©゙doubtnut

 India's Number 1 Education App
MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

PROPERTIES AND SOLUTION OF TRIANGLES

Examples

1. Find the angles of the triangle whose sides are $3+\sqrt{3}, 2 \sqrt{3}$ and $\sqrt{6}$.

- Watch Video Solution

2. The sides of a tringle are $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm . Prove that the greatest angle is double of the smalest angle.
3. With usual notations, if in a triangle $A B C \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, then prove that: $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$

- Watch Video Solution

4. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smalles one. Determine the sides of the triangle.

- Watch Video Solution

5. In the triangle ABC , lines $O A, O B$ and $O C$ are drawn so that angles $O A B$, $O B C$ and OCA are each equal to ω, prove that $\cot \omega=\cot A+\cot B+\cot C$

- Watch Video Solution

6. Solve
$b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}$ in terms of k , where k is permeter of the $\triangle A B C$.

- Watch Video Solution

7. In a $\triangle A B C, c \cos ^{2} \frac{A}{2}+a \cos ^{2} \frac{C}{2}=\frac{3 b}{2}$, then a, b, c are in

- Watch Video Solution

8. In a $\triangle A B C, a=2 b$ and $|A-B|=\frac{\pi}{3}$. Determine the $\angle C$.

Watch Video Solution

9. In a $\triangle A B C$, the tangent of hald the difference of two angle is onethird the tangent of half the sum of the angle. Determine the ratio of the sides opposite to the angles.
10. If the angles of a triangle are 30° and 45°, and the included side is $(\sqrt{3}+1) \mathrm{cm}$, then

- Watch Video Solution

11. Consider the following statements concerning a $\triangle A B C$
(i) The sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and area of triangle are rational.
(ii) $a, \tan \frac{B}{2}, \tan \frac{C}{2}$
(iii) $a, \sin A \sin B, \sin C$ are rational .

Prove that $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i)$

- Watch Video Solution

12. Prove that $\frac{r_{1}-r}{a}+\frac{r_{2}-r}{b}=\frac{c}{r_{3}}$

- Watch Video Solution

13. If in a triangle $r_{1}=r_{2}+r_{3}+r$, prove that the triangle is right angled

- Watch Video Solution

14. In any $\triangle A B C$, prove the following : $r_{1}=r \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

15. In a right angles triangle, prove that $r+2 R=s$.

- Watch Video Solution

16. The exradii r_{1}, r_{2} and r_{3} of $\triangle A B C$ are in H.P. Show that its sides $a, b a n d c$ are in $A \dot{P}$.

- Watch Video Solution

17. Find the ratio of the circum-radius and the inradius of $\triangle A B C$, whose sides are in the ratio $4: 5: 6$.

Watch Video Solution

18. Find the ratio of $I A: I B: I C$, where l is the incentre of $\triangle A B C$.

- Watch Video Solution

19. If the sides of a triangle are in GP and its largest angle is twice tha smallset then the common ratio r satisfies the inequality

- Watch Video Solution

20. The equation $a x^{2}+b x+c=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the side of a $\triangle A B C$, and the equation $x^{2}+\sqrt{2} x+1=0$ have a common root. Find measure for $\angle C$.
21. In triangle $A B C$, if $\cot A, \cot B, \cot C$ are in $A \dot{P}$; then a^{2}, b^{2}, c^{2} are in \qquad progression.

- Watch Video Solution

22. Find the Side of pedal triangle and Circum-Radius of pedal Triangle ?

- Watch Video Solution

23. Find the ratio of the circum-radius and the inradius of $\triangle A B C$, whose sides are in the ratio $4: 5: 6$.
24. In a triangle ABC I_{1}, I_{2}, I_{3} are excentre of triangle then show that $I I_{1} . I I_{2} . I I_{3}=16 R^{2} r$.

Watch Video Solution

25. Prove that the locus of a point that is equidistant from both axis is $y=x$.

- Watch Video Solution

26. If $\mathrm{g}, \mathrm{h}, \mathrm{k}$ denotes the side of a pedal triangle, then prove that
$\frac{g}{a^{2}}+\frac{h}{b^{2}}+\frac{k}{c^{2}}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$

- Watch Video Solution

27. If x, y, z are respectively perpendiculars from the circumcentre on the sides of the $\triangle A B C$, the value of $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}-\frac{a b c}{4 x y z}=$
28. If O, H and G represents circum centre, orthocentre and centroid respectively, then show
$H G: G O=2: 1$. We have,

- Watch Video Solution

29. In $\triangle A B C$ it is given distance between the circumcentre (0) and orthocentre (H) is $R \sqrt{1-8 \cos A \cos B \cos C}$. If Q is the midopoint of OH , then AQ is

- Watch Video Solution

30. Find the distance between the circumcentre and the incentre of the $\triangle A B C$.
31. about to only mathematics

- Watch Video Solution

32. If the area of the circle is A_{1} and the area of the regular pentagon inscribed in the circle is A_{2}, then find the ratio $\frac{A_{1}}{A_{2}}$.

- Watch Video Solution

33. The area of a cyclic quadrilateral $A B C D$ is $\frac{(3 \sqrt{3})}{4}$. The radius of the circle circumscribing cyclic quadrilateral is 1.If $A B=1, B D=\sqrt{3}$, then find $B C . C D$.

- Watch Video Solution

34. A regular pentagon and a regular decagon have the same perimeter, prove that their areas are as $2: \sqrt{5}$.
35. If the sides of a cyclic quadrilateral are $3,3,4,4$, show that a circle be inscribed in it.

- Watch Video Solution

36. The two adjacent sides of a cyclic quadrilateral are $2 a n d 5$ and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides.

- Watch Video Solution

37. If a, b, c, d are the side of a quadrilateral, then find the the minimuym value of $\frac{a^{2}+b^{2}+c^{2}}{d^{2}}$

- Watch Video Solution

38. In any triangle $A B C$, the sides are $6 \mathrm{~cm}, 10 \mathrm{~cm}$ and 14 cm . Then the triangle is obtuse angled with the obtuse angle equal to

- Watch Video Solution

39. If a, b and A are given in a triangle and c_{1}, c_{2} are possible values of the third side, then prove that $c_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos 2 A=4 a^{2} \cos ^{2} A$

- Watch Video Solution

40. about to only mathematics

- Watch Video Solution

41. Two hagstaffs stand on a horizontal plane. A and B are two points on the line joining their feet and between them. The angles of elevation of the tops of the flagstaffs as seen from A are 30° and 60° and as seen
from B are 60° and 45°. If $A B$ is 30 m , then the distance between the flagstaffs is
A. $30+15 \sqrt{3}$
B. $45+15 \sqrt{3}$
C. $60-15 \sqrt{3}$
D. $60+15 \sqrt{3}$

Answer: A::C

- Watch Video Solution

42. In a cubicul hall $A B C D P Q R S$ with each side $10 m, G$ is the centre of the walls $B C R Q$ and T is the midpoint of the side $A B$, the angle of elevation of G at the Point T is
A. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer: A:C

- Watch Video Solution

43. Each side of an equilateral triangle subtends an angle of 60° at the top of a tower $h \mathrm{~m}$ high located at the centre of the triangle. If a is the length of each side of the triangle, then
A. $3 a^{2}=2 h^{2}$
B. $2 a^{2}=2 h^{2}$
C. $a^{2}=3 h^{2}$
D. $3 a^{2}=h^{2}$

Answer: A: : : ::C
44. If $\frac{\tan ^{2}(\pi-A)}{4}+\frac{\tan ^{2}(\pi-B)}{4}+\frac{\tan ^{2}(\pi-C)}{4}=1$, then $A B C$ is equilateral (b) isosceles (c) scalene (d) none of these
A. equilateral
B. isosceles
C. scalene
D. None of these

Answer: A::B::C

- Watch Video Solution

45. In $\triangle A B C, a^{2}+c^{2}=2002 b^{2}$ then $\frac{\cot A+\cot C}{\cot B}$ is equal to
A. $\frac{1}{2001}$
B. $\frac{2}{2001}$
C. $\frac{3}{2001}$
D. $\frac{4}{2001}$

Answer: B

- Watch Video Solution

46. In $\triangle A B C$, if $A C=8, B C=7$ and D lies between A and B such that $A D=2, B D=4$, then the length $C D$ equals
A. $\sqrt{46}$
B. $\sqrt{48}$
C. $\sqrt{51}$
D. $\sqrt{75}$

Answer: A

- Watch Video Solution

$(a+b+c)(a+b-c)(b+c-a)(c+a-b)=\frac{8 a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}}$ then the triangle is
A. isosceles
B. right angled
C. equilateral
D. obtuse angled

Answer: A::B::C::D

- Watch Video Solution

48. Consider a $\triangle A B C$ and let a, b and c denote the lengths of the sides opposite to vertices A, B and C, repectively. if $a=1, b=3$ and $C=60^{\circ}$, then $\sin ^{2} \mathrm{~B}$ is equal to
A. $\frac{27}{28}$
B. $\frac{3}{28}$
C. $\frac{81}{28}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

49. In $\triangle A B C$, if $\cos A+\sin A-\frac{2}{\cos B+\sin B}=0$, then $\frac{a+b}{c}$ is equal to
A. $\sqrt{2}$
B. 1
C. $\frac{1}{\sqrt{2}}$
D. $2 \sqrt{2}$

Answer: A

50. In a triangle $A B C$, if $\angle A=30^{\circ}, b=10$ and $a=x$, then the values of x for which there are 2 possible triangles is given by(All symbols used have usual meaning in a triangle.)
A. (a) $5<x<10$
B. (b) $x<\frac{5}{2}$
C. (c) $\frac{5}{3}<x<10$
D. (d) $\frac{5}{2}<x<10$

Answer: A: B

- Watch Video Solution

51. In a $\triangle A B C, A B=A C, P$ and Q are points on AC and AB respectively such that $C B=B P=P Q=Q A$. if $\angle A Q P=\theta$, then $\tan ^{2} \theta$ is a root of the equation
A. $y^{3}+21 y^{2}-35 y-12=0$
B. $y^{3}-21 y^{2}+35 y-12=0$
C. $y^{3}-21 y^{2}+35 y-7=0$
D. $12 y^{3}-35 y^{2}+35 y-12=0$

Answer: A::B::C

- Watch Video Solution

52. The angle of elevation of the top of a tower a point A due south of it is 30° and from a point B due west of it is 45°.If the height of the tower is 100 meters ,then find the distance $A B$.
A. 150 m
B. 200 m
C. 173.2 m
D. 141.4 m

- Watch Video Solution

53. An aeroplane flying horizontally 1 km above the ground is observed at an elevation of 60 o . After 10 seconds, its elevation is observed to be 30 o .

Find the speed of the aeroplane in $\mathrm{km} / \mathrm{hr}$.
A. 240
B. $240 \sqrt{3}$
C. $60 \sqrt{3}$
D. None of these

Answer: A::B::C::D

54. In $\triangle A B C$, the ratio $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ is not always equal to (All symbols used have usual meaning in a triangle.)
A. $2 R$, where R is the circumradius
B. $\frac{a b c}{2 \Delta}$, where Δ is the area of the triangle
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)^{\frac{1}{2}}$
D. $\frac{(a b c)^{\frac{2}{3}}}{\left(h_{1} h_{2} h_{3}\right)^{\frac{1}{3}}}$

Answer: A::B::C::D

- Watch Video Solution

55. Let $A B C D$ be a cyclic quadrilateral such that $A B=2, B C=3, \angle B=120^{\circ}$ and area of quadrilateral $=4 \sqrt{3}$. Which of the following is/are correct ?
A. The value of $(A C)^{2}$ is equal to 19
B. The sum of all positive value of product AC. BD I is equal to 35
C. The sum of all posible value of $(A D)^{2}$ is equal to 29
D. The value of $(C D)^{2}$ can be 4

Answer: B

- Watch Video Solution

56. In a triangle $A B C$, which of the following quantities denote the area of the triangles $\frac{a^{2}-b^{2}}{2} \frac{\sin A \sin B}{\sin (A-B)}$

- Watch Video Solution

57. Consider the system of equations
$\sin x \cos 2 y=\left(a^{2}-1\right)^{2}+1, \cos x \sin 2 y=a+1$
The number of values of $x \in[0,2 \pi]$, when the system has solution for permissible values of a, is/are
A. $\left(\frac{-\pi}{2}, \frac{-\pi}{2}\right)$
B. $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
C. $\left(\frac{3 \pi}{2}, \frac{-\pi}{2}\right)$
D. $\left(\frac{-\pi}{2}, \frac{3 \pi}{2}\right)$

Answer: A::B::C::D

- Watch Video Solution

58. In a triangle ABC , let $2 a^{2}+4 b^{2}+c^{2}=2 a(2 b+c)$, then which of the following holds good?
A. $\cos B=\frac{-7}{8}$
B. $\sin (A-C)=0$
C. $\frac{r}{r_{1}}=\frac{1}{5}$
D. $\sin A: \sin B: \sin C=1: 2: 1$

Answer: A::B::C

59. In $A A B C$, angle A, B and C are in the ratio $1: 2: 3$, then which of the following is (are) correct? (All symbol used have usual meaning in a triangle.)
A. Circum-radius of $\triangle A B C=c$
B. $a: b: c=1: \sqrt{3}: 2$
C. Permimeter of $\triangle A B C=3+\sqrt{3}$
D. Area of $\triangle A B C=\frac{\sqrt{3}}{8} c^{2}$

Answer: A::B::C

- Watch Video Solution

60. If the length of tangents from A, B, C to the incircle of $\triangle A B C$ are $4,6,8$ then which of the following is(are) correct? (All symbols used have usual meaning in a triangle.
A. Area of $\triangle A B C i s 12 \sqrt{6}$
B. r_{1}, r_{2}, r_{3} are in HP
C. a,b,c are in AP
D. $r=\frac{4 \sqrt{6}}{3}$

Answer: B

- Watch Video Solution

61. In triangle $A B C$, let $b=10, C=10 \sqrt{2}$ and $R=5 \sqrt{2}$ then which of the following are correct
A. Area of triangle $A B C$ is 50 .
B. Distance between orthocentre and circumcetre iss $5 \sqrt{2}$.
C. Sum of circum-radius and in-radius of $\triangle A B C$ is equal to 10 .
D. Length of internal angle bisector of $\angle A B C$ of $\triangle A B C$ is $\frac{5}{2 \sqrt{2}}$.
62. Let ' I ' is the length of median from the vertex A to the side $B C$ of a $\triangle A B C$. Then
A. $4 l^{2}=2 b^{2}+2 c^{2}-a^{2}$
B. $4 l^{2}=b^{2}+x^{2}+2 b c \cos A$
C. $4 l^{2}=a^{2}+4 b o s A$
D. $4 l^{2}=(2 s-a)^{2}-4 b c \sin ^{2} \frac{A}{2}$

Answer: A::B::C::D

- Watch Video Solution

63. If a right angled $\triangle A B C$ of maximum area is inscribled within a circle of radius R , then (δ representes area of $\triangle A B C$ and r, r_{1}, r_{2}, r_{3} represent in-radius and ex-radii, and s is the semi-perimeter of $\triangle A B C$, then
A. $\Delta=R^{2}$
B. $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{\sqrt{2}+1}{R}$
C. $r=(\sqrt{2}-1) R$
D. $s=(1+\sqrt{2}) R$

Answer: A,B,C,D

- Watch Video Solution

64. Statement I In a $\triangle A B C$, if $a<b<c$ and r is inradius and r_{1}, r_{2}, r_{3} are the exradii opposite to angle $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then $r<r_{1}<r_{2}<r_{3}$.

