+2 \hat{j}-7 \hat{k}$ and $3 \hat{i}-4 \hat{j}+\lambda \hat{k}$ is 22 , then the digit at unit place of λ is.

- Watch Video Solution

15. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is 6 b .18 c .36 d .9

- Watch Video Solution

1. For any two vectors $\rightarrow a$ and $\rightarrow b$ we always have
$|\rightarrow a \dot{\cdot} b| \leq 1 \rightarrow a \| \rightarrow b \mid$ (Cauchy-Schwartz inequality).

- Watch Video Solution

2. P and Q are two points on the curve $y=2^{x+2}$ in the rectangular
cartesian coordinate system such that $O P \cdot \bar{C}=-1$ and $O Q \cdot \bar{C}=2$. where \bar{c} is the unit vector along the positive direction of the x-axis. Then $O Q-4 O P=(\mathrm{A}) 3 i+8 j(\mathrm{~B}) 4 i+6 j(\mathrm{C}) 2(3 i+4 j)(\mathrm{D})(4 i+3 j)$

(D) Watch Video Solution

3. O is the origin and A is a fixed point on the circle of radius 'a' with centre O.The vector $\overrightarrow{O A}$ is denoted by \vec{a}. A variable point P lie on the tangent at A and $\vec{O} P-\vec{r}$. Show that $\vec{a} \vec{r}=a^{2}$. Hence if $P(x, y)$ and $A\left(x_{1}, y_{1}\right)$, deduce the equation of tangent at A to this circle.
4. If a is real constant A, BandC are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan c=6 a$, then the least vale of $\tan ^{2} A+\tan ^{2} b+\tan ^{2}$ Cis 6 b. 10 c. 12 d. 3

Watch Video Solution

5. Given, the edges A, B and C of triangle $A B C$. Find $\cos \angle B A M$, where M is mid-point of $B C$.

- Watch Video Solution

6. Distance of point $A(1,4,-2)$ is the distance from $B C$, where B and C The coordinates are respectively $(2,1,-2)$ and $(0,-5,1)$, respectively

- Watch Video Solution

7. Given, the angles A, B and C of $\triangle A B C$. Let M be the mid-point of segment $A B$ and let D be the foot of the bisector of $\angle C$. Find the ratio of AreaOf $\triangle C D M$ $\overline{\text { Areaof } \triangle A B C}$

- Watch Video Solution

8. In $\triangle A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection of the lines AQandCP, using vector method, find the area of $A B C$ if the area of $B R C$ is 1 unit

- Watch Video Solution

9. If one diagonal of a quadrilateral bisects the other, then it also bisects the quadrilateral.

- Watch Video Solution

10. Two forces $F_{1}=\{2,3\}$ and $F_{2}=\{4,1\}$ are specified relative to a general cartesian form. Their points of application are respectivel, $A=(1,1)$ and $B=(2,4)$. Find the coordinates of the resultant and the equation of the straight line I containing it.

- Watch Video Solution

11. A non zero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i}, \hat{i}+\hat{j}$ and the plane determined by the $\hat{i}-\hat{j}, \hat{i}+\hat{k}$. The angle between \vec{a} and $\hat{i}-2 \hat{j}+2 \hat{k}$ can be

- Watch Video Solution

12. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$
13. Let $\vec{u} a n d \vec{v}$ be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$ Find the value of $[\vec{u} \vec{v} \vec{w}]$

- Watch Video Solution

14. A, B and C are three vectors given by $2 \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $4 \hat{i}-3 \hat{j}+7 \hat{k}$. Then, find R , which satisfies the relation $R \times B=C \times B$ and $R \cdot A=0$.

