

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

SETS, RELATIONS AND FUNCTIONS

Examples

1. Write the set of the letter of the word 'ALLAHABAD'. Also find the number of subsets of this set.

Watch Video Solution

2. Let A, B and C be the sets such that $A \cup B = A \cup C$ and

$$A\cap B=A\cap C$$
. show that $B=C$

3. Let A and B be sets. If $A \cap X = B \cap X = \varphi$ and $A \cup X = B \cup X$ for some set X, show that A = B.(Hints $A = A \cap (A \cup X), B = B \cap (B \cup X)$ and use Distributive law)

4. If A and B are any two sets, prove that

$$P(A) = P(B)$$
 implies $A = B$.

5. If A and B be two sets containing 6 and 3 elements respectively, what can be the minimum number of elements in $A \cup B$? Also, find the maximum number of elements in $A \cup B$.

6. Suppose A_1, A_2, \ldots, A_{30} are thirty sets each having 5 elements and B_1B_2, \ldots, B_n are n sets each having 3 elements ,Let $\bigcup_{i=1}^{30} A_1 = \bigcup_{j=1}^n B_j = s$

and each element of S belongs to exactly 10 of the A_1 and exactly 9 of the value of n.

Watch Video Solution

7. In a group of 1000 people, there are 750 who can speak Hindi and 400 who can speak Bengali. How many can speak Hindi only? How many can speak Bengali only? How many can speak both Hindi and Bengali?

Watch Video Solution

8. about to only mathematics

9. A class has 175 students. The following table shows the number of students studying one or more of the following subjects in this case.

Subjects	Number of students
Mathematics	100
Physics	70
Chemistry	46
Mathematics and Physics	30
Mathematics and Chemistry	28
Physics and Chemistry	23
Mathematics, Physics and Chemistry	18

How many students are enrolled in Mathematics alone, Physics alone and Chemistry alone? Are there students who have not offered any one of these subjects?

Watch Video Solution

10. In a pollution study of 1500 Indian rivers the following data were reported. 520 were polluted by sulphur compounds, 335 were polluted by phosphates, 425 were polluted by crude oil, 100 were polluted by both crude oil and sulphur compounds, 180 were polluted by both sulphur

compounds and phosphates, 150 were polluted by both phosphates and crude oil and 28 were polluted by sulphur compounds, phosphates and crude oil. How many of the rivers were polluted by atleast one of the three impurities?

How many of the rivers were polluted by exactly one of the three impurities?

Watch Video Solution

11. If A = {1, 2, 3} and B = {4, 5}, find $A \times B$, $B \times A$ and show that $A \times B \neq B \times A$.

Watch Video Solution

12. If A and B be two sets and $A \times B = \{(3, 3), (3, 4), (5, 2), (5, 4)\}$, find

A and B.

13. If A and B are two sets given in such a way that $A \times B$ consists of 6 elements and if three elements of $A \times B$ are (1,5), (2,3) and (3,5), what are the remaining elements?

14. Let A = {1, 2, 3} and R = {(a,b): $a, b \in A, a$ divides b and b divides a}.

Show that R is an identity relation on A.

Watch Video Solution

15. Let A = {3,5}, B = {7,1}.

Let R = {(a,b): $a \in A, b \in B, a - b$ is even}.

Show that R is an universal relation from A to B.

16. Prove that the relation R defined on the set N of natural numbers by

xRy $\, \Leftrightarrow \, 2x^2 - 3xy + y^2 = 0$ is not symmetric but it is reflexive.

Watch Video Solution

17. Let R be a relation on the set N of natural numbers defined by n R miff n divides m. Then, R is (a) Reflexive and symmetric (b) Transitive and symmetric (c) Equivalence (d) Reflexive, transitive but not symmetric

Watch Video Solution

18. Statement-1: The relation R on the set N imes N defined by (a, b) R (c, d)

 \Leftrightarrow a+d = b+c for all a, b, c, d \in N is an equivalence relation.

Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

19. A relation R on set of complex numbers defined by $Z_1RZ_2 \Leftrightarrow \frac{Z_1 - Z_2}{Z_1 + Z_2}$ is real then which of the following is not true ? **Watch Video Solution 20.** Let R be a relation such that $R = \{(1, 4), (3, 7), (4, 5), (4, 6), (7, 6)\},$

check R is a function or not ?

Watch Video Solution

21. Let $\mathsf{f}:\mathsf{N} \ o N$: f(x) = 2x for all $x \in N$

Show that f is one -one and into.

22. Let the function $f\colon R o R$ be defined by $f(x)=\cos x,\ orall x\in R.$

Show that f is neither one-one nor onto.

23. Let $f: R \to R$ be defined by f(x) = cos (5x+2). Is f invertible? Justify your answer.

24. If $f: R \to R, g: R \to R$ defined as $f(x) = \sin x$ and $g(x) = x^2$, then find the value of (gof)(x) and (fog)(x)and also prove that $gof \neq fog$.

Watch Video Solution

25. If $f: R \to R$ and $g: R \to R$ be two mapping such that f(x) = sin x and g(x) = x^2 , then

find the values of (fog) $\frac{\sqrt{\pi}}{2}$ and $(gof)\left(\frac{\pi}{3}\right)$.

26. If the mapping $f: \{1, 3, 4\}$ $\overrightarrow{1, 2, 5}$ $andg: \{1, 2, 5\}$ $\overrightarrow{1, 3}$, given by $f = \{(1, 2), (3, 5), (4, 1)\}$ $andg = \{(2, 3), (5, 1), (1, 3)\}$, write fog.

Watch Video Solution

27. Let
$$A = \{x \in Z : 0 \le x \le 12\}$$
. Show that
 $R = \{(a, b) : a, b \in A, |a - b| is \div isib \le by4\}$ is an equivalence
relation. Find the set of all elements related to 1. Also write the
equivalence class [2]

Watch Video Solution

28. Find congruent solutions of $155 \equiv 7 \pmod{4}$.

29. Find all congruent solutions of $8x \equiv 6 \pmod{14}$.

30. Two finite sets have m and n elements respectively . The total number of subsets of first set is 56 more than the total number of subsets of the second. Find the values of m and n.

Watch Video Solution

31. If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are

relatively prime, then show that d = bc.

