©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS (ENGLISH)

THREE DIMENSIONAL COORDINATE SYSTEM

Examples

1. Planes are drawn parallel to the coordinate planes through the points $(1,2,3)$ and $(3,-4,-5)$. Find th lengths of the edges of the parallelopiped so formed.

- Watch Video Solution

2. If the origin is shifted $(1,2,-3)$ without changing the directions of the axis, then find the new coordinates of the point $(0,4,5)$ with respect
to new frame.

- Watch Video Solution

3. Find the distance between the points $P(-2,4,1)$ and $Q(1,2,-5)$.

- Watch Video Solution

4. Prove by using the distance formula that the points $A(1,2,3), B(-1,-1,-1)$ and $C(3,5,7)$ are collinear.

- Watch Video Solution

5. Find the ratio in which $2 x+3 y+5 z=1$ divides the line joining the points $(1,0,-3)$ and $(1,-5,7)$.

- Watch Video Solution

6. If $A(3,2,-4), B(5,4,-6) \operatorname{and} C(9,8,-10)$ are three collinear points, then find the ratio in which point C divides $A B$.

Watch Video Solution

7. Show that the plane $a x+b y+c z+d=0$ divides the line joining
$\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio of $\left(-\frac{a x_{1}+a y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}\right)$

- Watch Video Solution

8. Find the ratio in which the join the $A(2,1,5) \operatorname{and} B(3,4,3)$ is divided by the plane $2 x+2 y-2 z=1$. Also, find the coordinates of the point of division.

- Watch Video Solution

9. What are the direction cosines ?
10. If a line makes anles α, β, γ with the coordinate axes, porve that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

- Watch Video Solution

11. A line $O P$ through origin O is inclined at 30° and $45^{\circ} \rightarrow O X a n d O Y$, respectivley. Then find the angle at which it is inclined to $O Z$.

- Watch Video Solution

12. about to only mathematics

- Watch Video Solution

13. If the points $(0,1,-2),(3, \lambda,-1)$ and $(\mu,-3,-4)$ are collinear, verify whether the point $(12,9,2)$ is also on the same line.

Watch Video Solution

14. A vector \vec{r} has length 21 and its direction ratios are proportional to $2,-3,6$. Find the direction cosines and components of \vec{r}, is given that \vec{r} Makes an acute angle with $x-a \xi s$.

- Watch Video Solution

15. Find the angle between the lines whose direction cosines are

$$
\left(-\frac{\sqrt{3}}{4}, \frac{1}{4},-\frac{\sqrt{3}}{2}\right) \text { and }\left(-\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}\right) .
$$

- Watch Video Solution

16. (i) Find the angle bewteen the lines whose direction ratios are 1, 2, 3 and - $3,2,1$
(ii) Find the angle between two diagonals of a cube.

- Watch Video Solution

17. Find the angle between the line whose direction cosines are given by $l+m+n=0 a n d 2 l^{2}+2 m^{2}-n^{2}-0$.

- Watch Video Solution

18. If the direction cosines of a variable line in two adjacent points be l, M, n and $l+\delta l, m+\delta m+n+\delta n$ the small angle $\delta \theta$ as between the two positions is given by

- Watch Video Solution

19. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these
are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

- Watch Video Solution

20. Find the direction cosines of the line which is perpendicular to the lines with direction cosines proportional to $1,-2,-2$ and $0,2,1$

- Watch Video Solution

21. Let $A(-1,2,1)$ and $B(4,3,5)$ be two given points. Find the projection of AB on a line which makes angle 120° and 135° with Yand Zaxes respectively, and an acute angle with X -axis.

- Watch Video Solution

22. Find the equation of straight line parallel to $2 \hat{i}-\hat{j}+3 \hat{k}$ and passing through the point $(5,-2,4)$.

- Watch Video Solution

23. Find the vector equation of a line passing through ($2,-1,1$) and parallel to the line whose equation is $\frac{X-3}{2}=\frac{Y+1}{7}=\frac{Z-2}{-3}$.

- Watch Video Solution

24. The cartesian equation of a line are $6 x-2=3 y+1=2 z-2$. Find its direction ratios and also find the vector of the line.

- Watch Video Solution

25. Find the vector equation of line passing through $A(3,4,-7)$ and $B(1,-1,6)$. Also, find its cartesian equations.
26. Find the equation of a line which passes through the point $(2,3,4)$ and which has equal intercepts on the axes.

- Watch Video Solution

27. Find the angle between the pair of lines
$r=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$
$r=5 \hat{i}-4 \hat{k}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$

- Watch Video Solution

28. Fid the condition
if
lines
$x=a y+b, z=c y+d a n d x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$
are
perpendicular.

- Watch Video Solution

29. Find the foot of the perpendicular drawn from the point $2 \hat{i}-\hat{j}+5 \hat{k}$ to the line $\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})$. Also find the length of the perpendicular.

- Watch Video Solution

30. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1) \operatorname{and} C(3,5,3)$.

- Watch Video Solution

31. Find the length of perpendicular from $P(2,-3,1)$ to the $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z+2}{-1}$.

- Watch Video Solution

32. Find the length of the perpendicular drawn from point $(2,3,4)$ to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

(D) Watch Video Solution

33. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$
. Also, write the equation of the line joining the given point and its image and find length of the segment joining the given point and its image.

- Watch Video Solution

34. Find the coordinates of those point on the line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{6}$ which are at a distance of 3 units from points (1, $-2,3$).

- Watch Video Solution

35. Show that the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}$ intersect. Find their point of intersection.

[^0]36. Find the shortest distance between the lines $\vec{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5$

- Watch Video Solution

37. Find the shortest distance between the following pairs of lines whose

Cartesian equation are:
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

38. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by $r=(3 \hat{i}+8 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+\hat{k})$ and $r=(-3 \hat{i}-7 \hat{j}+6 \hat{k})+\mu($
39. Find the shortest distance between lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+$

- Watch Video Solution

40. Find the equation of a line which passes through the point $(1,1,1)$ and intersects the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 41. } \begin{array}{c}
\text { If } \\
\text { 4he }
\end{array} \text { straight } \\
& x=-1+s, y=3-\lambda s, z=1+\lambda s a n d x=\frac{t}{2}, y=1+t, z=2-t,
\end{aligned}
$$

with paramerters sandt, respectivley, are coplanar, then find λ.

- Watch Video Solution

42. the equation of the common plane.

- Watch Video Solution

43. Find the vector equation of a plane which is at a distance of 8 units from the origin and which is normal to the vector $2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

44. Reduce the equation $\vec{r}(3 \hat{i}-4 \dot{j}+12 \hat{k})=5$ to normal form and hence find the length of perpendicular from the origin to the plane.

- Watch Video Solution

45. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.
46. Find the vector equation of a line passing through $3 \hat{i}-5 \hat{j}+7 \hat{k}$ and perpendicular to the plane $3 x-4 y+5 z=8$.

- Watch Video Solution

47. Find the unit vector perpendicular the plane $r \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=5$.

- Watch Video Solution

48. Find the equation of the plane passing through the point $(2,3,1)$ having $(5,3,2)$ as the direction ratio is of the normal to the plane.

- Watch Video Solution

49. The coordinate of the foot of the perpendicular drawn from the origin to a plane are ($12,-4,3$). Find the equation of the plane.
50. A vector \vec{n} f magnitude 8 units is inclined to x-axis at $45^{0}, y$-axis at 60° and an acute angle with z-axis. If a plane passes through a point $(\sqrt{2},-1,1)$ and is normal to \vec{n}, find its equation in vector form.

- Watch Video Solution

51. Find the equation of the plane such that image of point $(1,2,3)$ in it is $(-1,0,1)$.

- Watch Video Solution

52. Find the equation of the plane passing through $A(2,2,-1), B(3,4,2)$ and $C(7,0,6)$. Also find a unit vector perpendicular to this plane.
53. Find equation of plane passing through the points $P(1,1,1), Q(3,-1,2)$ and $R(-3,5,-4)$.

- Watch Video Solution

54. Find the vector equation of the following planes in Cartesian form:
$\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$.

- Watch Video Solution

55. A plane meets the coordinate axes in A, B, C such that the centroid of triangle $A B C$ is the point (p, q, r). Show that the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$.

- Watch Video Solution

56. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.

- Watch Video Solution

57. Find the angel between the planes
$2 x+y-2 z+3=0$ and $\vec{r} 6 \hat{i}+3 \hat{j}+2 \hat{k}=5$.

- Watch Video Solution

58. Show that $a x+b y+r=0, b y+c z+p=0 a n d c z+a x+q=0$ are perpendicular to $x-y, y-z a n d z-x$ planes, respectively.

- Watch Video Solution

59. Find the equation of the plane through the point $(1,4,-2)$ and parallel to the plane $-2 x+y-3 z=7$.

Watch Video Solution

60. Find the equation of the plane passing through $(3,4,-1)$, which is parallel to the plane $\vec{r} 2 \hat{i}-3 \hat{j}+5 \hat{k}+7=0$.

- Watch Video Solution

61. Find the equation of the plane containing the line of intersection of the plane $x+y+z-6=0$ and $2 x+3 y+4 z=5=0$ and passing through the point $(1,1,1)$.

- Watch Video Solution

62. Find the planes passing through the intersection of plane $r \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=1$ and $r \cdot(\hat{i}-\hat{j})+4=0$ and perpendicular to planes $r \cdot(2 \hat{i}-\hat{j}+\hat{k})=-8$

- Watch Video Solution

63. Find the interval of α for which $\left(\alpha, \alpha^{2}, \alpha\right)$ and $(3,2,1)$ lies on same side of $x+y-4 z+2=0$.

- Watch Video Solution

64. Find the distance of the point $(21,0)$ from the plane $2 x+y+2 z+5=0$.

- Watch Video Solution

65. Find the distance between the parallel planes $x+2 y-2 z+1=0 a n d 2 x+4 y-4 z+5=0$.

Watch Video Solution

66. Find the equation of the bisectors of the angles between the planes
$2 x-y+2 z+3=0$ and $3 x-2 y+6 z+8=0$ and specify the plane which bisects the acute angles and the plane which bisects the acute angle and the plane which bisects the obtuse angle.

- Watch Video Solution

67. Reduce the equation of line $x-y+2 z=5 a d n 3 x+y+z=6$ in symmetrical form. Or Find the line of intersection of planes $x-y+2 z=5 a n d 3 x+y+z=6$.

- Watch Video Solution

68. Find the angle between the lines $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r}=2 \hat{i}-\hat{j}+\hat{k}=4$.

- Watch Video Solution

69. Find the distance between the point with position vector $\hat{i}-5 \hat{j}-10 \hat{k}$ and the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ with the plane $x-y+z=5$.

- Watch Video Solution

70. Find ten equation of the plane passing through the point $(0,7,-7)$ and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 71. Prove } \\
& \frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} \text { that } \\
& \text { and } \frac{x-2}{1}=\frac{y-4}{4}=\frac{z-6}{7} \text { are coplanar . }
\end{aligned}
$$

Aslo, find the plane containing these two lines.

- Watch Video Solution

72. Find the length and the foot of the perpendicular from the point (7, $14,5)$ to the plane $2 x+4 y-z=2$.

- Watch Video Solution

73. Find the image of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ in the plane $3 x-3 y+10 z-26=0$.

- Watch Video Solution

74. Find the vector equation of a sphere with centre having the position vector $\hat{i}+\hat{j}+\hat{k}$ and $\sqrt{3}$.
75. Find the equation of sphere whose centre is $(5,2,3)$ and radius is 2 in cartesian form .

- Watch Video Solution

76. Find the equation of a sphere whose centre is $(3,1,2)$ and radius is 5 .

- Watch Video Solution

77. Find the centre and radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x-4 y+2 z+3=0$.

- Watch Video Solution

78. Find the equation of the sphere passing through $(0,0,0),(1,0,0)$ and $(0,0,1)$.
79. Find the equation of a sphere which passes through $(1,0,0)(0,1,0) \operatorname{and}(0,0,1)$, and has radius as small as possible.

- Watch Video Solution

80. Find the equation of the sphere described on the joint of points AandB having position vectors $2 \hat{i}+6 \hat{j}-7 \hat{k} a n d-2 \hat{i}+4 \hat{j}-3 \hat{k}$, respectively, as the diameter. Find the center and the radius of the sphere.

- Watch Video Solution

81. Find the radius of the circular section in which the sphere $|\vec{r}|=5$ is cut by the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3 \sqrt{3}$.

- Watch Video Solution

82. The centre of the circle
$\vec{r} \cdot(\hat{i}+2 \hat{j}+2 \hat{k})=15$ and $|\vec{r}-(\hat{j}+2 \hat{k})|=4$ is

- Watch Video Solution

83. Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4+2 z-3=0$.

- Watch Video Solution

84. Find the equation of the sphere whose centre has the position vector $3 \hat{i}+6 \hat{j}-4 \hat{k}$ and which touches the plane $r \cdot(2 \hat{i}-2 \hat{j}-\hat{k})=10$.

- Watch Video Solution

85. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points $A, B, a n d C$. Show that eh locus of the centre of the sphere $O A B C i s \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.
86. A sphere of constant radius k, passes through the origin and meets the axes at $A, B a n d C$. Prove that the centroid of triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

- Watch Video Solution

87. If α, β, γ be the angles which a line makes with the coordinates axes, then
A. A. $\cos (2 \alpha)+\cos (2 \beta)+\cos (2 \gamma)-1=0$
B. B. $\cos (2 \alpha)+\cos (2 \beta)+\cos (2 \gamma)-2=0$
C. C. $\cos (2 \alpha)+\cos (2 \beta)+\cos (2 \gamma)+1=0$
D. D. $\cos (2 \alpha)+\cos (2 \beta)+\cos (2 \gamma)+2=0$

Answer: (c)

88. The points $(5,-5,2),(4,-3,1),(7,-6,4)$ and $(8,-7,5)$ are the vertices of
A. a rectangle
B. a square
C. a parallelogram
D. None of these

Answer: (c)

- Watch Video Solution

89. In $\triangle A B C$ the mid points of the sides AB, BC and CA are $(l, 0,0),(0, m, 0)$ and $(0,0, n)$ respectively. Then, $\frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{2}+n^{2}}$ is equal to

$$
\text { A. } 2
$$

B. 4
C. 8
D. 16

Answer: (c)

- Watch Video Solution

90. The angle between a line with direction ratios $\langle 2,2,1\rangle$ and a line joining the points $(3,1,4)$ and $(7,2,12)$ is
A. $\cos ^{-1}\left(\frac{2}{3}\right)$
B. $\cos ^{-1}\left(\frac{-2}{3}\right)$
C. $\tan ^{-1}\left(\frac{2}{3}\right)$
D. None of these

Answer: (a)

91. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
A. (a) 30°
B. (b) 45°
C. (c) 60°
D. (d) 90°

Answer: (d)

- Watch Video Solution

92. A line makes the same angle θ with X -axis and Z -axis. If the angle β, which it makes with Y-axis, is such that $\sin ^{2}(\beta)=3 \sin ^{2} \theta$, then the value of $\cos ^{2} \theta$ is
A. (a) $\frac{1}{5}$
B. (b) $\frac{2}{5}$
C. (c) $\frac{3}{5}$
D. (d) $\frac{2}{3}$

Answer: (c)

- Watch Video Solution

93. The projection of a line segment on the axis $2,3,6$ respectively. Then find the length of line segment.
A. 7
B. 5
C. 1
D. 11

Answer: (a)

94. The equation of the straight line through the origin and parallel to the
$(b+c) x+(c+a) y+(a+b) z=k=(b-c) x+(c-a) y+(a-b) z$ are
A. $\frac{x}{b^{2}-c^{2}}=\frac{y}{c^{2}-a^{2}}=\frac{z}{a^{2}-b^{2}}$
B. $\frac{x}{b}=\frac{y}{b}=\frac{z}{a}$
C. $\frac{x}{a^{2}-b c}=\frac{y}{b^{2}-c a}=\frac{z}{c^{2}-a b}$
D. None of these

