©゙" doubtnut

CHEMISTRY

BOOKS - DISHA PUBLICATION CHEMISTRY (HINGLISH)

STATES OF MATTER

Exercise

1. Assuming ideal gas behaviour, the ratio of
density of ammonia to that of hydrogen
chloride at same temperature and pressure is :
(Atomic wt. of $\mathrm{Cl}=35.5 \mathrm{u}$)
A. 1.46
B. 1.64
C. 0.46
D. 0.64

Answer: C
(Watch Video Solution
2. Among the following, the incorrect statement is :
A. At low pressure, real gases show ideal behaviour.
B. At very low temperature, real gases show ideal behaviour.
C. At very large volume, real gases show ideal behaviour.

D. At Boyle's temperature, real gases show

ideal behaviour.

Answer: B

D Watch Video Solution

3. At 300 K , the density of a certain gaseous molecule at 2 bar is double to that of dinitrogen $\left(N_{2}\right)$ at 4 bar. The molar mass of gaseous molecule is:
A. $28 \mathrm{gmol}^{-1}$
B. $56 g m l 1^{-1}$
C. $112 \mathrm{gmol}^{-1}$
D. $224 \mathrm{gmol}^{-1}$

Answer: C

D Watch Video Solution

4. At very high pressure, the compressibility factor of one mole of a gas is given by :
A. $1+\frac{p b}{R T}$
B. $\frac{P b}{R T}$
C. $1-\frac{p b}{R T}$
D. $1-\frac{b}{(V R T)}$

Answer: A

- Watch Video Solution

5. Initially, the root mean square (rms) velocity of N_{2} molecules at certain temperature is u. If
this temperature is doubled and all the
nitrogen molecules dissociate into nitrogen atoms, then the rms velocity will be:
A. 2 u
B. 14 u
C. 4 u
D. $u / 2$

Answer: A

- View Text Solution

6. Oxidation of succinate ion produces
ethylene and carbon dioxide gases. On passing
0.2 Faraday electricty through an aqueous solution of potassium succimate, the total
volume of gases (all both cathode and anode)
liberated at STP (1 atm and 273 K) is
A. 8.96 L
B. 4.48 L
C. 6.72 L
D. 2.24 L

Answer: A

D Watch Video Solution

7. Two closed bulbs of equal volume (V) containing an ideal gas initially at pressure p_{i} and temperature T_{1} are connected through a narrow tube of negligible volume as shown in
the figure below. The temperature of one of the bulbs is then raised to T_{2}. The final
pressure p_{f} is:

A. $2 p,\left(\frac{T_{2}}{T_{1}+T_{2}}\right)$
B. $2 p,\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
C. $p,\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
D. $2 p,\left(\frac{T_{1}}{T_{1}+T_{2}}\right)$

Answer: A

D Watch Video Solution
8. Which of the following is not an assumption of the kinetic theory of gases?
A. Gas particles have negligible volume.
B. A gas consists of many identical particles
which are in continual motion.
C.At high pressure, gas particles are difficult to compress.
D. Collisions of gas particles are perfectly
elastic.

Answer: C

- Watch Video Solution

9. When does a gas deviate the most from its ideal behavior?
A. At low pressure and low temperature
B. At low pressure and high temperature
C. At high pressure and low temperature
D. At high pressure and high temperature

Answer: C

D Watch Video Solution

10. The temperature at which oxygen molecules have the same root mean square speed as helium atoms have at 300 K is:

Atomic masses: $\mathrm{He}=4 \mathrm{u}, 0=16 \mathrm{u}$)
A. 300 K
B. 600 K
C. 1200 K

D. 2400 K

Answer: D

D Watch Video Solution

11. van der Waal's equation for a gas is stated
as,
$P=\frac{n R T}{V-n b}-a\left(\frac{n}{V}\right)^{2}$
This equation reduces to the perfect gas
equation, $P=\frac{n R T}{V}$ when,
A.temperature is sufficient high and pressure is low.
B. temperature is sufficient low and pressure is high.
C. both temperature and pressure are very
high.
D. both temperature and pressure are very
low.