Statement II For, $\Delta A B C r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=\frac{r_{1} r_{2} r_{3}}{r}$
A. Statement I is True, Statement II is True, Statement II is a correct explanation for Statement I.
B. Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A::B::C::D

- Watch Video Solution

65. Statement I If the sides of a triangle are 13,1415 then the radius of in circle $=4$

Statement II In $a \Delta A B C, \Delta=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$ and $r=\frac{\Delta}{s}$
A. Statement I is True, Statement II is True, Statement II is a correct explanation for Statement I.
B. Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

- Watch Video Solution

66. Statement I In $a \Delta A B C, \sum \frac{\cos ^{2} \frac{A}{2}}{a}$ has the value equal to $\frac{s^{2}}{a b c}$.

Statement II in $a \Delta A B C, \cos \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$
$\cos \frac{\beta}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}}, \cos \frac{c}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}$
A. Statement I is True, Statement II is True, Statement II is a correct explanation for Statement I.
B. Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: C

- Watch Video Solution

67. If $\operatorname{side}(a)=4$ then area of the equilateral triangle $\triangle A B C$ is equal to
A. а) $\frac{3 \sqrt{2}}{2}$
B. b) 3
C. c) $4 \sqrt{3}$
D. d) $3 \sqrt{2}$

Answer: A::B::C::D

Watch Video Solution
68. In triangle $A B C$ let $\tan A=1, \tan B=2, \tan C=3$ and $c=3$, The radius of the circle circumscribing the triangle $A B C$, is equal to
A. $\frac{\sqrt{10}}{2}$
B. $\sqrt{5}$
C. $\sqrt{10}$
D. $\frac{\sqrt{5}}{2}$
A. $\frac{\sqrt{10}}{2}$
B. $\sqrt{5}$
C. $\sqrt{10}$
D. $\frac{\sqrt{5}}{2}$

Answer: A::B::C::D

- Watch Video Solution

69. Let Δ denote the area of the $\Delta A B C$ and Δp be the area of its pedal triangle. If $\Delta=k \Delta p$, then k is equal to

- Watch Video Solution

70. If $\sin x=1$, then x is equal to
A. $\frac{\pi}{9}$
B. $\frac{2 \pi}{9}$
C. $\frac{\pi}{3}$
D. None of these

Answer: B

- Watch Video Solution

71. If the sum of squares of two sides is equal to square of third side then $\triangle A B C$ is
A. Equilateral
B. Isosceless
C. Scalene
D. Right angled
72. Which of the following is true?
A. $B c>A C$
B. $A C=A B$
C. $A C>A B$
D. $B C=A C$

Answer: A::C::D

Watch Video Solution

73. If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ denote the side of a pedal triangle, then $\frac{l}{a^{2}}+\frac{m}{b^{2}}+\frac{n}{c^{2}}$ is equal to
A. (a) $\frac{a^{2}+b^{2}+c^{2}}{a^{3}+b^{3}+c^{2}}$
B. (b) $\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
C. (c) $\frac{a^{3}+b^{3}+c^{3}}{a b c(a+b+c)}$
D. (d) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Answer: B

- Watch Video Solution

74. If R be circum-radius of $a \Delta$, then circum-radius of a pedal Δ is
A. R
B. $\frac{2 R}{3}$
C. $\frac{R}{3}$
D. $\frac{R}{2}$

Answer: D

75. The in-radius of pedal Δ of a $\triangle A B C$ is
A. $\frac{R}{2}$
B. $R \sin A \sin B \sin C$
C. $2 R \cos A \cos B \cos C$
D. $4 R \sin \frac{A}{2} \sin \frac{b}{2} \sin \frac{C}{2}$

Answer: A::B::C::D

- Watch Video Solution

76. In a triangle ABC , if $r_{1}+r_{3}+r=r_{2}$, then find the value of $\left(\sec ^{2} A+\csc ^{2} B-\cot ^{2} C\right)$,

- Watch Video Solution

77. In $\triangle A B C$, let $b=6, c=10$ and $r_{1}=r_{2}+r_{3}+r$ then find area of $\triangle A B C$.

- Watch Video Solution

78. Consider on obtuse angle triangles with side $8 \mathrm{~cm}, 15 \mathrm{~cm}$ and $\times \mathrm{cm}$ (largest side being 15 cm). If \times is an integer, then find the number of possible triangels.

- Watch Video Solution

79. let $A B C$ be a right angled triangle at C. If the inscribed circle touches the side $A B$ at D and $(A D)(B D)=11$, then find the area of triangle $A B C$.

- Watch Video Solution

80. Consider a $\triangle A B C$ and let a, b, and c denote the leghts of the sides opposite to vertices A,B and C, respectively. Suppose $a=2, b=3, c=4$ and H be the orthocentre. Find $15(H A)^{2}$.
81. In a triangle ABC , the internal angle bisector of $\angle A B C$ meets AC at K . If $B C=2, C K=1$ and $B K=\frac{3 \sqrt{2}}{2}$, then find the length of side AB.

- Watch Video Solution

82. Triangle $A B C$ has $A C=13, A B=15$ and $B C=14$. Let ' O ' be the circumcentre of the $\triangle A B C$. If the length of perpendicular from the point ' O ' on $B C$ can be expressed as a rational $\frac{m}{n}$ in the lowest form then find $(m+n)$.

- Watch Video Solution

83. Two sides of a tariangle are given by the roots of the equation $x^{2}-2 \sqrt{3} x+2=0$. The angle between the sides is $\frac{\pi}{3}$. Find the perimeter of Δ.
84. If in $\triangle A B C, \angle A=90^{\circ}$ and $\mathrm{c}, \sin \mathrm{B} \cos \mathrm{B}$ are rational numbers, then show a and b are rational .

- Watch Video Solution

85. If the sides of a $\triangle A B C$ are in AP and a is the smallest sie, then $\cos \mathrm{A}$ equals

- Watch Video Solution

86. If A, B and C are angles of a triangle such that $\angle A$ is obtuse, then show $\tan \mathrm{B} \tan C<1$.

- Watch Video Solution

87. If A is the area and $2 s$ is the sum of the sides of a triangle, then $A \leq \frac{s^{2}}{4}$ (b) $A \leq \frac{s^{2}}{3 \sqrt{3}} 2 R \sin A \sin B \sin C$ (d) noneofthese

- Watch Video Solution

88. In a triangle, if $r_{1}>r_{2}>r_{3}$, then show $a>b>c$.

- Watch Video Solution

89. D is midpoint of BC in $\triangle A B C$ such that AD and AC are perpendicular, Show that $\cos A \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$

- Watch Video Solution

90. In any $\triangle A B C$, prove that
$a^{3} \cos (B-C)+b^{3} \cos (C-A)+c^{3} \cos (A-B)=3 a b c$
91. If in a triangle of base 'a', the ratio of the other two sides is $r(<1)$.Show that the altitude of the triangle is less than or equal to $\frac{a r}{1-r^{2}}$

- Watch Video Solution

92. about to only mathematics

- Watch Video Solution

93. Prove m:n theorem in a $\triangle A B C$, a point D is taken on side BC such that $\mathrm{BD}: \mathrm{DC}$ is $\mathrm{m}: \mathrm{n}$. Then prove that $(1)(m+n) \cot \theta=m \cot \alpha-n \cot \beta$
(2) $(m+n) \cot \theta=n \cot B-m \cot C$

- Watch Video Solution

94. The base of a triangle is divided into three equal parts. If t_{1}, t_{2}, t_{3} are the tangents of the angles subtended by these parts at the opposite vertex, prove that $\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)\left(\frac{1}{t_{2}}+\frac{1}{t_{3}}\right)=4\left(1+\frac{1}{t 22}\right)$.

- Watch Video Solution

95. Prove that the triangle $A B C$ is equilateral if $\cot A+\cot B+\cot C=\sqrt{3}$

- Watch Video Solution

96. In any triangle. if $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$, then prove that the triangle is either right angled or isosceles.

- Watch Video Solution

97. The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then $4(1-\cos A)(1-\cos C)$ is equal to

- Watch Video Solution

98. perpendiculars are drawn from the angles $A, B a n d C$ of an acuteangled triangle on the opposite sides, and produced to meet the circumscribing circle. If these produced parts are α, β, γ, respectively, then show that $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=2(\tan A+\tan B+\tan C)$.

- Watch Video Solution

99. If $a=\cos \theta+i \sin \theta, b=\cos \phi+i \sin \phi, c=\cos \psi+i \sin \psi$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=2$ then $\sin (\theta-\phi)+\sin (\phi-\psi)+\sin (\psi-\theta)$ equals

- Watch Video Solution

100. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Show that the tangents of the angles are the roots of the equation $q x^{3}-p x^{2}+(1+q) x-p=0$.

- Watch Video Solution

101. Given the base of a triangle, the opposite angle A , and the product k^{2} of the other two sides, show that it is not possible for a to be less than $2 k \frac{\sin A}{2}$

- Watch Video Solution

102. If in a triangle $A B C, \angle C=60^{\circ}$, then prove that
$\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$.

- Watch Video Solution

103. Let $1<m<3$. In a triangle $A B C$, if $2 b=(m+1)$ a \& $\cos A=\frac{1}{2} \sqrt{\frac{(m-1)(m+3)}{m}}$ prove that the are two values to the third side, one of which is m times the other.

- Watch Video Solution

104. In any $\triangle A B C$, if D be any points of the base BC such that $\frac{B D}{D C}=\frac{m}{n}$ and $\angle A B D=\alpha, \angle D A C=\beta, \angle C D A=\theta$ and $A D=x$ then prove that
$(m+n)^{2} \cdot x=(m+n)\left(m b^{2}+n c^{2}\right)-m n a^{2}$

- Watch Video Solution

105. ABCD is a trapezium such that $A B|\mid C D a n d C B$ is perpendicular to them. If $\angle A D B=\theta, B C=p, a n d C D=q \quad$ show that $A B=\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$
106.

In a triangle
ABC,
prove
that
$\frac{\cot \left(\frac{A}{2}\right)+\cot \left(\frac{B}{2}\right)+\cot \left(\frac{C}{2}\right)}{\cot A+\cot B+\cot (C)}=\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}$

- Watch Video Solution

107. If the sides of a triangle are in A.P., and its greatest angle exceeds the least angle by α, show that the sides are in the ratio $1+x: 1: 1-x$, , where $x=\sqrt{\frac{1-\cos \alpha}{7-\cos \alpha}}$

- Watch Video Solution

108. In a $A B C$, if $\frac{\tan A}{2}, \frac{\tan B}{2}, \frac{\tan C}{2}$ are $\in A \dot{P}$; then show that $\cos A, \cos B, \cos C$ are in $A \dot{P}$.

- Watch Video Solution

109. If a,b,c are in HP, then prove that $\sin ^{2} \frac{A}{2}, \sin ^{2} \frac{B}{2}, \sin ^{2} \frac{C}{2}$ are also in HP.

- Watch Video Solution

110. If r_{1}, r_{2}, r_{3} are the ex-radii of $\triangle A B C$, then prove that
$\frac{b c}{r_{1}}+\frac{c a}{r_{2}}+\frac{a b}{r_{3}}=2 R\left[\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)-3\right]$

- Watch Video Solution

111. If r and R are radii of the incircle and circum-circle of $\triangle A B C$, then prove that :

$$
\begin{aligned}
& 8 r R\left\{\cos ^{2} A / 2+\cos ^{2} B / 2+\cos ^{2} C / 2\right\} \\
& =2 b c+2 c a+2 a b-a^{2}-b^{2}-c^{2} .
\end{aligned}
$$

- Watch Video Solution

112. Prove that
$r_{1}^{2}+r_{2}^{2}+r_{3}^{3}+r^{2}=16 R^{2}-a^{2}-b^{2}-c^{2}$.
where $r=$ in radius, $\mathrm{R}=$ circumradius,, r_{1}, r_{2}, r_{3} are ex-radii.

- Watch Video Solution

113. If in a triangle $A B C, \cos A+2 \cos B+\cos C=2$ prove that the sides of the triangle are in $A P$

- Watch Video Solution

114. In a cyclic quadrilateral $A B C D$, prove that $\tan ^{2} \frac{B}{2}=\frac{(s-a)(s-b)}{(s-c)(s-d)}, a, b, c$, and d being the lengths of sides $A B C, C D$ and DA respectively and s is semi-perimeter of quadrilateral.

- Watch Video Solution

115. If x, y, z are perpendicular from circum centre of the sides of the $\triangle A B C$ respectively. Prove that $\frac{a}{z}+\frac{b}{y}+\frac{c}{z}=\frac{a b c}{4 x y z}$

- Watch Video Solution

116. The circle inscribed in the triangle $A B C$ touches the side $B C, C A$ and AB in the point $A_{1} B_{1}$ and C_{1} respectively. Similarly the circle inscribed in the $\Delta A_{1} B_{1} C_{1}$ touches the sieds in A_{2}, B_{2}, C_{2} respectively and so on. If $A_{n} B_{n} C_{n}$ be the nth Δ so formed, prove that its angle are $\frac{\pi}{3}-(2)^{-n}\left(A-\frac{\pi}{3}\right), \frac{\pi}{3}-(2)^{-n}\left(B-\frac{\pi}{3}\right), \frac{\pi}{3}-(2)^{-n}\left(C-\frac{\pi}{3}\right)$.
Hence prove that the triangle so formed is ultimately equilateral.