Answer: (c)

- Watch Video Solution

95. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1)$ and $C(3,5,3)$.
A. $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$
B. $\left(\begin{array}{lll}5 & 7 & 17\end{array}\right)$
C. $\left(\frac{5}{7}, \frac{-7}{3}, \frac{17}{3}\right)$
D. $\left(\frac{-5}{3}, \frac{7}{3}, \frac{-17}{3}\right)$

Answer: (a)

- Watch Video Solution

96. A mirror and a source of light are situated at the origin O and at a point on OX, respectively. A ray of light from the sources strikes the mirror and is reflected. If the direction ratios of the normal to the plane are $1,-1,1$, then find the DCs of the reflected ray.
A. $\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$
B. $\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$
C. $-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}$
D. $-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}$

- Watch Video Solution

97. Equation of plane passing through the points $(2,2,1)(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z-1=0$ is
A. $3 x+4 y+5 z=9$
B. $3 x+4 y-5 z+9=0$
C. $3 x+4 y-5 z-9=0$
D. None of these

Answer: (c)

- Watch Video Solution

98. If the position vectors of the point A and B are $3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-2 \hat{j}-4 \hat{k}$ respectively. Then the eqaution of the
plane through B and perpendicular to $A B$ is
A. $2 x+3 y+6 z+28=0$
B. $2 x+3 y+6 z=28$
C. $2 x-3 y+6 z+28=0$
D. $3 x-2 y+6 z=28$

Answer: (a)

(Watch Video Solution

99. A straight line L cuts the lines $A B, A C a n d A D$ of a parallelogram $A B C D$ at points B_{1}, C_{1} and D_{1}, respectively. If $(\vec{A} B)_{1}, \lambda_{1} \vec{A} B,(\vec{A} D)_{1}=\lambda_{2} \vec{A} \operatorname{Dand}(\vec{A} C)_{1}=\lambda_{3} \vec{A} C$, then prove that $\frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$.
A. $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
B. $\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}$
C. $-\left(\lambda_{1}\right)+\left(\lambda_{2}\right)$
D. $\left(\lambda_{1}\right)+\left(\lambda_{2}\right)$

Answer: (a)

- Watch Video Solution

100. the acute angle between two lines such that the direction cosines I, m, n of each of them satisfy the equations $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$ is
A. ϕ
B. $\frac{\phi}{3}$
C. $\frac{\phi}{4}$
D. $\frac{\phi}{6}$

Answer: (b)

101. The equation of the plane passing through the mid point of the line points $(1,2,3)$ and $(3,4,5)$ and perpendicular to it is
A. $x+y+z=9$
B. $x+y+z=-9$
C. $2 x+3 y+4 z=9$
D. $2 x+3 y+4 z=-9$

Answer: (a)

- Watch Video Solution

102. Equation of the plane that contains the lines $r=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and,$r=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$ is

$$
\text { A. } r \cdot(2 \hat{i}+\hat{j}-3 \hat{k})=-4
$$

B. $\rtimes(-\hat{i}+\hat{j}+\hat{k})=0$
C. $r \cdot(-\hat{i}+\hat{j}+\hat{k})=0$
D. None of these

Answer: (c)

- Watch Video Solution

103. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$ intersects the curve $x y=c^{2}, z=0$, if c is equal to
A. ± 1
B. $\pm \frac{1}{3}$
C. $\pm \sqrt{5}$
D. None of these

Answer: (c)

104. The distance between the line $r=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $r \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$, is
A. $\frac{10}{9}$
B. $\frac{10}{3 \sqrt{3}}$
C. $\frac{10}{3}$
D. None of these

Answer: (b)

- Watch Video Solution

105. If the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$ cuts the coordinate axes in A, B, C, then the area of triangle $A B C$ is
A. $\sqrt{19} \mathrm{sq}$, units
B. $\sqrt{41}$ sq. units
C. $\sqrt{61}$ sq. units
D. None of these

Answer: (c)

- Watch Video Solution

106. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$.
A. (a) 1
B. (b) 2
C. (c) 4
D. (d) None of these

Answer: (a)

- Watch Video Solution

107. The length of the perpendicular from the origin to the plane passing through the point \vec{a} and containing the line $\vec{r}=\vec{b}+\lambda \vec{c}$
A. $\frac{[a b c]}{|a \times b+b \times c+c \times a|}$
B. $\frac{[a b c]}{|a \times b+b \times c|}$
C. $\frac{[a b c]}{|a \times b+c \times a|}$
D. $\frac{[a b c]}{|b \times c+c \times a|}$

Answer: (c)

- Watch Video Solution

108. If $P=(0,1,0)$ and $Q=(0,0,1)$ then the projection of $P Q$ on the plane $x+y+z=3$ is
A. 2
B. 3
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: (c)

- Watch Video Solution

109. The equation of the plane through the intersection of the planes
$x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to x-axis is
A. $y-3 z+6=0$
B. $3 y-z+6=0$
C. $y+3 z+6=0$
D. $3 y-2 z+6=0$

Answer: (a)

- Watch Video Solution

110. A plane II passes through the point $(1,1,1)$ If b, c, a are the direction ratios of a normal to the plane where $a, b, c(a<b<c)$ are the prime factors of 2001, then the equation of the plane II is
A. $29 x+31 y+3 z=63$
B. $23 x+29 y-29 z=23$
C. $23 x+29 y+3 z=55$
D. $31 x+37 y+3 z=71$

Answer: (c)

- Watch Video Solution

111. The dr's of two lines are given by $a+b+c=0,2 a b+2 a c-b c=0$. Then the angle between the lines is
A. ϕ
B. $\frac{2 \phi}{3}$
C. $\frac{\phi}{2}$
D. $\frac{\phi}{3}$

Answer: (b)

- Watch Video Solution

112. A tetrahedron has vertices $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$, the angle between faces $O A B$ and $A B C$ will be
A. 90°
B. $\cos ^{-1}\left(\frac{19}{35}\right)$
C. $\cos ^{-1}\left(\frac{17}{31}\right)$
D. 30°

Answer: (b)

- Watch Video Solution

113. The vector equation of the plane through the point $(2,1,-1)$ and passing through the line of intersection of the plane $r \cdot(\hat{i}+3 \hat{j}-\hat{k})=0$ and $r \cdot(\hat{j}+2 \hat{k})=0$, is
A. $r \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=0$
B. $r \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=6$
C. $\hat{r} \cdot(\hat{i}-3 \hat{k}-13 \hat{k})=0$
D. None of these

Answer: (a)

- Watch Video Solution

114. The vector equation of the plane through the point $\hat{i}+2 \hat{j}-\hat{k}$ and perpendicular to the line of intersection of the plane $r \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$ and $r \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$, is
A. A. $r \cdot(2 \hat{i}+\hat{j}-13 \hat{k})=-1$
B. B. $r \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1$
C. C. $r \cdot(2 \hat{i}+7 \hat{j}+13 \hat{k})=0$
D. D. None of these

Answer: (b)

- Watch Video Solution

$$
\begin{aligned}
& \text { 115. The Cartesian equation of the plane } \\
& \vec{r}=(1+\lambda-\mu) \hat{i}+(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k} \text { is a. } 2 x+y=5 \mathrm{~b} \text {. } \\
& 2 x-y=5 \mathrm{c} .2 x+z=5 \mathrm{~d} .2 x-z=5
\end{aligned}
$$

A. $2 x+y=5$
B. $2 x-y=5$
C. $2 x+z=5$
D. $2 x-z=5$
116. A variable plane is at a distance k from the origin and meets the coordinates axes is $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Then the locus of the centroid of $\triangle A B C$ is
A. $x^{-2}+y^{-2}+z^{-2}=k^{-2}$
B. $x^{-2}+y^{-2}+z^{-2}=4 k^{-2}$
C. $x^{-2}+y^{-2}+z^{-2}=16 k^{-2}$
D. $x^{-2}+y^{-2}+z^{-2}=9 k^{-2}$

Answer: (d)

Watch Video Solution

117. The direction ratios of the line $x-y+z-5=0=x-3 y-6$ are
A. $3,1,-2$
B. $2,-4,1$
C. $\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$
D. $\frac{2}{\sqrt{21}}, \frac{-4}{\sqrt{21}}, \frac{1}{\sqrt{21}}$

Answer: (a, c)

- Watch Video Solution

118.

The
equation
of
the
lines
$x+y+z-1=0$ and $4 x+y-2 z+2=0$ written in the symmetrical form is
A. $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z-0}{1}$
B. $\frac{x}{1}=\frac{y}{-2}=\frac{z-1}{1}$
C. $\frac{\frac{x+1}{2}}{1}=\frac{y-1}{-2}=\frac{\frac{z-1}{2}}{1}$
D. $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z-2}{2}$

Answer: (a, b, c, d)
119. Find $\frac{d y}{d x}$ if $y=x^{x}$

D Watch Video Solution

120. Consider the planes $3 x-6 y+2 z+5=0$ and $4 x-12+3 z=3$. The plane $67 x-162 y+47 z+44=0$ bisects the angel between the given planes which a. contains origin b. is acute c. is obtuse d. none of these
A. contains origin
B. is acute
C. is obtuse
D. None of these

Answer: (a, b)
121. Consider the equation of line $A B$ is $\frac{x}{2}=\frac{y}{-3}=\frac{z}{6}$. Through a point $P(1,2,5)$ line $P N$ is drawn perendicular to $A B$ and line $P Q$ is drawn parallel to the plane $3 x+4 y+5 z=0$ to meet AB is Q . Then,
A. coordinate of N are $\left(\frac{52}{49},-\frac{78}{49}, \frac{156}{49}\right)$
B. the coordinate of Q are $\left(3,-\frac{9}{2}, 9\right)$
C. the equation of PN is $\frac{x-1}{3}=\frac{y-2}{-176}=\frac{z-5}{-89}$
D. coordinate of N are $\left(\frac{156}{49}, \frac{52}{49},-\frac{78}{49}\right)$

Answer: (a, b, c)

- Watch Video Solution

122. the equationof | a |
| :---: | plane \quad is are four points. Which of the following line segments are intersects by the plane? (A) $A D$ (B) $A B$ (C) $A C(D) B C$

A. $A D$
B. $A B$
C. $A C$
D. $B C$

Answer: (b, c)

- Watch Video Solution

123. The coordinates of a point on the line $\frac{x-1}{2}=\frac{y+1}{-3}=z$ at a distance $4 \sqrt{14}$ from the point $(1,-1,0)$ are
A. $(9,-13,4)$
B. $(8 \sqrt{14}+1,-12 \sqrt{14}-1,4 \sqrt{14})$
C. $(-7,11,-4)$
D. $(-8 \sqrt{14}+1,12 \sqrt{14}-1,-4 \sqrt{14})$
124. The line whose vector equation are $r=2 \hat{i}-3 \hat{j}+7 \hat{k}+\lambda(2 \hat{i}+p \hat{j}+5 \hat{k})$ and $r=\hat{i}+2 \hat{j}+3 \hat{k}+\mu(3 \hat{i}-p \hat{j}$ are perpendicular for all values of λ and μ if p eqauls to
A. -1
B. 2
C. 5
D. 6

Answer: (a, d)

- Watch Video Solution

125. Find the equation of the plane containing the lines $2 x-y+z-3=0,3 x+y+z=5$ and at a distance of $\frac{1}{\sqrt{6}}$ from the point $(2,1,-1)$.
A. $2 x-y+z-3=0$
B. $3 x+y+z-5=0$
C. $62 x+29 y+19 z-105=0$
D. $x+2 y-2=0$

Answer: ((a, c))

- Watch Video Solution

126. The plane passing through the point $(-2,-2,2)$ and containing the line joining the points $(1,1,1)$ and $(1,-1,2)$ makes intercepts of length a, b, c respectively the axes of x, y and z respectively, then
A. $a=3 b$
B. $b=2 c$
C. $a+b+c=12$
D. $a+2 b+2 c=0$

Answer: (a, b, c)

- Watch Video Solution

127. Statement-1 A line L is perpendicular to the plane $3 x-4 y+5 z=10$.

Statement-2 Direction cosines of L be $<\frac{3}{5 \sqrt{2}},-\frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}>$
A. Statement 1 is true, Statement 2 is also true, Statement- 2 is the correct explanation of Statement-1.
B. Statement 1 is true, Statement 2 is also true, Statement- 2 is not the correct explanation of Statement-1.
C. Statement 1 is true, Statement 2 is false.
D. Statement 1 is false, Statement 2 is true

Answer: (a)

- Watch Video Solution

128. The equation of two straight lines are
$\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+3}{2}$. Statement 1: the given lines are coplanar. Statement 2: The equations $2 x_{1}-y_{1}=1, x_{1}+3 y_{1}=4 \operatorname{and} 3 x-1+2 y_{1}=5$ are consistent.
A. Statement 1 is true, Statement 2 is also true, Statement- 2 is the correct explanation of Statement-1.
B. Statement 1 is true, Statement 2 is also true, Statement-2 is not the correct explanation of Statement-1.
C. Statement 1 is true, Statement 2 is false.
D. Statement 1 is false, Statement 2 is true

Answer: (a)

- Watch Video Solution

129. Statement-1 The distance between the planes
$4 x-5 y+3 z=5$ and $4 x-5 y+3 z+2=0$ is $\frac{3}{5 \sqrt{2}}$.

Statement-2 The distance between $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}=0$ is $\left|\frac{d_{1}-d_{2}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$.
A. Statement 1 is true, Statement 2 is also true, Statement- 2 is the correct explanation of Statement-1.
B. Statement 1 is true, Statement 2 is also true, Statement- 2 is not the correct explanation of Statement-1.
C. Statement 1 is true, Statement 2 is false.
D. Statement 1 is false, Statement 2 is true

Answer: (d)

- Watch Video Solution

130. Given the line $\mathrm{L}: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}$ and the plane $\phi: x-2 y-z=0$.

Statement-1 L lies in ϕ.
Statement-2 L is parallel to ϕ.
A. Statement 1 is true, Statement 2 is also true, Statement- 2 is the correct explanation of Statement-1.
B. Statement 1 is true, Statement 2 is also true, Statement- 2 is not the correct explanation of Statement-1.
C. Statement 1 is true, Statement 2 is false.
D. Statement 1 is false, Statement 2 is true

Answer: (c)

- Watch Video Solution

131. Statement-1 line $\frac{x-1}{3}=\frac{y-2}{11}=\frac{z+1}{11}$ lies in the plane $11 x-3 z-14=0$.

Statement-2 A straight line lies in a plane, if the line is parallel to plane and a point of the line in the plane.

D Watch Video Solution

$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{\lambda}$ and $\frac{x-2}{3}=\frac{y-3}{2}=\frac{z-2}{3}$ lie in the same plane, then,
Q. The value of $\sin ^{-1} \sin \lambda$ is equal to
A. 3
B. $\phi-3$
C. 4
D. $\phi-4$

Answer: (d)

- Watch Video Solution

133.

Two
line
whose
are
$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{\lambda}$ and $\frac{x-2}{3}=\frac{y-3}{2}=\frac{z-2}{3}$ lie in the
same plane, then,
Q. Point of intersection of the lines lies on
A. $3 x+y+z=20$
B. $2 x+y+z=25$
C. $3 x+2 y+z=24$
D. $x=y=z$

Answer: (d)

- Watch Video Solution

angle between them
A. $\frac{\phi}{3}$
B. $\frac{\phi}{2}$
C. $\frac{\phi}{6}$
D. $\cos ^{-1}\left(\frac{2}{\sqrt{186}}\right)$

Answer: (b)

- Watch Video Solution

135. Let $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ be two planes, where $d_{1}, d_{2}>0$. Then, origin lies in acute angle, If $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}<0$ and origin lies in obtuse angle if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}>0$.