Answer: A

D Watch Video Solution

12. The initial volume of a gas cylinder is 750.0

mL . If the pressure of gas inside the cylinder changes from 840.0 mm Hg to 360.0 mm Hg , the final volume the gas will be:
A. 1.750 L
B. 3.60 L
C. 4.032 L
D. 7.50 L
13. The ratio of masses of oxygen and nitrogen
in a particular gaseous mixture 1:4. The ratio of number of their molecule is:
A. 1:4
B. $7: 32$
C. 1:8
D. 3:16
14. If Z is a compressibility factor, van der Waals' equation at low pressure can be written as

$$
\begin{aligned}
& \text { А. } Z=1+\frac{R T}{p b} \\
& \text { в. } Z=1-\frac{a}{V R T} \\
& \text { С. } Z=1-\frac{P b}{R T} \\
& \text { D. } Z=1+\frac{P b}{R T}
\end{aligned}
$$

- Watch Video Solution

15. Dipole-dipole forces act between the molecules possessing permanent dipole. Ends of dipoles possess 'partial charges'. The partial charge is
A. more than unit electronic charge.
B. equal to unit electronic charge.
C. less than unit electronic charge.
D. double the unit electronic charge.

- Watch Video Solution

16. Gas equation $P V=n R T$ is obeyed by
A. only isothermal process
B. only adiabatic process
C. both (a) and (b)
D. none of these
17. Air at sea level is dense. This is a practical application of
A. Boyle's law
B. Charle's law
C. Kelvin's law
D. Brown's law

Answer: A
18. Equal volumes of gases at the same temperature and pressure contain equal number of particles. This statement is a direct consequence of
A. Perfect gas law
B. Avogadro's law
C. Charle's law
D. Boyle's law

Answer: B

D Watch Video Solution

19. A gas in an open container is heated from
$27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$ The fraction of the original
amount of gas remaining in the container will be .
A. $3 / 4$
B. $1 / 2$
C. $1 / 4$

D. $1 / 8$

Answer: A

D Watch Video Solution

20. Initial temperature of an ideal gas is
$75^{\circ} C$. At what temperature, the sample of neon gas would be heated to double its pressure, if the initial volume of gas is reduced by 15% ?

$$
\text { A. } 319^{\circ} C
$$

B. $592^{\circ} C$
C. $128^{\circ} \mathrm{C}$
D. $60^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

21. Two flasks A and B of 500 mL each are respectivelly filled with O_{2} and SO_{2} at 300 K and 1 atm. Pressure. The flasks will contain:
A. the same number of atoms
B. the same number of molecules
C. more number of moles of molecules in
flask A as compared to flask B
D. the same amount of gases.

Answer: B

- Watch Video Solution

22. At what pressure a quantity of gas will occupy a volume of 60 mL , if it occupies a volume of 100 mL at a pressure of 720 mm (while temperature is constant) :
A. 700 mm
B. 800 mm
C. 100 mm
D. 1200 mm

Answer: D
23. The density of $O_{2}(\mathrm{~g})$ is maximum at :
A. STP
B. 273 K and 2 atm
C. 546 K and 1 atm
D. 546 K and 2 atm

Answer: B

24. The pressure of sodium vapour in a 1.0 L

container is 10 torr at $1000^{\circ} \mathrm{C}$. How many atoms are in the container?
A. 9.7×10^{17}
B. 7.6×10^{19}
C. 4.2×10^{17}
D. 9.7×10^{19}

Answer: B

D Watch Video Solution
25. The atmospheric pressure on Mars is 0.61 kPa . What is the pressure in mm Hg ?
A. 0.63
B. 4.6
C. 6.3
D. 3.2

Answer: B

D Watch Video Solution
26. 56 g of nitrogen and 96 g of oxygen are mixed isothermaly and at a total pressure of 10 atm. The partial pressures of oxygen and nitrogen (in atm) are respectively :
A. 4,6
B. 5,5
C. 2,8
D. 6,4

Answer: A
27. What is the ratio of diffusion rate of oxygen to hydrogen?
A. 1:4
B. $4: 1$
C. 1:8
D. $8: 1$

Answer: A

- Watch Video Solution

28. Equal weights of methane and oxygen are
mixed in an empty container at $25^{\circ} \mathrm{C}$. The
fraction of the total pressure exerted by oxygen is

> A. $\frac{1}{3}$
> B. $\frac{1}{2}$
> C. $\frac{2}{3}$
> D. $\frac{1}{3} \times \frac{273}{298}$

Answer: A
29. Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by define fraction of its volume at
A. $0^{\circ} C$
B. its critical temperature
C. absolute zero
D. its Boyle's temperature