A. d = bc

- B.c = bd
- C. b = cd
- D. None of these

Answer: A

32. In a town of 10,000 families it was found that 40 % families buy newspaper A, 20 % buy newspaper B and 10 % buy newspaper C .also 5 % families buy newspaper A and B 3 % buy newspaper B and C and 4 % buy newspaper A can C ,If 2 % families buy all the three newspaper , then number of families which buy newspaper A only is

A. 3100

B. 3300

C. 2900

D. 1400

Answer: B

33. Let R be the relation on the set R of all real numbers defined by a Rb

Iff $|a - b| \leq 1$. Then R is

A. reflexive and symmetric

B. symmetric only

C. transitive only

D. anti-symmetric only

Answer: A

Watch Video Solution

34. The relation R defined in $A=\{1,2,3\}$ by aRb if $\left|a^2-b^2
ight|\leq 5.$ Which

of the following is faise

A. R = {(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)}

 $\mathsf{B}.\,R^{\,-1}=R$

C. Domain of R = {1, 2, 3}

D. Range of R = {5}

Answer: A,C

35. If
$$f(x) = \frac{1}{(1-x)}$$
, $g(x) = f\{f(x)\}$ and $h(x) = f[f\{f(x)\}]$. Then

the value of f(x).g(x).h(x) is

A. 6

B. -1

C. 1

D. 2

Answer: B

D Watch Video Solution

36. If l is the set of integers and if the relation R is defined over I by aRb,

iff a - b is an even integer, $a, b \in l$, the relation R is:

A. reflexive

B. anti-symmetric

C. symmetric

D. equivalence

Answer: A::C::D

View Text Solution

37. If
$$f(x) = rac{a-x}{a+x}$$
, the domain of $f^{-1}(x)$ contains
A. $(-\infty,\infty)$
B. $(-\infty,-1)$
C. $(-1,\infty)$
D. $(0,\infty)$

Answer: B::C::D

38. If $f(x)=rac{\sin([x]\pi)}{x^2+x+1}$, where [.] denotes the greatest integer

function, then

A. f is one-one

B. f is not one-one and non-constant

C. f is constant function

D. f is zero function

Answer: C::D

Watch Video Solution

39. If
$$A = \{x\!:\! |x| < 2\}, B = \{x\!:\! |x-5| \leq 2\},$$

$$C = \{x\!:\!|x| > x\} \,\, ext{and} \,\, D = \{x\!:\!|x| < x\}$$

The number of integral values in $A \cup B$ is

A. 4

B. 6

C. 8

D. 10

Answer: C

Watch Video Solution

40. If
$$A = \{x \colon |x| < 2\}, B = \{x \colon |x-5| \le 2\},$$

$$C = \{x\!:\!|x| > x\} \,\, ext{and}\,\, D = \{x\!:\!|x| < x\}$$

The number of integral values in $A \cup C$ is

A. 1

B. 2

C. 3

D. 0

Answer: A

41. If
$$A = \{x : |x| < 2\}, B = \{x : |x-5| \le 2\}$$
,

 $C = \{x : |x| > x\} \,\, ext{and} \,\, D = \{x : |x| < x\}$

The number of integral values in $A\cap D$ is

A. 2 B. 4 C. 6 D. 0

Answer: D

Watch Video Solution

42. If
$$A=\left\{x\!:\!x^2-2x+2>0
ight\}$$
 and $B=\left\{x\!:\!x^2-4x+3\le 0
ight\}$
 $A\cap B$ equals

A. $[1,\infty]$

B. [1,3]

C.
$$(-\infty,3]$$

D. $(-\infty,1)\cup(3,\infty)$

Answer: B

Watch Video Solution

43. If
$$A = \left\{x\!:\!x^2-2x+2>0
ight\} ext{ and } B = \left\{x\!:\!x^2-4x+3\leq 0
ight\}$$

A - B equals

A. $(-\infty,\infty)$

B. (1,3)

 $\mathsf{C}.\left(3,\infty\right)$

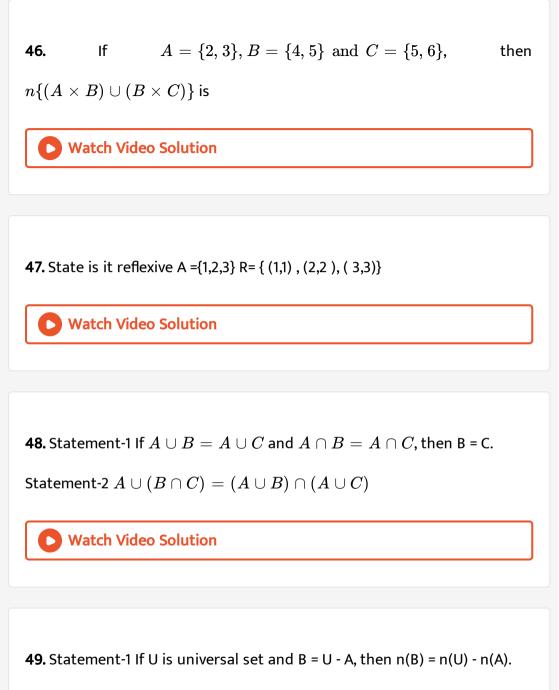
D.
$$(-\infty,1)\cup(3,\infty)$$

Answer: D

44. If
$$A=\left\{x\!:\!x^2-2x+2>0
ight\}$$
 and $B=\left\{x\!:\!x^2-4x+3\le 0
ight\}$
 $A\cup B$ equals

A. $(\,-\infty,1)$

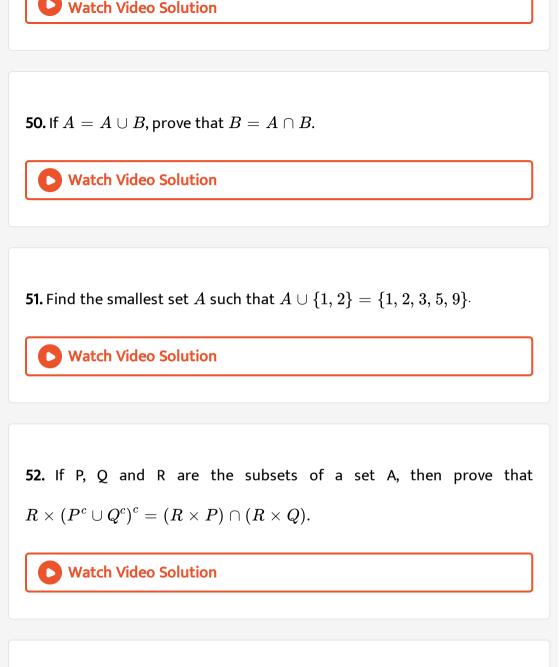
 $\mathsf{B.}\left(3,\infty
ight)$


 $\mathsf{C}.\,(\,-\infty,\infty)$

Answer: C

45. If
$$f \colon R^+ o A$$
, where $A = \{x \colon -5 < x < \infty\}$ is defined by f(x) = x^2

- 5 and if


$$f^{-1}(13) = \Big\{ -\lambda \sqrt{(\lambda-1)}, \lambda \sqrt{(\lambda-1)} \Big\}$$
, the value of λ is

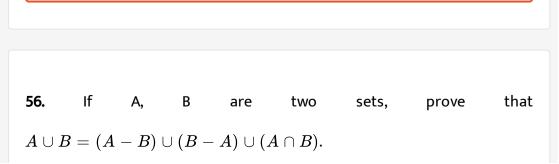
Statement-2 For any three arbitrary sets A, B and C, if C = A - B, then n(C) =

n(A) - n(B).