Further point (x_{1}, y_{1}, z_{1}) and origin both lie either in acute angle or in obtuse angle. If
$\left.a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}+d_{1}\right)\left(a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}+d_{2}\right)>0$.
one of $\left(x_{1}, y_{1}, z_{1}\right)$ and origin in lie in acute and the other in obtuse angle,If $\left(a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}+d_{1}\right)\left(a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}+d_{2}\right)<0$
Q. Given that planes $2 x+3 y-4 z+7=0$ and $x-2 y+3 z-5=0$. If a point $P(1,-2,3)$, then
A. O and P both lie in acute angle between the planes
B. O and P both lies in obtuse angle
C. O lies in acute angle, P lies in obtuse angle
D. O lies in obtuse angle, P lies in acute angle

Answer: B

- Watch Video Solution

136. If $\sin y+2 x=e^{x}$ then find $\frac{d y}{d x}$

- Watch Video Solution

137. Let $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ be two planes, where $d_{1}, d_{2}>0$. Then, origin lies in acute angle, If $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}<0$ and origin lies in obtuse angle if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}>0$.

Further point (x_{1}, y_{1}, z_{1}) and origin both lie either in acute angle or in obtuse angle. If
$\left.a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}+d_{1}\right)\left(a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}+d_{2}\right)>0$.
one of $\left(x_{1}, y_{1}, z_{1}\right)$ and origin in lie in acute and the other in obtuse angle,If $\left(a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}+d_{1}\right)\left(a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}+d_{2}\right)<0$
Q. Given that planes $2 x+3 y-4 z+7=0$ and $x-2 y+3 z-5=0$. If a point $P(1,-2,3)$, then
$\mathrm{A} . \mathrm{O}$ and P both lie in acute angle between the planes
B. O and P both lies in obtuse angle
C. O lies in acute angle, P lies in obtuse angle
D. O lies in obtuse angle, P lies in acute angle

Answer: A

- Watch Video Solution

138. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side $B C$ which divides it in the ratio of $2: 1$ also, the line segment AE intersects the line bisecting the angle $\angle A O C$ internally at
point P. if $C P$ when extended meets $A B$ in points F, then
Q. The position vector of point P is
A. $\hat{i}+\hat{j}$
B. $\frac{2}{3}(\hat{i}+\hat{j})$
c. $\frac{13}{3}(\hat{i}+\hat{j})$
D. $\frac{21}{5}(\hat{i}+\hat{j})$

Answer: (d)

- Watch Video Solution

139. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side $B C$ which divides it in the ratio of $2: 1$ also, the line segment AE intersects the line bisecting the angle $\angle A O C$ internally at point P. if $C P$ when extended meets $A B$ in points F, then
Q. The position vector of point P is
A. $\frac{x-2}{1}=\frac{y-3}{5}, z=4$
B. $\frac{x-2}{1}=\frac{y-3}{6}, z=4$
C. $\frac{x-2}{2}=\frac{y-2}{5}, z=3$
D. $\frac{x-2}{3}=\frac{y-3}{5}, z=3$

Answer: (b)

- Watch Video Solution

140. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side $B C$ which divides it in the ratio of $2: 1$ also, the line segment $A E$ intersects the line bisecting the angle $\angle A O C$ internally at point P. if $C P$ when extended meets $A B$ in points F, then
Q. The position vector of point P is
A. $r \cdot(\hat{i}+\hat{j})=7$
B. $r \cdot(\hat{i}-\hat{j})=7$
C. $r \cdot(2 \hat{i}-\hat{j})=7$
D. $r \cdot(3 \hat{i}+4 \hat{j})=7$

Answer: (a)

- Watch Video Solution

141. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . ~ A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

The coordinates of B are
A. $(6,5,2)$
B. $(6,5,-2)$
C. $(6,-5,2)$
D. None of these

- Watch Video Solution

142. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . ~ A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

The coordinates of B are
A. $(5,10,6)$
B. $(10,15,11)$
C. $(-10,-15,-14)$
D. None of these

Answer: (c)
143. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . ~ A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

The coordinates of B are
A. $\frac{x+10}{4}=\frac{y-5}{4}=\frac{z+2}{3}$
B. $\frac{x+10}{3}=\frac{y+15}{5}=\frac{z+14}{5}$
c. $\frac{x+10}{4}=\frac{y+15}{5}=\frac{z+14}{3}$
D. None of these

Answer: (c)

- Watch Video Solution

144. A horizontal plane $4 x-3 y+7 z=0$ is given. Find a line of greatest slope passes through the point $(2,1,1)$ in the plane $2 x+y-5 z=0$.
A. $\frac{3}{\sqrt{11}},-\frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}$
B. $\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}},-\frac{1}{\sqrt{11}}$
C. $-\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}$
D. None of these

Answer: (a)

- Watch Video Solution

145. The line of greatest slope on an inclined plane P_{1} is the line in the plane P_{1} which is perpendicular to the line of intersection of the plane P_{1} and a horizontal plane P_{2}.
Q. The coordinate of a point on the plane $2 x+y-5 z=0,2 \sqrt{11}$ unit away from the line of intersection of
$2 x+y-5 z=0$ and $4 x-3 y+7 z=0$ are
A. a) ($6,2-2)$
B. b) $(3,1,-1)$
C. c) $(6,-2,2)$
D. d) $(1,3,-1)$

Answer: (b)

- Watch Video Solution

146.

Find
the
angle
between
two
planes
$2 x+y-5 z=0$ and $4 x-3 y+7 z=0$

- Watch Video Solution

147. If the perpendicular distance of the point $(6,5,8)$ from the Y-axis is 5λ units, then λ is equal to

- Watch Video Solution

148. A parallelopied is formed by planes drawn through the points $(2,4,5)$ and $(5,9,7)$ parallel to the coordinate planes. The length of the
diagonal of parallelopiped is

- Watch Video Solution

149. If the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} i s \lambda \sqrt{30}$ unit, then the value of λ is

- Watch Video Solution

150.

If
the
planes
$x-c y-b z=0, c x-y+a z=0$ and $b x+a y-z=0$ pass through
a line, then the value of $a^{2}+b^{2}+c^{2}+2 a b c$ is

- Watch Video Solution

151. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$, the value of k is

- Watch Video Solution

152. The equations of motion of a rocket are $x=2 t, y=-4 t$ and $z=4 t$, where time t is given in seconds, and the coordinates of a moving point in kilometres. What is the path of the rocket ? At what distance will be the rocket from the starting point $O(0,0,0)$ in 10 s ?

- Watch Video Solution

153. Write the equation of a tangent to the curve $x=t, y=t^{2}$ and $z=t^{3}$ at its point $M(1,1,1):(t=1)$.

- Watch Video Solution

154. Find the locus of a point, the sum of squares of whose distance from the planes $x-z=0, x-2 y+z=0$ and $x+y+z=0 i s 36$.
155. The plane $a x+b y=0$ is rotated through an angle α about its line of intersection with the plane $z=0$. Show that the equation to the plane in new position is $a x+b y \pm z \sqrt{a^{2}+b^{2}} \tan \alpha=0$.

- Watch Video Solution

156. A horizontal plane $4 x-3 y+7 z=0$ is given. Find a line of greatest slope passes through the point $(2,1,1)$ in the plane $2 x+y-5 z=0$.

- Watch Video Solution

157. Does $\frac{a}{x-y}+\frac{b}{y-z}+\frac{c}{z-x}=0$ represents a pair of planes?

- Watch Video Solution

158. If the straight line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ intersect the curve $a x^{2}+b y^{2}=1, z=0, \quad$ then prove that $a(\alpha n-\gamma l)^{2}+b(\beta n-\gamma m)^{2}=n^{2}$

- Watch Video Solution

159. Prove that the three lines from O with direction cosines $l_{1}, m_{1}, n_{1}: l_{2}, m_{2}, n_{2}: l_{3}, m_{3}, n_{3} \quad$ are coplanar, if $l_{1}\left(m_{2} n_{3}-n_{2} m_{3}\right)+m_{1}\left(n_{2} l_{3}-l_{2} n_{3}\right)+n_{1}\left(l_{2} m_{3}-l_{3} m_{2}\right)=0$

- Watch Video Solution

160. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

161. Let PM be the perpendicular from the point $P(1,2,3)$ to XY -plane. If OP makes an angle θ with the positive direction of the Z-axies and $O M$ makes an angle Φ with the positive direction of X -axis, where O is the origin, and θ and Φ are acute angles, then

- Watch Video Solution

162. Find the distance of the point $(1,0,-3)$ from the plane $x-y-z=9$ measured parallel to the line $\frac{x-2}{2}=\frac{y+2}{3}=\frac{z-6}{-6}$.

- Watch Video Solution

163. Find the equation of the plane which passes through the line of intersection of the planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ and which is parallel to the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$
164. about to only mathematics

- Watch Video Solution

165. about to only mathematics

- Watch Video Solution

166. Show that the line segments joining the points $(4,7,8),(-1,-2,1)$ and $(2,3,4),(1,2,5)$ intersect. Verify whether the four points concyclic.

- Watch Video Solution

167. If P is any point on the plane $l x+m y+n z=p a n d Q$ is a point on the line $O P$ such that $O P . O Q=p^{2}$, then find the locus of the point Q.
168. Find the reflection of the plane $a x+b y+c z+d=0$ in the plane $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$

- Watch Video Solution

169. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to OP meets the coordinate axes at A, B and C.If the parallel to the planes $x=0, y=0$ and $z=0$, respectively, intersect at Q , find the locus of Q .

- Watch Video Solution

170. Prove that the shortest distance between any two opposite edges of
a tetrahedron formed by the planes $y+z=0, x+z=0, x+y=0, x+y+z=\sqrt{3} a i s \sqrt{2} a$.
171. Expand $\left|\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right|$

- Watch Video Solution

2. Find $\frac{d y}{d x}$ if $e^{x}=\log y$

- Watch Video Solution

3. Find $\frac{d y}{d x}$ if $y=\sin x+\tan y$

- Watch Video Solution

4. if equation of the plane is $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ convert this in vector equation of the plane

Exercise For Session 1

1. The Three coordiantes planes divide the space into Parts.

- Watch Video Solution

2. Find the distance between the points $(k, k+1, k+2)$ and $(0,1,2)$.

- Watch Video Solution

3.

Show
that
the
points
$(1,2,3),(-1,-2,-1),(2,3,2)$ and $(4,7,6)$ are the vertices of a parallelogram.

- Watch Video Solution

4. The mid-points of the sides of a triangle are ($1,5,-1$),($0,4,-2$) and ($2,3,4$). Find its vertices.

Watch Video Solution

5. Find the maximum distance between the points
$(3 \sin \theta, 0,0)$ and $(4 \cos \theta, 0,0)$.

- Watch Video Solution

6. If $A=(1,2,3), B=(4,5,6), C=(7,8,9)$ and $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the mid points of the triangle $A B C$, then find the centroid of the triangle DEF.

- Watch Video Solution

7. A line makes angles α, β and γ with the coordinate axes. If $\alpha+\beta=90^{\circ}$, then find γ.
8. If α, β and γ are angles made by the line with positive direction of X axis, Y-axis and Z-axis respectively, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

- Watch Video Solution

9. If $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosine of a line, then find the value of $\cos ^{2} \alpha+(\cos \beta+\sin \gamma)(\cos \beta-\sin \gamma)$.

- Watch Video Solution

10. A line makes angles α, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

- Watch Video Solution

11. Find the direction cosines of the line which is perpendicular to the lines with direction cosines proportional to ($1,-2,-2$) and $(0,2,1)$

- Watch Video Solution

12. The projection of a line segment on the axis $1,2,3$ respectively. Then find the length of line segment.

- Watch Video Solution

Exercise For Session 2

1. The Cartesian equation of a line is $\frac{x-3}{2}=\frac{y+1}{-2}=\frac{z-3}{5}$. Find the vector equation of the line.
2. A line passes through the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and is in the direction of $3 \hat{i}+4 \hat{j}-5 \hat{k}$. Find equations of the line in vector and Cartesian form.

- Watch Video Solution

3. Find the coordinates of the point where the line through $(3,4,1)$ and $(5,1,6)$ crosses $X Y$-plane.

- Watch Video Solution

4. Find the angle between the pairs of line

$$
r=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \text { and } \hat{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
$$

- Watch Video Solution

5. Show that the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}$ intersect. Find their point of intersection.

- Watch Video Solution

6. Find the magnitude of the shortest distance between the lines $\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$ and $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$.

- Watch Video Solution

7. Find the perpendicular distance of the point $(1,1,1)$ from the line $\frac{x-2}{2}=\frac{y+3}{2}=\frac{z}{-1}$.

- Watch Video Solution

8. Find the equation of the line drawn through the point $(1,0,2)$ to meet at right angles to the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$.
9. Find the equation of line through $(1,2,-1)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{0}=\frac{z}{-1}$ and $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$.

- Watch Video Solution

10. Find the image of the point $(1,2,3)$ in the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.

- Watch Video Solution

Exercise For Session 3

1. Find the equation of plane passing through the point $(1,2,3)$ and having the vector $r=2 \hat{i}-\hat{j}+3 \hat{k}$ normal to it.
2. Find a unit vector normal to the plane through the points $(1,1,1),(-1,2,3)$ and (2, $-1,3)$.

Watch Video Solution

3. Show that the four points $S(0,-1,0), B(2,1,01), C(1,1,1)$ and $D(3,3,0)$ are coplanar. Find the equation of the plane containing them.

- Watch Video Solution

4. Find the equation of plane passing through the line of intersection of planes $3 x+4 y-4=0$ and $x+7 y+3 z=0$ and also through origin.

- Watch Video Solution

5. Find equation of angle bisector of plane $x+2 y+3 z-z=0$ and $2 x-3 y+z+4=0$.
6. Find the image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$.

- Watch Video Solution

7. Find the angle between the lines $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the planes $3 x+y+z=7$.

- Watch Video Solution

8. Find the equation of plane which passes through the point $(1,2,0)$ and which is perpendicular to the plane $x-y+z=3$ and $2 x+y-z+4=0$.

- Watch Video Solution

9. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and plane $x-y+z=5$.

- Watch Video Solution

10. Find the equation of the plane containing the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$.

- Watch Video Solution

11. Find the equation of the plane which passes through the point
$(3,4,-5)$ and contains the lines $\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{-1}$

- Watch Video Solution

12. Find the equations of the planes parallel to the plane $x-2 y+2 z-3=0$ which is at a unit distance from the point $(1,2,3)$.

- Watch Video Solution

13. Find the equation of the bisector planes of the angles between the planes $2 x-y+2 z-19=0$ and $4 x-3 y+12 z+3=0$ and specify the plane which bisects the acute angle and the planes which bisects the obtuse angle.

- Watch Video Solution

14. Find the equation of the image of the plane $x-2 y+2 z-3=0$ in plane $x+y+z-1=0$.

- Watch Video Solution

15. Find the equation of the plane which passes through the point $(12,3)$ and which is at the maxixum distance from the point ($-1,0,2$).

- Watch Video Solution

Exercise For Session 4

1. Find the centre and radius of sphere $2(x-5)(x+1)+2(y+5)(y-1)+2(z-2)(z+2)=7$.

- Watch Video Solution

2. Obtain the equation of the sphere with the points $(1,-1,1)$ and $(3,-3,3)$ as the extremities of a diametre and find the coordinate of its centre.

- Watch Video Solution

3. Find the equation of sphere which passes through $(1,0,0)$ and has its centre on the positive direction of Y -axis and has radius 2 .

- Watch Video Solution

4. Find the equation of sphere if it touches the plane $r \cdot(2 \hat{i}-2 \hat{j}-\hat{k})=0$ and the position vector of its centre is $3 \hat{i}+6 \hat{j}-\hat{k}$.

- Watch Video Solution

5. Find the value of λ for which the plane $x+y+z=\sqrt{3} \lambda$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z=6$.

- Watch Video Solution

6. Find the equation the equation of sphere cocentric with sphere $2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z=1$ and double its radius.

(D) Watch Video Solution

 Find
(i) The centre of sphere
(ii) The radius of sphere
(iii) Perpendicular distance from the centre of the sphere to the plane $r \cdot(2 \hat{i}+2 \hat{j}-\hat{k})+3=0$.