D Watch Video Solution

30. The ratio of the rate of diffusion of helium
and methane under indentical conditions of
pressure and temperature will be
A. 4
B. 2
C. 1
D. 0.5

Answer: B

D Watch Video Solution

31. A gas diffuse $\frac{1}{5}$ times as fast as hydrogen at same pressure. Its molecular weight is
A. 50
B. 25
C. $25 \sqrt{2}$
D. $50 \sqrt{2}$

Answer: A

D Watch Video Solution

32. A mixture of 16 g CH 4 and 64 g of O_{2} is ignited in a sealed bulb of 3 L and then cooled to $27^{\circ} \mathrm{C}$. The pressure in the bulb will be
A. 0.82 atm
B. 8.2 atm
C. 24.6 atm
D. 2.46 atm

Answer: B

- Watch Video Solution

33. 500 mL of nitrogen at $27^{\circ} \mathrm{C}$ is cooled to
$-5^{\circ} \mathrm{C}$ at the same pressure. The new volume becomes
A. 326.32 mL
B. 446.66 mL
C. 546.66 mL
D. 771.56 mL

Answer: B

D Watch Video Solution

34. 600 cc of a gas at a pressure of 750 mm is
compressed to 500 cc . Taking the temperature
to remain constant, the increase in pressure is
A. 150 mm of Hg
B. 250 mm of Hg
C. 350 mm of Hg
D. 450 mm of Hg

Answer: A

D Watch Video Solution

35. Equal weights of methane and hydrogen
are mixed in an empty container at $25^{\circ} \mathrm{C}$. The
fraction of the total pressure exerted by hydrogen is
A. $\frac{1}{2}$
B. $\frac{8}{9}$
C. $\frac{1}{9}$
D. $\frac{16}{17}$

Answer: B

D Watch Video Solution

36. Oxygen and cyclopropane at partial pressures orf 570 torr and 170 torr respectively are mixed in a gas cylinder. What is the ratio of the number of moles of cyclopropane to the number of moles of oxygen?
A. 0.39
B. 0.19
C. 0.23
D. 0.3

Answer: D

- Watch Video Solution

37. A container contains 1 mole of a gas at 1 atm pressure and $27^{\circ} \mathrm{C}$, while its volume is
24.6 litres. If its pressure is 10 atm and temperature $327^{\circ} \mathrm{C}$, then new volume is
A. 2.56 litres
B. 3.15 litres
C. 4.92 litres
D. 5.44 litres

Answer: C
(Watch Video Solution
38. A certain gas takes three times as long to effuse out as helium. Its molar mass will be
A. 27 u
B. 36 u
C. 64 u
D. 9 u

Answer: B
(Watch Video Solution
39. For 1 mol ofan ideal gas at a constant temperature T, the plot of (log P) against (log V) is a (P : Pressure, V: Volume)
A. Straight line parallel to x-axis.
B. Straight line with a negative slope.
C. Curve starting at origin.
D. Straight line passing through origin.

Answer: B

40. At a pressure of 760 torr and temperature of 273.15 K , the indicated volume of which system is not consistent with the observation
A. 14 g of $N_{2}+16 \mathrm{~g}$ of O_{2},Volume=22.4L
B. 4 g of $\mathrm{He}+44 \mathrm{~g}$ of CO_{2}, Volume $=44.8 \mathrm{~L}$
C. 7 g of $N_{2}+36 \mathrm{~g}$ of O_{3}, Volume $=22.4 \mathrm{~L}$
D. 17 g of $\mathrm{NH}_{3}+36.5 \mathrm{~g}$ of HCl , Volume

$$
=44.8 \mathrm{~L}
$$

Answer: D
41. 14 g of N_{2} and 36 g of ozone are at the same pressure and temperature. Their volumes will be related as

$$
\begin{aligned}
& \text { A. } 2 V_{N_{2}}=3 V_{O_{3}} \\
& \text { B. } 3 V_{N_{2}}=2 V_{O_{3}} \\
& \text { C. } 3 V_{N_{2}}=4 V_{O_{3}} \\
& \text { D. } 4 V_{N_{2}}=3 V_{O_{3}}
\end{aligned}
$$