- Watch Video Solution

117. In a $\triangle A B C$, prove that:
$2 r \leq \frac{a \cot A+b \cot B+c \cot C}{3} \leq R$
118. If Δ is the area of a triangle with side lengths a, b, and c, then show that $\Delta \leq \frac{1}{2} \sqrt{(a+b+c) a b c}$. Also show that equality occurs in the above inequality if and only if $a=b=c$

- Watch Video Solution

SOLVED EXAMPLES

1. Match the statements of Column I with valuwe of Column II.

Column I

Column II

(A) In a triangle $A B C$ if $a^{4}-2\left(b^{2}+c^{2}\right) a^{2}+b^{2}$ p. 30° $+b^{2} c^{2}+c^{4}=0$, then $\angle A$
(B) In a triangle $A B C$, If $a^{4}+b^{4}+c^{4}$
q. 60°
$=a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}$, then $\angle C$ is
(C) In a triangle $A B C$, If $a^{4}+b^{4}+c^{4}+2 a^{2} c^{2}$
r. 90° $=2 a^{2} b^{2}+2 b^{2} c^{2}$, then $\angle B$ is
s. 120°
t. 150°

- Watch Video Solution

1. In the given figure,if $A B=A C, \angle B A D=30^{\circ}$ and $A E=A D$, then x is equal to

A. 15°
B. 10°
C. $12 \frac{1}{2}$
D. $7 \frac{1}{2}$
2. In $\triangle A B C, a=4, b=12$ and $B=60^{\circ}$, thn the vlaue of $\sin \mathrm{A}$ is
A. $\frac{1}{2 \sqrt{3}}$
B. $\frac{1}{3 \sqrt{2}}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{\sqrt{3}}{2}$

- Watch Video Solution

3. Let ABC be a triangle such that $\angle A=45^{\circ}, \angle B=75^{\circ}$, then $a+c \sqrt{2}$ is equal to
A. (a) 0
B. (b) b
C. (c) $2 b$
D. (d) $-b$

- Watch Video Solution

4. If the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of $\triangle A B C$ are in A.P. and $b: c=\sqrt{3}: \sqrt{2}$, show that $A=75^{\circ}$.
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{5 \pi}{12}$
D. $\frac{\pi}{2}$

D Watch Video Solution

5. If $\cot \frac{A}{2}=\frac{b+c}{a}$, then $\triangle A B C$ is
A. (a) Isosceles
B. (b) Equilateral
C. (c) Right angled
D. (d) None of these

Watch Video Solution

6. In any triangle. if $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$, then prove that the triangle is either right angled or isosceles.
A. Right angled or isosceles
B. Right angled and isosceles
C. Equiliateral
D. None of these
A. $a+b+c$
B. $a+b-c$
C. $a-b+c$
D. 0
7. In any $\triangle A B C$, is $2 \cos B=\frac{a}{c}$, then the triangle is
A. right angled
B. equilateral
C. isosceles
D. None of these

(Watch Video Solution

9. Prove that $\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}}=\sin ^{2}$
A. $\cos ^{2} A$
B. $\sin ^{2} A$
C. $\cos A \cos B \cos C$
D. None of these

- Watch Video Solution

10. If a $\cos A=b \cos B$, then the triangle is
A. Isosceles
B. Right angled
C. Isosceles or right angled
D. Right angled isosceles

- Watch Video Solution

11. In $\Delta A B C,(a+b+c)(b+c-a)=k b c$ if
A. lamd <0
B. $\lambda>0$
C. $0<\lambda<4$
D. $\lambda<4$
A. $x=5$
B. $x=6$
C. $x=4$
D. $x=7$
12. In $\triangle A B C$, if $\sin ^{2} A+\sin ^{2} B=\sin ^{2} C$, then the triangle is
A. equilateral
B. isosceles
C. right angled
D. None of these
13. The lengths of the sides of a triangle are $\alpha-\beta, \alpha+\beta$ and $\sqrt{3 \alpha^{2}+\beta^{2}},(\alpha>\beta>0)$. Its largest angle is
A. $\frac{2 \pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{6}$

Watch Video Solution

15. In any triangle $A B C$, prove that: $\frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
A. $\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
B. $\frac{b^{2}+c^{2}}{b^{2}-c^{2}}$
C. $\frac{c^{2}-a^{2}}{a^{2}+b^{2}}$
D. None of these

(Watch Video Solution

16. If the sides of a triangle $A B C$ are in $A P$ and ' a ' is the smallest side, then express $\cos A$ in term of b and c.
A. $\frac{3 c-4 b}{2 c}$
B. $\frac{3 c-4 b}{2 b}$
C. $\frac{4 c-3 b}{2 c}$
D. None of these

- Watch Video Solution

17. In a $\triangle A B C, a^{2} \cos 2 B+b^{2} \cos 2 A+2 a b \cos (A-B)=$
A. (a) a^{2}
B. (b) c^{2}
C. (c) b^{2}
D. (d) $a^{2}+b^{2}$
18. In any $\triangle A B C, 2[b c \cos A+c a \cos B+a b \cos C]=$
A. $a^{2}+b^{2}+c^{2}$
B. $a^{2}+b^{2}-c^{2}$
C. $a^{2}-b^{2}+c^{2}$
D. $a^{2}-b^{2}+c^{2}$
19. In a $\triangle A B C, \tan \frac{1}{2}(A+B) \cdot \cot \frac{1}{2}(A-B)$ is equal to
A. $\frac{a-b}{a+b}$
B. $\frac{a+b}{c}$
C. $\frac{a+b}{a-b}$
D. $\frac{a-b}{2(a+b)}$

- Watch Video Solution

20. If in a $\triangle A B C, b=\sqrt{3}, c=1$ and $B-C=90^{\circ}$, then $\angle A$ is
A. 30°
B. 45°
C. 75°
D. 15°

Exercise For Sesssion 2

1. If in a triangle $A B C,(s-a)(s-b)=s(s-c)$, then angle C is equal to
A. 90°
B. 45°
C. 30°
D. 60°

- Watch Video Solution

2. In any $\triangle A B C$, If $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in AP, then a, b, c are in (A) A.P, (b)G.P., (c)H.P., (d)NONE OF THESE
A. AP
B. GP
C. HP
D. None of these

- Watch Video Solution

3. In any $\triangle A B C, \frac{\tan \frac{A}{2}-\tan \frac{B}{2}}{\tan \frac{A}{2}+\tan \frac{B}{2}}$ is equal to:
A. (a) $\frac{a-b}{a+b}$
B. (b) $\frac{a-b}{c}$
C. (c) $\frac{a-b}{a+b+c}$
D. (d) $\frac{c}{a+b}$
4. Prove that $b c \cos ^{2} \cdot \frac{A}{2}+c a \cos ^{2} \cdot \frac{B}{2}+a b \cos ^{2} \cdot \frac{C}{2}=s^{2}$
A. $(s-a)^{2}$
B. $(s-b)^{2}$
C. $(s-c)^{2}$
D. s^{2}

- Watch Video Solution

5. In a $\triangle A B C$, if $\cos A+\cos C=4 \sin ^{2}\left(\frac{B}{2}\right)$, then a,b,c are in
A. AP
B. GP
C. HP
D. None of these
6. In a $\triangle A B C$, if $b^{2}+c^{2}=3 a^{2}$, then $\cot B+\cot C-\cot A$ is equal to
A. 1
B. $\sqrt{3}$
C. 2
D. None of these

- Watch Video Solution

7. In any
$\Delta A B C,\left(\frac{b-c}{a}\right) \cos ^{2}\left(\frac{A}{2}\right)+\left(\frac{c-a}{b}\right) \cos ^{2}\left(\frac{b}{2}\right)+\left(\frac{a-b}{2}\right) \cos ^{2}\left(\frac{C}{2}\right)$ is equal
A. $\frac{b^{2}-c^{2}}{a^{2}}$
B. $\frac{c^{2}-a^{2}}{b^{2}}$
C. $\frac{a^{2}-b^{2}}{c^{2}}$
D. 0

- Watch Video Solution

8. In a $\triangle A B C$, the tangent of hald the difference of two angle is onethird the tangent of half the sum of the angle. Determine the ratio of the sides opposite to the angles.
A. $2: 3$
B. 1:3
C. 2:1
D. 3:4
9. If in a triangle $a \cos ^{2} \cdot \frac{C}{2}+c \cos ^{2} \cdot \frac{A}{2}=\frac{3 b}{2}$, then find the relation between the sides of the triangles
A. AP
B. GP
C. HP
D. AGP

- Watch Video Solution

10. In the adjacent figure ' P ' is any interior point of the equilateral triangle ABC is side length 2 unit. If x_{a}, x_{b} and x_{c} represent the distance of P from the sides BC, CA and AB respectively then $x_{a}+x_{b}+x_{c}$ is equal to
A. 6
B. $\sqrt{3}$
C. $\frac{\sqrt{3}}{2}$
D. $2 \sqrt{3}$

- Watch Video Solution

11. If $c^{2}=a^{2}+b^{2}$, then prove that $4 s(s-a)(s-b)(s-c)=a^{2} b^{2}$
A. s^{4}
B. $b^{2} c^{2}$
C. $c^{2} a^{2}$
D. $a^{2} b^{2}$
12. The number of possible $\angle A B C$ in which
$B C=\sqrt{11} \mathrm{~cm}, C A=\sqrt{13} \mathrm{~cm}$ and $A=60^{\circ}$ is
A. 0
B. 1
C. 2
D. None of these
13. If two sides a, b and the $\angle A$ be such that the sum of two values of the third side is
A. $b^{2}-a^{2}$
B. $2 b \cos A$
C. $2 b \sin A$
D. $\frac{b-c}{b+c}$
14. If in a $\triangle A B C, \sin A=\sin ^{2} B$ and $2 \cos ^{2} A=3 \cos ^{2} B$, then the $\triangle A B C$ is
A. right angled
B. obtuse angled
C. isosceles
D. equilateral

- Watch Video Solution

15. If a $\cos A=b \cos B$, then the triange is
A. (a)equliateral
B. (b)right angled
C. (c)isosceles
D. (d)isosceles or right angled

- Watch Video Solution

16. Point D, E are taken on the side $B C$ of an acute angled triangle $A B C$,, such that $B D=D E=E C . \quad$ If
$\angle B A D=x, \angle D A E=y$ and $\angle E A C=z \quad$ then the value of $\frac{\sin (x+y) \sin (y+z)}{\sin x \sin z}$ is \qquad
A. 1
B. 2
C. 4
D. None of these
17. If the base angles of triangle are $22 \frac{1}{2}$ and $112 \frac{1}{2}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.
A. half the base
B. the base
C. twice the base
D. four times the base

- Watch Video Solution

18. In a $\triangle A B C, a=1$ and the perrimeter is six times the AM of the since of the angles. The measure of $\angle A$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

- Watch Video Solution

19. In a $\triangle A B C$, if median AD is perpendicular to AB , the $\tan A+2 \tan B$ is equal to
A. 1
B. 3
C. 0
D. $\frac{1}{2}$

- Watch Video Solution

20. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Show that the tangents of the angles are
the roots of the equation $q x^{3}-p x^{2}+(1+q) x-p=0$.
A. $q x^{2}-p x^{2}+(1+q) x-p=0$
B. $p x^{3}-q z^{2}+(1-p) x-q=0$
C. $(1+q) x^{3}-p x^{2}+q x-p=0$
D. None of these

- Watch Video Solution

Exercise For Sesssion 3

1. The side of a triangle are $22 \mathrm{~cm}, 28 \mathrm{~cm}$, and 36 cm So, find the area of a the circumscribed circle.
2. If the lengths of the side of a triangle are 3,4 and 5 units, then find the circum radius R .

- Watch Video Solution

3. In an equliateral triangle of side $2 \sqrt{3} \mathrm{~cm}$. The find circum-radius.

- Watch Video Solution

4. If $8 R^{2}=a^{2}+b^{2}+c^{2}$. then prove that the Δ is right angled.

- Watch Video Solution

5. In a $\triangle A B C$, show that $2 R^{2} \sin A \sin B \sin C=\Delta$.

- Watch Video Solution

6. In a $\triangle A B C$, show that $\frac{a \cos A+b \cos B+c \cos C}{a+b+c}=\frac{r}{R}$

D Watch Video Solution

7. If the sides of a triangle are in the ratio $3: 7: 8$, then find $R: r$

(Watch Video Solution

8. In an equilateral triangle show that the in-radius and the circum-radius are connected by $r=\frac{R}{2}$.

- Watch Video Solution

9. In any $\Delta A B C$, find $\sin A+\sin B+\sin C$.

- Watch Video Solution

10. In any $\triangle A B C$, show that $\cos A+\cos B+\cos C=\left(1+\frac{r}{R}\right)$.

- Watch Video Solution

11. Prove that $\frac{r_{1}-r}{a}+\frac{r_{2}-r}{b}=\frac{c}{r_{3}}$

Watch Video Solution
12. Prove that $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=\frac{1}{4}(a+b+c)^{2}$

- Watch Video Solution

13. Show that $\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)=4 R s^{2}$

- Watch Video Solution

14. If $r_{1}+r_{2}+r=r_{3}$, then show that Δ is right angled.
15. In an equilateral triangle, the inradius, circumradius, and one of the exradii are in the ratio

- Watch Video Solution

16. Show that $\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\left(\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)\left(\frac{1}{r_{3}}+\frac{1}{r_{1}}\right)=\frac{64 R^{3}}{a^{2} b^{2} c^{2}}$

- Watch Video Solution

17. The exradii r_{1}, r_{2}, and r_{3} of $\triangle A B C$ are in H.P. show that its sides a, b, and c are in A.P.

Watch Video Solution
18. In a $\Delta A B C$, show that $r_{1} \cdot r_{2} \cdot r_{3} \cdot r=\Delta^{2}$.
19. If l_{1}, l_{2}, l_{3} are respectively the perpendicular from the vertices of a triangle on the opposite side, then show that $l_{1} l_{2} l_{3}=\frac{a^{2} b^{2} c^{2}}{8 R^{3}}$.

- Watch Video Solution

20. If the angle opf a triangle are in the ratio $1: 2: 3$, then show that the sides opposite to the respective angle are in the ratio $1: \sqrt{3}: 2$.

- Watch Video Solution

21. Show that, $4 R r \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\Delta$

- Watch Video Solution

22. If in $\triangle A B C,(a-b)(s-c)=(b-c)(s-a)$, prove that r_{1}, r_{2}, r_{3} are in A.P.

- Watch Video Solution

23. In a triangle ABC , if $\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r^{2}}=$

- Watch Video Solution

24. Prove that $\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right)=4 R r^{2}$

- Watch Video Solution

25. Show that $\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\left(\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)\left(\frac{1}{r_{3}}+\frac{1}{r_{1}}\right)=\frac{64 R^{3}}{a^{2} b^{2} c^{2}}$
26. Prove that $(r+r 1) \tan ((B-C) / 2)+(r+r 2) \tan ((C-A) / 2)+(r+r 3) \tan ((A-B) / 2)=0$

- Watch Video Solution

27. Show that $\frac{b-c}{r_{1}}+\frac{c-a}{r_{2}}+\frac{a-b}{r_{3}}=0$

- Watch Video Solution

28. If the sides be $\mathrm{a}, \mathrm{b}, \mathrm{c}$, than find $\left(r_{1}-r\right)\left(r_{2}+r_{3}\right)$.

- Watch Video Solution

29. If a, b, c are in AP, then show that r_{1}, r_{2}, r_{3} are in HP.

- Watch Video Solution

30. In $\triangle A B C$ with usual notation $\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}$ is

Watch Video Solution

31. Show that $r_{1}+r_{2}=c \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

32. Show that $\operatorname{Rr}(\sin A+\sin B+\sin C)=\Delta$

- Watch Video Solution

33. Show that $16 R^{2} r r_{1} r_{2} r_{3}=a^{2} b^{2} c^{2}$

- Watch Video Solution

34. If in a triangle $\frac{r}{r_{1}}=\frac{r_{2}}{r_{3}}$, then
35. H is orthocenter of the triangle $A B C$, then $A H$ is equal to :

- Watch Video Solution

2. A circle touches two of the smaller sides of a $\triangle A B C(a<b<c)$ and has its centre on the greater side. Then, find the radius of the circle.