- Watch Video Solution

15. If $x \cdot a=0, x \cdot b=1,[x \quad a b]=1$ and $a \cdot b \neq 0$, then find x in terms of a and b .

- Watch Video Solution

16. Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies the equation $p x((x-q) \times p)+q \times((x-r) \times q)$
$+r x((x-p) x r)=0$ Then x is given by :

- Watch Video Solution

17. Given vectors $\bar{C} B=\bar{a}, \bar{C} A=\bar{b}$ and $\bar{C} O=\bar{x}$ where O is the centre of circle circumscribed about $\triangle A B C$, then find vector \bar{x}

- Watch Video Solution

Exercise (Questions Asked In Previous 13 Years Exam)

1. Let O be the origin and let $P Q R$ be an arbitrary triangle. The point S is
such that $O P \cdot O Q+O R \cdot O S=O R \cdot O P+O Q \cdot O S=O Q \cdot O R+O P \cdot O S$
Then the triangle PQR has S as its
A. centroid
B. orthogonal
C. incentre
D. circumcentre

Answer: B

- Watch Video Solution

2. Let O be the origin and $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ be three unit vector in the directions of the sides $Q R, R P, P Q$ respectively, of a triangle $P Q R$.
if the triangle $P Q R$ varies, then the manimum value of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is
A. $\frac{-3}{2}$
B. $\frac{3}{2}$
C. $\frac{5}{3}$
D. $\frac{-5}{3}$

D Watch Video Solution

3. Let O be the origin, and $O X, O Y, O Z$ be three unit vectors in the direction of the sides $Q R, R P, P Q$, respectively of a triangle $P Q R$.
$|O X \times O Y|=(a) \sin (P+R)(b) \sin 2 R(c) \sin (Q+R)(d) \sin (P+Q)$
A. $\sin (P+Q)$
B. $\sin (P+R)$
C. $\sin (Q+R)$
D. $\sin 2 R$

Answer: A

- Watch Video Solution

4. Let a, b and c be three unit vectors such that $a \times(b \times c)=\frac{\sqrt{3}}{2}(b+c)$. If b is not parallel to c, then the angle between a and b is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: D

D Watch Video Solution

5. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{a}|$. If θ is the angle between vectors \vec{b} and \vec{c} then a value of $\sin \theta$ is : (1) $\frac{2 \sqrt{2}}{3}$ (2) $\frac{-\sqrt{2}}{3}$ (3) $\frac{2}{3}$ (4) $\frac{-2 \sqrt{3}}{3}$
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{-\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $-\frac{2 \sqrt{3}}{3}$

Answer: (a)

- Watch Video Solution

6. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

- Watch Video Solution

7. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are a. $\hat{j}-\hat{k}$ b. $-\hat{i}+\hat{j}$ c. $\hat{i}-\hat{j}$ d. $-\hat{j}+\hat{k}$
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
c. $\hat{i}-\hat{j}$
D. $-\hat{j}+\hat{k}$

Answer: A

- Watch Video Solution

8. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a. $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $3 \hat{i}-\hat{j}+3 \hat{k}$ d. $\hat{i}+3 \hat{j}-3 \hat{k}$
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}-\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

- Watch Video Solution

9. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$ If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel
α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: B

- Watch Video Solution

10. Let $P, Q R$ and S be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$, respectively. The quadrilateral PQRS must be:
A. parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square

Answer: (a)

- Watch Video Solution

11. If $a a n d b$ are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{\hat{2} i+\hat{j}+3 \hat{k}}{\sqrt{14}}$, then find the value of $(2 \vec{a}+\vec{b})[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$
12. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} . \vec{c}=\frac{1}{2}$, then
A. a, b, c are non-coplanar
B. a, b, d are non-coplanar
C. b, d are non-parallel
D. a, d are parallel and b, c are parallel

Answer: C

- Watch Video Solution

13. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \hat{a}=\frac{1}{2}$. Then, the volume of the parallelopiped is
A. a) $\frac{1}{\sqrt{2}} \mathrm{cu}$ units
B. b) $\frac{1}{2 \sqrt{2}}$ cu units
C. c) $\frac{-}{2} \mathrm{cu}$ units
D. d) $\frac{1}{\sqrt{3}}$ cu units

Answer: A

- Watch Video Solution

14. Let two non-collinear unit vectors \vec{a} and \vec{b} form an acute angle. A point P moves so that at any time t , time position vector, $O P$ (where O is the origin) is given by $\hat{a} c o t t+\hat{b}$ sint. When p is farthest fro origing o, let M be the length of $O P$ and \hat{u} be the unit vector along $O P$.then
A. $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
B. $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
C. $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$
D. $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$

D Watch Video Solution

15. Let the vectors $\mathrm{PQ}, \mathrm{OR}, \mathrm{RS}, \mathrm{ST}, \mathrm{TU}$ and UP represent the sides of a regular hexagon.