42. One mole of gas A and three moles of a gas B are placed in flask of volume 100 litres at
$27^{\circ} \mathrm{C}$. Calculate the total partial pressure of the gases in the mixture.
A. 1.0 atm .
B. 0.9 atm
C. 0.985 atm
D. 10.850 atm

Answer: C

- Watch Video Solution

43. At $27^{\circ} \mathrm{C}$, hydrogen is leaked through a tiny
hole into a vessel for 20 min . Another
unknown gas at the same temperature and pressure as that of hydrogen is leaked
through the same hole for 20 min . After the effusion of the gases, the mixture exerts a pressure of 6 atm . The hydrogen content of the mixture is 0.7 mol . If the volume of the
container is $3 L$, what is the molecular weight of the unknown gas?
A. 1033
B. 1050
C. 900
D. 980

Answer: A
(Watch Video Solution
44. If densities of two gases are in the ratio 1 :

2 and their temperatures are in the ratio $2: 1$, then the ratio of their respective molar mass at certain pressure is:
A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer: A
45. The ratio among most probable velocity, mean velocity and root mean velocity is given by
A. $\sqrt{2}: \sqrt{8 / \pi}: \sqrt{3}$
B. $\sqrt{2}: \sqrt{3}: \sqrt{8 / \pi}$
C. $1: 2: 3$
D. $1: \sqrt{2}: \sqrt{3}$

Answer: A
46. As the temperature is raised from $20^{\circ} \mathrm{C}$ to
$40^{\circ} C$ the averge kinetic energy of neon atoms
changes by a factor .
A. $\frac{313}{293}$
B. $\sqrt{(313 / 293)}$
C. $1 / 2$
D. 2

47. Boyle's law may be expressed as

A. $P V=K T$
B. $P V=R T$
C. $P V=\frac{3}{2} k T$
D. $P V=\frac{2}{3} k T$

Answer: D

48. The rms velocity of CO_{2} at temperature T (in Kelvin) is $\mathrm{xcm} s^{-1}$. At what temperature
(in Kelvin) would the $r m s$ velocity of nitrous oxide be $4 x \mathrm{cms}^{-1}$?
A. 16 T
B. 2 T
C. 4 T
D. 32 T

Answer: A
49. The molecular velocities of two gases at same temperature are u_{1} and u_{2}, their masses
are m_{1} and m_{2} respectively, which of the following expression is correct ?

$$
\begin{aligned}
& \text { A. } \frac{m_{1}}{u_{1}^{2}}=\frac{m_{2}}{u_{2}^{2}} \\
& \text { B. } m_{1} u_{1}=m_{2} u_{2} \\
& \text { C. } \frac{m_{1}}{u_{1}}=\frac{m_{2}}{u_{2}} \\
& \text { D. } m_{1} u_{1}^{2}=m_{2} u_{2}^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

50. Two flask A and B of equal volumes maintained at temperature $300 K$ and $700 K$
contain equal mass of $H e(g)$ and $N_{2}(g)$ respectively. What is the ratio of total translational kinetic energy of gas in flask A to that of flask B ?
A. unity
B. 2
C. 4
D. 0.25

Answer: C

D Watch Video Solution

51. The root mean square velocity of an ideal gas to constant pressure varies with density (
d) as
A. d^{2}
B. d
C. \sqrt{d}
D. $1 / \sqrt{d}$

Answer: D

D Watch Video Solution

52. Which of the following statements about kinetic energy (K.E.) is true?
A. All objects moving with the same
velocity have the same K.E.
B. The K.E. of a body will quadruple if its
velocity doubles.
C. As the velocity ofa body increases, its K.E.
decreases.
D. The K.E. of a body is independent of its
mass.

Answer: B
53. Consider Three one -litre flasks labeled A, B
and C filled with the gases $\mathrm{NO}, \mathrm{NO}_{2}$, and
$N_{2} O$, respectively, each at 1 atm and 273 K . In
which flask do the molecules have the highest
average kinetic energy?
A. Flask C
B. All are the same
C. Flask A
D. None

Answer: B

- Watch Video Solution

54. Which of the following change is observed occurs when a substance X is converted from
liquid to vapour phase at the standard boiling point?
I. Potential energy of the system decreases
II. The distance between molecules increases
III.The average kinetic energy of the molecules
in both phases are equal
A. I only
B. II only
C. III only
D. II and III only