- Watch Video Solution

Exercise (Single Option Correct Type Questions)

1. The $x y$-plane divided the line joining the points($-1,3,4$) and ($2,-5,6$). a. Internally in the ratio $2: 3 \mathrm{~b}$. Internally in the ratio $3: 2 \mathrm{c}$. externally in the ratio $2: 3$ d. externally in the ratio $3: 2$
A. Internally in the ratio $2: 3$
B. externally in the ratio 2:3
C. internally in the ratio 3:2
D. externally in the ratio 3:2

Answer: (b)

- Watch Video Solution

2. Ratio in which the zx-plane divides the join of $(1,2,3)$ and $(4,2,1)$.
A. 1:1 internally
B. 1:1 externally
C. 2:1 internally
D. 2:1 externally

Answer: (b)

3. If $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear, then divides in the ratio a. 3:2 internally b. 3:2 externally
c. 2:1 internally
d. 2:1 externally
A. 3:2 internally
B. 3:1 externally
C. 2:1 internally
D. 2:1 externally

Answer: (b)

D Watch Video Solution

4. $A(3,2,0), B(5,3,2) C(-9,6,-3)$ are three points forming a triangle. $A D$, the bisector of angle BAC meets $B C$ in D. Find the coordinates of the point D.
A. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
B. $\left(\frac{-19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
C. $\left(\frac{19}{8},-\frac{57}{16}, \frac{17}{16}\right)$
D. None of these

Answer: (a)

- Watch Video Solution

5. A line passes through the points $(6,-7,-1) \operatorname{and}(2,-3,1)$. Find te direction cosines off the line if the line makes an acute angle with the positive direction of the x-axis.
A. $\frac{2}{3},-\frac{2}{3},-\frac{1}{3}$
B. $-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$
C. $\frac{2}{3},-\frac{2}{3}, \frac{1}{3}$
D. $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$

- Watch Video Solution

6. If P is a point in space such that $O P$ is inclined to $O X$ at 45° and $O Y$ to 60° then OP inclined to ZO at
A. 75°
B. 60° and 120°
C. 75° and 105°
D. 255°

Answer: (b)

- Watch Video Solution

7. The direction cosines of the lines bisecting the angle between the line whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} and the angle
between these lines is θ, are
A. $\frac{l_{1}+l_{2}}{2 \sin \left(\frac{\theta}{2}\right)}, \frac{m_{1}+m_{2}}{2 \sin \left(\frac{\theta}{2}\right)}, \frac{n_{1}+n_{2}}{2 \sin \left(\frac{\theta}{2}\right)}$
B. $\frac{l_{1}+l_{2}}{2 \cos \left(\frac{\theta}{2}\right)}, \frac{m_{1}+m_{2}}{2 \cos \left(\frac{\theta}{2}\right)}, \frac{n_{1}+n_{2}}{2 \cos \left(\frac{\theta}{2}\right)}$
C. $\frac{l_{1}-l_{2}}{2 \sin \left(\frac{\theta}{2}\right)}, \frac{m_{1}-m_{2}}{2 \sin \left(\frac{\theta}{2}\right)}, \frac{n_{1}-n_{2}}{2 \sin \left(\frac{\theta}{2}\right)}$
D. $\frac{l_{1}-l_{2}}{2 \cos \left(\frac{\theta}{2}\right)}, \frac{m_{1}-m_{2}}{2 \cos \left(\frac{\theta}{2}\right)}, \frac{n_{1}-n_{2}}{2 \cos \left(\frac{\theta}{2}\right)}$

Answer: (b)

- Watch Video Solution

8. The equation of the plane perpendicular to the line $\frac{x-1}{1}, \frac{y-2}{-1}, \frac{z+1}{2}$ and passing through the point $(2,3,1)$. Is
A. $r \cdot(\hat{i}+\hat{j}+2 \hat{k})=1$
B. $r \cdot(\hat{i}-\hat{j}+2 \hat{k})=1$
C. $r \cdot(\hat{i}-\hat{j}+2 \hat{k})=7$
D. None of these

Answer: (b)

- Watch Video Solution

9. The locus of a point which moves so that the difference of the squares of its distance from two given points is constant, is a
A. a) straight line
B. b) plane
C. c) sphere
D. d) None of these

Answer: (b)

- Watch Video Solution

10. The position vectors of points a and b are $\hat{i}-\hat{j}+3 \hat{k}$ and $3 \hat{i}+3 \hat{j}+3 \hat{k}$ respectively. The equation of plane is $r \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$. The points a and b
A. (a) lie on the plane
B. (b) are on the same side of the plane
C. (c) are on the opposite side of the plane
D. (d) None of these

Answer: (c)

- Watch Video Solution

11. The vector equation of the plane through the point $2 \hat{i}-\hat{j}-4 \hat{k}$ and parallel to the plane $r \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})-7=0$ is
A. $r \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})=0$
B. $r \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})=32$
C. $r \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})=12$
D. None of these

Answer: (b)

- Watch Video Solution

12. Let vector be the $2 \hat{i}+\hat{j}-\hat{k}$ then find the unit vector in the direction of a vector

- Watch Video Solution

13. For the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$, which one of the following is correct? a. it lies in the plane $x-2 y+z=0 \mathrm{~b}$. it is same as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ c. it passes through $(2,3,5) \mathrm{d}$. it is parallel t the plane $x-2 y+z-6=0$
A. it lie in the plane $x-y+z=0$
B. it is same as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
C. it passes through $(2,3,5)$
D. it is parallel to the plane $x-2 y+z-6=0$

Answer: (c)

D Watch Video Solution

14. Find the value of m for which the straight line $3 x-2 y+z+3=0=4 x-3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$.
A. -2
B. 8
C. -18
D. 11
15. The length of projection of the line segment joining the points $(1,0,-1)$ and $(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to
A. 2
B. $\sqrt{\frac{271}{53}}$
C. $\sqrt{\frac{472}{31}}$
D. $\sqrt{\frac{474}{35}}$

Answer: (d)

- Watch Video Solution

16. The number of planes that are equidistant from four non-coplanar points is
A. 3
B. 4
C. 9
D. 7

Answer: (c)

- Watch Video Solution

17. In a three-dimensional coordinate system, P, Q, and R are images of a point $A(a, b, c)$ in the $x-y, y-z a n d z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) a. 0 b. $a^{2}+b^{2}+c^{2}$ c. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ d. none of these
A. 0
B. $a^{2}+b^{2}+c^{2}$
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$
D. None of these

- Watch Video Solution

18. A plane passing through $(1,1,1)$ cuts positive direction of coordinates axes at $A, B a n d C$, then the volume of tetrahedron $O A B C$ satisfies a. $V \leq \frac{9}{2}$ b. $V \geq \frac{9}{2}$ c. $V=\frac{9}{2}$ d. none of these
A. $V \leq \frac{9}{2}$
B. $V \geq \frac{9}{2}$
C. $V=\frac{9}{2}$
D. None of these

Answer: (b)

19. If lines $x=y=z$ and $x=\frac{y}{2}=\frac{z}{3}$ and third line passing through $(1,1,1)$ form a triangle of area $\sqrt{6}$ units, then the point of intersection of third line with the second line will be
A. $(1,2,3)$
B. $(2,4,6)$
C. $\left(\frac{4}{3}, \frac{8}{3}, \frac{12}{3}\right)$
D. None of these

Answer: (b)

- Watch Video Solution

20. Find the point of intersection of line passing through $(0,0,1)$ and the intersection lines
$x+2 u+z=1,-x+y-2 z a n d x+y=2, x+z=2$ with the $x y$ plane.
A. $\left(\frac{5}{3},-\frac{1}{3}, 0\right)$
B. $(1,1,0)$
C. $\left(\frac{2}{3},-\frac{1}{3}, 0\right)$
D. $\left(-\frac{5}{3}, \frac{1}{3}, 0\right)$

Answer: (a)

- Watch Video Solution

21. Two system of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ from the origin, then:
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{{ }^{2}}}+\frac{1}{b^{2}}+\frac{1}{c^{{ }^{2}}}=0$
B. $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}-\frac{1}{a^{{ }^{2}}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{n^{2}}}-\frac{1}{b^{2}}-\frac{1}{c^{n^{2}}}=0$
D. $\frac{1}{a^{2}}-\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}=0$
22. The line $\frac{x+6}{5}=\frac{y+10}{3}=\frac{z+14}{8}$ is the hypotenuse of an isosceles right-angled triangle whose opposite vertex is $(7,2,4)$. Then which of the following is not the side of the triangle? a.
$\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6}$
b. $\quad \frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
$\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$ d. none of these
A. $\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6}$
B. $\frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
C. $\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$
D. None of these
23. Consider the following 3lines in space
$L_{1}: r=3 \hat{i}-\hat{j}+\hat{k}+\lambda(2 \hat{i}+4 \hat{j}-\hat{k})$
$L_{2}: r=\hat{i}+\hat{j}-3 \hat{k}+\mu(4 \hat{i}+2 \hat{j}+4 \hat{k})$
$L_{3}:=3 \hat{i}+2 \hat{j}-2 \hat{k}+t(2 \hat{i}+\hat{j}+2 \hat{k})$
Then, which one of the following part(s) is/ are in the same plane?
A. Only $L_{1} L_{2}$
B. Only $L_{2} L_{3}$
C. Only $L_{1} L_{3}$
D. $L_{1} L_{2}$ and $L_{2} L_{3}$

Answer: (d)

- Watch Video Solution

24. Let $r=a+\lambda l$ and $r=b+\mu m$ br be two lines in space, where $a=5 \hat{i}+\hat{j}+2 \hat{k}, b=-\hat{i}+7 \hat{j}+8 \hat{k}, l=-4 \hat{i}+\hat{j}-\hat{k}$, and $m=2 \hat{i}-$, then the position vector of a point which lies on both of these lines, is
A. $\hat{i}+2 \hat{j}+\hat{k}$
B. $2 \hat{i}+\hat{j}+\hat{k}$
C. $\hat{i}+\hat{j}+2 \hat{k}$
D. None of these

Answer: (a)

- Watch Video Solution

25. L_{1} and L_{2} and two lines whose vector equations are $L_{1}: \vec{r}=\lambda((\cos \theta+\sqrt{3}) \hat{i}+(\sqrt{2} \sin \theta) \hat{j}+(\cos \theta-\sqrt{3}) \hat{k})$
$L_{2}: \vec{r}=\mu(a \hat{i}+b \hat{j}+c \hat{k})$, where $\lambda a n d \mu$ are scalars and α is the acute angel between L_{1} and L_{2}. If the angel α is independent of θ, then the value of α is a. $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$
A. $\frac{\phi}{6}$
B. $\frac{\phi}{4}$
C. $\frac{\phi}{3}$
D. $\frac{\phi}{2}$

Answer: (a)

- Watch Video Solution

26. The vector equations of two lines L_{1} and L_{2} are respectively $\vec{r}=17 \hat{i}-9 \hat{j}+9 \hat{k}+\lambda(3 \hat{i}+\hat{j}+5 \hat{k})$ and $\vec{r}=15=8 \hat{j}-\hat{k}+\mu(4 \hat{i}+3 \hat{j})$

I L_{1} and L_{2} are skew lines $I I(11,-11,-1)$ is the point of intersection of L_{1} and $L_{2} I I I(-11,11,1)$ is the point of intersection of L_{1} and L_{2}. IV $\cos ^{-1}\left(\frac{3}{\sqrt{35}}\right)$ is the acute angle between _ 1 and L_{2} then, Which of the following is true?
A. II and IV
B. I and IV
C. Only IV
D. III and IV

- Watch Video Solution

27.

Consider three
vectors
$p=i+j+k, q=2 i+4 j-k$ and $r=i+j+3 k$. If p, q and r denotes the position vector of three non-collinear points, then the equation of the plane containing these points is
A. (a) $2 x-3 y+1=0$
B. (b) $x-3 y+2 z=0$
C. (c) $3 x-y+z-3=0$
D. (d) $3 x-y-2=0$

Answer: (d)

28. Intercept made by the circle $z \bar{z}+\bar{a}+a \bar{z}+r=0$ on the real axis on complex plane is
A. $\frac{q}{r \cdot n}$
B. $\frac{i \cdot n}{q}$
C. $(r \cdot n) q$
D. $\frac{q}{|n|}$

Answer: (a)

- Watch Video Solution

29.

the
distance
between the
planes
$8 x+12 y-14 z=2$ and $4 x+6 y-7 z=2$ can be expressed in the
form $\frac{1}{\sqrt{N}}$, where N is natural, then the value of $\frac{N(N+1)}{2}$ is
A. 4950
B. 5050
C. 5150
D. 5151

Answer: (d)

- Watch Video Solution

30. A plane passes through thee points $P(4,0,0)$ and $Q(0,0,4)$ and is parallel to the Y-axis. The distance of the plane from the origin is
A. 2
B. 4
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: (d)

- Watch Video Solution

31. If from the point $P(f, g, h)$ perpendicular PL and PM be drawn to yz and zx -planes, then the equation to the plane OLM is
A. $\frac{x}{f}+\frac{y}{g}-\frac{z}{h}=0$
B. $\frac{x}{f}+\frac{y}{g}+\frac{z}{h}=0$
C. $\frac{x}{f}-\frac{y}{g}+\frac{z}{h}=0$
D. $-\frac{x}{f}+\frac{y}{g}+\frac{z}{h}=0$

Answer: (a)

- Watch Video Solution

32. The plane XOZ divides the join of $(1,-1,5)$ and $(2,3,4)$ in the ratio of $\lambda: 1$, then λ is
A. -3
B. $-\frac{1}{3}$
C. 3
D. $\frac{1}{3}$

Answer: (d)

- Watch Video Solution

33. about to only mathematics
A. $x^{3}+y^{3}+z^{3}=6 k^{3}$
B. $x y z=6 k^{3}$
C. $x^{2}+y^{2}+z^{2}=4 k^{2}$
D. $x^{-2}+y^{-2}+z^{-2}=4 k^{-2}$

Answer: (d)

- Watch Video Solution

34. Let $A B C D$ be a tetrahedron such that the edges $A B, A C a n d A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D a n d A D B$ be 3, 4 and 5sq. units, respectively. Then the area of triangle $B C D$ is a. $5 \sqrt{2}$ b. 5 c. $\frac{\sqrt{5}}{2}$ d. $\frac{5}{2}$
A. $5 \sqrt{2}$
B. 5
C. $\frac{5}{\sqrt{2}}$
D. $\frac{5}{2}$

Answer: (a)

- Watch Video Solution

35. Equations of the line which passe through the point with position vector $(2,1,0)$ and perpendicular to the plane containing the vectors $i+j$ and $j+k$ is
A. $r=(2,1,0)+t(1,-1,1)$
B. $r=(2,1,0)+t(-1,1,1)$
C. $r=(2,1,0)+t(1,1,-1)$
D. $r=(2,1,0)+t(1,1,1)$

Answer: (a)

- Watch Video Solution

36. Which of the following planes are parallel but not identical?
$P_{1}: 4 x-2 y+6 z=3$
$P_{2}: 4 x-2 y-2 z=6$
$P_{3}:-6 x+3 y-9 z=5$
$P_{4}: 2 x-y-z=3$
A. (a) P_{2} and P_{3}
B. (b) P_{2} and P_{4}
C. (c) P_{1} and P_{3}
D. (d) P_{1} and P_{4}

Answer: (c)

- Watch Video Solution

37. A parallelopiped is formed by planes drawn through the points $(1,2,3)$ and $(9,8,5)$ parallel to the coordinate planes, then which of the following is not length of an edge of this rectangular parallelopiped?
A. 2
B. 4
C. 6
D. 8

Answer: (b)

- Watch Video Solution

38. $r=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$ in the scalar dot product form is
A. $r \cdot(5 i-2 j+3 k)=7$
B. $r \cdot(5 i 2 j-3 k)=7$
C. $r \cdot(5 i-2 j-3 k)=7$
D. $r \cdot(5 i+2 j+3 k)=7$

Answer: (c)

- Watch Video Solution

39. The vector equations of two lines L_{1} and L_{2} are respectively, $L_{1}: r=2 i+9 j+13 k+\lambda(i+2 j+3 k)$ and $L_{2}: r=-3 i+7 j+p k+\mu$ Then, the lines L_{1} and L_{2} are
A. skew lines all $p \in R$
B. intersecting for all $p \in R$ and the point of intersection is

$$
(-1,3,4)
$$

C. intersecting lines for $p=-2$
D. intersecting for all real $p \in R$

Answer: (c)

- Watch Video Solution

40.