53. Check the following relations R and S for reflexivity, symmetry and transitivity: aRb iff b is divisible by $a, a, b \in N$ (ii) $l_1 S l_2$ iff $l_1 \perp l_2$, where l_1 and l_2 are straight lines in a plane.

54. Check the relation ρ for reflexive, symmetry and transitivity:

 $\alpha \rho \beta$ iff α is perpendicular to β , where α and β are straight lines in a plane.


Watch Video Solution

55. Let $f\colon [0,1] o [0,1]$ be defined by $f(x)=rac{1-x}{1+x}, 0\leq x\leq 1$ & $g\colon [0,1] o [0,1]$ be defined by $g(x)=4x(1-x), 0\leq x\leq 1$

Determine the functions fog and gof.

Watch Video Solution

Note that [0, 1] stands for the set of all real members x that satisfy the condition $0 \le x \le 1$.

Hence or otherwise prove that

$$n(A\cup B)=n(A)+n(B)-n(A\cap B)$$

where, n(A) denotes the number of elements in A.

57. If
$$A=\left\{ heta\colon 2\cos^2 heta+\sin heta\leq 2
ight\}$$
 , and $B=\left\{ heta\colon rac{\pi}{2}\leq heta\leq rac{3\pi}{2}
ight\}$ then

the region for $(A \cap B)$ is _____

Watch Video Solution

58. An investigator interviewed 100 students to determine their preferences for the three drinks, milk (M), coffee (C) and tea (T). He reported the following: 10 students has all three drinks M, C, T, 20 had M and C, 30 had C and T, 25 had M and T, 12 had M only, 5 had C only and 8 had T only. Using a Venn diagram, find how many did not take any of the three drinks?

59. In a certain city, only 2 newspapers A and B are published. It is known that 25% of the city population read A and 20% read B while 8% reads both A and B. It is also known that 30% of those who read A but not B look into advertisement and 40% of those who read B but not A look into advertisements while 50% of those who read both A and B look into advertisements. What is the percentage of the population who read an advertisement?

Watch Video Solution

60. An analysis of 100 personal injury claims made upon a motor insurance company revealed that loss or injury in respect of an eye, an arm, a leg occurred in 30, 50 and 70 cases, respectively. Claims involving this loss or injury to two of these members numbered 44. How many claims involved loss or injury to all the three, we must assume that one or another of three members was mentioned in each of the 100 claims?

61. Let N denote the set of all natural numbers and R be the relation on NxN defined by (a,b)R(c,d)ad(b+c)=bc(a+d). Check whether R is an equivalence relation on NxN.

62. The sets S and E are defined as given below:

$$S = \{(x,y) \colon |x-3| < 1 \; ext{ and } \; |y-3| < 1 \}$$
 and

$$E=ig\{(x,y)\!:\!4x^2+9y^2-32x-54y+109\leq 0ig\}.$$

Show that $S \subset E$.

Watch Video Solution

Exercise For Session 1

1. If
$$X = \{4^n - 3n - 1 \colon n \in N\}$$
 and $y = \{9(n-1) \colon n \in N\}$, then

 $X \cup Y$ equals

A. X

B. Y

C. N

D. None of these

Answer: B

Watch Video Solution

2. If $N_a = \{an\!:\! n \in N\}$, then $N_5 \cap N_7$ equals

A. A. N

B. B. N_5

C. C. N_7

D. D. N_{35}

Answer: D

3. If A and B are two sets, then $A \cap (A \cup B)$ equals

A. A

B. B

 $\mathsf{C}.\phi$

D. None of these

Answer: C

Watch Video Solution

4. Let U be the universal set and $A\cup B\cup C=\cup$ then $\{(A-B)\cup (B-C)\cup (C-A)\}$ is equal to

A. $A\cup B\cup C$

 $\mathsf{B.}\, A\cap B\cap C$

 $\mathsf{C}.\, A \cup (B \cap C)$

$\mathsf{D}.\,A\cap (B\cup C)$

Answer: B

5. If A and B are two sets ,then $(A-B)\cup(B-A)\cup(A\cap B)$ equals

A. $A \cup B$

 $\mathsf{B}.\,A\cap B$

C. A

D. B'

Answer: A

6. If A = {x : x is a multiple of 4} and B = {x : x is a multiple of 6}, then A \subset

B consists of all multiple of (A) 4 (B)8 (C) 12 (D)16

A. 4	
B. 8	
C. 12	
D. 16	

Answer: C

Watch Video Solution

7. A set contains 2n+1 elements. The number of subsets of this set containing more than n elements :

A. 2^{n-1}

 $\mathsf{B}.\, 2^n$

 $\mathsf{C.}\, 2^{n+1}$

 $\mathsf{D.}\,2^{2n}$

Answer: D

8. Power set of the set $A = \{\phi, \{\phi\}\}$ is

A. A

 $\mathsf{B}.\left\{\phi,\left\{\phi\right\},A\right\}$

 $\mathsf{C}.\,\{\phi,\,\{\phi\},\,\{\{\phi\}\},\,A\}$

D. None of these

Answer: C

9. Given n(U) = 20, n(A) = 12, n(B) = 9, $n(A \cap B) = 4$, where U is the universal set, A and B are subsets of U, then $n((A \cup B)')$ equals

A. 3 B. 9 C. 11

D. 17

Answer: A

10. A survey shows that 63% of the Americans like cheese whereas 76% like apples , If x% of the Americans like both cheese and apples , then find value of x .

A. 40

B. 65

C. 39

D. None of these

Answer: C

Watch Video Solution

11. In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physics, 19 in Chemistry, 12 in Mathematics and Physics, 9 in Mathematics and Chemistry, 7 in Physics and Chemistry and 4 in all the three subjects. Find the number of students who have taken exactly one subject.