- Watch Video Solution

3. Prove that $a \cos A+b \cos B+c \cos C=4 R \sin A \sin B \sin C$

- Watch Video Solution

4. If the altitudes of a triangle be $2,4,6$, then find its in-radius.
5. In a $\triangle A B C$, if $a=3, b=4, c=5$, then find the distance between its incentre and circumcentre.

- Watch Video Solution

6. If the lengths of the perpendiculars from the vertices of a triangle $A B C$ on the opposite sides are p_{1}, p_{2}, p_{3} then prove that
$\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$.

- Watch Video Solution

7. Prove that the distance between the circumcenter and the incenter of triangle ABC is $\sqrt{R^{2}-2 R r}$

- Watch Video Solution

8. In $\triangle A B C$ it is given distance between the circumcentre (O) and orthocentre (H) is $R \sqrt{1-8 \cos A \cos B \cos C}$. If Q is the midopoint of $O H$, then $A Q$ is

- Watch Video Solution

9. In a triangle $A B C, A D, B E$ and $C F$ are the altitudes and R is the circum radius, then the radius of the circel DEF is

- Watch Video Solution

10. If l, l_{1}, l_{2} and l_{3} be respectively the radii of the in-circle and the three escribed circles of a $\triangle A B C$, then find $l_{1} l_{2} l_{3}-l\left(l_{1} l_{2}+l_{2} l_{3}+l_{1} l_{3}\right)$.

- Watch Video Solution

1. Find the sum of the radii of the circles, which are respectively inscribed and circumscribed about the a regular polygon of n sides.

- Watch Video Solution

2. Find the radius of the circumscribing circle of a regular polygon of n sides each of length is a.

- Watch Video Solution

3. If A, A_{1}, A_{2}, A_{3} are the areas of the inscribed and escribed of a
$\triangle A B C$, then

- Watch Video Solution

4. A polygon of nine sides, each side of length 2 , is inscribed in a circle.

The radius of the circle is \qquad .
5. The area of the circle and the area of a regular polygon of n sides and the perimeter of polygon equal to that of the circle are in the ratio of $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$ (b) $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n} \frac{\sin \pi}{n}: \frac{\pi}{n}$ (d) $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$

- Watch Video Solution

6. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be the vertices of an n-sided regular polygon such that $\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}$. Find the value of n.

- Watch Video Solution

7. If I_{n} is the area of n-sided regular polygon inscribed in a circle of unit radius and O_{n} be the area of the polygon circumscribing the given circle, prove that $I_{n}=\frac{O_{n}}{2}\left(\sqrt{1+\left(\frac{2 I_{n}}{n}\right)^{2}}\right)$
8. The area of a cyclic quadrilateral $A B C D$ is $\frac{3 \sqrt{3}}{4}$. The radius of the circle circumscribing cyclic quadrilateral is 1.If $A B=1$ and $B D=\sqrt{3}$, then $B C \cdot C D$ is equal to

- Watch Video Solution

2. If two adjacent sides of a cyclic quadrilateral aré 2 and 5 and the angle between them is 60°. If the third side is 3 , then the remaining fourth side is (a) 2 (b) 3 (c) 4 (d) 5

- Watch Video Solution

3. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is $3: 4$. Then the value of n is
4. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the angles of quadrilateral, then find $\frac{\sum \tan A}{\sum \cot A}$.

- Watch Video Solution

Exercise For Sesssion 7

1. In triangle $A B C, a: b: c=(1+x): 1:(1-x)$ where $x \in(0,1)$ If $\angle A=\frac{\pi}{2}+\angle C$, then x equal to

- Watch Video Solution

2. In a $\triangle A B C, 2 s=$ perimeter and $\mathrm{R}=$ circumradius. Then, find $\frac{s}{R}$.

- Watch Video Solution

3. If in a $\triangle A B C, \angle C=90^{\circ}$, then the maximum value of $\sin A \sin B$ is
4. If the area os a triangle is 81 square cm and its perimeter is 27 cm , then find its in-radius in centi-metres.

Watch Video Solution

5. In triangle ABC, if $r_{1}=2 r_{2}=3 r_{3}$, then $a: b$ is equal to

- Watch Video Solution

6. The radius of the larger circle lying in the first quadrant and touching the line $4 x+3 y-12=0$ and the coordinate axes, is
A. (a) 5
B. (b) 6
C. (c) 7
D. (d) 8

- Watch Video Solution

7. In a $\triangle P Q R$ as show in figure given that $x: y: z:: 2: 3: 6$, then find value of $\angle Q P R$.

- Watch Video Solution

8. In a $\triangle A B C$ if $\frac{R}{r} \leq 2$, then show that the triangle is equilateral.
9. If the angle of a righta angled triangle are in A.P. then the ratio of the in -radius and the perimeter, is

- Watch Video Solution

10. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then the triangle is right angled (b) isosceles equilateral (d) none of these

- Watch Video Solution

Exercise For Sesssion 8

1. If a tower subtends angles $\theta, 2 \theta$ and 3θ at three points A, B, and C respectively, lying on the same side of a horizontal line through the foot of the tower, show that $\frac{A B}{B C} \frac{\cot \theta-\cot 2 \theta}{\cot 2 \theta-\cot 3 \theta}$.
2. A person stands at a point A due south of a tower of height h and observes that its elevation is 60°. He then walks westwards towards B , where the elevation is 45°. At a point C on $A B$ produced, show that if he find it to be $30^{\circ} . O A, O B, O C$ are in GP.

- Watch Video Solution

3. A train travelling on one of two intersecting railway lines, subtends at a certain station on the other line, an/ angle α when the front of the carriage reaches the junction and an angle β when the end of the carriage reaches it. Then, the two lines are inclined to each other at an angle θ, show that $2 \cot \theta=\cot \alpha-\cot \beta \cot \alpha+\cot \beta$

D Watch Video Solution

4. The angle of elevation of the top of the tower observed from each of three points A, B, C on the ground, forming a triangle is the same angle α. If R is the circum-radius of the triangle ABC , then find the height of the tower

- Watch Video Solution

5. The length of the shadow of a pole inclined at 10° to the vertical towards the sun is 2.05 metres, when the elevation of the sun is 38°. The length of the pole is

- Watch Video Solution

PROPERTIES AND SOLUTIONS OF TRIANGLES EXERSISE 1: SINGLE OPTION CORRECT TYPE QUESTIONS

1. In the adjoining figure, the circle meets the sides of an equilateral triangle at six points.

If $A G=2, G F=13, F C=1$ and $H J=7$, then DE equals to
A. $2 \sqrt{22}$
B. $7 \sqrt{3}$
C. 9
D. 10

Answer: A

1. In a $\triangle A B C$, if $a=13, b=14$ and $c=15$, then $\angle A$ is equal to (All symbols used have their usual meaning in a triangle.)
A. $\sin ^{-1} \frac{4}{5}$
B. $\sin ^{-1} \frac{3}{5}$
C. $\sin ^{-1} \frac{3}{4}$
D. $\sin ^{-1} \frac{2}{3}$

Answer: A

- Watch Video Solution

2. In a $\triangle A B C$, if $b=(\sqrt{3}-1) a$ and $\angle C=30^{\circ}$, then the value of ($\mathrm{A}-\mathrm{B}$) is equal to (All symbols used have usual meaning in the triangel.)
A. 30°
B. 45°
C. 60°
D. 75°

Answer: C

- Watch Video Solution

3. In $a \triangle A B C$, if $\angle C=105^{\circ}, \angle B=45^{\circ}$ and length of side $\mathrm{AC}=2$ units, then the length of th side $A B$ is equal to
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{2}+1$
D. $\sqrt{3}+1$

Answer: C

4. If P is a point on the altitude $A D$ of the triangle $A B C$ such the $\angle C B P=\frac{B}{3}$, then AP is equal to $2 a \frac{\sin C}{3}$ (b) $2 b \frac{\sin C}{3}$ (c) $2 c \frac{\sin B}{3}$ (d) $2 c \frac{\sin C}{3}$
A. $2 a \sin \frac{C}{3}$
B. $2 b \sin \frac{A}{3}$
C. $2 c \sin \frac{B}{3}$
D. $2 c \sin \frac{C}{3}$

Answer: C

- Watch Video Solution

5. In $\triangle A B C$, if $2 b=a+c$ and $A-C=90^{\circ}$, then $\sin \mathrm{B}$ equal All symbols used have usual meaning in $\triangle A B C$.]
A. $\frac{\sqrt{7}}{5}$
B. $\frac{\sqrt{5}}{8}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{5}}{3}$

Answer: C

- Watch Video Solution

6. Let $A B C$ be a right triangle with length of side $A B=3$ and hyotenus $A C=5$. If D is a point on BC such that $\frac{B D}{D C}=\frac{A B}{A C}$, then AD is equal to
A. $\frac{4 \sqrt{3}}{3}$
B. $\frac{3 \sqrt{5}}{2}$
C. $\frac{4 \sqrt{5}}{3}$
D. $\frac{5 \sqrt{3}}{4}$

Answer: B

7. Two medians drawn from the acute angles of a right angled triangle intersect at an angle $\frac{\pi}{6}$. If the length of the hypotenuse of the triangle is 3 units, then the area of the triangle (in sq. units) is $\sqrt{3}$ (b) 3 (c) $\sqrt{2}$ (d) 9
A. 3
B. $\frac{3 \sqrt{5}}{2}$
C. $\sqrt{3}$
D. None of these

Answer: C

- Watch Video Solution

8. If in a right angle $\triangle A B C, 4 \sin A \cos B-1=0$ and $\tan \mathrm{A}$ is finite, then
A. angles are in AP
B. angles are in GP
C. angles are in HP
D. None of these

Answer: A

- Watch Video Solution

9. Let $A=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ 1 & 1 & 1\end{array}\right]$ and $B=A^{2}$

If
$(a-b)^{2}+(p-q)^{2}=25,(b-c)^{2}+(q-r)^{2}=36$ and $(c-a)^{2}+(r-p$
then det B is
A. 192
B. 864
C. 2456

Answer: B

- Watch Video Solution

10. If in a $\triangle A B C$, the incricle passing through the point of intersection of perpendicular bisector of sides BC, AB, then $4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ equal to
A. $\sqrt{2}$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\frac{1}{2}$

Answer: B

11. If two sides of a triangle are roots of the equation $x^{2}-7 x+8=0$ and the angle between these sides is 60° then the product of inradius and circumradius of the triangle is $\frac{8}{7}$ (b) $\frac{5}{3}$ (c) $\frac{5 \sqrt{2}}{3}$ (d) 8
A. $\frac{8}{7}$
B. $\frac{5}{3}$
C. $\frac{5 \sqrt{3}}{3}$
D. 8

Answer: B

Watch Video Solution

12. If median $A D$ of a triangle $A B C$ makes angle $\frac{\pi}{6}$ with side $B C$, then the valur of $(\cot B-\cot C)^{2}$ is equal to
A. 6
B. 9
C. 12
D. 15

Answer: C

- Watch Video Solution

13. If the perimeter of the triangle formed by feet of altitudes of the triangle ABC is equal to four times the circumradius of $\triangle A B C$, then identify the type of $\triangle A B C$
A. isosceles triangle
B. equilateral triangle
C. right angled triangle
D. None of these

Answer: D

14. In a triangle with one angle $\frac{2 \pi}{3}$, the lengths of the sides form an A.P. If the length of the greatest side is 7 cm , the radius of the circumcircle of the triangle is
A. $\frac{7 \sqrt{3}}{3} \mathrm{~cm}$
B. $\frac{5 \sqrt{3}}{3} \mathrm{~cm}$
c. $\frac{2 \sqrt{3}}{3} \mathrm{~cm}$
D. $\sqrt{3} \mathrm{~cm}$

Answer: A

(D) Watch Video Solution

15. If the sides of a triangle $A B C$ are in $A P$ and ' a ' is the smallest side, then express $\cos \mathrm{A}$ in term of b and c .
A. $\frac{3 c-4 b}{2 b}$
B. $\frac{3 c-4 b}{2 c}$
C. $\frac{4 c-3 b}{2 b}$
D. $\frac{4 c-3 b}{2 c}$

Answer: D

- Watch Video Solution

16. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Show that the tangents of the angles are the roots of the equation $q x^{3}-p x^{2}+(1+q) x-p=0$.
A. $q x^{2}-p x^{2}+(1-x) x-p=0$
B. $q x^{3}-p x^{2}-(1-q) x-p=0$
C. $q x^{3}-p x^{2}+(1+q) x-p=0$
D. None of these
17. Let C be incircle of $\triangle A B C$. If the tangents of lengths t_{1}, t_{2} and t_{3} are drawn inside the given triangle parallel to side a, b, and c , respectively, then $\frac{t_{1}}{a}+\frac{t_{2}}{b}+\frac{t_{3}}{c}$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

18. If the sine of the angles of $\triangle A B C$ satisfy the equation
$c^{3} x^{3}-c^{2}(a+b+c) x^{2}+l x+m=0$
(where a,b,c are the sides of $\triangle A B C$), then $\triangle A B C$ is
A. A. always right angled for any I, m
B. B.
right
angled
only
when
$l=c(a b+b c+c a)=c \sum a b, m=-a b c$
C. C. right angled only when $l=\frac{c \sum a b}{4}, m=-\frac{a b c}{8}$
D. D. never right angled

Answer: B

- Watch Video Solution

19. In triangle $A B C$, medians $A D$ and $C E$ are drawn $A D=5, \angle D A C=\pi / 8$, and $\angle A C E=\pi / 4$, then the area of the triangle $A B C$ is equal to
A. $\frac{50}{9}$
B. $\frac{25}{9}$
C. $\frac{25}{3}$
D. $\frac{27}{7}$

D Watch Video Solution

20. In a triangle $A B C, a \geq b \geq c$. If
$\frac{a^{3}+b^{3}+c^{3}}{\sin ^{3} A+\sin ^{3} B+\sin ^{3} C}=8, \quad$ then the maximum value of a $\sin ^{3} A+\sin ^{3} B+\sin ^{3} C$
A. $\frac{1}{2}$
B. 2
C. 8
D. 64

Answer: B

21. In a $\delta A B C, \mathrm{a}, \mathrm{c}, \mathrm{A}$ are given and b_{1}, b_{2} are two values of third side b such that $b_{2}=2 b_{1}$. Then, the value of $\sin \mathrm{A}$.
A. $\sqrt{\frac{9 a^{2}-c^{2}}{8 a^{2}}}$
B. $\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$
C. $\sqrt{\frac{9 a^{2}-c^{2}}{8 b^{2}}}$
D. None of these

Answer: B

- Watch Video Solution

22.