$(x, y, z)=(0,1,1)+\lambda(1,-1,1)+\mu(2,-1,0)$ The distance of this plane from the origin is
A. a) $\frac{1}{3}$
B. b) $\frac{\sqrt{3}}{2}$
C. c) $\sqrt{\frac{3}{2}}$
D. d) $\frac{2}{\sqrt{3}}$

- Watch Video Solution

41. The value of a for which the lines $\frac{x-2}{1}=\frac{y-9}{2}=\frac{z-13}{3}$ and $\frac{x-a}{-1}=\frac{y-7}{2}=\frac{z+2}{-3}$ intersect, is
A. -5
B. -2
C. 5
D. -3

Answer: (d)

- Watch Video Solution

42. For the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$, which one of the following is correct? a. it lies in the plane $x-2 y+z=0 \mathrm{~b}$. it is same as line
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ c c. it passes through $(2,3,5)$ d. it is parallel t the plane $x-2 y+z-6=0$
A. It lie in the plane $x-2 y+z=0$.
B. it is same as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$.
C. it passes through $(2,3,5)$.
D. It is parallel to the plane $x-2 y+z-6=0$.

Answer: (c)

- Watch Video Solution

43. Given planes $P_{1}: c y+b z=x$
$P_{2}: a z+c x=y$
$P_{3}: b x+a y=z$
P_{1}, P_{2} and P_{3} pass through one line, if
A. $a^{2}+b^{2}+c^{2}=a b+b c+c a$
B. $a^{2}+b^{2}+c^{2}+2 a b c=1$
C. $a^{2}+b^{2}+c^{2}=1$
D. $a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a+2 a b c=1$

Answer: (c)

- Watch Video Solution

44. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, if
A. $k=0$ and $k=-1$
B. $k=1$ or -1
C. $k=0$ or -3
D. $k=3$ or -3

Answer: (c)

- Watch Video Solution

45. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$ intersects the curve $x y=c^{2}, z=0$ if c is equal to a. $\pm 1 \mathrm{~b} . \pm \frac{1}{3} \mathrm{c} . \pm \sqrt{5} \mathrm{~d}$. none of these
A. ± 1
B. $\pm \frac{1}{3}$
C. $\pm \sqrt{5}$
D. None of these

Answer: (c)

- Watch Video Solution

46. The line which contains all points (x, y, z) which are of the form $(x, y, z)=(2,-2,5)+\lambda(1,-3,2) \quad$ intersects the plane $2 x-3 y+4 z=163$ at P and intersects the YZ -plane at Q . If the distance PQ is $a \sqrt{b}$, where $a, b \in N$ and $a>3$, then $(a+b)$ is equalto
B. (b) 95
C. (c) 27
D. (d) None of these

Answer: (a)

- Watch Video Solution

47. The position vectors of points of intersection of three planes $r \cdot n_{1}=q_{1}, r \cdot n_{2}=q_{2}, r \cdot n_{3}=q_{3}, \quad$ where n_{1}, n_{2} and n_{3} are non coplanar vectors, is
A. 1
B. 2
C. 0
D. -1
48. The equation of the plane which passes through the line of intersection of planes $\vec{r} \cdot \vec{n}_{1}=, q_{1}, \vec{r} \cdot \vec{n}_{2}=q_{2}$ and the is parallel to the line of intersection of planers $\vec{r} \cdot \vec{n}_{3}=q_{3} a n d \vec{r} \cdot \vec{n}_{4}-q_{4}$ is
A. $\left[n_{2} n_{3} n_{4}\right]\left(r \cdot n_{1}-q_{1}\right)=\left[n_{1} n_{3} n_{4}\right]\left(r \cdot n_{2}-q_{2}\right)$
B. $\left[n_{1} n_{2} n_{3}\right]\left(r \cdot n_{4}-q_{4}\right)=\left[n_{4} n_{3} n_{1}\right]\left(r \cdot n_{2}-q_{2}\right)$
C. $\left[n_{4} n_{3} n_{1}\right]\left(r \cdot n_{4}-q_{4}\right)=\left[n_{1} n_{2} n_{3}\right]\left(r \cdot n_{2}-q_{2}\right)$
D. None of these

Answer: (a)

- Watch Video Solution

49. A straight line is given by $r=(1+t) i+3 t j+(1-t) k$, where $t \in R$
. If this line lies in th plane $x+y+c z=d$, then the value of $(c+d)$ is
A. (a) -1
B. (b) 1
C. (c) 7
D. (d) 9

Answer: (d)

- Watch Video Solution

50. The distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{2}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$ is
A. $2 \sqrt{11}$
B. $\sqrt{126}$
C. 13
D. 14

- Watch Video Solution

51. about to only mathematics
A. A plane containing the origin O and parallel to two non- collinear vector vector $O P$ and $O Q$.
B. the surface of a sphere described on PQ as its diameter.
C. a line passing through the points P and Q .
D. a set of lines parallel to the line $P Q$.

Answer: (c)

- Watch Video Solution

52. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form
a parallelopiped of volume:
A. $\frac{1}{3}$
B. 4
C. $3 \frac{\sqrt{3}}{4}$
D. $\frac{4}{3 \sqrt{3}}$

Answer: (d)

(Watch Video Solution

53. The orthogonal projection A^{\prime} of the point A with position vector $(1,2,3)$ on the plane $3 x-y+4 z=0$ is
A. $(-1,3,-1)$
B. $\left(-\frac{1}{2}, \frac{5}{2}, 1\right)$
C. $\left(\frac{1}{2},-\frac{5}{2},-1\right)$
D. $(6,-7,-5)$

Answer: (b)

- Watch Video Solution

54. The equation of the line passing through $(1,1,1)$ and perpendicular to the line of intersection of the planes $x+2 y-4 z=0$ and $2 x-y+2 z=0$ is
A. $\frac{x-1}{5}=\frac{1-y}{1}=\frac{z-1}{2}$
B. $\frac{x-1}{-5}=\frac{1-y}{1}=\frac{z-1}{2}$
C. $\frac{x-1}{0}=\frac{1-y}{-10}=\frac{z-1}{-5}$
D. $\frac{x-1}{-10}=\frac{y+2}{0}=\frac{z-2}{-5}$

Answer: (a)

- Watch Video Solution

55. about to only mathematics
A. 3
B. 1
C. $\frac{1}{3}$
D. 9

Answer: (d)

- Watch Video Solution

56. The angle between the lines $A B$ and $C D$, where $A(0,0,0), B(1,1,1), C(-1,-1,-1)$ and $D(0,1,0)$ is given by
A. $\cos (\theta)=\frac{1}{\sqrt{3}}$
B. $\cos (\theta)=\frac{4}{3 \sqrt{2}}$
C. $\cos (\theta)=\frac{1}{\sqrt{5}}$
D. $\cos (\theta)=\frac{1}{2 \sqrt{2}}$
57. The shortest distance of a point $(1,2,-3)$ from a plane making intercepts 1,2 and 3 units on position X, Y and Z -axes respectively, is
A. 2
B. 0
C. $\frac{13}{12}$
D. $\frac{12}{7}$

Answer: (b)

- Watch Video Solution

58. A tetrahedron has vertices $O(0,0,0), A(1,2,1),, B(2,1,3)$ and $C(-1,1,2)$, the angle between faces OAB and $A B C$ will be
A. $\cos ^{-1}\left(\frac{19}{35}\right)$
B. $\cos ^{-1}\left(\frac{17}{31}\right)$
C. 30°
D. 90°

Answer: (a)

- Watch Video Solution

59. The direction ratios of the line I_{1} passing through $P(1,3,4)$ and perpendicular to line $I_{2} \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ (where I_{1} and I_{2} are coplanar) is
A. $14,8,1$
B. $-14,8,-1$
C. $14,-8,-1$
D. $-14,-8,1$
60. Equation of the plane through three points A, B and C with position vectors $-6 i+3 j+2 k, 3 i-2 j+4 k$ and $5 i+7 j+3 k$ is equal to
A. $r \cdot(i-j-7 k)+23=0$
B. $r \cdot(i+j+7 k)=23$
C. $r \cdot(i+j-7 k)+23=0$
D. $r \cdot(i-j-7 k)=23$

Answer: (a)

- Watch Video Solution

61. OABC is a tetrahedron. The position vectors of A, B and C are $i, i+j$ and $j+k$, respectively. O is origin. The height of the tetrahedron (taking ABC as base) is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. None of these

Answer: (b)

- Watch Video Solution

62. The plane $x-y-z=4$ is rotated through an angle 90° about its line of intersection with the plane $x+y+2 z=4$. Then the equation of the plane in its new position is
A. $x+y+4 z=20$
B. $x+5 y+4 z=20$
C. $x+y-4 z=20$
D. $5 x+y+4 z=20$

D Watch Video Solution

63. $A_{x y}, y z, A_{z x}$ be the area of projections oif asn area a o the xy,yz and zx and planes resepctively, then $A^{2}=A^{2}-(x y)+A^{2}-(y z)+a^{2}{ }_{-}(z x)$
A. $A_{x y}^{2}+A_{y z}^{2}+A_{z x}^{2}$
B. $\sqrt{A_{x y}^{2}+A_{y z}^{2}+A_{z x}^{2}}$
C. $A_{x y}+A_{y z}+A_{z x}$
D. $\sqrt{A_{x y}+A_{y z}+A_{z x}}$

Answer: (a)

- Watch Video Solution

64. Through a point $P(h, k, l)$ a plane is drawn at righat angle to $O P$ to meet the coordinate axes in A, B and C. If $O P=p$ show that the area of
$\triangle A B C$ is $\frac{p^{5}}{2 h k l}$
A. $\frac{p^{3}}{2 h k l}$
B. $\frac{p^{3}}{h k l}$
C. $\frac{p^{3}}{2 h k l}$
D. $\frac{p^{3}}{h k l}$

Answer: (a)

- Watch Video Solution

65. The volume of the tetrahedron included between the plane $3 x+4 y-5 z-60=0$ and the co-odinate planes is
A. 60
B. 600
C. 720
D. 400

- Watch Video Solution

66. Find the angle between the lines whose direction cosine are given by the equation: $1+\mathrm{m}+\mathrm{n}=0$ and $l^{2}+m^{2}-n^{2}=0$
A. $\cos ^{-1}(2 \sqrt{3})$
B. $\cos ^{-1} \sqrt{3}$
C. $\frac{\phi}{3}$
D. $\frac{\phi}{2}$

Answer: (c)

- Watch Video Solution

67. The distance between the line $r=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $r \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is
A. $\frac{10}{3 \sqrt{3}}$
B. $\frac{10}{3}$
C. $\frac{10}{9}$
D. $\frac{10}{\sqrt{3}}$

Answer: (a)

- Watch Video Solution

68. Find the equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through the origin.
A. $2 x-y+2 z-7=0$
B. $2 x+y+2 x=0$
C. $2 x-y+2 z=0$
D. $2 x-y-z=0$
69. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\overrightarrow{P Q}$ is parallel to the plane $x-4 y+3 z=1$ is
A. $\frac{1}{4}$
B. $-\frac{1}{4}$
C. $\frac{1}{8}$
D. $-\frac{1}{8}$

Answer: (a)

Watch Video Solution

70. A plane makes intercepts $O A, O B$ and $O C$ whose measurements are b and c on the OX, OY and OZ axes. The area of $\triangle A B C$ is
A. $\frac{1}{2}(a b+b c+a c)$
B. $\frac{1}{2} a b c(a+b+c)$
C. $\frac{1}{2} \frac{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{1}}{2}$
D. $\frac{1}{2}(a+b+c)^{2}$

Answer: (c)
71. The radius of the circle in which the sphere $x^{2}=y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane $x+2 y+2 z+7=0$ is
A. 2
B. 3
C. 4
D. 1

Answer: (b)

- Watch Video Solution

72. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is (A) $(3,-1,10$
(B) $(3,1,-1)(C)(-3,1,1)$ (D) $(-3,-1,-1)$
A. $(3,-1,1)$
B. $(3,1,-1)$
C. $(-3,1,1)$
D. $(-3,-1,-1)$

Answer: (b)

73. The coordinates of the point P on the line $\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(-\hat{i}+\hat{j}-\hat{k})$ which is nearest to the origin is a. $\left(\frac{2}{4}, \frac{4}{3}, \frac{2}{3}\right)$ b. $\left(-\frac{2}{3},-\frac{4}{3}, \frac{2}{3}\right)$ c. $\left(\frac{2}{3},-\frac{4}{3}, \frac{2}{3}\right)$ d. none of these
A. $\left(\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right)$
B. $\left(-\frac{2}{3},-\frac{4}{3}, \frac{2}{3}\right)$
C. $\left(\frac{2}{3}, \frac{4}{3},-\frac{2}{3}\right)$
D. None of these

Answer: (a)

- Watch Video Solution

74. Find 3 -dimensional vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \quad$ satisfying
$\vec{v}_{1} \cdot \vec{v}_{1}=4, \vec{v}_{1} \cdot \vec{v}_{2}=-2, \vec{v}_{1} \cdot \vec{v}_{3}=6$,
$\vec{v}_{2} \cdot \vec{v}_{2}=2, \vec{v}_{2} \cdot \vec{v}_{3}=-5, \vec{v}_{3} \cdot \vec{v}_{3}=29$
A. $-3 \hat{i}+2 \hat{j} \pm 4 \hat{k}$
B. $3 \hat{i}-2 \hat{j} \pm 4 \hat{k}$
C. $-2 \hat{i}+3 \hat{j} \pm 4 \widehat{K}$
D. $2 \hat{i}+3 \hat{j} \pm 4 \hat{k}$

Answer: (b)

- Watch Video Solution

75. The points $\hat{i}-\hat{j}+3 \hat{k}$ and $3 \hat{i}+3 \hat{j}+3 \hat{k}$ are equidistant from the plane $r \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$, then they are
A. on the same sides of the plane
B. parallel of the plane
C. on the opposite sides of the plane
D. None of these

Answer: (c)

76. A, B, C and D are four points in space. Using vector methods, prove that $A C^{2}+B D^{2}+A C^{2}+B C^{2} \geq A B^{2}+C D^{2}$ what is the implication of the sign of equality.
A. $A B^{2}+C D^{2}$
B. $\frac{1}{A B^{2}}-\frac{1}{C D^{2}}$
C. $\frac{1}{C D^{2}}-\frac{1}{A B^{2}}$
D. None of these

Answer: (a)

- Watch Video Solution

77. Show that $x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$ and $x_{3} \hat{i}+y_{3} \hat{j}+z_{3} \hat{k}$ are non-coplnar if $\quad\left|x_{1}\right|>\left|y_{1}\right|+\left|z_{1}\right|$,
$\left|y_{2}\right|>\left|x_{2}\right|+\left|z_{2}\right|$ and $\left|z_{3}\right|>\left|x_{3}\right|+\left|y_{3}\right|$.
A. perpendicular
B. collinear
C. coplanar
D. non coplanar

Answer: (d)

- Watch Video Solution

78. The position vectors of points of intersection of three planes $r \cdot n_{1}=q_{1}, r \cdot n_{2}=q_{2}, r \cdot n_{3}=q_{3}, \quad$ where $\quad n_{1}, n_{2}$ and n_{3} are non coplanar vectors, is
A. $\frac{1}{\left[n_{1} n_{2} n_{3}\right]}\left[q_{3}\left(n_{1} \times n_{2}\right)+q_{1}\left(n_{2} \times n_{3}\right)+q_{2}\left(n_{3} \times n_{1}\right)\right]$
B. $\frac{1}{\left[n_{1} n_{2} n_{3}\right]}\left[q_{1}\left(n_{1} \times n_{2}\right)+q_{1}\left(n_{2} \times n_{3}\right)+q_{3}\left(n_{3} \times n_{1}\right)\right]$
C. $-\frac{1}{\left[n_{1} n_{2} n_{3}\right]}\left[q_{1}\left(n_{1} \times n_{2}\right)+q_{1}\left(n_{2} \times n_{3}\right)+q_{3}\left(n_{3} \times n_{1}\right)\right]$
D. None of these