A. 6

B. 7

C. 9

D. 22

Answer: D

Exercise For Session 2

1. If A = {2, 3, 5}, B = {2, 5, 6}, then $(A-B) imes (A\cap B)$ is

- A. $\{(3, 2), (3, 3), (3, 5)\}$
- $\mathsf{B}.\,\{(3,\,2),\,(3,\,5),\,(3,\,6)\}$
- $C. \{(3, 2), (3, 5)\}$
- D. None of these

Answer: C

Watch Video Solution

2. If n(A)=4, n(B)=3, n(A imes B imes C)=24, then n(C) equals

B. 2

C. 17

D. 288

Answer: B

Watch Video Solution

3. The relation R defined on the set of natural numbers as {(a,b) : a differs

from b by 3} is given by

- A. $\{(1,4),(2,5),(3,6),\ldots\}$
- $\mathsf{B}.\,\{(4,1),\,(5,2),\,(6,3),\,\ldots\}$
- $\mathsf{C}.\,\{(1,3),\,(2,6),\,(3,9),\,\ldots\}$

D. None of these

Answer: B

4. Let A be the set of the children in a family. The relation Â'x is a brother

of y' relation on A is

A. reflexive

B. anti-symmetric

C. transitive

D. equivalence

Answer: C

Watch Video Solution

5. Let n(A) = n, then the number of all relations on A, is

A. 2^n

B. $2^{n!}$

 $\mathsf{C.}\, 2^{n^2}$

D. None of these

Answer: C

Watch Video Solution

6. If S = {1, 2, 3,...,20}, K = {a, b, c, d}, G = {b, d, e, f}. The number of elements of $(S \times K) \cup (S \times G)$ is

A. 40

B. 100

C. 120

D. 140

Answer: C

7. The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R^{-1} is given by

A. $\{(2,1)(4,2)(6,3),\ldots\}$

- $\mathsf{B.}\left\{(1,2)(2,4)(3,6),\ldots\right\}$
- C. R^{-1} is not defined

D. None of these

Answer: B

Watch Video Solution

- **8.** The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set
- $A=\{1,2,3\}$ is

A. reflexive, transitive but not symmetric

B. reflexive, symmetric but not transitive

C. symmetric and transitive but not reflexive

D. reflexive but neither symmetric nor transitive

Answer: A

9. The number of equivalence relations that can be defined on set {a, b, c}, is
A. 5
B. 3!
C. 2³
D. 3³

10. If
$$R$$
 be a relation $<$ from $A = \{1, 2, 3, 4) \to B = (1, 3, 5)$ that is $(a, b) \in R \Leftrightarrow a < b$, then RoR^{-1} is

A. a)
$$\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$$

B. b)
$$\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$$

C. c) $\{(3, 3), (3, 5), (5, 3), (5, 5)\}$

D. d) $\{(3, 3), (3, 4), (4, 5)\}$

Answer: C

Watch Video Solution

Exercise For Session 3

1. The values of bandc for which the identity of f(x+1) - f(x) = 8x + 3 is satisfied, where $f(x) = bx^2 + cx + d$, are b = 2, c = 1 (b) b = 4, c = -1, b = -1, c = 4 (d) b = -1, c = 1

Answer: B

Watch Video Solution

2. If
$$f(x) = \frac{x-1}{x+1}$$
, then $f(f(ax))$ in terms of $f(x)$ is equal to
 $(a) \frac{f(x)-1}{a(f(x)-1)}$ (b) $\frac{f(x)+1}{a(f(x)-1)} \frac{f(x)-1}{a(f(x)+1)}$ (d) $\frac{f(x)+1}{a(f(x)+1)}$
A. $\frac{f(x)+a}{1+af(x)}$
B. $\frac{(a-1)f(x)+a+1}{(a+1)f(x)+a-1}$
C. $\frac{(a+1)f(x)+a-1}{(a-1)f(x)+a+1}$

D. None of these

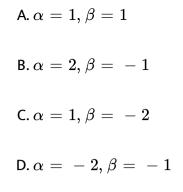
Answer: C

3. Let f be a function satisfying f(x+y)=f(x)+f(y) for all $x,y\in R.$

If f(1)=k then $f(n), n\in N$ is equal to

A. k^n

B. nk


C. k

D. None of these

Answer: B

Watch Video Solution

4. Is $g = \{(1, 1), (2, 3), (3, 5,), (4, 7)\}$ a function? If this is described by the formula, $g(x) = \alpha x + \beta$, then what values should be assigned to $\alpha and\beta$?

Answer: B

5. Find the value of parameter lpha for which the function f(x)=1+lpha x , lpha
eq 0 is the inverse of itself.

- A. 2
- $\mathsf{B.}-1$
- C. 1
- D. 2

Answer: B

6. If
$$f(x) = (a - x^n)^{1/n}$$
, where $a > 0$ and $n \in N$, then fof (x) is

equal to

A. a

B. x

 $\mathsf{C}.\, x^n$

 $\mathsf{D}.\,a^n$

Answer: B

Watch Video Solution

7. If $f(x) = \left(ax^2 + b
ight)^3$, then find the function g such that f(g(x)) = g(f(x)).

A.
$$g(x)=\left(rac{b-x^{1/3}}{a}
ight)^{1/2}$$

B.
$$g(x) = rac{1}{(ax^2+b)^3}$$

C. $g(x) = (ax^2+b)^{1/3}$
D. $g(x) = \left(rac{x^{1/3}-b}{a}
ight)^{1/2}$

Answer: D

Watch Video Solution

8. Which of the following function from Z to itself are bijections? $f(x) = x^3$ (b) f(x) = x + 2 f(x) = 2x + 1 (d) $f(x) = x^2 + x$ A. $f(x) = x^3$ B. f(x) = x + 2C. f(x) = 2x + 1D. $f(x) = x^2 + x$

Answer: B

9. Let $f: R - \{n\} \to R$ be a function defined by $f(x) = \frac{x-m}{x-n}$, where $m \neq n$. Then, f is one-one onto (b) f is one-one into (c) f is many one onto (d) f is many one into

A. f is one-one onto

B. f is one-one into

C. f is many-one onto

D. is many-one into

Answer: B

Watch Video Solution

10. If $f(x+2y,x-2y)=xy,\,$ then f(x,y) equals

A.
$$rac{x^2-y^2}{8}$$

B. $rac{x^2-y^2}{4}$

C.
$$rac{x^2+y^2}{4}$$

D. $rac{x^2-y^2}{2}$

Answer: A

Watch Video Solution

Exercise Single Option Correct Type Questions

1. If A and B are two sets, then $A \cap (A \cup B)$ equals

A. A

B. B

 $\mathsf{C}.\,\phi$

D. None of these

Answer: A

2. If R is a relation from a set A to a set B and S is a relation from B to a set C, then the relation SoR a) is from A to C b) is from C to A c) does not exist d) None of these

A. is from A to C

B. is from C to A

C. does not exist

D. None of these

Answer: A

Watch Video Solution

3. Let R = {(1, 3), (2, 2), (3, 2)} and S = {(2, 1), (3, 2), (2, 3)} be two relations on

set A = {(1, 2, 3)}. Then, SoR is equal

A. {(2, 3), (3, 2), (2, 1)}

B. {(1, 3), (2, 2), (3, 2), (2, 1), (2, 3)}

C. {(3, 2), (1, 3)}

D. {(2, 3), (3, 2)}

Answer: A

Watch Video Solution

4. If X and Y are two sets, then $X \cap (Y \cap X)$ 'equals

A. X

B. Y

 $\mathsf{C}.\,\phi$

D. None of these

Answer: D

5. For real numbers x and y, define x R y iff $x - y + \sqrt{2}$ is an irrational number. Then the relation R is (a) reflexive (b) symmetric (c) transitive (d) none of these