In
a
triangle
ABC,
if
$\cot A=\left(x^{3}+x^{2}+x\right)^{\frac{1}{2}}, \cot B=\left(x+x^{-1}+1\right)^{\frac{1}{2}}$ and $\cot C=\left(x^{-3}+a\right.$
then the triangle is
A. equilateral
B. isosceles
C. right angled
D. obtuse anguled

Answer: C

- Watch Video Solution

23. In a $\triangle A B C, a, b, A$ are given and c_{1}, c_{2} are two values of the third side c. The sum of the areas two triangles with sides $\mathrm{a}, \mathrm{b}, c_{1}$ and a, b, c_{2} is
A. $\frac{1}{2} a^{2} \sin 2 A$
B. $\frac{1}{2} b^{2} \sin 2 A$
C. $b^{2} \sin 2 A$
D. None of these

Answer: A

24. In $\triangle A B C$, if a $=10$ and $b \cot B+c \cot C=2(r+R)$ then the maximum area of $\triangle A B C$ will be
A. 50
B. $\sqrt{50}$
C. 25
D. 5

Answer: C

- Watch Video Solution

25. about to only mathematics
A. $16: 1$
B. $1: 16$
C. 8:1
D. None of these

- Watch Video Solution

26. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of a triangle. Now two of them are equal to $\lambda \varepsilon R$.

If the roots of the equation $x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real then
A. $\lambda<\frac{4}{3}$
B. $\lambda>\frac{5}{3}$
C. $\lambda \in\left(\frac{1}{3}, \frac{5}{3}\right)$
D. $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$

Answer: A

27. In triangle $A B C$, if $P Q, R$ divides sides $B C, A C$, and $A B$, respectively, in the ratio $k: 1\left(\in\right.$ or der). If the ratio $\left(\frac{\operatorname{ar} E A P Q R}{\operatorname{area} A B C}\right)$ IS $\frac{1}{3}$, thenk is equal to $\frac{1}{3}$ (b) 2 (c) 3 (d) none of these
A. $\frac{1}{3}$
B. 2
C. 3
D. None of these

Answer: B

- Watch Video Solution

28. Let $f(x+y)=f(x) . f(y)$ for all x and $\mathrm{y} f(1)=2$ If in a triangle $` A B C, a=f(3), b=f(1)+f(3), c=f(2)+f(3)$, then $2 A$ is equal to
A. C
B. 2 C
C. 3 C
D. 4 C

Answer: A

- Watch Video Solution

29. In an ambiguoa ambiguous case of solving a triangleshen $a=\sqrt{5}, b=2, \angle A=\frac{\pi}{6}$ and the two possible values of third side are c_{1} and c_{2}, then
A. $\left|c_{1}-c_{2}\right|=2 \sqrt{6}$
B. $\left|c_{1}-c_{2}\right|=4 \sqrt{6}$
C. $\left|c_{1}-c_{2}\right|=4$
D. $\left|c_{1}-c_{2}\right|=6$

Answer: C

30. If R_{1} is the circumradius of the pedal triangle of a given triangle ABC , and R_{2} is the circumradius of the pedal triangle of the pedal triangle formed, and so on $R_{3}, R_{4} \ldots$, then the value of $\sum_{i=1}^{\infty} R_{i}$, where R (circumradius) of $\triangle A B C$ is 5 is
A. 8
B. 10
C. 12
D. 15

Answer: B

- Watch Video Solution

31. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then the triangle is right angled (b) isosceles equilateral (d) none of these
A. right angled
B. isosceles
C. equilateral
D. None of these

Answer: A

- Watch Video Solution

32. If the median $A D$ of a triangle $A B C$ makes an angle θ with side, $A B$, then $\sin (A-\theta)$ is equal to
A. $\frac{b}{c} \sin \theta$
B. $\frac{c}{b} \sin \theta$
C. $\frac{c}{b} \cos \theta$
D. None of these

Answer: B

33. In a $\triangle A B C$, angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are in AP . If $f(x)=\lim _{A \rightarrow c} \frac{\sqrt{3-4 \sin A \sin C}}{|A-C|}$, then $\mathrm{f}^{\prime}(\mathrm{x})$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

34. In $\triangle A B C,(a+b+c)(b+c-a)=k b c$ if
A. $\lambda<0$
B. $\lambda>6$
C. $0<\lambda<4$
D. $\lambda>4$

Answer: C

- Watch Video Solution

35. In $\triangle A B C, \frac{a^{2}+b^{2}}{a^{2}-b^{2}}=\frac{\sin (A+B)}{\sin (A-B)}$, prove that the triangle is isosceles or right triangle.
A. either isosceles or right angled
B. only right angled
C. only isosceles triangle
D. None of the above

Answer: A

36. In a sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are inAP and $\frac{2}{1!9!}+\frac{2}{3!7!}+\frac{1}{5!5!}=\frac{8^{a}}{(2 b)!}$, then the maximum value of $\tan \mathrm{A} \tan \mathrm{B}$ is equal to
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: B

- Watch Video Solution

37. If a, b, c be the sides of a triangle $A B C$ and if roots of equation
$a(b-c) x^{2}+b(c-a) x+c(a-b)=90 \quad$ are equal then $\frac{\sin ^{2} A}{2}, \frac{\sin ^{2} B}{2}, \frac{\sin ^{2} C}{2}$ are in
A. (a)AP
B. (b) GP
C. (c) HP
D. (d)none of these

Answer: C

- Watch Video Solution

38. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is $3: 4$. Then the value of n is
A. 6
B. 4
C. 8
D. 12
39. In any triangle $\mathrm{ABC} \sum \frac{\sin ^{2} A+\sin A+1}{\sin A}$ is always greater than or equal
A. 9
B. 3
C. 27
D. None of these

Answer: C

- Watch Video Solution

40. If the incircel of the triangle ABC, through it's circumcentre, then the $\cos A+\cos B+\cos C$ is
B. $\sqrt{2}$
C. $-\sqrt{2}$
D. None of these

Answer: B

- Watch Video Solution

41. The perimeter of a triangle $A B C$ is saix times the arithmetic mean of the sines of its angles. If the side ais1 then find angle A.
A. 30°
B. 60°
C. 90°
D. 120°

Answer: A

42. If there are only two linear functions f and g which map $[1,2]$ on $[4,6]$ and in a $\triangle A B C, c=f(1)+g(1)$ and a is the maximum valur of r^{2}, where r is the distance of a variable point on the curve $x^{2}+y^{2}-x y=10$ from the origin, then $\sin \mathrm{A}: \sin \mathrm{C}$ is
A. A. $1: 2$
B. B. 2:1
C. C. 1:1
D. D. None of these

Answer: C

- Watch Video Solution

43. A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in this circle is \qquad .
A. a^{2}
B. $\frac{a^{2}}{4}$
C. $\frac{a^{2}}{3}$
D. $\frac{a^{2}}{6}$

Answer: D

- Watch Video Solution

44. In any triangle $A B C$, if $\sin A, \sin B, \sin C$ are in $A P$, then the maximum value of $\tan \frac{B}{2}$ is
A. $-\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. None of these
45. In a $\triangle A B C, 2 \cos A=\frac{\sin B}{\sin C}$ and $2^{\tan ^{2} B}$ is a solution of equation $x^{2}-9 x+8=0$, then $\triangle A B C$ is
A. equilateral
B. isosceles
C. scalene
D. right angled

Answer: A

- Watch Video Solution

46. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3,4 and 5 units. Then area of the triangleis equal to:
A. $\frac{9 \sqrt{3}(1+\sqrt{3})}{\pi^{2}}$ unit
B. $\frac{3 \sqrt{3}(\sqrt{3}-1)}{\pi^{2}}$ sq unit
C. $\frac{9 \sqrt{3}(1+\sqrt{3})}{2 \pi^{2}}$ sq unit
D. $\frac{9 \sqrt{3}(\sqrt{3}-1)}{2 \pi^{2}}$ sq unit

Answer: A

- Watch Video Solution

47. If a, b and c arethe sides of a traiangle such that $b . c=\lambda^{2}$, then the relation is a, λ and A is
A. $c \geq 2 \lambda \sin \left(\frac{C}{2}\right)$
B. $b \geq 2 \lambda \sin \left(\frac{A}{2}\right)$
C. $a \geq 2 \lambda \sin \left(\frac{A}{2}\right)$
D. None of these

Answer: C

- Watch Video Solution

48. In a triangle $A B C, A D$ is the altitude from A. If $b>c$.
$\angle C=23^{\circ}$ and $A D=\frac{a b c}{b^{2}-c^{2},}$ then $\angle B=$
A. 110°
B. 113°
C. 120°
D. 130°

Answer: B

- Watch Video Solution

49. In triangle $A B C, a=5, b=4$ and $\cos (A+B)=\frac{31}{32}$ In this triangle, $c=$
A. 3
B. 6
C. 7
D. 9

Answer: B

- Watch Video Solution

50. In a $A B C$, if $A B=x, B C=x+1, \angle C=\frac{\pi}{3}$, then the least integer value of x is 6 (b) 7 (c) 8 (d) none of these
A. 6
B. 7
C. 8
D. None of these
51. In an equilateral triangle, three coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. The area of the triangle is $2 \mathrm{sqrt}(3)(b) 6+4 \mathrm{sqrt}(3) 12+(7 \mathrm{sqrt}(3)) / 4(d) 3+(7 \mathrm{sqrt}(3)) / 4^{`}$
A. $(4+2 \sqrt{3}) \mathrm{cm}^{2}$
B. $\frac{1}{4}(12+7 \sqrt{3}) \mathrm{cm}^{2}$
C. $\frac{1}{4}(48+7 \sqrt{3}) \mathrm{cm}^{2}$
D. $(6+4 \sqrt{3}) \mathrm{cm}^{2}$

Answer: D

- Watch Video Solution

52. The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then $4(1-\cos A)(1-\cos C)$ is equal to
A. a) $\cos A-\cos C$
B. b) $\cos A \cos C$
C. c) $\cos A+\cos C$
D. d) $\cos C-\cos A$

Answer: C

- Watch Video Solution

53. If in $\triangle A B C, c(a+b) \cos \frac{B}{2}=b(a+c) \cos \frac{C}{2}$, the triangle is
A. isosceles
B. equilateral
C. right angled but not isosceles
D. right angled and isosceles

Answer: A

54. In a triangle $A B C$, the line joining the circumcentre and incentre is parallel to $B C$, then $\operatorname{Cos} B+\operatorname{Cos} C$ is equal to:
A. $\frac{3}{2}$
B. 1
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

55. In the given figure, $A B$ is the diameter of the circle, centered at 0 . If $\angle C O A=60^{\circ}, A B=2 r, A c=d$ and $C D=l$, then I is equal to

A. $d \sqrt{3}$
B. $\frac{d}{\sqrt{3}}$
C. $3 d$
D. $\frac{\sqrt{3} d}{2}$

Answer: A

- Watch Video Solution

56. If in a $\triangle A B C, A D, B E$ and $C F$ are the altitudes and R is the circumradius, then the radius of the circumcircle of $\triangle D E F$ is
A. 2 R
B. R
C. $\frac{R}{2}$
D. None of these

Answer: C

- Watch Video Solution

57. In a right angled triangle $A B C$, the bisector of the right angle C divides AB into segment x and y and $\tan \left(\frac{A-B}{2}\right)=t$, then $\mathrm{x}: \mathrm{y}$ is equal to
A. $(1+t):(1-t)$
B. $(1-t):(t+1)$
C. $1:(1+t)$
D. $(1-t): 1$

Answer: A

- Watch Video Solution

58. A variable triangle $A B C$ is circumscribed about a fixed circle of unit radius. Side $B C$ always touches the circle at D and has fixed direction. If B and C vary in such a way that $(B D) \cdot(C D)=2$, then locus of vertex A will be a straight line
A. (a)parallel to side $B C$
B. (b)right angle to side $B C$
C. (c)making and angle $\frac{\pi}{6}$ with BC
D. (d)making an angle $\sin ^{-1}\left(\frac{2}{3}\right)$ with $B C$

Answer: A

- Watch Video Solution

59. A tower of height b subtends an angle at a point 0 on the ground level through the foot of the tower and at a distance a from the foot of
the tower. A pole mounted on the top of the tower also subtends an equal angle at 0 . The height of the pole is
A. $b\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
B. $b\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$
C. $a\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
D. $a\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)$

Answer: B

- Watch Video Solution

60. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that at A. If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then find the height of balloon above the road.
A. 50 m
B. $50 \sqrt{3} m$
C. $50 \sqrt{2} m$
D. None of these

Answer: D

- Watch Video Solution

61. Avertical pole consists of two parts, the lower part being one third of the wole .At a point in the horizontal plane through the base of the pole and distance 2 m from it , the upper part of the pole subtends an angle whose tangent is $1 / 2$.Find the possible height of the place .
A. 100 gt
B. 120 ft
C. 150 ft
D. None of these :

Answer: B

D Watch Video Solution

Exercise (More Than One Correct Option Type Questions)

1. If area of $\Delta A B C(\Delta)$ and angle C are given and if c opposite to given angle is minimum, then
A. $a=\sqrt{\frac{2 \Delta}{\sin C}}$
B. $b=\sqrt{\frac{2 \Delta}{\sin C}}$
C. $a=\frac{4 \Delta}{\sin C}$
D. $b=\frac{4 \Delta}{\sin ^{2} C}$

Answer: A

- Watch Video Solution

2. If Δ represents the area of acute angled triangle $A B C$, then $\sqrt{a^{2} b^{2}-4 \Delta^{2}}+\sqrt{b^{2} c^{2}-4 \Delta^{2}}+\sqrt{c^{2} a^{2}-4 \Delta^{2}}=$ (a) $a^{2}+b^{2}+c^{2}$ $\frac{a^{2}+b^{2}+c^{2}}{2}$ (c) $a b \cos C+b c \cos A+c a \cos B$
$a b \sin C+b c \sin A+c a \sin B$
A. $a^{2}+b^{2}+c^{2}$
B. $\frac{a^{2}+b^{2}+c^{2}}{2}$
C. $a b \cos C+b c \cos A+c a \cos B$
D. $a b \sin C+b c \sin A+c a \sin B$

Answer: C

- Watch Video Solution

3. In $\triangle A B C$, the value of $c \cos (A-\theta)+a \cos (C+\theta)=$

- Watch Video Solution

4. In $\triangle A B C$, If $a=4, b=3$ and $\operatorname{COS}(A-B)=\frac{3}{4}$, then
A. measure of $\angle A$ is $\frac{\pi}{2}$
B. measuere of $\angle B i s \frac{\pi}{2}$
C. $\cot \frac{C}{2}=\sqrt{7}$
D. circumradius of $\triangle A B C i s \frac{2}{7^{1 / 14}}$