D Watch Video Solution

79. A pentagon is formed by cutting a triangular corner from a rectangular piece of paper. The five sides of the pentagon have length $13,19,20,25$ and 31 not necessarily in that order. The area of the pentagon is
A. 459 sq. units
B. 600 sq. units
C. 680 sq. units
D. 745 sq. units

Answer: (d)

80. In a three-dimensional coordinate system, P, Q, and R are images of a point $A(a, b, c)$ in the $x-y, y-z a n d z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) a. 0 b. $a^{2}+b^{2}+c^{2}$ c. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ d. none of these
A. 0
B. $a^{2}+b^{2}+c^{2}$
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$
D. None of these

Answer: (a)

- Watch Video Solution

81. A plane $2 x+3 y+5 z=1$ has a point P which is at minimum distance from line joining $A(1,0,-3), B(1,-5,7)$, then distance AP is equal to
A. $3 \sqrt{5}$
B. $2 \sqrt{5}$
C. $4 \sqrt{4}$
D. None of these

Answer: (b)

- Watch Video Solution

82. The locus of point which moves in such a way that its distance from the line $\frac{x}{1}=\frac{y}{1}=\frac{z}{-1}$ is twice the distance from the plane $x+y+z=0$ is
A. $x^{2}+y^{2}+z^{2}-5 x-3 y-3 z=0$
B. $x^{2}+y^{2}+z^{2}+5 x+3 y+3 z=0$
C. $x^{2}+y^{2}+z^{2}-5 x y-3 z y-3 z x=0$
D. $x^{2}+y^{2}+z^{2}+5 x y+3 z y+3 z x=0$

- Watch Video Solution

83. A cube $C=\{(x, y, z) \mid o \leq x, y, z \leq 1\}$ is cut by a sharp knife along the plane $x=y, y=z, z=x$. If no piece is moved until all three cuts are made, the number of pieces is
A. 6
B. 7
C. 8
D. 27

Answer: (a)
84. A ray of light is sent through the point $P(1,2,3)$ and is reflected on the XY plane. If the reflected ray passes through the point $Q(3,2,5)$ then the equation of the reflected ray is
A. $\frac{x-3}{1}=\frac{y-2}{0}=\frac{z-5}{1}$
B. $\frac{x-3}{1}=\frac{y-2}{0}=\frac{z-5}{-4}$
C. $\frac{x-3}{1}=\frac{y-2}{0}=\frac{z-5}{4}$
D. $\frac{x-1}{1}=\frac{y-2}{0}=\frac{z-5}{4}$

Answer: (c)

- Watch Video Solution

85. Find $\frac{d y}{d x}$ if $2 x-3 \sin x=2 y$

- Watch Video Solution

86. The shortest distance between any two opposite edges of the tetrahedron formed by planes $x+y=0, y+z=0, z+x=0, x+y+z=a$ is constant, equal to
A. $2 a$
B. $\frac{2 a}{\sqrt{6}}$
C. $\frac{a}{\sqrt{6}}$
D. $\frac{2 a}{\sqrt{3}}$

Answer: (b)

- Watch Video Solution

87. The angle between the pair of planes represented by equation $2 x^{2}-2 y^{2}+4 z^{2}+6 x z+2 y z+3 x y=0$ is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{4}{21}\right)$
C. $\cos ^{-1}\left(\frac{4}{9}\right)$
D. $\cos ^{-1}\left(\frac{7}{\sqrt{84}}\right)$

Answer: (c)

- Watch Video Solution

88. Let (p, q, r) be a point on the plane $2 x+2 y+z=6$, then the least value of $p^{2}+q^{2}+r^{2}$ is equal to
A. 4
B. 5
C. 6
D. 8

Answer: (a)

89. The four lines drawing from the vertices of any tetrahedron to the centroid to the centroid of the opposite faces meet in a point whose distance from each vertex is ' k ' times the distance from each vertex to the opposite face, where k is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. $\frac{5}{4}$

Answer: (c)

- Watch Video Solution

90. The shorteast distance from $(1,1,1)$ to the line of intersection of the pair of planes $x y+y z+z x+y^{2}=0$ is
A. $\sqrt{\frac{8}{7}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{2}{3}$

- Watch Video Solution

91. The shortest distance between the two lines
$L_{1}: x=k_{1}, y=k_{2}$ and $L_{2}: x=k_{3}, y=k_{4}$ is equal to
A. $\left|\sqrt{k_{1}^{2}+k_{2}^{2}}-\sqrt{k_{3}^{2}+k_{4}^{2}}\right|$
B. $\sqrt{k_{1} k_{3}+k_{3} k_{4}}$
C. $\sqrt{\left(k_{1}+k_{3}\right)^{2}+\left(k_{2}+k_{4}\right)^{2}}$
D. $\sqrt{\left(k_{1}-k_{3}\right)^{2}+\left(k_{2}-k_{4}\right)^{2}}$
92. $A=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$ and $B=\left[\begin{array}{lll}p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2} \\ p_{3} & q_{3} & r_{3}\end{array}\right]$

Where p_{i}, q_{i}, r_{i} are the co-factors of the elements l_{i}, m_{i}, n_{i} for $i=1,2,3$
. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$ are the direction cosines of three mutually perpendicular lines then $\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right)$ and $\left(p_{3}, q, r_{3}\right)$ are
A. the direction cosines of three mutually perpendicular lines
B. the direction ratios of three mutually perpendicular lines which are
not direction cosines
C. the direction cosines of three lines which need be perpendicular
D. the direction ratios but not the direction cosines of three lines which need not be perpendicular

Answer: (a)

- Watch Video Solution

93. ABCD is a tetrahedron such that each of the $\triangle A B C, \triangle A B D$ and
$\triangle A C D$
has
a right angle at
A.
If
$\operatorname{ar}(\triangle A B C)=k_{1} \cdot \operatorname{Ar}(\triangle A B D)=k_{2}, \operatorname{ar}(\triangle B C D)=k_{3} \quad$ then $\operatorname{ar}(\triangle A C D)$ is
A. $\sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}$
B. $\sqrt{\frac{k_{1} k_{2} k_{3}}{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}}$
C. $\sqrt{\left|\left(k_{1}^{2}+k_{2}^{2}-k_{3}^{2}\right)\right|}$
D. $\sqrt{\left|\left(k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right)\right|}$

Answer: (c)

- Watch Video Solution

94. In a regular tetrahedron, if the distance between the mid points of opposite edges is unity, its volume is
A. (a) $\frac{1}{3}$
B. (b) $\frac{1}{2}$
C. (c) $\frac{1}{\sqrt{2}}$
D. (d) $\frac{1}{6 \sqrt{2}}$

Answer: (a)

- Watch Video Solution

95. A variable plane makes intercepts on X, Y and Z -axes and it makes a tetrahedron of volume 64 cu . Units. The locus of foot of perpendicular from origin on this plane is
A. (a) $\left(x^{2}+y^{2}+z^{2}\right)=384 x y z$
B. (b) $x y z=681$
C. (c) $(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{2}=16$
D. (d) $x y z(x+y+z)=81$
96. If $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are four coplanar points on the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ of a skew quadrilateral, then $\frac{A B}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R D} \cdot \frac{D S}{S A}$ equals
A. 1
B. -1
C. 3
D. -3

Answer: (a)

- Watch Video Solution

Exercise (More Than One Correct Option Type Questions)
1.

Given
the
equation
of the line
$3 x-y+z+1=0$ and $5 x-y+3 z=0$. Then,which of the following

is correct?

A. Symmetrical form of the equation of line is $\frac{x}{2}=\frac{y-\frac{1}{8}}{-1}=\frac{z+\frac{5}{8}}{1}$.
B. Symmetrical form of the equation of line is

$$
\frac{x+\frac{1}{8}}{1}=\frac{y-\frac{5}{8}}{-1}=\frac{z}{-2}
$$

C. Equation of the through $(2,1,4)$ and perpencular to the given lines is $2 x-y+z-7=0$.
D. Equation of the plane through $(2,1,4)$ and perpendicular to the given lines is $x+y-2 z+5=0$.

Answer: (b, d)

- Watch Video Solution

2. Consider the family of planes $x+y+z=c$ where c is a parameter intersecting the coordinate axes P, Q andR and α, β and γ are the angles made by each member of this family with positive x, y and z-axes. Which of the following interpretations hold good got this family?
A. Each member of this family is equally inclined with coordinate axes.
B. $\sin ^{2}(\alpha)+\sin ^{2}(\gamma)+\sin ^{2}(\beta)=1$
C. $\cos ^{2}(\alpha)+\cos ^{2}(\beta)+\cos ^{2}(\gamma)=2$
D. For $\mathrm{c}=3$ area of the $\triangle P Q R i s 3 \sqrt{3}$ sq. units.

Answer: (a, b, c)

- Watch Video Solution

3. Equation of the line through the point $(1,1,1)$ and intersecting the lines
$2 x-y-z-2=0=x+y+z-1$ and $x-y-z-3=0=2 x+4 y$
A. $x-1=0,7 x+17 y-3 z-134=0$
B. $x-1=0,9 x+15 y-5 z-19=0$
C. $x-1=0, \frac{y-1}{1}=\frac{z-1}{3}$
D. $x-2 y+2 z-1=0,9 x+15 y-5 z-19=0$

- Watch Video Solution

4. Through the point $P(h, k, l)$ a plane is drawn at right angles to OP to meet co-ordinate axes at A, B and C. If $\mathrm{OP}=\mathrm{p}, A_{x} y$ is area of projetion of
$\triangle(A B C)$ on xy-plane. $A_{z} y$ is area of projection of $\triangle(A B C)$ on yzplane, then
A. (a) $\triangle=\left|\frac{p^{5}}{h k l}\right|$
B. (b) $\triangle=\left|\frac{p^{5}}{2 h k l}\right|$
C. (c) $\frac{A_{x} y}{A_{y} z}=\left|\frac{1}{h}\right|$
D. (d) $\frac{A_{x} y}{A_{y} z}=\left|\frac{h}{l}\right|$

Answer: (b, e)

- Watch Video Solution

5. Which of the following statements is/are correct?

- Watch Video Solution

6. Which of the following is/are correct about a tetrahedron?
A. (a)Centroid of a tetrahedron lies on lines joining any vertex to the center of opposite faces.
B. (b)Centroid of the a tetrahedron lies on lines joining the mid point of the opposite faces.
C. (c)Distance of centroid from all the vertices are equal.
D. (d) None of these

Answer: (a, b)

- Watch Video Solution

7. A variable plane is at a distance, k from the origin and meets the coordinates axis in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Then, the locus of the centroid of $\triangle A B C$ is
A. $x^{-2}+y^{-2}+z^{-2}=(16)$
B. $x^{-2}+y^{-2}+z^{-2}=9$
C. $\frac{1}{9}\left(\frac{1}{x^{2}+\frac{1}{y^{2}}+\frac{1}{z^{2}}}\right)=0$
D. $X+Y=0$

Answer: (b,c)

(D) Watch Video Solution

8. Equation of any plane containing the line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ is $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0$ then pick correct alternatives
A. $\frac{A}{a}=\frac{B}{b}=\frac{C}{c}$ is true for the line to be perpendicular to the plane.
B. $A(a+3)+B(b-1)+C(c-2)=0$
C. $2 a A+3 b B+4 c C=0$
D. $A a+B b+C c=0$

Answer: (a, d)

- Watch Video Solution

9. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1} \quad$ intersects the curve $x^{2}+y^{2}=r^{2}, z=0$, then
A. Equation of the following through $(0,0,0)$ perpendicular to the given line is $3 x+2 y-z=0$
B. $r=\sqrt{26}$
C. $r=6$
D. $r=7$

Answer: (a, b)

10. A vector equally inclined to the vectors $\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$ then the plane containing them is
A. $\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
B. $\hat{j}-\hat{k}$
C. $2 \hat{i}$
D. \hat{i}

Answer: (c, d)

- Watch Video Solution

11. Consider the plane through $(2,3,-1)$ and at right angles to the vector $3 \hat{i}-4 \hat{j}+7 \hat{k}$ from the origin is
A. The equation of the plane through the given point is

$$
3 x-4 y+7 z+13=0 .
$$

B. perpendicular distance of plane from origin $\frac{1}{\sqrt{74}}$.
C. perpendicular distance of plane from origin $\frac{13}{\sqrt{74}}$.
D. perpendicular distance of plane from origin $\frac{21}{\sqrt{74}}$.

Answer: (a,c)

- Watch Video Solution

12. A plane passes through a fixed point (a, b, c) and direction ratios of the normal to the plane are $(2,3,4)$ find the equation of the plane

- Watch Video Solution

13. Let A be vector parallel to line of intersection of planes P_{1} and P_{2}. Plane P_{1} is parallel to the vectors $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 \hat{k}$ and that P_{2} is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \hat{j}$, then the angle between vector A and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is
A. $\frac{\phi}{2}$
B. $\frac{\phi}{4}$
C. $\frac{\phi}{6}$
D. $\frac{3 \phi}{4}$

Answer: (b, d)

- Watch Video Solution

14. Find the angle between the planes
$2 x+y+z-1=0$ and $3 x+y+2 z-2=0$,

- Watch Video Solution

15. Find the direction ratios of this plane $2 x-3 y+4 z+2=0$

- Watch Video Solution

16. A line segment has length 63 and direction ratios are $3,-2$ and 6 .

The components of line vector are
A. $-27,18,54$
B. $27,-18,-54$
C. $27,-18,54$
D. $-27,18,-54$

Answer: (c, d)

- Watch Video Solution

17. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, if
A. a) $k=0$
B. b) $k=-1$
C. c) $k=2$
D. d) $k=-3$

Answer: (a, d)

- Watch Video Solution

18. The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of a parallelogram $A B C D$. Find the vector equations of side $A B$ and $B C$ and also find the coordinates of point D .
A. Vector equation of AB is $2 i+3 j+4 k+\lambda(i+j+3 k)$
B. Cartesian equation of BC is $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-5}$
C. Coordinate of D are $(3,4,5)$
D. $A B C D$ is a rectangle.

Answer: (a,b, c)

- Watch Video Solution

19. The lines $x=y=z$ meets the plane $x+y+z=1$ at the point P and the sphere $x^{2}+y^{2}+z^{2}=1$ at the point R and S , then
A. $P R+P S=2$
B. $P R \times P S=\frac{2}{3}$
C. $P R=P S$
D. $P R+P S=R S$

Answer: (a, b, d)

- Watch Video Solution

20. A rod of length 2 units whose one end is $(1,0,-1)$ and other end touches the plane $x-2 y+2 z+4=0$, then
A. The rod sweeps the figure whose volume is π cubic units.
B. The area of the region which the rod traces on the plane is 2π.
C. The length of projection of the rod on the plane is $\sqrt{3}$ units.
D. The centre of the region which the rod traces on the plane is

$$
\left(\frac{2}{3}, \frac{2}{3},-\frac{5}{3}\right) .
$$

Answer: (a, c, d)

- Watch Video Solution

21. Consider the planes $2 x+y+z+4=0$, and $y-z+4=0$ Find the angle between them

- Watch Video Solution

22. The volume of a right triangular prism $\mathrm{ABC} A_{1} B_{1} C_{1}$ is equal to 3 cubic unit. Then the co-ordinates of the vertex A_{1}, if the co-ordinates of the base vertices of the prism are $A(1,0,1), B(2,0,0)$ and $C(0,1,0)$, are
A. $(-2,0,2)$
B. $(0,-2,0)$
C. $(0,2,0)$
D. $(2,2,2)$

Answer: (b, d)

- Watch Video Solution

23. Let a plane pass through origin and be parallel to the line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z+1}{-2}$ is such that distance between the plane and the line is $\frac{5}{3}$. Then equation of the plane is/are
A. $x-2 y+2 z=0$
B. $x-2 y-2 z=0$
C. $2 x+2 y+z=0$
D. $x+y+z=0$

Answer: (a, c)
24. Let OABC be a regular tetrahedron with side length unity, then its volume (in cubic units) is
A. the length of perpendicular from one vertex to opposite face is $\sqrt{\frac{2}{3}}$
B. the perpendicular distance from mid-point $\overline{O A}$ to the plane ABC is $\frac{1}{\sqrt{6}}$
C. the angle between two skew edges to $\frac{\phi}{2}$
D. the distance of centroid of the tetrahedron form any vertex is $\sqrt{\frac{3}{8}}$.