A. reflexive

B. symmetric

C. transitive

D. None of these

Answer: A

Watch Video Solution

6. Let
$$f(x) = (x+1)^2 - 1, x \ge -1.$$
 Then the set $\left\{x: f(x) = f^{-1}(x)
ight\}$ is $\left\{0, 1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}
ight\}$ (b) $\{0, 1, -1\}$

 $\{0,1,1\}$ (d) empty

A.
$$\left\{ 0, \ -1, rac{-3+i\sqrt{3}}{2}, rac{-3-i\sqrt{3}}{2}
ight\}, i = \sqrt{-1}$$

B. {0, 1, -1}

C. {0, -1}

D. empty

Answer: C

Watch Video Solution

7. The number of elements of the power set of a set containing n elements is

A. 2^{n-1}

 $\mathsf{B}.\,2^n$

 $C. 2^n - 1$

D. 2^{n+1}

Answer: B

8. Which one of the following is not true?

A. $A-B\subseteq A$ B. $B'-A'\subseteq A$ C. $A\subseteq A-B$

 $\mathsf{D}.\,A\cap B^{\,\prime}\subseteq A$

Answer: C

Watch Video Solution

9. If A = {1, 2, 3} and B = {3, 8}, then $(A \cup B) imes (A \cap B)$ is

A. {(3, 1), (3, 2), (3, 3), (3, 8)}

B. {(1, 3), (2, 3), (3, 3), (8, 3)}

C. {(1, 2), (2, 2), (3, 3), (8, 8)}

D. {(8, 3), (8, 2), (8, 1), (8, 8)}

Answer: B

10. Let $A = \{p, q, r\}$. Which of the following is an equivalence relation on A?(i) $R = \{(p,q), (q,r), (p,r), (p,p)\}$ (ii) $R = \{(p, p), (q, q), (r, r), (q, p)\}$ (iii) $R = \{(p, p), (q, q), (r, r)\}$ (iv) $R = \{(p, p), (q, q), (r, r), (p, q), (q, r), (p, r)\}$ (v) $R = \{(p, p), (q, q), (r, r), (p, q), (q, p)\}$ A. $R_1 = \{(p, q), (q, r), (p, r), (p, p)\}$ B. $R_2 = \{(r, q), (r, p), (r, r), (q, q)\}$ C. $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$

D. None of the above

Answer: D

11. Let A = $\{x : x \text{ is a multiple of 3}\}$ and B = $\{x : x \text{ is a multiple of 5}\}$, then

 $A\cap B$ is given by

A. {3, 6, 9}

B. {5, 10, 15, 20, ...}

C. {15, 30, 45, ...}

D. None of these

Answer: C

Watch Video Solution

12. Let A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, the $A \cup (B \cap C)$ is

A. {3}

B. {1, 2, 3, 4}

C. {1, 2, 5, 6}

D. {1, 2, 3, 4, 5, 6}

Answer: B

Watch Video Solution

13. Let A = {x, y, z}, B = {u, v, w} and f : A \rightarrow B be defined by f(x) = u,

f(y) = v, f(z) = w. Then, f is

A. surjective but not injective

B. injective but not surjective

C. bijective

D. None of the above

Answer: C

14. If A = {2, 4) and B = {3, 4, 5), then $(A \cap B) imes (A \cup B)$ is

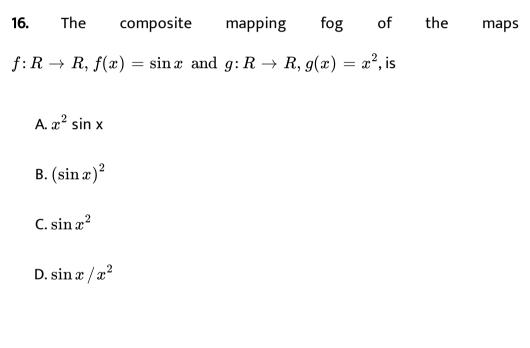
A. {(2, 2), (3, 4), (4, 2), (5, 4)}

B. {(2, 3), (4, 3), (4, 5)}

C. {(2, 4), (3, 4), (4, 4), (4, 5)}

D. {(4, 2), (4, 3), (4, 4), (4, 5)}

Answer: D


Watch Video Solution

15. In the set X = {a, b, c, d}, which of the following functions in X?

A.
$$R_1 = \{(b, a), (a, b), (c, d), (a, c)\}$$

B. $R_2 = \{(a, d), (d, c), (b, b), (c, c)\}$
C. $R_3 = \{(a, b), (b, c), (c, d), (b, d)\}$
D. $R_4 = \{(a, a), (b, b), (c, c), (a, d)\}$

Answer: B

Answer: C

17. Which of the following is the empty set

A. {x : x is a real number and $x^2 - 1 = 0$ }

B. {x : x is a real number and $x^2 + 1 = 0$ }

C. {x : x is a real number and $x^2 - 9 = 0$ }

D. {x : x is a real number and $x^2 = x + 2$ }

Answer: B

Watch Video Solution

18. In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R

A. is reflexive

B. is symmetric

C. is transitive

D. possesses all the above three properties

Answer: D

19. Let
$$A = \{p, q, r, s\}$$
 and $B = \{1, 2, 3\}$. Which of the following relations from A to B is not function?
 $R_1 = \{(p, 1), (q, 2), (r, 1), (s, 2)\}$.
A. $R_1 = \{(p, 1), (q, 2), (r, 1), (s, 2)\}$.
B. $R_2 = \{(p, 1), (q, 2), (r, 1), (s, 1)\}$
C. $R_3 = \{(p, 1), (q, 2), (r, 2), (r, 2)\}$

D.
$$R_4 = \{(p,2), (q,3), (r,2), (s,2)\}$$

Answer: C

Watch Video Solution

20. For $n, m \in N, n \mid m$ means that n is a factor of m then relation \mid is

A. reflexive and symmetric

- B. transitive and symmetric
- C. reflexive, transitive and symmetric
- D. reflexive, transitive and not symmetric

Answer: D

Watch Video Solution

21. Find all congruent solutions of $8x \equiv 6 \pmod{14}$.

A. [8],[6]

B. [8],[14]

C. [6],[13]

D. [8],[14],[16]

Answer: C

22. Let A be a set containing 10 distinct elements. Then the total number

of distinct functions from A to A is:

A. (a) 10! B. (b) 10¹⁰ C. (c) 2¹⁰

D. (d) $2^{10}-1$

Answer: B

Watch Video Solution

23. Let A and B be two non- empty subsets of a set X such that A is not a

subset of B .Then

A. A is a subset of the complement of B

B. B is a subset of A

C. A and B are disjoint

D. A and the complement of B are non-disjoint

Answer: D

24. f and h are function from A \rightarrow B, where A = {a, b, c, d} and B = {s, t, u}

defined as follows

f(a) = t, f(b) = s, f(c) = s

f(d) = u, h(a) = s, h(b) = t

h(c) = s, h(a) = u, h(d) = u

Which one of the following statement is true?