Answer: D

D Watch Video Solution

55. The $u_{r m s}$ of a gas at $300 K$ is $3 R^{1 / 2}$ The molar mass of the gas in kgmol^{-1} is .
A. $0.02 \mathrm{~kg} / \mathrm{mol}$
B. $0.001 \mathrm{~kg} / \mathrm{mol}$
C. $0.003 \mathrm{~kg} / \mathrm{mol}$
D. $1 \mathrm{~kg} / \mathrm{mol}$

Answer: D

D Watch Video Solution

56. Consider an ideal gas contained in a vessel

If the intermolecular interaction suddenly
begins to act which of the following will happen ?.
A. Pressure decreases
B. Pressure increases
C. Pressure remains unchanged

D. Gas collapes

Answer: B
(Watch Video Solution
57. The pressure of real gas is less than the pressure of an ideal gas because of
A. increase in number of collisions
B. finite size of molecule
C. increase in KE of molecules
D. intermolecular forces of attraction

Answer: D

D Watch Video Solution

58. At what temperature will the $r m s$ velocity of SO_{2} be the same as that of O_{2} at 303 K ?
A. 273 K
B. 606 K
C. 303 K
D. 403 K

Answer: B

D Watch Video Solution
59. A closed flask contains water in all its three
states solid, liquid and vapour at $0^{\circ} C$. In this
situation, the average kinetic energy of water molecules will be
A. equal in all the three states
B. the greatest in vapour state
C. the greatest in the liquid state
D. the greatest in the solid state

Answer: B

60. The compressibility factor for H_{2} and He is

usually

A. $Z>1$
B. $Z=1$
C. $Z<1$
D. Either of these

Answer: A

- Watch Video Solution

61. If v is the volume of one molecule of a gas
under given conditions, then van der Waals
constant b is
A. 4 V
B. $\frac{4 V}{N_{0}}$
C. $\frac{N_{0}}{4 V}$
D. $4 V N_{0}$

Answer: D

62. A gas described by van der Waal's equation
(i) behaves similar to an ideal gas in the limit of large molar volume
(ii) behaves similar to an ideal gas in the limit of large pressure
(iii) is characterised by van der Waal's coefficients that are dependent on the identity of the gas but are independent of the temperature
(iv) has the pressure that is lower than the
pressure exerted by the same gas behaving ideally
A. (i) and (ii)
B. (i) and (iii)
C. (i), (ii) and (iii)
D. (ii) and (iv)

Answer: B

D View Text Solution
63. Maximum deviation from ideal gas is
expected from
A. $N_{2}(g)$
B. $C H_{4}(g)$
C. $\mathrm{NH}_{3}(g)$
D. $H_{2}(g)$

Answer: C

- Watch Video Solution

64. At which one of the following temperature
pressure conditions, the deviation of a gas
from ideal behavior is expected to be minimum?
A. 350 K and 3 atm .
B. 550 K and 1 atm .
C. 250 K and 4 atm.
D. 250 K and 4 atm .

Answer: B
65. In van der Waals equation of state for a non-ideal gas , the term that accounts for intermolecular forces is
A. (V-b)
B. RT
C. $\left(P+\frac{a}{V^{2}}\right)$
D. $(R T)^{-1}$

Answer: C

66. The value of van der Waals constant a for
the gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$, and CH_{4} are 1.360, 1.390, 4.170, and $2.253 L^{2} \mathrm{atmmol}^{-2}$, respectively. The gas which can most easily be liquefied is
A. O_{2}
B. N_{2}
C. NH_{3}
D. CH_{4}

Answer: C

D Watch Video Solution

67. Positive deviation from ideal behaviour takes place because of
A. molecular interaction between atoms
and PV/nRTgt 1
B. molecular interaction between atoms
and PV/nRTIt 1
C. finite size ofatoms and PV/nRTgt 1
D. finite size of atoms and PV/nRTlt 1

Answer: C

- Watch Video Solution

68. The ratio of Boyle's temperature and critical temperature for a gas is:
A. $\frac{8}{27}$
B. $\frac{27}{8}$
C. $\frac{1}{2}$
D. $\frac{2}{1}$

Answer: B

- Watch Video Solution

69. The compressibility factor for a real gas at high pressure is .
A. 1
B. $1+\frac{P b}{R T}$
C. $1-\frac{p b}{R T}$
D. $1+\frac{R T}{P b}$

Answer: B

D Watch Video Solution

70. The vander waal's constant "a" for gases

P,Q,R and S are 4.17 , 359 . 6.71 \& 3.8 atm
$L^{2} \mathrm{~mol}^{-2}$. Therefore, the ascending order of
their ease of liquefaction is :-
A. $R<P<S<Q$
B. $Q<S<R<P$
C. $Q<S<P<R$
D. $R<P<Q<S$

Answer: C

D Watch Video Solution
71. Soap helps in cleaning clothes, because
A. chemical of soap change.
B. it increases the surface tension of the solution.
C. it absorbs the dirt.
D. it lowers the surface tension of the solution.