Answer: (a, b, c, d)

- Watch Video Solution

25. The $O A B C$ is a tetrahedron such that
$O A^{2}+B C^{2}=O B^{2}+C A^{2}=O C^{2}+A B^{2}$,then
A. $O A \perp B C$
B. $O B \perp A C$
C. $O C \perp A B$
D. $A B \perp A C$

Answer: (a, b, c)

- Watch Video Solution

26. If the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ then convert this in a vector form

- Watch Video Solution

27. Let $P M$ be the perpendicular form the point $P(1,2,3)$ to the $x-y$ plnae. If $\overrightarrow{O P}$ makes an $\angle \theta$ with the positive driection of the z-axis and $\overrightarrow{O M}$ makes an $\angle \phi$ with the positive direction of x -axis, where O is the origin and θ and ϕ are acute angles, then
A. $\tan (\theta)=\frac{\sqrt{5}}{3}$
B. $\sin (\theta) \sin (\phi)=\frac{2}{\sqrt{14}}$
C. $\tan (\theta)=2$
D. $\cos (\theta) \cos (\phi)=\frac{1}{\sqrt{14}}$

Answer: (a, b, c)

- Watch Video Solution

28. Find $\frac{d y}{d x}$ if $y=\log (\log x)$

- Watch Video Solution

Exercise (Statement I And Ii Type Questions)

1. let $\vec{a}=(\hat{i}+\hat{j}+\hat{k})$ then find the unit vector along this vector
2. Find $\vec{a}+\vec{b}$ if $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=2 \hat{i}$

- Watch Video Solution

3. Statement 1 : Let θ be the angle between the line $\frac{x-2}{2}=\frac{y-1}{-3}=\frac{z+2}{-2}$ and the plane $x+y-z=5$. Then $\theta=\sin ^{-1}(1 / \sqrt{51})$.

Statement 2: The angle between a straight line and a plane is the complement of the angle between the line and the normal to the plane.
A. Statement I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

- Watch Video Solution

4. Statement-I A point on the straight line $2 x+3 y-4 z=5$ and $3 x-2 y+4 z=7$ can be determined by taking $\mathrm{x}=\mathrm{k}$ and then solving the two for equation for y and z , where k is any real number.

Statement-II If $c^{\prime} \neq k c$, then the straight line $a x+b y+c z+d=0, K a x+K b y+c^{\prime} z+d^{\prime}=o$ does not intersect the plane $z=\alpha$, where α is any real number.
A. Statement I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

D Watch Video Solution

5. Given lines $\frac{x-4}{2}=\frac{y+5}{4}=\frac{z-1}{-3}$ and $\frac{x-2}{1}=\frac{y+1}{3}=\frac{z}{2}$

Statement-I The lines intersect.

Statement-II They are not parallel.
A. a) Statement I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. b) Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. c) Statement-I is true, Statement-II is false.
D. d) Statement-I is false, Statement -II is true.
6. Consider the lines $L_{1}: r=a+\lambda b$ and $L_{2}: r=b+\mu a$, where a and b are non zero and non collinear vectors.

Statement-I L_{1} and L_{2} are coplanar and the plane containing these lines passes through origin.

Statement-II $(a-b) \cdot(a \times b)=0$ and the plane containing L_{1} and L_{2} is $[\mathrm{rab}]=0$ which passe through origin.
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (a)

- Watch Video Solution

7. P is a point (a, b, c). Let A, B, C be images of Pin $y-z, z-x$ and $x-y$ planes respectively, then the equation of the plane $A B C$ is
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (c)

- Watch Video Solution

8. Statement 1: If the vectors \vec{a} and \vec{c} are non collinear, then the lines

$$
\vec{r}=6 \vec{a}-\vec{c}+\lambda(2 \vec{c}-\vec{a}) \text { and } \vec{r}=\vec{a}-\vec{c}+\mu(\vec{a}+3 \vec{c}) \text { are }
$$ coplanar.

Statement 2: There exists λ and μ such that the two values of \vec{r} in statement -1 become same
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (a)

- Watch Video Solution

9. Statement 1: The lines $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+1}{1} \quad$ and $\frac{x-2}{2}=\frac{y+1}{2}=\frac{z}{3}$ are coplanar and the equation of the plnae containing them is $5 x+2 y-3 z-8=0$

Statement 2: The line $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z}{3}$ is perpendicular to the plane $3 x+5 y+9 z-8=0$ and parallel to the plane $x+y-z=0$
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (a)

- Watch Video Solution

10. The equation of two straight line are $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+3}{2}$

Statement-1 The given lines are coplanar.
$2 x_{1}-y_{1}=1, x_{1}+3 y_{1}=4$ and $3 x_{1}+2 y_{1}=5$ are consistent.
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (b)

- Watch Video Solution

11. Statement 1: A plane passes through the point $A(2,1,-3)$. If distance of this plane from origin is maximum, then its equation is $2 x+y-3 z=14$. Statement 2: If the plane passing through the point
$A(\vec{a})$ is at maximum distance from origin, then normal to the plane is vector \vec{a}.
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (a)

- Watch Video Solution

12. Consider three planes $P_{1}: x-y+z=1, P_{2}: x+y-z=-1$ and $P_{3}: x-3 y+3 z=2$ Let L_{1}, L_{2} and L_{3} be the lines of intersection of the planes P_{2} and P_{3}, P_{3} and P_{1} and P_{1} and P_{2} respectively.Statement 1:

At least two of the lines L_{1}, L_{2} and L_{3} are non-parallel . Statement 2:The three planes do not have a common point
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (a)

- Watch Video Solution

Exercise (Passage Based Questions)

1. Let $A(1,2,3), B(0,0,1)$ and $C(-1,1,1)$ are the vertices of $\triangle A B C$.
Q. The equation of internal angle bisector through A to side $B C$ is
A. $r=\hat{i}+2 \hat{j}+3 \hat{k}+\mu(3 \hat{i}+2 \hat{j}+3 \hat{k})$
B. $r=\hat{i}+2 \hat{j}+3 \hat{k}+\mu(3 \hat{i}+4 \hat{j}+3 \hat{k})$
C. $r=\hat{i}+2 \hat{j}+3 \hat{k}+\mu(3 \hat{i}+3 \hat{j}+2 \hat{k})$
D. $r=\hat{i}+2 \hat{j}+3 \hat{k}+\mu(3 \hat{i}+3 \hat{j}+4 \hat{k})$

Answer: (d)

- Watch Video Solution

2. Let $A(1,2,3), B(0,0,1)$ and $C(-1,1,1)$ are the vertices of $\triangle A B C$.
Q. The equation of altitude through B to side $A C$ is
A. $r=k+t(7 \hat{i}-10 \hat{j}+2 \hat{k})$
B. $r=k+t(-7 \hat{i}+10 \hat{j}+2 \hat{k})$
C. $r=k+t(7 \hat{i}-10 \hat{j}-2 \hat{k})$
D. $r=k+t(7 \hat{i}+10 \hat{j}+2 \hat{k})$

Answer: (b)

- Watch Video Solution

3. Let $A(1,2,3), B(0,0,1), C(-1,1,1)$ are the vertices of a $\triangle A B C$
.The equation of median through C to side $A B$ is
A. $r=-\hat{i}+\hat{j}+\hat{k}+p(3 \hat{i}-2 \hat{k})$
B. $r=-\hat{i}+\hat{j}+\hat{k}+p(3 \hat{i}+2 \hat{k})$
C. $r=-\hat{i}+\hat{j}+\hat{k}+p(-3 \hat{i}+2 \hat{k})$
D. $r=-\hat{i}+\hat{j}+\hat{k}+p(3 \hat{i}+2 \hat{k})$

Answer: (b)

- Watch Video Solution

4. Let $A(1,2,3), B(0,0,1)$ and $C(-1,1,1)$ are the vertices of $\triangle A B C$.
Q. The area of $(\triangle A B C)$ is equal to
A. $\frac{9}{2}$
B. $\frac{\sqrt{17}}{2}$
C. $\frac{17}{2}$
D. $\frac{7}{2}$

Answer: (b)

- Watch Video Solution

5. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$.

The coordinate of a point B of line L such that $A B$ is parallel to the plane is
A. $(10,-1,15)$
B. $(-5,4,-5)$
C. $(4,1,7)$
D. $(-8,5,-9)$

Answer: (d)

- Watch Video Solution

6. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$.

The coordinate of a point B of line L such that $A B$ is parallel to the plane is
A. $x-3 y+5=0$
B. $x+3 y-7=0$
C. $3 x-y-1=0$
D. $3 x+y-5=0$

- Watch Video Solution

7. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$

Let G be the point of intersection of the medians of the triangle $B C T$. The length of the vector $\overline{A G}$ is
A. $(\sqrt{17})$
B. $\frac{\sqrt{51}}{3}$
C. $\frac{\sqrt{51}}{9}$
D. $\frac{\sqrt{59}}{4}$

Answer: (b)

8. Consider a triangular pyramid $A B C D$ the position vectors of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$. Let G be the point of intersection of the medians of triangle BCD. Q. Area of triangle $A B C$ in sq. units is
A. 24
B. $8 \sqrt{6}$
C. $4 \sqrt{6}$
D. None of these

Answer: (c)

- Watch Video Solution

9. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle $B C T$. The length of the perpendicular from the vertex D on the opposite face
A. $\frac{14}{\sqrt{6}}$
B. $\frac{2}{\sqrt{6}}$
C. $\frac{3}{\sqrt{6}}$
D. None of these

Answer: (a)

- Watch Video Solution

10. Consider a triangular pyramid $A B C D$ the position vectors of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCD. The length of the vec AG is
A. $x+y+2 z=5$
B. $x-y-2 z=1$
C. $2 x+y-2 z=4$
D. $x+y-2 z=1$

Answer: (d)

D Watch Video Solution

11. A line L_{1} passing through a point with position vector $p=i+2 j+3 k$ and parallel $a=i+2 j+3 k$, Another line L_{2} passing through a point with position vector to $b=3 i+j+2 k$. and parallel to $b=3 i+j+2 k$.
Q. Equation of a line passing through the point ($2,-3,2$) and equally inclined to the line L_{1} and L_{2} may equal to
A. a. $\frac{x-2}{2}=\frac{y-3}{-1}, \frac{z-2}{1}$
B. b. $\frac{x-2}{2}=y+3=z-2$
C. c. $\frac{x-2}{-4}=\frac{y+3}{3}, \frac{z-5}{2}$
D. d. $\frac{x+2}{4}=\frac{y+3}{3}, \frac{z-2}{-5}$

Answer: (c)

12. A line L_{1} passing through a point with position vector $p=i+2 h+3 k$ and parallel $a=i+2 j+3 k$, Another line L_{2} passing through a point with direction vector to $b=3 i+j+2 k$. Q. The minimum distance of origin from the plane passing through the point with position vector p and perpendicular to the line L_{2}, is
A. (a) $\sqrt{14}$
B. (b) $\frac{7}{\sqrt{14}}$
C. (c) $\frac{11}{\sqrt{14}}$
D. (d)None of these

Answer: (b)

- Watch Video Solution

13. For positive I, m and n, if the points $x=n y+m z, y=l z+n x, z=m x+l y$ intersect in a straight line,
when
Q. I, m and n satisfy the equation
A. $l^{2}+m^{2}+n^{2}=2$
B. $l^{2}+m^{2}+n^{2}+2 m \ln =1$
C. $l^{2}+m^{2}+n^{2}=1$
D. None of these

Answer: (b)

- Watch Video Solution

14. For positive I, m and n, if the points $x=n y+m z, y=l z+n x, z=m x+l y$ intersect in a straight line, when
Q. I, m and n satisfy the equation
A. 90°
B. 50°
C. 180°
D. None of these

Answer: (c)

- Watch Video Solution

15. If $a=6 \hat{i}+7 \hat{j}+7 \hat{k}, b=3 \hat{i}+2 \hat{j}-2 \hat{k}, P(1,2,3)$

Q . The position vector of L , the foot of the perpendicular from P on the line $r=a+\lambda b$ is
A. $6 \hat{i}+7 \hat{j}+7 \hat{k}$
B. $3 \hat{i}-2 \hat{j}-2 \hat{k}$
C. $3 \hat{i}+5 \hat{j}+9 \hat{k}$
D. $9 \hat{i}+9 \hat{j}+9 \hat{k}$

Answer: (c)

16. If $a=6 \hat{i}+7 \hat{j}+7 \hat{k}, b=3 \hat{i}+2 \hat{j}-2 \hat{k}, P(1,2,3)$

Q . The image of the point P in the line $r=a+\lambda b$ is
A. $(11,12,11)$
B. $(5,2,-7)$
C. $(5,8,15)$
D. $(17,16,7)$

Answer: (c)

- Watch Video Solution

17. If $\vec{a}=6 \hat{i}+7 \hat{j}+7 \hat{k}$, find the unit vector along with this vector
18. If $A(-2,2,3) \operatorname{and} B(13,-3,13)$ are two points. Find the locus of a point P which moves in such a way that $3 P A=2 P B$.
A. $x^{2}+y^{2}+z^{2}+28 x-12 y+10 z-247=0$
B. $x^{2}+y^{2}+z^{2}-28 x+12 y+10 z-247=0$
C. $x^{2}+y^{2}+z^{2}+28 x-12 y-10 z-247=0$
D. $x^{2}+y^{2}+z^{2}-28 x+12 y-10 z-247=0$

Answer: (a)

- Watch Video Solution

19. $A(-2,2,3)$ and $B(13,-3,13)$ and L is a line through A .
Q. Coordinate of the line point P which divides the join of A and B in the ratio 2:3 internally are
A. $\left(\frac{33}{5},-\frac{2}{5}, 9\right)$
B. $(4,0,7)$
c. $\left(\frac{32}{5},-\frac{12}{5}, \frac{17}{5}\right)$
D. $(20,0,35)$

Answer: (b)

- Watch Video Solution

20. $A(-2,2,3)$ and $B(13,-3,13)$ and L is a line through A .
Q. Equation of a line L, perpendicular to the line $A B$ is
A. $\frac{x+2}{15}=\frac{y-2}{-5}=\frac{z-3}{10}$
B. $\frac{x-2}{3}=\frac{y+2}{13}=\frac{z+3}{2}$
C. $\frac{x+2}{3}=\frac{y-2}{13}=\frac{z-3}{2}$
D. $\frac{x-2}{15}=\frac{y+2}{-5}=\frac{z+3}{10}$
21. Expand $\left|\begin{array}{ll}3 & 6 \\ 5 & 0\end{array}\right|$

- Watch Video Solution

22. If b be the foot of perpendicular from A to the plane $r \cdot \widehat{n}=d$, then b must be
A. $a+(d-a \cdot \widehat{n}) \widehat{n}$
B. $a-(d-a \widehat{n}) \widehat{n}$
C. $a+a \cdot \widehat{n}$
D. $a-a \cdot \widehat{n}$

Answer: (a)