A. A. f and h are functions

B. B. f is a function and h is not a function

C. C. f and h are not functions

D. D. None of the above

25. Let I be the set of integer and f : I $\ o$ I be defined as f(x) = $x^2, \, x \in I$,

the function is

A. bijection

B. injection

C. surjection

D. None of these

Answer: D

Watch Video Solution

26. Which of the four statements given below is different from other?

A. $f{:}A o B$

 $\mathsf{B}.\,f{:}\,x \to f(x)$

C. f is a mapping of A into B

D. f is a function of A into B

Answer: B

Watch Video Solution

27. Let $A = \{1, 2, , n\}$ and $B = \{a, b\}$. Then the number of subjections from A into B is nP_2 (b) $2^n - 2$ (c) $2^n - 1$ (d) nC_2

- A. . $^{n}P_{2}$
- $B.2^{n} 2$
- $C. 2^n 1$
- D. None of these

Answer: B

28. If function $f\!:\!R o R$ is defined by f(x)=3x-4 then $f^{-1}(x)$ is

given by

A.
$$rac{1}{3}(x+4)$$

B. $rac{1}{3}x-4$
C. $3x+4$

D. not defined

Answer: A

Watch Video Solution

29. $f \colon R \to R$ is a function defined by f(x)=10x - 7, if $g = f^{-1}$ then g(x)=

A.
$$\frac{1}{10x - 7}$$

B. $\frac{1}{10x + 7}$
C. $\frac{x + 7}{10}$

D.
$$\frac{x-7}{10}$$

Answer: C

30. Let R be a relation defined by R = {(a, b) $: a \ge b$ }, where a and b are real numbers, then R is

A. reflexive, symmetric and transitive

B. reflexive, transitive but not symmetric

C. symmetric, transitive but not reflexive

D. neither transitive, nor reflexive, not symmetric

Answer: B

31.	lf	the	sets	A	and	В	are	defined	are	defined	as
$A = \{(x,y)\!:\!y=e^x, x\in R\}, B = \{(x,y)\!:\!y=x, x\in R\}$ then											
	A . <i>E</i>	$B \subset A$									
	в. А	$C \subset B$									
	c 1		1								
	C. A	$A \cap B =$	$= \phi$								
	DА	$\cup B$									
	2.11										

Answer: B

Watch Video Solution

32. If function $f\colon A o B$ is a bijective , then $f^{\,-1}$ of is

A. $fof^{\,-1}$

B. *f*

 $\mathsf{C}.\,f^{\,-1}$

D. I_A (the identity map of the set A)

Answer: D

33. If
$$f(y) = \frac{y}{\sqrt{1-y^2}}$$
, $g(y) = \frac{y}{\sqrt{1+y^2}}$, then (fog) y is equal to
A. $\frac{y}{\sqrt{1-y^2}}$
B. $\frac{y}{\sqrt{1+y^2}}$
C. y
D. $\frac{(1-y^2)}{\sqrt{1-y^2}}$

Answer: C

Watch Video Solution

34. $f\!:\!R o R$ is defined as f(x)=2x+|x| then f(3x)-f(-x)-4x=

A. a) f(x)B. b) -f(x)C. c) f(-x)D. d) 2f(x)

Answer: D

35. Let R and S be two non-void relations on a set A. Which of the following statements is false?

A. R and S are transitive $\ \Rightarrow R \cup S$ is transitive

B. R and S are transitive implies $R \cap S$ is symmetric

C. R and S are symmetric implies $R \cup S$ is symmetric

D. R and S are reflexive implies $R \cap S$ is reflexive

Answer: A

36. Let $f\!:\!R o R,g\!:\!R o R$ be two functions given by $f(x)=2x-3,g(x)=x^3+5.$ Then $(fog)^{-1}$ is equal to

A.
$$\left(\frac{x+7}{2}\right)^{1/3}$$

B. $\left(x-\frac{7}{2}\right)^{1/3}$
C. $\left(\frac{x-2}{7}\right)^{1/3}$
D. $\left(\frac{x-7}{2}\right)^{1/3}$

Answer: D

Watch Video Solution

37. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to (A) f(a) =

g(c) (B) f(b) = g(b) (C) f(d) = g(b) (D) f(c) = g(a)

A. f(a) = g(c)

B. f(b) = g(b)

C. f(d) = g(b)

D. f(c) = g(a)

Answer: C

Watch Video Solution

38. If
$$f: R \overset{\longrightarrow}{R} \overset{\longrightarrow}{R}$$
 are two given functions, then prove that $2m \in (x) - g(x), 0 = f(x) - |g(x) - f(x)|$

A.
$$f(x) + g(x) - |g(x) - f(x)|$$

B. f(x) + g(x) + |g(x) - f(x)|

C. f(x) - g(x) + |g(x) - f(x)|

D.
$$f(x) - g(x) - |g(x) - f(x)|$$

Answer: D

39. Let $f: \overrightarrow{RR} andg: \overrightarrow{RR}$ be two given functions such that f is injective and g is surjective. Then which of the following is injective? gof (b) fog (c) gog (d) none of these

A. gof

B. fog

C. gog

D. fof

Answer: D

Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. Let L be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said to be related by the relation R iff l_1 is parallel to l_2 . Then, check the relation is reflexive , symmetric or transitive

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: A::B::C::D

Watch Video Solution

2. Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is relations from X to Y if R= { (1,1), (2,1), (3,3), (4, 3), (5,5)}

A.
$$R_1 = \{(x,y) \colon \! y = 2+x, x \in X, y \in Y\}$$

B.
$$R_2 = \{(1,1), (2,1), (3,3), (4,3), (5,5)\}$$

C.
$$R_3 = \{(1,1), (1,3), (3,5), (3,7), (5,7)\}$$

D.
$$R_4 = \{(1,3), (2,5), (2,4), (7,9)\}$$

Answer: A::B::C

3. Let the function $f: R - \{-b\} \to R - \{1\}$ be defined by $f(x) = \frac{x+a}{x+b}$, $a \neq b$, then f is one-one but not onto (b) f is onto but not one-one (c) f is both one-one and onto (d) none of these

A. f is one-one but not onto

B. f is onto but not one-one

C. f is both one-one and onto

D. $f^{-1}(2) = a - 2b$

Answer: C::D

Watch Video Solution

Exercise Passage Based Questions

1. Let f and g be real valued functions defined as

$$f(x) = egin{cases} 7x^2+x-8, & x\leq 1\ 4x+5, & 1< x\leq 7\ 8x+3, & x>7 \end{cases} g(x) = egin{cases} |x|, & x<-3\ 0, & -3\leq x< 2\ x^2+4, & x\geq 2 \end{cases}$$

The value of $gof(0) + fog(\,-3)$ is

A. a) -8

B. b) 0

C. c) 8

D. d) 16

Answer: B

Watch Video Solution

2. Find fog if f(x) = x - 2 and g(x) = 3x

3. Find gof if f(x) = 8x - 2 and g(x) = 2x

4. If A = {1,2,3} and R = { (1,1}, (2,2), (3,3)} then R is reflexive, symmetric or

transitive?