Answer: D

D Watch Video Solution

72. When the temperature increases the viscosity of
A. gases decreases and viscosity of liquids
increases.
B. gases increases and viscosity of liquids
decreases.
C. gases and liquids increases.
D. gases and liquids decreases.

Answer: B
73. The liquid which has the highest rate of evaporation is
A. petrol
B. nail-polish remover
C. water
D. alcohol

Answer: A
74. Which of the following is a correct statement?
A. Surface tension of a liquid decreases
with increase in temperature
B. Vapour pressure of a liquid decreases
with increase in temperature
C. Viscosity of a liquid decreases with
decrease in temperature
D. The boiling point of a liquid in independent of the altitude of the place

Answer: A

D View Text Solution

75. A gas is enclosed in a vessel of volume V at temperature T_{1} and P , the vessel is connected to another vessel of volume $V / 2$ by a tube and a stopcock. The second vessel is initially evacuated. If the stopcock is opened, the
temperature of second vessel becomes T_{2}. The
first vessel is maintained at a temperature T_{1}.

What is the final pressure P_{1} in the apparatus
?
A. $\frac{2 p T^{2}}{2 T_{2}+T_{1}}$
B. $\frac{2 p T^{2}}{T_{2}+2 T_{1}}$
C. $\frac{p T^{2}}{2 T_{2}+T_{1}}$
D. $\frac{2 p T^{2}}{T_{1}+T_{2}}$

Answer: A

76. Certain perfect gas is found to obey the law $P V^{3 / 2}=$ constant, during adiabatic process. If such a gas at initial temprerature T is adiabatically compressed to half of the initial volume, its final temperature will be
A. $2 T \sqrt{2}$
B. 4 T
C. $T \sqrt{2}$
D. 2 T

Answer: C

D Watch Video Solution

77. The temperature of a gas placed in an open
container is raised from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$. The percent of the original amount of the gas expelled from the container will be
A. 20
B. 40
C. 60

D. 80

Answer: B

- Watch Video Solution

78. 4.5 g of PCl 5 on vapourisation occupied a
volume of 1700 mL at 1 atmosphere pressure
and $227{ }^{\circ} \mathrm{C}$ temperature. Its degree of dissociation is
A. 0.0921

B. 0.0091

C. 0.921
D. None of these

Answer: C

D View Text Solution

79. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is
found to be $1 a t m$. If $3 g$ of another gas B is
then heated in the same flask, the total
pressure becomes 1.5 atm . Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.
A. $1: 3$
B. 1:1
C. 2:1
D. $3: 1$

Answer: A

D Watch Video Solution
80. A given volume of ozonised oxygen
(containing 60\% oxygen by volume) required
220 sec to effuse while an equal volume of oxygen took 200 sec only under identical conditions. If density of O_{2} is $1.6 \mathrm{~g} / \mathrm{L}$ then find density of O_{3}.
A. $1.936 \mathrm{~g} / \mathrm{L}$
B. $2.16 \mathrm{~g} / \mathrm{L}$
C. $3.28 \mathrm{~g} / \mathrm{L}$
D. $2.24 \mathrm{~g} / \mathrm{L}$

Answer: D

D Watch Video Solution

81. Calculate the total pressure in a 10.0 L
cylinder which contains 0.4 g helium, 1.6 g oxygen and 1.4 g nitrogen at $27^{\circ} \mathrm{C}$.
A. 0.492atm
B. 49.2atm
C. 4.52atm
D. 0.0492 atm

D Watch Video Solution

82. A gaseous mixture containing $\mathrm{He}, \mathrm{CH}_{4}$ and
$S O_{2}$ in 1:2:3 mole ratio, calculate the molar ratio of gases effusing out initially.
A. $2: 2: 3$
B. 6:6:1
C. $\sqrt{2}: \sqrt{2}: 3$
D. $4: 4: 3$