Answer: B::C::D

- Watch Video Solution

5. If in $\triangle A B C, a=5, b=4$ and $\cos (A-B)=\frac{31}{32}$, then
A. A. The perimeter of $\triangle A B C$ equals $\frac{15}{2}$
B. B. The radius of circle inscribed in $\triangle A B C$ equals $\frac{\sqrt{7}}{2}$
C. C. The measure of $\angle C$ equals $\cos ^{-1} \frac{1}{8}$
D. D. The value of $R\left(b^{2} \sin 2 C+c^{2} \sin 2 B\right)$ equal 120

(D) Watch Video Solution

6. In which of the following situations, it is possible to have $a \Delta A B C$?
(All symbols used have usual meaning in a triangle)
A. (a) $(a+c-b)(a-c+b)=4 b c$
B. (b) $b^{2} \sin 2 C+\cos ^{2} \sin 2 B=a b$
C. (c) $a=3, b=5, c=7$ and $C=\frac{2 \pi}{3}$
D. (d) $\cos \left(\frac{A-C}{2}\right)=\cos \left(\frac{A+C}{2}\right)$

Answer: B::C

- Watch Video Solution

7. In a triangle ABC , let $\mathrm{BC}=1, \mathrm{AC}=2$ and measure of $\angle C$ is 30°. Which of the following statement(s) is (are) correct?
A. (a) $2 \sin A=\sin B$
B. (b) Length of side $A B$ equals $5-2 \sqrt{3}$
C. (c) measure of $\angle A$ is less than 30°
D. (d) Circumradius of $\triangle A B C$ is equal to length of side $A B$

Answer: A::C::D

- Watch Video Solution

8. Let one angle of a triangle be 60°, the area of triangle is $10 \sqrt{3}$ and perimeter is 20 cm . Ifa>b> c where a, b and e denote lengths of sides opposite to vertices A, B and C respectively, then which of the following is (are) correct?
A. (a)Inradius of triangle is $\sqrt{3}$
B. (b)Length of longest side of triangle is 7
C. (c)Circum-radius of triangles is $\frac{7}{\sqrt{3}}$
D. (d)Radius of largest escribed circle is / 12

D Watch Video Solution

9. In a triangle ABC , if $a=4, b=8, \angle C=60^{\circ}$, then which of the following relations is (are) correct? [Note: All symbols used have usual meaning in triangle $A B C$.]
A. (a)The area of $\triangle A B C i s 8 \sqrt{3}$
B. (b) The value of $\sum \sin ^{2} A=2$
C. (c)Inradius of trianlgle $A B C i s \frac{2 \sqrt{3}}{3+\sqrt{3}}$
D. (d)The length of internal angle bisector of $\angle C i s \frac{4}{\sqrt{3}}$.

Answer: A::B

- Watch Video Solution

10. Given an isoceles triangle with equal side of length b and angle $\alpha<\pi / 4$, then
the inradius r is given by
A. $R=\frac{1}{2} b \cos e c \alpha$
B. $\Delta=2 b^{2} \sin 2 \alpha$
C. $r=\frac{b \sin 2 \alpha}{2(1+\cos \alpha)}$
D. $O I\left|\frac{b \cos \left(\frac{3 \alpha}{2}\right)}{2 \sin \alpha\left(\frac{\alpha}{2}\right)}\right|$

Answer: A::C::D

- Watch Video Solution

11. There can exist a triangle $A B C$ satisfying the conditions:
A. $\tan A+\tan B+\tan C=0$
B. $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{7}$
C. $(a+b)^{2}=c^{2}+a b$ and $\sqrt{2}(\sin A+\cos A)=\sqrt{3}$
D.
$\sin A+\sin B=\left(\frac{\sqrt{3}+1}{2}\right) \cos A \cos B=\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}=\sin A \sin B$

Answer: C::D

- Watch Video Solution

12. Let a, b, c be the sides of triangle whose perimeter is P and area is A, then
A. $p^{3} \leq 27(b+c-a)(c+a-b)(a+b-c)$
B. $p^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)$
C. $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} A$
D. $p^{4} \leq 25<A$

Answer: B::C

13. If in $\triangle A B C, A=90^{\circ}$ and $\mathrm{c}, \sin \mathrm{B}$ and $\cos \mathrm{B}$ are rational number, then
A. a is rational
B. a is irrational
C. b is rational
D. b is irational

Answer: A:C

- Watch Video Solution

14. Let ' I ' is the length of median from the vertex A to the side $B C$ of a $\triangle A B C$. Then
A. $4 l^{2}=2 b^{2}+2 c^{2}-a^{2}$
B. $4 l^{2}=b^{2}+c^{2}+2 b c \cos A$
C. $4 l^{2}=b^{2}+4 b c \cos A$
D. $4 l^{2}-(2 s-a)^{2}-4 b c \sin ^{2}\left(\frac{A}{2}\right)$

Answer: A::B::C::D

- Watch Video Solution

15. If A, A_{1}, A_{2} and A_{3} are the areas of the inscribed and escribed circles of a triangle, prove that $\frac{1}{\sqrt{A}}=\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}$
A. (a) $\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}=\sqrt{\pi}\left(r_{1}+r_{2}+r_{3}\right)$
B. (b) $\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}=\frac{1}{\sqrt{A}}$
C. (c) $\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}=\frac{s^{2}}{\sqrt{\pi} r_{1} r_{2} r_{3}}$
D. (d) $\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}=\sqrt{\pi}(4 R+r)$

Answer: A::B::C::D

16. If a, b, A be given in a triangle and c_{1} and c_{2} be two possible value of the third side such that $c_{1}^{2}+c_{1} c_{2}+c_{2}^{2}=a^{2}$, then a is equal to
A. (a) 30°
B. (b) 60°
C. (c) 90°
D. (d) 120°

Answer: B::C

- Watch Video Solution

17. D, E and F are the middle points of the sides of the triangle ABC , then
A. centroid of the triangle DEF is the same as that of ABC
B. orthocentre of the triangle DEF is the circumcentre of $A B C$
C. orthocentre of the triangle DEF is the incentre of ABC
D. centroid of the triangle DEF is not the same as that of ABC

D Watch Video Solution

18. The sides of $A B C$ satisfy the equation $2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$ Then a) the triangle is isosceles
b) the triangle is obtuse c)
$B=\cos ^{-1}\left(\frac{7}{8}\right)$ d) $A=\cos ^{-1}\left(\frac{1}{4}\right)$
A. the triangle is isosceles
B. the triangle is obtuse
C. $B=\cos ^{-1}\left(\frac{7}{8}\right)$
D. $A=\cos ^{-1}\left(\frac{1}{4}\right)$

Answer: A::C::D

- Watch Video Solution

19. If Δ represents the area of acute angled triangle $A B C$, then $\sqrt{a^{2} b^{2}-4 \Delta^{2}}+\sqrt{b^{2} c^{2}-4 \Delta^{2}}+\sqrt{c^{2} a^{2}-4 \Delta^{2}}=$ (a) $a^{2}+b^{2}+c^{2}$ $\frac{a^{2}+b^{2}+c^{2}}{2}$ (c) $a b \cos C+b c \cos A+c a \cos B$
$a b \sin C+b c \sin A+c a \sin B$
A. $\left(a^{2}+b^{2}+c^{2}\right.$
B. $\frac{a^{2}+b^{2}+c^{2}}{2}$
C. $a b \cos C+b c \cos A+c a \cos B$
D. $a b \sin C+b c \sin A+c a \sin B$

Answer: B::C

- Watch Video Solution

20. In triangle, $A B C$ if $2 a^{2} b^{2}+2 b^{2} c^{2}=a^{2}+b^{4}+c^{4}$, then angle B is equal to 45^{0} (b) $135^{0} 120^{\circ}$ (d) 60^{0}
A. 45°
B. 135°
C. 120°
D. 60°

Answer: A::B

- Watch Video Solution

21. If H is the orthocentre of triangle $A B C, R=$ circumradius and $P=A H+B H+C H$, then
A. $p=2(R+r)$
B. \max, of P is $3 R$
C. min. of P is $3 R$
D. $P=2(R-r)$

Answer: A: B

22. If inside a big circle exactly $n(n \leq 3)$ small circles, each of radius r, can be drawn in such a way that each small circle touches the big circle and also touches both its adjacent small circles, then the radius of big
circle is $r\left(1+\operatorname{cosec} \frac{\pi}{n}\right)$
(b) $\left(\frac{1+\frac{\tan \pi}{n}}{\frac{\cos \pi}{\pi}}\right) r\left[1+\operatorname{cosec} \frac{2 \pi}{n}\right]$
$\underline{r\left[s \in \frac{\pi}{2 n}+\frac{\cos (2 \pi)}{n}\right]^{2}}$

$$
\frac{\sin \pi}{n}
$$

A. $r\left(1+\operatorname{cosec} \frac{\pi}{n}\right)$
B. $\left(\frac{1+\tan \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right)$
C. $r\left[1+\cos e c \frac{2 \pi}{n}\right]$
D. $\frac{r\left[\sin \frac{\pi}{2 n}+\cos \frac{2 \pi}{n}\right]^{2}}{\sin ^{\prime} \frac{\pi}{n}}$

Answer: A: D

- Watch Video Solution

23. If in triangle $\mathrm{ABC}, \mathrm{a}, \mathrm{c}$ and angle A are given and $c \sin A<a<c$, then
(b_{1} and b_{2} are values of b)
A. $b_{1}+b_{2}=2 c \cos A$
B. $b_{1}+b+{ }_{2}=c \cos A$
C. $b_{1} b_{2}=c^{2}-a^{2}$
D. $b_{1} b_{2}=c^{2}+a^{2}$

Answer: A::C

- Watch Video Solution

Exercise (Statement I And li Type Questions)

1. In a triangle $A B C, a^{3}+b^{3}+c^{3}=c^{2}(a+b+c)$ (All symbol used have usual meaning in a triangle.) Statement-1: The value of $\angle C=60^{\circ}$. Statement-2: $\Delta A B C$ must be equilateral.
A. (a)Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. (b)Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. (c)Statement I is correct but Statement II is incorrect
D. (d)Statement I is correct but Statement I is incorrect

Answer: C

- Watch Video Solution

2. Let $\mathrm{a}=6, \mathrm{~b}=3$ and $\cos (A-B)=\frac{4}{5}$

Value of $\sin A$ is equal to
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: D

D Watch Video Solution

3. Statement I: If in a triangle $A B C, \sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$, then one of the angles must be 90°.
Statement II: In any triangle $A B C$ $\cos 2 A+\cos 2 B+\cos 2 C=-1-4 \cos A \cos B \cos C$
A. (a) Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. (b) Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I
C. (c) Statement I is correct but Statement II is incorrect
D. (d) Statement II is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

4. Statement I: If A, B, C, D are angles of a cyclic quadrilateral then
$\sum \sin A=0$.
Statement II: If A, B, C, D are angles of cyclic quadrilateral then $\sum \cos A=0$.
A. (a) Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. (b) Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I
C. (c) Statement I is correct but Statement II is incorrect
D. (d) Statement II is correct but Statement I is incorrect

Answer: D

- Watch Video Solution

5. Statement I In any triangle $A B C$, the square of the length of the bisector AD is $b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)$.
Statement II In any triangle $A B C$ length of bisector $A D$ is $\frac{2 b c}{(b+c)} \cos \left(\frac{A}{2}\right)$.
A. (a)Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. (b)Both Statement I and Statement II are correct and Statement II is
not the correct explanation of Statement I
C. (c)Statement I is correct but Statement II is incorrect
D. (d)Statement I is correct but Statement I is incorrect

Answer: A

6. All the notations used in statemnt I and statement II are usual.

Statement I: In triangle ABC , if $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$. then value of $\frac{r_{1}+r_{2}+r_{3}}{r}$ is equal to 9.
Statement II: In $\triangle A B C: \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$, where R is circumradius.
A. a) Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. b) Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. c) Statement I is correct but Statement II is incorrect
D. d) Statement II is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

7. Statement I In a triangle ABC if $\tan A: \tan B: \tan C=1: 2: 3$, then $A=45^{\circ}$

Statement II If $p: q: r=1: 2: 3$, then $p=1$
A. A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. C. Statement I is correct but Statement II is incorrect
D. D. Statement I is correct but Statement I is incorrect

Answer: C

- Watch Video Solution

8. Statement I: In any right angled triangle $\frac{a^{2}+b^{2}+c^{2}}{R^{2}}$ is always equal to 8.

Statement II: $a^{2}=b^{2}+c^{2}$
A. a) Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. b) Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. c) Statement I is correct but Statement II is incorrect
D. d) Statement I is incorrect but Statement II is correct

Answer: A

- Watch Video Solution

9. Statement I perimeter of a regular pentagon inscribed in a circle with centre O and radius a cm equals $10 a \sin 36^{\circ} \mathrm{cm}$.

Statement II Perimeter of a regular polygon inscribed in a circle with centre O and radius a cm equals $(3 n-5) \sin \left(\frac{360^{\circ}}{2 n}\right) c m$, then it is n sided, where $n \geq 3$.
A. (a)Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. (b)Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. (c)Statement I is correct but Statement II is incorrect
D. (d)Statement I is correct but Statement I is incorrect

Answer: C

- Watch Video Solution

10. Statement I In any triangle $A B C$
$a \cos A+b \cos B+c \cos C \leq s$.

Statement II In any triangle ABC
$\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right) \leq \frac{1}{8}$
A. Both Statement I and Statement II are correct and Statement II is
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

11. Statement I In a $\Delta A B C$, if $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}=y\left(x^{2}+\frac{1}{x^{2}}\right)$ then the maximum value of yis $\frac{9}{8}$.
Statement II In a $\triangle A B C, \sin \frac{A}{2} \cdot \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{1}{8}$
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement I is correct but Statement I is incorrect

Answer: A

- Watch Video Solution

Exercise (Passage Based Questions)

1. R is circumradii of $\triangle A B C, H$ is orthocentre, R_{1}, R_{2}, R_{3} are circumradii of $\triangle A H B, \Delta B H C$. If AH produced meet the circumradii of $A B C$ at M and intersect $B C$ at L,
$\angle A H B=180^{\circ}-C$
$\frac{c}{\sin \left(180^{\circ}-C\right)}=2 R_{1}$
$\frac{c}{\sin C}=2 R_{1}$
$R_{1}=R$
Area of $\triangle A H B$

$$
\text { A. a. } 2 R \cos A \cos B \cos C
$$

B. b. $R^{2} \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
C. c. $2 R^{2} \cos \mathrm{~A} \cos \mathrm{~B} \sin \mathrm{C}$
D. d. None of the above

Answer: C

- Watch Video Solution

2. Let ABC to be an acute triangle with $B C=a, C A=b$ and $A B=c$, where $a \neq b \neq c$. From any point ' p ' inside $\triangle A B C \leq t B, E, F$ denot foot of perpendiculars form ' p ' noto the sides, BC, CA and AB , respectively. Now, answer the following equations.