Statement I: $P Q \times(R S+S T) \neq 0$

Statement II: $P Q \times R S=0$ and $P Q \times S T \neq 0$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: C

16. The number of distinct real values of λ, for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+k, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is a. zero b . one c . two d . three
A. 0
B. 1
C. $\pm \sqrt{2}$
D. 3

Answer: C

- Watch Video Solution

17. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Which of the following is correct?
A. $a \times b=b \times c=c \times a=0$
B. $a \times b=b \times c=c \times a \neq 0$
C. $a \times b=b \times c=a \times c=0$
D. $a \times b, b \times c, c \times a$ are mutually perpendicular

Answer: B

- Watch Video Solution

18. Let \vec{A} be a vector parallel to the line of intersection of planes $P_{1} a n d P_{2}$ Plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k} a n d 4 \hat{j}-3$ kand P_{2} is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \hat{j}$ Then the angle betweenvector \vec{A} and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is $\pi / 2$ b. $\pi / 4$ c. $\pi / 6$ d. $3 \pi / 4$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{3 \pi}{4}$

D Watch Video Solution

19. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$ A vector in the plane of $\vec{a} a$ and \vec{b} whose projectionof c is $1 / \sqrt{3}$ is $4 \hat{i}-\hat{j}+4 \hat{k}$ b. $3 \hat{i}+\hat{j}+3 \hat{k}$ c. $2 \hat{i}+\hat{j}-2 \hat{k}$ d. $4 \hat{i}+\hat{j}-4 \hat{k}$
A. $4 \hat{i}-\hat{j}+4 \hat{k}$
B. $4 \hat{i}+\hat{j}-4 \hat{k}$
C. $2 \hat{i}+\hat{j}+\hat{k}$
D. None of these

Answer: A

- Watch Video Solution

20. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (A) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ (B) $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{3}}$
(C) $3 \hat{j}-\hat{k} \frac{)}{\sqrt{10}}$ (D) $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$.

Answer: C

- Watch Video Solution

21. The value of a so that the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ is minimum is a. -3 b. 3 c. $1 / \sqrt{3}$ d. $\sqrt{3}$
A. -3
B. 3
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

22. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} . \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \hat{b} is $\hat{i}-\hat{j}+\hat{k}$ b. $2 \hat{j}-\hat{k}$ c. \hat{i} d. $2 \hat{i}$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{j}-\hat{k}$
C. \hat{i}
D. $2 \hat{i}$

Answer: C

23. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is a.- 1 b. $\sqrt{10}+\sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$
A. -1
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: C

- Watch Video Solution

24. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicualar to each other, then the angle between \vec{a} and \vec{b} is
A. 45°
B. 60°
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{7}\right)$

Answer: B

- Watch Video Solution

25. Let $a=2 \hat{i}-2 \hat{k}, b=\hat{i}+\hat{j}$ and c be a vectors such that $|c-a|=3,|(a \times b) \times c|=3$ and the angle between c and $a \times b$ is 30°. Then $\mathrm{a} . \mathrm{c}$ is equal to
A. $\frac{25}{8}$
B. 2
C. 5
D. $\frac{1}{8}$

Answer: B

26. If $[a \times b b \times c c \times a]=\lambda[a b c]^{2}$, then λ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: C

Watch Video Solution

27. Let \hat{a} and \hat{b} be two unit vectors. If the vectors
$\vec{c}=\hat{a}+2 \hat{b}$ and $\vec{d}=5 \hat{a}-4 \hat{b}$ are perpendicular to each other then the
angle between \hat{a} and \hat{b} is (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