- A. reflexive and symmetric
- B. symmetric and transitive
- C. reflexive and transitive
- D. equivalence

Answer: A

5. R_1 on Z defined by $(a,b)\in R_1$ iff $|a-b|\leq 7, R_2$ on Q defined by

 $(a,b)\in R_2 ext{ iff } ab=4 ext{ and } R_3 ext{ on } \mathsf{R} ext{ defined } \mathsf{by}$

 $(a,b)\in R_3 \;\; ext{iff}\;\; a^2-4ab+3ab^2=0$

Relation R_2 is

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: B

Watch Video Solution

6. R_1 on Z defined by $(a,b)\in R_1$ $ext{ iff } |a-b|\leq 7, R_2$ on Q defined by

 $(a,b)\in R_2$ iff ab=4 and R_3 on R defined by

$$(a,b)\in R_3 \;\; ext{iff}\;\; a^2-4ab+3ab^2=0$$

Relation R_2 is

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: A

Watch Video Solution

Exercise Single Integer Answer Type Questions

1. In a group of 45 students, 22 can speak Hindi only and 12 can speak English only. If $(2\lambda + 1)$ student can speak both Hindi and English, the value of λ is

Watch Video Solution

2. If
$$A = \left\{ x \mid \cos x > \ - \ \frac{1}{2} \ \text{and} \ 0 \leq x \leq \pi
ight\}$$
 and

$$B = \left\{ x \mid \sin x > rac{1}{2} ext{ and } rac{\pi}{3} \leq x \leq \pi
ight\}$$
and if $\pi \lambda \leq A \cap B < \pi \mu$, the

value of $(\lambda + \mu)$ is

3. If $S = R, A = \{x \colon -3 \le x < 7\}$ and $B = \{x \colon 0 < x < 10\}$, the

number of positive integers in $A\Delta B$ is

Watch Video Solution

4. Two finite sets have m and n elements. The total number of subsets of the first set is 48 more than the total number of subsets of the second set. The value of m - n is

Watch Video Solution

5. If two sets A and B are having 99 elements in common, the number of elements common to each of the sets $A \times B$ and $B \times A$ are $121\lambda^2$, the value of λ is

1. The functions defined have domain R

Column I			Column II		
(A) 7x + 1	(p)	onto [-1, 1] but not one-one [0, π]		
(B)	cos x	(q)	one-one on $[0, \pi]$ but not onto R		
(C)	sin x	(r)	one-one and onto R		
(D)	$1 + \ln x$	(s)	one-one on $(0, \infty)$		

2. The domain of the function f(x) is denoted by D_f

			Column II	
(A)	Column I $f(x) = \sqrt{(3-x)} + \sin^{-1}\left(\frac{3-2x}{5}\right),$ then D_f is	(p)	$\bigcup_{\substack{k \in I}} [2k\pi, (2k+1)\pi]$	
	then D_f is $f(x) = \log_{10} (1 - \log_{10} (x^2 - 5x + 16))$, then D_f is	(q)	$[-4, -\pi] \cup [0, \pi]$	
(C) i	$f(x) = \cos^{-1}\left(\frac{2}{2+\sin x}\right), \text{ then } D_f$	(r)	(2, 3)	
(D) f D	$f(x) = \sqrt{(\sin x)} + \sqrt{(16 - x^2)}$, then <i>f</i> is	(s)	[-1, 3]	

Watch Video Solution

Exercise Statement I And Ii Type Questions

1. Statement-1 If a set A has n elements, then the number of binary relations on $A = n^{n^2}$.

Statement-2 Number of possible relations from A to $A=2^{n^2}$.

A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct

explanation for Statement-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement-2 is true

Answer: B

Watch Video Solution

2. Statement-1 If A = {x |g(x) = 0} and B = {x |f(x) = 0}, then $A \cap B$ be a root

of $\left\{f(x)
ight\}^2+\left\{g(x)
ight\}^2=0$

Statement-2 $x \in A \cap B \Rightarrow x \in A$ or $x \in B$.

A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct

explanation for Statement-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement-2 is true

Answer: C

Watch Video Solution

3. Statement-1 $P(A) \cap P(B) = P(A \cap B)$, where P(A) is power set of set

A.

Statement-2 $P(A) \cup P(B) = P(A \cup B)$.

A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct

explanation for Statement-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement-2 is true

Answer: C

4. Statement-1 If Sets A and B have three and six elements respectively, then the minimum number of elements in $A \cup B$ is 6.

Statement-2 $A \cap B = 3$.

A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct

explanation for Statement-1

C. Statement-1 is true, Statement-2 is false

D. Statement-1 is false, Statement-2 is true

Answer: A

Exercise Subjective Type Questions

1. If A = {x : x is a natural number}, B = {x : x is an even natural number}, C =

{x : x is an odd natural number} and D = {x : x is a prime number}, Find :

- (i) $A \cap B$
- (ii) $A\cap C$
- (iii) $A\cap D$
- (iv) $B\cap C$
- (v) $B\cap D$
- (vi) $C \cap D$.

A. $A\cap B$

 $\mathsf{B}.\,A\cap C$

 $\mathsf{C}.B\cap D$

 $\mathsf{D}.\, C\cap D$

Answer: A::B::C::D

2. let U= {1,2,3,4,5,6,7,8} A = {1,2,,3,4} then find the A complement

Watch Video Solution

Watch Video Solution

3. A= { x: x is a natural number} B= {x: x is an even natural number} find A intersection B

4. In a group of children, 35 play football out of which 20 play football only, 22 play hockey, 25 play cricket out of which 11 play cricket only. Out of these 7 play cricket and football but not hockey, 3 play football and hockey but not cricket and 12 play football and cricket both.

How many play all the three games ? How many play cricket and hockey

but not football, how many play hockey only? What is the total number of children in the group?