If $\triangle D E F$ is equilateral, then ' P '
A. the incircle of $\triangle A B C$
B. line of intternal angle bisectors from A, B and C
C. arcs of 3 circles
D. None of the above

Answer: C

D Watch Video Solution

3. Let ABC to be an acute triangle with $B C=a, C A=b$ and $A B=c$, where $a \neq b \neq c$. From any point ' p ' inside $\triangle A B C \leq t B, E, F$ denot foot of perpendiculars form ' p ' noto the sides, $B C, C A$ and $A B$, respectively. Now, answer the following equations.

If $\triangle D E F$ is equilateral, then ' P '
A. $x=4$ or $x+y y=7$ or $4 x=3 y$
B. $x=4$ or $x^{2}+y^{2}=4 x+4 y$
C. $3\left(x^{2}+y^{2}\right)+196=49(x+y)$
D. None of the above

Answer: C

- Watch Video Solution

4. Let ABC to be an acute triangle with $B C=a, C A=b$ and $A B=c$, where $a \neq b \neq c$. From any point ' p ' inside $\triangle A B C \leq t B, E, F$ denot foot of perpendiculars form ' p ' noto the sides, $B C, C A$ and $A B$, respectively. Now, answer the following equations.

If $\triangle D E F$ is equilateral, then ' P '
A. coincides with incentre of $\triangle A B C$
B. coincides with orthocentre of $\triangle A B C$
C. lies on padal Δ of $\triangle A B C$
D. None of the above

Answer: D

- Watch Video Solution

5. In an acute angled triangle $A B C$, let $A D, B E$ and $C F$ be the perpendicular opposite sides of the triangle. The ratio of the product of the side lengths of the triangles $D E F$ and $A B C$, is equal to
A. A. $\frac{3(a b c)^{\frac{1}{3}}}{4(a+b+c)}$
B. B. $\frac{1}{4}$
C. C. $\cos A \cos B \cos C$
D. D. $\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$

Answer: C

- Watch Video Solution

6. In an acute angle $\triangle A B C$, let AD, BE and CF be the perpendicular from
A, B and C upon the opposite sides of the triangle. (All symbols used have usual meaning in a tiangle.)

The orthocentre of the $\triangle A B C$, is the
A. centroid of the $\triangle D E F$
B. circum-centre of the $\triangle D E F$
C. incentre of the $\triangle D E F$
D. orthocentre of the $\triangle D E F$

Answer: C

- Watch Video Solution

7. In an acute angle $\triangle A B C$, let AD, BE and CF be the perpendicular from A, B and C upon the opposite sides of the triangle. (All symbols used have usual meaning in a tiangle.)

The circum-radius of the $\triangle D E F$ can be equal to
A. $\frac{a b c}{8 \Delta}$
B. $\frac{a}{4 \sin A}$
C. $\frac{R}{2}$
D. $\frac{r}{8} \operatorname{cosec} \frac{A}{2} \operatorname{cosec} \frac{B}{2} \operatorname{cosec} \frac{C}{2}$

Answer: A::B::C::D

- Watch Video Solution

8. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides opposite to angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively in a $\triangle A B C \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, If $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$

Angle C is equal to
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{2 \pi}{3}$

Answer: B

- Watch Video Solution

9. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides opposite to angles A, B , C respectively in a $\triangle A B C \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, If $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$

Area of the trianlge is equal to
A. 8
B. 9
C. 10
D. 11

Answer: B

- Watch Video Solution

10. Let a, b, c are the sides opposite to angles A, B, C respectively in a $\triangle A B C \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, If $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$

Valus of $\sin A$ is equal to
A. $\frac{1}{\sqrt{5}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{2 \sqrt{5}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

11. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case.

In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a, b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c.

On the basis of above information, answer the following questions
Two different triangles are possible when
A. $b \sin A<a$
B. $b \sin A<a$ and $b>a$
C. $b \sin A<a$ and $b<a$
D. $b \sin A<a$ and $a=b$

Answer: B

- Watch Video Solution

12. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case. In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a,b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c .

On the basis of above information, answer the following questions
The difference between two values of c is
A. A. $2 \sqrt{\left(a^{2}-b^{2}\right)}$
B. B. $\sqrt{\left(a^{2}-b^{2}\right)}$
C. C. $2 \sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$
D. D. $\sqrt{\left(a^{2}-b^{2} \sin ^{2} A\right)}$

Answer: B

- Watch Video Solution

13. When any two sides and one of the opposite acute angle are given, under certain additional conditions two triangles are possible. The case when two triangles are possible is called the ambiguous case. In fact when any two sides and the angle opposite to one of them are given either no triangle is posible or only one triangle is possible or two triangles are possible.

In the ambiguous case, let a,b and $\angle A$ are given and c_{1}, c_{2} are two values of the third side c .

On the basis of above information, answer the following questions
The value of $c_{1}^{2}-2 c_{1} c_{2} \cos 2 A+c_{2}^{2}$ is
A. A. $4 a \cos A$
B. B. $4 a^{2} \cos A$
C. C. $4 a \cos ^{2} A$
D. D. $4 a^{2} \cos ^{2} A$

Answer: D

D Watch Video Solution

14. Consider a triangle $A B C$, where c, y, z are the length of perpendicular drawn from the vertices of the triangle to the opposite sides a, b, c respectively. Let the letters $R, r S, \Delta$ denote the circumradius, inradius semi-perimeter and area of the triangle respectively.

If $\frac{b x}{c}+\frac{c y}{a}+\frac{a z}{b}=\frac{a^{2}+b^{2}+c^{2}}{k}$, then the value of k is
A. R
B. S
C. 2 R
D. $\frac{3}{2} R$

Answer: C

D Watch Video Solution

15. Consider a triangle $A B C$, where c, y, z are the length of perpendicular drawn from the vertices of the triangle to the opposite sides a, b, c respectively. Let the letters $R, r S, \Delta$ denote the circumradius, inradius semi-perimeter and area of the triangle respectively.

If $\cot A+\cot B+\cot C=k\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)$, then the value of k is
A. R^{2}
B. rR
C. Δ
D. $a^{2}+b^{2}+c^{2}$

Answer: C

16. Consider a triangle $A B C$, where c, y, z are the length of perpendicular drawn from the vertices of the triangle to the opposite sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively. Let the letters $R, r S, \Delta$ denote the circumradius, inradius semi-perimeter and area of the triangle respectively.
The valur of $\frac{c \sin B+b \sin C}{x}+\frac{a \sin C+c \sin A}{y}+\frac{b \sin A+a \sin B}{z}$ is equal to
A. $\frac{R}{r}$
B. $\frac{S}{R}$
C. 2
D. 6

Answer: D

- Watch Video Solution

17. $A L, B M$ and $C N$ are perpendicular from angular points of a triangle $A B C$ on the opposite sides BC, CA and AB respectively. Δ is the area of triangle
$A B C,(r)$ and R are the inradius and circumradius.
If perimeters of $\Delta L M N$ and $\Delta A B C a n \lambda$ and μ, then the value of $\frac{\lambda}{\mu}$ is
A. $\frac{r}{R}$
B. $\frac{R}{r}$
C. $\frac{r R}{\Delta}$
D. $\frac{\Delta}{r R}$

Answer: B

D Watch Video Solution

18. $A L, B M$ and $C N$ are perpendicular from angular points of a triangle $A B C$ on the opposite sides BC, CA and AB respectively. Δ is the area of triangle $A B C,(r)$ and R are the inradius and circumradius. If area of $\Delta L M N$ is Δ^{\prime}, then the value of $\frac{\Delta^{\prime}}{\Delta}$ is
A. $2 \sin A \sin B \sin C$
B. $2 \cos A \cos B \cos C$
C. $\sin A \sin B \sin C$
D. $\cos A \cos B \cos C$

Answer: D

- Watch Video Solution

PROPERTIES AND SOLUTIONS OF TRIANGLES EXERCISE 5: MATCHING TYPE QUESTIONS

1. Match the statement of Colume I with values of Column II.

Column 1

Column II
(A) In a $\triangle A B C$, let $\angle C=\frac{\pi}{2}, r=$ inradius, $R=$ (p) $a+b+c$
circumradius then $2(r+R)$
(B) If l, m, n are perpendicular drawn from
(q) $a-b$
the vertices of triangle having sides a, b and c then
$\sqrt{2 R\left(\frac{b l}{c}+\frac{c m}{a}+\frac{a n}{b}\right)+2 a b+2 b c+2 c a}$
(C) In a $\triangle A B C, R\left(b^{2} \sin 2 C+c^{2} \sin 2 B\right)$
(r) $a+b$ equals
(D) In a right angle triangle $A B C, \angle C=\frac{\pi}{2}$,
(s) $a b c$ then $4 R \sin \frac{A+B}{2} \sin \frac{(A-B)}{2}$

- Watch Video Solution

2. Match the statement of Column I with the values of Column II.

Column I

Column II

(A) In a triangle $A B C(c-a)^{2}=b^{2}-a c$ and (p) $A=30^{\circ}$

- $\cos B+\sin C=\frac{3}{2}$
(B) A, B, C are in A.P. and $C=3 A$
(q) $B=60^{\circ}$
(C) The length of the bisector of angle
(r) $C=90^{\circ}$

$$
B=\frac{\sqrt{3 c a}}{(c+a)} \text { and } a=b
$$

(D) $\frac{1}{a+b}+\frac{1}{b+c}=\frac{3}{a+b+c}$
(s) $\begin{aligned} & A=B=C \\ & =60^{\circ}\end{aligned}$

- Watch Video Solution

3. Match the statement of Column I with values of Column II

Column I

(A) In a $\triangle A B C$, if
$2 a^{2}+b^{2}+c^{2}=2 a c+2 a b$,
(p) $\triangle A B C$ is equilaterol
triangle then
(B) In a $\triangle A B C$, if
$a^{2}+b^{2}+c^{2}=\sqrt{2} b(c+a)$, then
(C) In a $\triangle A B C$, if
$a^{2}+b^{2}+c^{2}=b c+c a \sqrt{3}$, then
(q) $\triangle A B C$ is right angled triangle
(r) $\triangle A B C$ is scalane triangle
(s) $\triangle A B C$ is scalane right angled triangle
(t) Angles B, C, A are in AP

- Watch Video Solution

Exercise (Single Integer Answer Type Questions)

1. If in $\triangle A B C, \angle C=\frac{\pi}{8}, a=\sqrt{2}$ and $b=\sqrt{2+\sqrt{2}}$ then find the measure of angle A (in degree).
2. If in $A B C, A=\frac{\pi}{7}, B=\frac{2 \pi}{7}, C=\frac{4 \pi}{7}$ then $a^{2}+b^{2}+c^{2}$ must be R^{2}
(b) $3 R^{2}$ (c) $4 R^{2}$ (d) $7 R^{2}$

- Watch Video Solution

3. In a $\triangle A B C, P$ and Q are the mid-points of $A B$ and $A C$ respectively. If O is the circumcentre of the $\triangle A B C$, then the value of $\left(\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle O P Q}\right) \cot B \cot C$ equal to

- Watch Video Solution

4. With usual notation in $\triangle A B C$, the numerical value of $\left(\frac{a+b+c}{r_{1}+r_{2}+r_{3}}\right)\left(\frac{a}{r_{1}}+\frac{b}{r_{2}}+\frac{c}{r_{3}}\right)$ is

- Watch Video Solution

5. $A B C$ is a triangle and D is the middle point of $B C$. If $A D$ is perpendicular to AC , then prove that $\cos A \cdot \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$

- Watch Video Solution

6. The rational number which equals the number 2.357 with recurring decimal is $\frac{2355}{1001}$ b. $\frac{2379}{997}$ c. $\frac{2355}{999}$ d. none of these

- Watch Video Solution

7. In triangle $A B C, r=\frac{R}{6}$ and $r_{1}=7 r$. Then the measure of angle $\mathrm{A}=$

- Watch Video Solution

8. In a $\triangle A B C$, the maximum value of $120\left(\frac{\sum a \cos ^{2}\left(\frac{A}{2}\right)}{a+b+c}\right)$ must be
9. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smalles one. Determine the sides of the triangle.

D Watch Video Solution

10. In $\triangle A B C, \angle C=2 \angle A$, and $A C=2 B C$, then the value of $\frac{a^{2}+b^{2} c^{2}}{R^{2}}$ (where R is circumradius of triangle) is \qquad

- Watch Video Solution

11. If a, b and A are given in a triangle and c_{1}, c_{2} are possible values of the third side, then prove that $c_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos 2 A=4 a^{2} \cos ^{2} A$

- Watch Video Solution

12. In $\triangle A B C, a=5, \mathrm{~b}=4, \mathrm{c}=3$. G is the centroid of triangle. If R_{1} be the circum radius of triangle GAB then the value of $\frac{a}{65} R_{1}^{2}$ must be

Watch Video Solution

13. A triangle $A B C$ is inscribed in a circle with centre at O, The lines $A O, B O a n d C O$ meet the opposite sides at D, E, and F, respectively. Prove that $\frac{1}{A D}+\frac{1}{B E}+\frac{1}{C F}=\frac{a \cos A+b \cos B+\mathrm{os} C}{\triangle}$

- Watch Video Solution

14. In a triangle $A B C, a \geq b \geq c$. If $\frac{a^{3}+b^{3}+c^{3}}{\sin ^{3} A+\sin ^{3} B+\sin ^{3} C}=8$, then the maximum value of a
$\sin ^{3} A+\sin ^{3} B+\sin ^{3} C$

- Watch Video Solution

15. In a cyclic quadrilateral $P Q R S, P Q=2$ units, $Q R=5$ units, $R S=3$ units and $\angle P Q R=60^{\circ}$, then what is the measure of SP ?

- Watch Video Solution

PROPERTIES AND SOLUTIONS OF TRIANGLES EXERCISE 6 : SINGLE INTEGER ANSWER TYPE QUESTIONS

1. In the figure as shown find the number of digits in the length of $A B$.

- Watch Video Solution

1. In a $\triangle A B C$, the angles A and B are two values of θ satisfying $\sqrt{3} \cos \theta+\sin \theta=k$, where $|K|<2$, then show triangles is obtuse angled.

- Watch Video Solution

2. In an obtuse angled triangle, the obtuse angle is $\frac{3 \pi}{4}$ and the other two angles are equal to two values of θ satisfying $a \tan \theta+b \sec \theta=c$, where $|b| \leq \sqrt{a^{2}+c^{2}}$, then $a^{2}-c^{2}$ is equal to

- Watch Video Solution

3. If in triangle $A B C a, b$, candangle A are given and 'csinA

- Watch Video Solution

4. If P is a point on the altitude $A D$ of the triangle $A B C$ such the $\angle C B P=\frac{B}{3}$, then AP is equal to $2 a \frac{\sin C}{3}$ (b) $2 b \frac{\sin C}{3}$ (c) $2 c \frac{\sin B}{3}$ (d) $2 c \frac{\sin C}{3}$

- Watch Video Solution

5. If R denotes circumradius, then in $\triangle A B C, \frac{b^{2}-c^{2}}{2 a R}$ is equal to

- Watch Video Solution

6.