Answer: D

D Watch Video Solution

83. A gaseous mixture contains three gaseous
A, B and C with a total number of moles of

10 and total pressure of 10 atm . The partial pressure of A and B are $3 a t m$ and 1 atm respectively and if C has molecular weight of
$2 g / \mathrm{mol}$. Then, the weight of C present in the mixture will be :
A. 8 g
B. 12 g
C. 3 g
D. 6 g

Answer: B

D Watch Video Solution
84. The root mean square velocity of a gas is doubled when the temperature is:
A. increased four times
B. increased two times
C. reduced to half
D. reduced to one fourth

Answer: A

- Watch Video Solution

85. The root mean square speeds at STP for
the gases $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ and HBr are in the order
A. $H_{2}<N_{2}<O_{2}<\mathrm{HBr}$
B. $\mathrm{HBr}<\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{H}_{2}$
C. $H_{2}<N_{2}=O_{2}<H B r$
D. $\mathrm{HBr}<\mathrm{O}_{2}<H_{2}<N_{2}$

Answer: B

D View Text Solution
86. A mixture of Ne and Ar kept in a closed
vessel at 250 K has a total K.E. $=3 \mathrm{~kJ}$. The total
mass of Ne and Ar is 30 g . Find mass \% of Ne in gaseous mixture at 250 K .
A. 61.63
B. 38.37
C. 50
D. 28.3

Answer: D
(Watch Video Solution
87. For a real gas (mol.mass $=60$) if density at critical point is $0.80 \mathrm{~g} / \mathrm{cm}^{-3}$ and its
$T_{c}=\frac{4 \times 10^{5}}{821} K, \quad$ then van der Waals' constant a (in atm $L^{2} \mathrm{~mol}^{-2}$) is
A. 0.3375
B. 3.375
C. 1.68
D. 0.025

Answer: B
88. van der Waals constant b of helium is 24
$\mathrm{mL} \mathrm{mol}^{-1}$. Find molecular diameter of helium.

> A. $1.335 \times 10^{-10} \mathrm{~cm}$
> B. $1.335 \times 10^{-8} \mathrm{~cm}$
> C. $2.67 \times 10^{-8} \mathrm{~cm}$
> D. $4.34 \times 10^{-8} \mathrm{~cm}$

Answer: C
89. The van der Waals' constant 'b' of a gas is $4 \pi \times 10^{-4} L / \mathrm{mol}$. How near can the centeres of the two molecules approach each other?
[Use : $N_{A}=6 \times 10^{23}$]
A. $10^{-7} m$
B. $10^{-10} m$
C. $5 \times 10^{-11} m$
D. $5 \times 10^{-9} m$

Answer: B
90. The volume of0.0168 mol of O_{2} obtained by decomposition of KClO_{3} and collected by dispfacement of water is 428 mL at a pressure of 754 mm Hg at $25^{\circ} \mathrm{C}$. The pressure of water vapour at $25^{\circ} \mathrm{C}$ is
A. 18 mm Hg
B. 20 mm Hg
C. 22 mm Hg
D. 24 mm Hg

Answer: D

- View Text Solution

91. The surface tension of which of the following liquid is maximum?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $C_{6} H_{6}$

Answer: C

D Watch Video Solution

92. Choose the incorrect statement in the

following.

A. Surface tension is the force acting per
unit length perpendicular to the line
drawn on the surface of the liquid
B. Surface tension of a liquid increases with increase in temperature
C. The SI unit of surface tension is $\mathrm{J} m^{-2}$
D. Viscosity is a measure of resistance for
the flow of

Answer: B

- View Text Solution

93. A bubble of air is underwater at temperature $15^{\circ} \mathrm{C}$ and the pressure 1.5 bar. If
the bubble rises to the surface where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 bar, what will happen to the volume of the bubble?
A. Volume will become greater by a factor of 1.6.
B. Volume will become greater by a factor of 1.1.
C. Volume will become smaller by a factor of 0.70

D. Volume will become greater by a factor of2.5.

Answer: A

D Watch Video Solution

94. When 1 mol of a monoatomic ideal gas at
$T K$ undergoes adiabatic change under a constant external pressure of 1 atm, changes
volume from $1 L \rightarrow 2 L$. The final temperature
(in K) would be

$$
\begin{aligned}
& \text { A. } \frac{T}{2^{(2 / 3)}} \\
& \text { B. } T+\frac{2}{3} \times 0.0821 \\
& \text { C. } T \\
& \text { D. } T-\frac{2}{3} \times 0.0821
\end{aligned}
$$