Watch Video Solution

5. Of the members of three athletic teams in a certain school, 21 are in the basketball team, 26 in hockey team and 29 in the football team. 14 play hockey and basket ball, 15 play hockey and football, 12 play football and basketball and 8 play all the three games bow many members are there in all?

Watch Video Solution

6. In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry , 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects. 7. In a survey of population of 450 people, it is found that 205 can speak English, 210 can speak Hindi and 120 people can speak Tamil. If 100 people can speak both Hindi and English, 80 people can speak both English and Tamil, 35 people can speak Hindi and Tamil and 20 people can speak all the three languages, find the number of people who can speak English but not a Hindi or Tamil. Find also the number of people who can speak neither English nor Hindi nor Tamil.

Watch Video Solution

8. A group of 123 workers went to a canteen for cold drinks, ice-cream and tea, 42 workers took ice-cream, 36 tea and 30 cold drinks. 15 workers purchased ice-cream and tea, 10 ice-cream and cold drinks, and 4 cold drinks and tea but not ice-cream, 11 took ice-cream and tea but not cold drinks. Determine how many workers did not purchase anything?

9. Let n be a fixed positive integer. Define a relation R on Z as follows: $(a, b) \in R \Leftrightarrow a - b$ is divisible by n. Show that R is an equivalence relation on Z.

Watch Video Solution

10. Show that if A= { 1,2,3} and R ={(1,1),(2,2),(3,3) (1,2),(2,1),(2,3),(1,3) is an

equivalence relation.

Watch Video Solution

11. The given relation is defined on the set of real numbers. $aRb \Leftrightarrow |a| = |b|$

. Find whether these relations are reflexive, symmetric or transitive.

12. Let $A = \{x: -1 \le x \le 1\} = B$ for each of the following functions from A to B. Find whether it is surjective, injective or bijective (i) $f(x) = \frac{x}{2}$

(ii) g(x) = |x|

View Text Solution

13. If the functions f and g defined from the set of real number R to R such that $f(x) = e^x$ and g(x) = 3x - 2, then find functions fog and gof.

14. If $f(x) = \frac{x^2 - x}{x^2 + 2x}$, then find the domain and range of f. Show that f is one-one. Also, find the function $\frac{d(f^{-1}(x))}{dx}$ and its domain.

15. If the functions f, g and h are defined from the set of real numbers R

to R such that

$$egin{aligned} f(x) &= x^2 - 1, g(x) = \sqrt{ig(x^2 + 1ig)}, \ h(x) &= ig\{ egin{aligned} 0, & ext{if} & x < 0 \ ext{x}, & ext{if} & x \ge 0 \end{aligned}$$

Then find the composite function ho(fog)(x).

Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. Let $R = \{(3, 3), (6, 6), (9, 9), (6, 12), (3, 9), (3, 12), (12, 12), (3, 6)\}$ is a relation on set $A = \{3, 6, 9, 12\}$ then R is a) an equivalence relation b) reflexive and symmetric only c) reflexive and transitive only d) reflexive only

A. an equivalence relation

B. reflexive and symmetric only

C. reflexive and transitive only

D. reflexive only

Answer: C

Watch Video Solution

2. Let w denote the words in the english dictionary. Define the relation R by: $R = \{(x, y) \in W \times W \mid \text{words } x \text{ and } y \text{ have at least one letter in common}\}$. Then R is: (1) reflexive, symmetric and not transitive (2) reflexive, symmetric and transitive (3) reflexive, not symmetric and transitive (4) not reflexive, symmetric and transitive

A. not reflexive, symmetric and transitive

- B. reflexive, symmetric and not transitive
- C. reflexive, symmetric and transitive
- D. reflexive, not symmetric and transitive

Answer: B

3. Let R be the real line. Consider the following subsets of the plane $R \times R$. $S = \{(x, y) : y = x + 1 and 0 < x < 2\}, T = \{(x, y) : x - y \text{ is an integer }\}$. Which one of the following is true?

A. Both S and T are equivalence relations on R

B. S is an equivalence relation on R but T is not

C. T is an equivalence relation on R but S is not

D. Neither S nor T is an equivalence relations on R

Answer: C

Watch Video Solution

4. If A, B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then (1) A = B (2) A = C (3) B = C (4) $A \cap B = \varphi$

A. $A\cap B=\phi$

B.A = B

C. A = C

D. B = C

Answer: D

Watch Video Solution

5. Let $S = \{1, 2, 34\}$. The total number of unordered pairs of disjoint subsets of S is equal

A. 25

B. 34

C. 6

D. 9

Answer: D

6. Consider the following relations: $R = \{(x, y) \mid x, y \text{ are real numbers and } x \}$

= wy for some rational number w}; $S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) m, n, p \text{ and } q \text{ are integers such that } n, q \neq 0 \text{ and } q m = p \right\}$. Then (1) neither R nor S is an equivalence relation (2) S is an equivalence relation but R is not an equivalence relation (3) R and S both are equivalence relations (4) R is an equivalence relation but S is not an equivalence relation but S is not an

A. neither R nor S is an equivalence relation

B. S is an equivalence relation but R is not an equivalence relation

C. R and S both are equivalence relations

D. R is an equivalence relation but S is not an equivalence relation

Answer: B

$$P = ig\{ heta\!:\!\sin heta-\cos heta=\sqrt{2}\cos hetaig\} ext{ and } Q = ig\{ heta\!:\!\sin heta+\cos heta=\sqrt{2}\sin hetaig\}$$

be two sets. Then

A.
$$P \subset Q$$
 and $A - P \neq \phi$
B. $Q \swarrow P$
C. $P \swarrow Q$
D. $P = Q$

Answer: D

Watch Video Solution

8. Find the value of x when tanx=1.

9. Let R be the set of real numbers.

Statement 1: $A = \{(x, y) \in R imes R : y - x ext{ is an integer} \}$ is an equivalence relation on R.

Statement 2: $B = \{x, y\} \in R imes R : x = lpha y$ for some rational number $lpha\}$ is an equivalence relation on R.

A. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct

explanation for Statement-1

B. Statement-1 is true, Statement-2 is false

C. Statement-1 is false, Statement-2 is true

D. Statement-1 is true, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1

Answer: A

10. If A and B two sets containing 2 elements and 4 elements, respectively.

Then, the number of subsets of A imes B having 3 or more elements, is

A. 220

B. 219

C. 211

D. 256

Answer: B

Watch Video Solution

11. If $X=\{4^n-3n-1\colon n\in N\}$ and $y=\{9(n-1)\colon n\in N\}$, then $X\cup Y$ equals

A. X

B. Y

C. N

D. Y - X

Answer: B

12. Let A and B be too sets containing four and two elements respectively then the number of subsets of set A imes B having atleast 3 elements is

A. 275

B. 510

C. 219

D. 256

Answer: C