28. Let $A B C D$ be a parallelogram such that $\vec{A} B=\vec{q}, \vec{A} D=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed
from the vertex B to the side AD, then \vec{r} is given by (1) $\vec{r}=3 \vec{q}$
(2) $\vec{r}=-\vec{q}+\binom{\vec{p} \vec{q}}{\vec{p} \vec{p}} \vec{p}(3) \vec{r}=\vec{q}+\binom{\overrightarrow{\vec{p} \vec{q}}}{\vec{p} \vec{p}} \vec{p}(4) \vec{r}=-3 \vec{q}+\frac{3(\vec{p} \vec{q})}{(\vec{p} \vec{p})} \vec{p}$
A. $r=3 p+\frac{3(q \cdot p)}{p \cdot p} p$
B. $r=-p+\frac{(q \cdot p)}{p \cdot p} p$
C. $r=p-\frac{(q \cdot p)}{p \cdot p} p$
D. $r=-3 p+\frac{3(q \cdot p)}{p \cdot p} p$

Answer: B

- Watch Video Solution

29. $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})]$ is:
A. -3
B. 5
C. 3
D. -5

Answer: D

30. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} \vec{c} \vec{b} \vec{d}=$ and $\vec{a} \vec{d}=0$. Then the vector \vec{d} is equal to: (1)
$\vec{b}-\binom{\vec{b} \vec{c}}{\vec{a} \vec{d}} \vec{c}(2) \vec{c}+\left(\begin{array}{c}\vec{a} \vec{c} \\ \cdot \\ \vec{a} \vec{b}\end{array}\right) \vec{b}(3) \vec{b}+\left(\begin{array}{c}\vec{b} \vec{c} \\ \cdot \\ \vec{a} \vec{b}\end{array}\right) \vec{c}(4) \vec{c}-\left(\begin{array}{c}\vec{a} \vec{c} \\ \cdot \\ \vec{a} \vec{b}\end{array}\right) \vec{b}$
A. $c+\left(\frac{a \cdot c}{a \cdot b}\right) b$
B. $b+\left(\frac{b \cdot c}{a \cdot b}\right) c$
C. $c-\left(\frac{a \cdot c}{a \cdot b}\right) b$
D. $b-\left(\frac{b \cdot c}{a \cdot b}\right) c$

Answer: C

31. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are coplanar, then $a+b+c-a b c=$
A. -2
B. 2
C. 0
D. -1

Answer: A

- Watch Video Solution

32. Let $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. Then the vector b satisfying $\vec{a} \times \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$, is
A. $-\hat{i}+\hat{j}-2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-\hat{j}-2 \hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$

Answer: D

- Watch Video Solution

33. If the vectors $\vec{a}=\hat{i}-\hat{j}+2 \hat{k} \cdot \vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$ and $\overrightarrow{=} \lambda \hat{i}+\hat{j}+\mu \hat{k}$ are mutually orthogonal, then (λ, μ)
A. $(-3,2)$
B. $(2,-3)$
C. (-2,3)
D. $(3,-2)$

Answer: A

- Watch Video Solution

34. If $\vec{u}, \vec{v}, \vec{w}$ are non -coplanar vectors and p, q, are real numbers then the equality
$[3 \vec{u} p \vec{v} p \vec{w}]-[p \vec{v} \vec{w} q \vec{u}]-[2 \vec{w}-q \vec{v} q \vec{u}]=0$ holds for
A. exactly two values of (p, q)
B. more than two but not all values of (p, q)
C. all values of (p, q)
D. exactly one value of (p, q)

Answer: D

- Watch Video Solution

35. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ? (1) $\alpha=2, \beta=2$
$\alpha=1, \beta=2(3) \alpha=2, \beta=1(4) \alpha=1, \beta=1$
A. $\alpha=1, \beta=1$
B. $\alpha=2, \beta=2$
C. $\alpha=1, \beta=2$
D. $\alpha=2, \beta=1$

Answer: D

- Watch Video Solution

36. If \vec{u} and \vec{v} are unit vectors and θ is the acute angle between them, then $2 \vec{u} \times 3 \vec{v}$ is a unit vector for
A. exactly two values of θ
B. more than two but not all values of θ
C. no value of θ
D. exactly one value of θ
37. Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}-\hat{j}+2 \hat{k}$ and $\bar{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector c lies in the plane of a and b, then x equals (1) 0 (2) 1 (3) -4(4) -2
A. 0
B. 1
C. -4
D. -2