Answer: A
(Watch Video Solution
95. The limiting density of hydrogen bromide is 3.6108 at $0^{\circ} C$. The exact atomic weight ofbromine is (At. wt. of $\mathrm{H}=1.008$)
A. 80.92
B. 79.92
C. 89.29
D. 79.29

Answer: B

D View Text Solution
96. A bottle of dry ammonia and a bottle of dry
hydrogen chloride connected through a long
tube are opened simultaneously at both ends.
The white ammonium chloride ring first formed will be
A. at the centre of the tube.
B. near the hydrogen chloride bOttle.
C. near the ammonia bottle.
D. throughout the length of the tube

Answer: B

- Watch Video Solution

97. A 0.50 L container is ocupied by nitrogen at
a pressure of 800 torr and a temperature of
$0^{\circ} \mathrm{C}$. The container can only withstand a pressure of 3.0 atm . What is the highest temperature $\left({ }^{\circ} \mathrm{C}\right)$ to which the container may be heated?
A. 505
B. 450
C. 625
D. 560

Answer: A

D Watch Video Solution

98. Two closed vessel A and B of equal volume of 8.21 L are connected by a narrow tube of negligible volume with open valve. The left hand side container is found to contain 3 mole
CO_{2} and 2 mole of He at 400 K . What is the partial pressure of He in vessel B at 400 K ?
A. 2.4 atm
B. 8atm
C. 12atm
D. None of these

Answer: B

D Watch Video Solution
99. Which of the following does not determine
the translational kinetic energy of an ideal gas
A. Temperature
B. Amount of the gas
C. Number of moles of gas
D. Pressure of the gas

Answer: D

D View Text Solution

100. The Ne atom has 10 times the mass of H_{2}
molecule. Which of the following statements is true?
I. At $25^{\circ} \mathrm{C}$ both of them have the same kinetic energy.
II. Ten moles of H_{2} would have the same volume as 1 mole of Ne at same temp. and pressure.
III. One mole of Ne exerts the same pressure as one mole of H_{2} at STP.
IV. A H_{2} molecule travels 10 times faster than

Ne atom at same temperature.
V. At STP, one litre of Ne has 10 times the density of 1 litre of H_{2}.
A. II, IV, V
B. I, III, V
C. I, II, III
D. I, II

Answer: B

D Watch Video Solution

101. The van der Waals' equation for one mole
may be expressed as
$V_{M}^{3}-\left(b+\frac{R T}{P}\right) V_{m}^{2}+\frac{a V_{m}}{P}-\frac{a b}{P}=0$
where V_{m} is the molar volume of the gas. Which of the followning is incorrect?
A. For a temperature less than $T_{c} \mathrm{~V}$ has
three real roots
B. For a temperature more than $T_{c}, \mathrm{~V}$ has
one real and two imaginary roots
C. For a temperature equal to T_{c} all three roots of V are real and identical
D. All of these
102. A 4.40 g piece of solid CO_{2} (dry ice) is allowed to sublime in a balloon. The final
volume of the balloon is 1.00 L at 300 K . What is the pressure (atm) of the gas?
A. 0.122
B. 2.46
C. 122
D. 24.6

D Watch Video Solution

103. Which gas shows real behaviour?
A. $16 \mathrm{~g} \mathrm{O} O_{2}$ at 1 atm and 273 K occupies 11.2

L
B. $1 \mathrm{~g} H_{2}$ in 0.5 L flask exerts pressure
of 24.63 atm at 300 K

C. 1 mole NH_{3} at 300 K and 1 atm occupies

volume 22.4 L

D. 5.6 L of CO_{2} at 1 atm and 273 K is equal

to 11 g

Answer: C

D Watch Video Solution

104. A box of 1 L capacity is divided into two equal compartments by a thin partition which are filled with $2 \mathrm{~g} \mathrm{H}_{2}$ and 16 gCH 4 respectively.

The pressure in each compartment is reorded as P atm. The total pressure when partition is removed will be:
A. P
B. 2 P
C. P/2
D. $\mathrm{P} / 4$

Answer: A

D Watch Video Solution