$\triangle A B C, A=\frac{2 \pi}{3}, b-c=3 \sqrt{3} \mathrm{~cm}$ and \quad area of $\triangle A B C=\frac{9 \sqrt{3}}{2} \mathrm{~cm}^{2}$, then $B C=$

- Watch Video Solution

7. If $\Delta=a^{2}-(b-c)^{2}, \Delta$ is the area of the $\Delta A B C$ then $\tan A=$?

Watch Video Solution

8. In a $\triangle A B C, B=90^{\circ}, A C=h$ and the length of perpendicular from B to AC is p such that $h=4 p$. If $A B<B C$, then measure $\angle C$.

- Watch Video Solution

9. If in a $\triangle A B C, \sin ^{3} A+\sin ^{3} B+\sin ^{3} C$
$=3 \sin A \cdot \sin B \cdot \sin C$, then find the valueof determinant
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$.

- Watch Video Solution

10. In a triangle $A B C$, if the sides a, b, c, are roots of $x^{3}-11 x^{2}+38 x-40=0, \quad$ then find the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$
11. If the sides a, b, c are in A.P., prove that $(\tan) \frac{A}{2}+(\tan) \frac{c}{2}=\frac{2}{3}(\cot) \frac{B}{2}$.

- Watch Video Solution

12. The sides of a triangle are in A.P. and its area is $\frac{3}{5}$ th of an equilateral triangle of the same perimeter. Find the greatest angle of the triangle

- Watch Video Solution

13. If AD, BE and CF are the medians of a $\triangle A B C$, then evaluate $\left(A D^{2}+B E^{2}+C F^{2}\right):\left(B C^{2}+C A^{2}+A B^{2}\right)$.

- Watch Video Solution

14. Let AD be a median of the $\triangle A B C$. If AE and AF are medians of the triangle $A B D$ and $A D C$, respectively, and $B D=a / 2 \quad A D=$ $m_{1}, A E=m_{2}, A F=m_{3}$, then $a^{2} / 8$ is equal to

- Watch Video Solution

15.

In
$\triangle A B C$,
$x=\tan \left(\frac{B-C}{2}\right) \tan \left(\frac{A}{2}\right), y=\tan \left(\frac{C-A}{2}\right) \tan \left(\frac{B}{2}\right), z=\tan \left(\frac{A-}{2}\right.$
, then $x+y+z$ (in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ only) is

- Watch Video Solution

16. $\triangle A B C$ is equilateral triangle of side a. P lies on AB such that A is midpoint of PB. If r_{1} is inradius of PAC and r_{2} is ex radius of PBC opposite to P , then $r_{1}+r_{2}=$
17. The base of a triangle is divided into three equal parts. If $\theta_{1}, \theta_{2}, \theta_{3}$ be thw angles subtended by these parts at the vertex, then prove that $\left(\cot \theta_{1}+\cot \theta_{2}\right)\left(\cot \theta_{2}+\cot \theta_{3}\right)=4 \operatorname{cosec}^{2} \theta_{2}$

- Watch Video Solution

18. If the circumradius of a triangle is $\frac{54}{\sqrt{1463}}$ and the sides are in G.P with common ratio $\frac{3}{2}$. then find the sides of the triangle.

- Watch Video Solution

19. If the angle at the vertex of an isosceles triangle having the maximum area for the given length of the median to one of its equal sides, is x then $5 \cos x$ is equal to

- Watch Video Solution

20. In an acute angle triangle $\mathrm{ABC}, \mathrm{AD}, \mathrm{BE}$ and CF are the altitudes, then $\frac{E F}{a}+\frac{F D}{b}+\frac{D E}{c}$ is equal to -

- Watch Video Solution

21. Let P be the point inside that $\triangle A B C$. Such that $\angle A P B=\angle B P C=\angle C P A$. Prove that
$P A+P B+P C=\sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}+2 \sqrt{3} \Delta}$, wherea, $b, c \Delta$ are the sides and the area of $\triangle A B C$.

- Watch Video Solution

PROPERTIES AND SOLUTIONS OF TRIANGLES EXERCISE 7 : SUBJECTIVE TYPE QUESTIONS

1. A hexagon is inscribed in a circle of radius r. Two of its sides have length

1 , two have length 2 and the last two have length 3. Prove that r is a root of the equation $2 r^{3}-7 r-3=0$.

- Watch Video Solution

2. Prove that $a^{2}+b^{2}+c^{2}+2 a b c<2$, where a,b,c are the sides of triangle ABC such that $a+b+c=2$.

- Watch Video Solution

3. A polygon of n sides, inscribed in a circle, is such that its sides subtend angle $2 \alpha, 4 \alpha, \ldots, 2 n \alpha$ at the centre of the circles. Prove that its area A_{1}, is to the area A_{2} of the regular polygon of n iseds inscribed in the same circle, as $\sin n \alpha: n \sin \alpha$.

- Watch Video Solution

4. $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ is a regular polygon of n side circumscribed about a circle of centre O and radius 'a'. P is any point distanct ' c ' from O . Show
that the sum of the squares of the perpendiculars from P on the sides of the polygon is $\mathrm{n}\left(a^{2}+\frac{c^{2}}{2}\right)$.

(Watch Video Solution

5.

Show
that
in
any
$\Delta A B C, a^{3} \cos 3 B+3 a^{2} b \cos (2 B-A)+3 a b^{2} \cos (B-2 A)+b^{3} \cos 3 A=$

- Watch Video Solution

6. If in a $\triangle A B C, \frac{a \cos A+b \cos B+c \cos C}{a \sin B+b \sin C+c \sin A}=\frac{a+b+c}{9 R}$, then prove that Δ is equilateral.

- Watch Video Solution

7. In $\triangle A B C$, ' h ' is the length of altitude drawn from vertex A on the side $B C$. Prove that:
$2\left(b^{2}+c^{2}\right) \geq 4 h^{2}+a^{2}$. Also, discuss the case when equality holds true.

Watch Video Solution

8. An equilateral triangle $P Q R$ is circumscribed about a given $\triangle A B C$.

Prove that the maximum area of $\triangle P Q R$ is $\left.2 \Delta+\frac{a^{2}+b^{2}+c^{2}}{2 \sqrt{3}}\right)$. Where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of $\triangle A B C a n \Delta$ is its area.

- Watch Video Solution

9. In a scalene acute $\triangle A B C$, it is known that line joining circumentre and prthocentre is parallel to $B C$. Prove that the angle $A \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

- Watch Video Solution

10. Two circle, that sum of whose radii is 'a' are placed in the same plane with their distance '2a' apart. An endless string is fully stretched so as partly to surround the circle and to cross between them, prove that length of string is $\left(\frac{4 \pi}{3}+2 \sqrt{3}\right) a$.

Exercise (Questions Asked In Previous 13 Years Exam)

1. In a triangle $X Y Z$, let x, y, z be the lengths of sides opposite to the angles $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, respectively, and $2 \mathrm{~s}=\mathrm{x}+\mathrm{y}+\mathrm{z}$. If $\frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}$ of incircle of the triangle $X Y Z$ is $\frac{8 \pi}{3}$
A. (a) area of the $\triangle X Y Z$ is $6 \sqrt{6}$
B. (b)the radius of circum-circle of the $\Delta X Y \operatorname{Zis} \frac{35}{6} \sqrt{6}$
C. (c) $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2}=\frac{4}{35}$
D. (d) $\sin ^{2}\left(\frac{X+Y}{2}\right)=\frac{3}{5}$

Answer: A::C::D

- Watch Video Solution

2. In a triangle the sum of two sides is x and the product of the same is y. If $x^{2}-c^{2}=y$ where c is the third side. Determine the ration of the inradius and circum-radius
A. $\frac{3 y}{2 x(x+c)}$
B. $\frac{3 y}{2 c(x+c)}$
C. $\frac{3 y}{4 x(x+c)}$
D. $\frac{3 y}{4 c(x+c)}$

Answer: B

- Watch Video Solution

3. Consider a triangle $A B C$ and let a, bandc denote the lengths of the sides opposite to vertices A, B, and C, respectively. Suppose $a=6, b=10$, and the area of triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtuse and if r denotes the radius of the incircle of the triangle, then the value of r^{2}
4. about to only mathematics
A. 16
B. 18
C. 20
D. 22

Answer: A: B

- Watch Video Solution

5. Let PQR be a triangle of area Δ with $a=2, b=7 / 2$, and $c=5 / 2$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R , respectively. Then $\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}$ equals
A. $\frac{3}{4 D e t l a}$
B. $\frac{45}{4 \Delta}$
C. $\left(\frac{3}{4 \Delta}\right)^{2}$
D. $\left(\frac{45}{4 \Delta}\right)^{5}$

Answer: B::C::D

- Watch Video Solution

6. If the angle A, Band C of a triangle are in an arithmetic propression and if a, bandc denote the lengths of the sides opposite to $A, B a n d C$ respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\sqrt{3}$
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\sqrt{3}$

- Watch Video Solution

7. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, b and c denote the lengths of the side opposite to A, B, and C respectively. The value(s) of x for which $a=x^{2}+x+1, b=x^{2}-1$, and $c=2 x+1$
is(are) $-(2+\sqrt{3})$
(b) $1+\sqrt{3}$ (c) $2+\sqrt{3}$ (d) $4 \sqrt{3}$
A. $-(2+\sqrt{3})$
B. $1+\sqrt{3}$
C. $2+\sqrt{3}$
D. $4 \sqrt{3}$

Answer: B

- Watch Video Solution

8. A triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If $a, b a n d c$, denote the length of the sides of the triangle opposite to the angles A, B, and C, respectively, then (a) $b+c=4 a$ (b) $b+c=2 a$ (c)the locus of point A is an ellipse (d)the locus of point A is a pair of straight lines
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of point A is an ellipes
D. locus of point A is a pair of straight line

Answer: B::C

- Watch Video Solution

9. Let $A B C a n d A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

- Watch Video Solution

10. A straight line through the vertex P of a triangle $P Q R$ intersects the side $Q R$ at the points S and the cicumcircle of the triangle $P Q R$ at the point T. If S is not the center of the circumcircle, then

$$
\begin{array}{ll}
\frac{1}{P S}+\frac{1}{S T}<\frac{2}{\sqrt{Q S \times S R}} & \frac{1}{P S}+\frac{1}{S T}>\frac{2}{\sqrt{Q S \times S R}} \\
\frac{1}{P S}+\frac{1}{S T}<\frac{4}{Q R} \frac{1}{P S}+\frac{1}{S T}>\frac{4}{Q R} &
\end{array}
$$

$$
\text { A. } \frac{1}{P S}+\frac{1}{S T}<\frac{2}{\sqrt{Q S \times S R}}
$$

$$
\text { B. } \frac{1}{P S}+\frac{1}{S T}>\frac{2}{\sqrt{Q S \times S R}}
$$

$$
\text { c. } \frac{1}{P S}+\frac{1}{S T}<\frac{4}{Q R}
$$

$$
\text { D. } \frac{1}{P S}+\frac{1}{S T}>\frac{4}{Q R}
$$

Answer: D

- Watch Video Solution

11. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and fourth quadrant respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. 4
B. 3
C. $\frac{8}{3}$
D. 2

Answer: B

- Watch Video Solution

12. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and fourth quadrant respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. 5
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: B

- Watch Video Solution

13. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and fourth quadrant respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. $1: \sqrt{2}$
B. 1: 2
C. 1: 4
D. 1: 8

Answer: C

- Watch Video Solution

14. Internal bisector of $\angle A$ of triangle ABC meets side BC at D . A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and the side AB at F . If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ represent sides of $\triangle A B C$, then
A. AE is HM of b and a
B. $A D=\frac{2 b c}{b+c} \cos \frac{A}{2}$
C. $E F=\frac{4 b c}{b+c} \sin \frac{A}{2}$
D. $\triangle A E F$ is isosceles

Answer: A::B::C::D

- Watch Video Solution

15. One angle of an isosceles triangle is 120° and the radius of its incricel is $\sqrt{3}$. Then the area of the triangle in sq. units is $7+12 \sqrt{3}$ (b) $12-7 \sqrt{3}$ $12+7 \sqrt{3}$ (d) 4π
A. $4 \sqrt{3}$
B. $12-7 \sqrt{3}$
C. $12+7 \sqrt{3}$
D. None of the above

Answer: C

- Watch Video Solution

16. In $\triangle A B C$, which one is true among the following ?
A. $(b+c) \cos \frac{A}{2}=a \sin \left(\frac{B+C}{2}\right)$
B. $(b+c) \cos \left(\frac{B+C}{2}\right)=a \sin \frac{A}{2}$
C. $(b-c) \cos \left(\frac{B-C}{2}\right)=a \cos \left(\frac{A}{2}\right)$
D. $(b-c) \cos \frac{A}{2}=a \sin \left(\frac{B-C}{2}\right)$

Answer: D

- Watch Video Solution

17. Let a vertical tower $A B$ have its end A on the level ground. Let C be the mid point of $A B$ and P be a point on the ground such that $A P=2 A B$. If $\angle B P C=\beta$, then $\tan \beta$ is equal to : $\frac{2}{9}$ (2) $\frac{4}{9}$ (3) $\frac{6}{7}$ (4) $\frac{1}{4}$
A. $\frac{6}{7}$
B. $\frac{1}{4}$
C. $\frac{2}{9}$
D. $\frac{4}{9}$

Answer: C

- Watch Video Solution

18. ABCD is a trapezium such that AB and CD are parallel and $B C \perp C D$. If $\angle A D B=\theta, B C=p$ and $C D=q$, then AB is equal to
A. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$
B. $\frac{p^{2}+q^{2} \cos \theta}{p \cos \theta+q \sin \theta}$
C. $\frac{p^{2}+q^{2}}{p^{2} \cos \theta+q^{2} \sin \theta}$
D. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{(p \cos \theta+\sin \theta)^{2}}$

Answer: A

D Watch Video Solution

19. For a regular polygon, let r and R be the radii of the inscribed and the cirumscribed circles, respectively. A false statement among the following is
A. there is a regular polygon with $\frac{r}{R}=\frac{1}{2}$
B. there is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$
C. there is a regular plygon with $\frac{r}{R}=\frac{2}{3}$
D. there is a regular plygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$

Answer: A::B::D

- Watch Video Solution

20. In triangle $A B C$, let $\angle c=\frac{\pi}{2}$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to $a+b$ (b) $b+c$ $c+a$ (d) $a+b+c$
A. $c+a$
B. $a+b+c$
C. $a+b$
D. $b+c$

Answer: A

21. If in a $\triangle A B C$, the altitudes from the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on opposite sides are in H.P, then $\sin A, \sin B, \sin C$ are in
A. HP
B. AGP
C. AP
D. GP

Answer: C