Answer: D

- Watch Video Solution

38. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, Where \vec{a}, \vec{b} and \vec{c} and any three vectors such that $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$, then \vec{a} and \vec{c} are
A. inclined at an angle of $\frac{\pi}{6}$ between them
B. perpendicular
C. parallel
D. inclined at an angle $\frac{\pi}{3}$ between them

Answer: C

- Watch Video Solution

39. The values of a for which the points A, B, and C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$, and $a \hat{i}-3 \hat{j}+\hat{k}$, respectively, are the vertices of a rightangled triangle with $C=\frac{\pi}{2}$ are
A. -2 and -1
B. -2 and 1
C. 2 and -1
D. 2 and 1

Answer: D

40. The distance between the line $r=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $r \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$, is
A. $\frac{10}{3}$
B. $\frac{3}{10}$
C. $\frac{10}{3 \sqrt{3}}$
D. $\frac{10}{9}$

Answer: C

- Watch Video Solution

41. If \vec{a} is any vector, then $(\vec{a} \times \vec{i})^{2}+(\vec{a} \times \vec{j})^{2}+(\vec{a} \times \vec{k})^{2}$ is equal to
A. $4 a^{2}$
B. $2 a^{2}$
C. a^{2}
D. $3 a^{2}$

Answer: B

- Watch Video Solution

42. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and λ is a real number then

A. (a)exactly two values of λ
B. (b)exactly three values λ
C. (c)no value of λ
D. (d)exactly one value of λ

Answer: C

- Watch Video Solution

43. If $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$
$\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$.
then $\vec{a} .(\vec{b} \times \vec{c})$ depends on
A. neither x nor y
B. both x and y
C. only x
D. only y

Answer: A

- Watch Video Solution

44. Let $\vec{u}, \vec{v} a n d \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2 a n d|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors $\vec{v} a n d \vec{w}$ are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals $2 \mathrm{~b} . \sqrt{7}$ c. $\sqrt{14}$ d. 14
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 14

Answer: C

- Watch Video Solution

45. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c}, then the value of $\sin \theta$ is:
A. $\frac{1}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{2 \sqrt{2}}{3}$

Watch Video Solution

46. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9} j-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done by the forces in units.
A. 40 units
B. 30units
C. 25 units
D. 15 units

Answer: A

- Watch Video Solution

47. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \cdot[[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]]=\vec{u} \cdot \vec{v} \times \vec{w}$
A. 0
B. $u \cdot v \times w$
C. $u \cdot w \times v$
D. $3 u \cdot v \times w$

Answer: B

D Watch Video Solution

48. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three vectors, such that $a+b+c=0|a|=1,|b|=2,|c|=3$, then $a \cdot b+b \cdot c+c \cdot a$ is equal to
A. 0
B. -7
C. 7
D. 1
49. A tetrahedron has vertices $O(0,0,0), A(1,2,1),, B(2,1,3)$ and $C(-1,1,2)$, the angle between faces $O A B$ and $A B C$ will be
A. $\cos ^{-1}\left(\frac{19}{35}\right)$
B. $\cos ^{-1}\left(\frac{17}{31}\right)$
C. 30°
D. 90°

Answer: A

- Watch Video Solution

50. Let $\hat{u}=\hat{i}+\hat{j}, \hat{v}=\hat{i}-\hat{j}$ and $\hat{w}=\hat{i}+2 \hat{j}+3 \hat{k}$ If \hat{n} is a unit vector such that
$\hat{u} \hat{n}=0$ and $\hat{\hat{v}} \dot{\hat{n}}=0$, then find the value of $|\hat{w} \hat{n}|$.
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

51. Given, two vectors are $\hat{i}-\hat{j}$ and $\hat{i}+2 \hat{j}$, the unit vector coplanar with the two vectors and perpendicular to first is
A. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
B. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$
C. $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
D. None of these