- Watch Video Solution

23. What is vector equation of the line
24. A circle is the locus of a point in a plane such that its distance from a fixed point in the plane is constant. Anologously, a sphere is the locus of a point in space such that its distance from a fixed point in space in constant. The fixed point is called the centre and the constant distance is called the radius of the circle/sphere. In anology with the equation of the circle $|z-c|=a$, the equation of a sphere of radius is $|r-c|=a$, where c is the position vector of the centre and r is the position vector of any point on the surface of the sphere. In Cartesian system, the equation of the sphere, with centre at $(-g,-f,-h)$ is $x^{2}+y^{2}+z^{2}+2 g x+2 f y+2 h z+c=0 \quad$ and its radius is $\sqrt{f^{2}+g^{2}+h^{2}-c}$. Q. Radius of the sphere, with $(2,-3,4)$ and $(-5,6,-7)$ as xtremities of a diameter, is
A. (a) $\sqrt{\frac{251}{2}}$
B. (b) $\sqrt{\frac{251}{3}}$
C. (c) $\sqrt{\frac{251}{4}}$
D. (d) $\sqrt{\frac{251}{5}}$

Answer: (c)

D Watch Video Solution

25. A circle is the locus of a point in a plane such that its distance from a fixed point in the plane is constant. Anologously, a sphere is the locus of a point in space such that its distance from a fixed point in space in constant. The fixed point is called the centre and the constant distance is called the radius of the circle/sphere. In anology with the equation of the circle $|z-c|=a$, the equation of a sphere of radius is $|r-c|=a$, where c is the position vector of the centre and r is the position vector of any point on the surface of the sphere. In Cartesian system, the equation of the sphere, with centre at $(-g,-f,-h)$ is $x^{2}+y^{2}+z^{2}+2 g x+2 f y+2 h z+c=0 \quad$ and its radius is $\sqrt{f^{2}+g^{2}+h^{2}-c}$. Q. The centre of the sphere $(x-4)(x+4)+(y-3)(y+3)+z^{2}=0$ is

- Watch Video Solution

26. A circle is the locus of a point in a plane such that its distance from a fixed point in the plane is constant. Anologously, a sphere is the locus of a point in space such that its distance from a fixed point in space in constant. The fixed point is called the centre and the constant distance is called the radius of the circle/sphere. In anology with the equation of the circle $|z-c|=a$, the equation of a sphere of radius a is $|r-c|=a$, where c is the position vector of the centre and r is the position vector of any point on the surface of the sphere. In Cartesian system, the equation of the sphere, with centre at $(-g,-f,-h)$ is $x^{2}+y^{2}+z^{2}+2 g x+2 f y+2 h z+c=0 \quad$ and its radius is $\sqrt{f^{2}+g^{2}+h^{2}-c}$. Q. Equation of the sphere having centre at $(3,6,-4)$ and touching the plane $r \cdot(2 \hat{i}-2 \hat{j}-\hat{k})=10$ is $(x-3)^{2}+(y-6)^{2}+(z+4)^{2}=k^{2}$, where k is equal to
A. 3
B. 4
C. 6
D. $\sqrt{17}$

- Watch Video Solution

27. Let $A(2,3,5), B(-1,3,2), C(\lambda, 5, \mu)$ are the vertices of a triangle and its median through A(I.e.) AD is equally inclined to the coordinates axes.
Q. On the basis of the above information answer the following
Q. The value of $2 \lambda-\mu$ is equal to
A. 13
B. 4
C. 3
D. None of these

Answer: (b)

28. let $\vec{a}=2 \hat{i}+3 \hat{j}$ and $\vec{b}=\hat{i}+4 \hat{j}$ then find projection of \vec{a} on \vec{b}

- Watch Video Solution

29. The line of greatest slope on an inclined plane P_{1} is that line in the plane which is perpendicular to the line of intersection of plane P_{1} and a horiontal plane P_{2}.
Q. Assuming the plane $4 x-3 y+7 z=0$ to be horizontal, the direction cosines of line greatest slope in the plane $2 x+y-5 z=0$ are
A. $\left(\frac{3}{\sqrt{11}},-\frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$
B. $\left(\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}},-\frac{1}{\sqrt{11}}\right)$
c. $\left(-\frac{3}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$
D. $\left(\frac{1}{\sqrt{11}},-\frac{3}{\sqrt{11}},-\frac{1}{\sqrt{11}}\right)$

Answer: (a)

- Watch Video Solution

30. The line of greatest slope on an inclined plane P_{1} is that line in the plane which is perpendicular to the line of intersection of plane P_{1} and a horiontal plane P_{2}.
Q. Assuming the plane $4 x-3 y+7 z=0$ to be horizontal, the direction cosines of line greatest slope in the plane $2 x+y-5 z=0$ are
A. .. $\frac{x}{3}=\frac{y}{1}=\frac{z}{-1}$
B. . $\frac{x}{3}=\frac{y}{-1}=\frac{z}{1}$
c. c. $\frac{x}{-3}=\frac{y}{1}=\frac{z}{1}$
D. d. $\frac{x}{1}=\frac{y}{3}=\frac{z}{-1}$

Answer: (b)

- Watch Video Solution

31. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$. Point D lies on a line L orthogonal to the plane determined by the points A, B and C.
A. $x+y+z-3=0$
B. $y+z-1=0$
C. $x+z-1=0$
D. $2 x+z-1=0$

Answer: (b)

- Watch Video Solution

32. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$.

Point D lies on a line L orthogonal to the plane determined by the points
A, B and C.
The equation of the line L is
A. $r=2 \hat{k}+\lambda(\hat{i}+\hat{k})$
B. $r=2 \hat{k}+\lambda(2 \hat{j}+\hat{k})$
C. $r=2 \hat{k}+\lambda(\hat{j}+\hat{k})$
D. None of these

- Watch Video Solution

33. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$. Point D lies on a line L orthogonal to the plane determined by the points A, B and C.
Q. The perpendicular distance of D from the plane $A B C$ is
A. $\sqrt{2}$
B. $\frac{1}{2}$
C. 2
D. $\frac{1}{\sqrt{2}}$

Answer: (d)

Three Dimensional Coordinate System Exercise 9 : Match Type Questions

1. Find $\frac{d y}{d x}$ if $x-\sin y=\cos y$

- Watch Video Solution

2. $P(0,3,-2), Q(3,7,-1)$ and $R(1,-3,-1)$ are 3 given points.

Find $\overrightarrow{P Q}$

- Watch Video Solution

3. Find $\frac{d y}{d x}$ if $2 x-y=\sin x$

- Watch Video Solution

4. Find $\frac{d y}{d x}$ if $x+3 y-5=0$
5. Find $\frac{d y}{d x}$ if $4 x^{2}-y=\sin x$

D Watch Video Solution

6. Find $\frac{d y}{d x}$ if $y=x-\sin y$

- Watch Video Solution

7. Find $\frac{d y}{d x}$ if $3 x^{2}-4 y=\cos x$

- Watch Video Solution

Exercise (Single Integer Answer Type Questions)

1.

In
a
tetrahedron
OABC,
$O A=\hat{i}, O B=\hat{i}+\hat{j}$ and $O C=\hat{i}+2 \hat{j}+\hat{k}$, if shortest distance
between egdes $O A$ and $B C$ is m, then $\sqrt{2} m$ is equal to ...(where O is the origin).

- Watch Video Solution

2. A rectangular parallelepiped is formed by planes drawn through the points $(2,3,5)$ and ($5,9,7$) parallel to the coordinate planes. The length of a diagonal of the parallelepiped is

- Watch Video Solution

3. If the perpendicular distance of the point $(65,8)$ from the y-axis is 5λ units, then λ is equal to \qquad

- Watch Video Solution

4. The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is
A. a. $\sqrt{30}$
B. b. $2 \sqrt{30}$
C. c. $5 \sqrt{30}$
D. d. $3 \sqrt{30}$

Answer: (3)

- Watch Video Solution

5. If the planes $x-c y-b z=0, c x-y+a z=0$ and $b x+a y-z=0$ pass through a line, then the value of $a^{2}+b^{2}+c^{2}+2 a b c$ is....

- Watch Video Solution

6. If xz -plane divide the join of point $(2,3,4)$ and $(1,-1,5)$ in the ratio $\lambda: 1$, then the integer λ should be equal to
7. If the triangle $A B C$ whose vertices are $A(-1,1,1), B(1,-1,1)$ and $C(1,1,-1)$ is projected on xy-plane, then the area of the projection triangles is.....

- Watch Video Solution

8. The equation of a plane which bisects the line joining $(1,5,7)$ and $(-3,1,-1)$ is $x+y+2 z=\lambda$, then find λ.

- Watch Video Solution

9. The shortest distance between origin and a point on the space curve $x=2 \sin t, y=2 \cos t, z=3 t$ is....

- Watch Video Solution

10. The plane $2 x-2 y+z+12=0$ touches the surface $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ only at the point $(-1, \lambda,-2)$. The value of λ must be \qquad

- Watch Video Solution

11. If the centroid of tetrahedron $O A B C$ where A, B, C are given by $(a, 2,3)$, $(1, b, 2)$ and (2,1,c) respectively is (1,2,-2), then distance of $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from origin is

- Watch Video Solution

12. If the circumcentre of the triangle whose vertices are $(3,2,-5)$, $(-3,8,-5)$ and $(-3,2,1)$ is $(-1, \lambda,-3)$ the integer λ must be equal to......

- Watch Video Solution

13. If $\overline{P_{1} P_{2}}$ is perpendicular to $\overline{P_{2} P_{3}}$, then the value of k is, where $P_{1}(k, 1,-1), P_{2}(2 k, 0,2)$ and $P_{3}(2+2 k, k, 1)$ is $\ldots .$.

- Watch Video Solution

14. Let the equation of the plane containing line $x-y-z-4=0=x+y+2 z-4$ and parallel to the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$ be $x+A y+B z+C=0$. Then the values of $|A+B+C-4|$ is....

- Watch Video Solution

15. If (a, b, c) is a point on the plane $3 x+2 y+z=7$, then find the least value of $2\left(a^{2}+b^{2}+c^{2}\right)$, using vector method.

- Watch Video Solution

16. The plane denoted by $P_{1}: 4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with plane $P_{2}: 5 x+3 y+10 z=25$. If the plane in its new position be denoted by P , and the distance of this plane from the origin is d , then the value of $\left[\frac{k}{2}\right]$ (where[.] represents greatest integer less than or equal to k) is....

- Watch Video Solution

17. The distance of the point $P(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel to the plane $4 x+12 y-3 z+1=0$ is d , then find the value of $(2 d-8)$, is.

- Watch Video Solution

18. The position vectors of the four angular points of a tetrahedron OABC are $(0,0,0),(0,0,2),(0,4,0)$ and $(6,0,0)$, respectively. A point P inside the tetrahedron is at the same distance 'r' from the four plane faces of the tetrahedron. Then, the value of $9 r$ is.....

(Watch Video Solution

$\begin{array}{lcccc}\text { 19. } \begin{array}{c}\text { Value }\end{array} \text { of } \lambda & \text { do } & \text { the } & \text { planes } \\ x-y+z+1= & 0, \lambda x+3 y+2 z-3=0, & 3 x+\lambda y+z-2= & \text { form a }\end{array}$ triangular prism must be

- Watch Video Solution

20. If the lattice point $P(x, y, z), x, y, z>o$ and $x, y, z \in I$ with least value of z such that the ' p ' lies on the planes $7 x+6 y+2 z=272$ and $x-y+z=16, \quad$ then the value of $(x+y+z-42)$ is equal to

- Watch Video Solution

21. If the line $x=y=z$ intersect the lines $x \sin A+y \sin B+z \sin C-2 d^{2}=0=x \sin (2 A)+y \sin (2 B)+z \sin (2 C$
where A, B, C are the internal angles of a triangle and $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=k$ then the value of $64 k$ is equal to

- Watch Video Solution

22. The number of real values of k for which the lines $\frac{x}{1}=\frac{y-1}{k}=\frac{z}{-1}$ and $\frac{x-k}{2 k}=\frac{y-k}{3 k-1}=\frac{z-2}{k}$ are coplanar, is

- Watch Video Solution

23. Let $G_{1}, G(2)$ and G_{3} be the centroid of the triangular faces OBC, OCA and OAB of a tetrahedron OABC. If V_{1} denotes the volume of tetrahedron OABC and V_{2} that of the parallelepiped with $O G_{1}, O G_{2}$ and $O G_{3}$ as three concurrent edges, then the value of $\frac{4 V_{1}}{V_{2}}$ is (where O is the origin

- Watch Video Solution

24. A variable plane which remains at a constant distance p from the origin cuts the coordinate axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. The locus of the centroid of the tetrahedron OABC is $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}=\frac{k}{p^{2}} x^{2} y^{2} z^{2}$, then $\sqrt[5]{2 k}$ is

- Watch Video Solution

25. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are D.C's of two lines, then $\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-n_{1} m_{2}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} l_{2}+m_{1} m_{2}+n_{1}\right.$

- Watch Video Solution

26. Find $\frac{d y}{d x}$ if $3 x^{5}-y=\tan y$

- Watch Video Solution

Exercise (Subjective Type Questions)

1. Find the angle between the lines whose direction cosines have the relations $l+m+n=0$ and $2 l^{2}+2 m^{2}-n^{2}=0$.

Watch Video Solution

2. Show that the straight lines whose direction cosines are given by the equations $a l+b m+c n=0$ and $u l^{2}+z m^{2}=v n^{2}+w n^{2}=0$ are parallel or
perpendicular as
$\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$ or $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$.

- Watch Video Solution

3. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of $3 \sqrt{2}$ from the point $(1,2,3)$.

- Watch Video Solution

4. A line passes through $(1,-1,3)$ and is perpendicular to the lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$
$\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$. Obtain its equation.

- Watch Video Solution

5. Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

- Watch Video Solution

6. Vertices $B a n d C$ of $A B C$ lie along the line $\frac{x+2}{2}=\frac{y-1}{1}=\frac{z-0}{4}$. Find the area of the triangle given that A has coordinates $(1,-1,2)$ and line segment $B C$ has length 5 .

- Watch Video Solution

7. find that the distance of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $(x-y+z=5)$ from the point $(-1,-5,-10)$ is

- Watch Video Solution

8. Find the equation of the plane through the intersection of the planes $x+3 y+6=0$ and $3 x-y-4 z=0$, whose perpendicular distance from the origin is unity.

- Watch Video Solution

9. Find the equation of the image of the plane $x-2 y+2 z-3=0$ in plane $x+y+z-1=0$.

- Watch Video Solution

Three Dimensional Coordinate System Exercise 11 : Subjective Type Questions

1. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to OP meets the coordinate axes at A, B and C.If the parallel to the planes $x=0, y=0$ and $z=0$, respectively, intersect at Q, find the locus of Q.

- Watch Video Solution

Exercise (Questions Asked In Previous 13 Years Exam)

1. Consider a pyramid OPQRS located in the first octant $(x \geq 0, y \geq 0, z \geq 0)$ with O as origin and OP and OR along the X -axis and the Y-axis, respectively. The base OPQRS of the pyramid is a square with $O P=3$. The point S is directly above the mid point T of diagonal $O Q$ such that $\mathrm{TS}=3$. Then,
A. the acute angle between OQ and OS is $\frac{\pi}{3}$
B. the equation of the plane containing ht $\triangle O Q S$ is $\mathrm{x}-\mathrm{y}=0$
C. the length of perpendicular from P to the plane containing the

$$
\triangle O Q S \text { is } \frac{2}{\sqrt{3}}
$$

D. the perpendicular distance from O to the straight line containing

RS is $\sqrt{\frac{15}{2}}$

Answer: (b, c, d)

- Watch Video Solution

2. Let P be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. then the equation o the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$
A. $x+y-3 z=0$
B. $3 x+z=0$
C. $x-4 y+7 z=0$
D. $2 x-y=0$

- Watch Video Solution

3. From a point $P(\lambda, \lambda, \lambda)$, perpendicular $P Q$ and $P R$ are drawn respectively on the lines $y=x, z=1$ and $y=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is (are)
A. (a) $\sqrt{2}$
B. (b) 1
C. (c) -1
D. (d) $-\sqrt{2}$

Answer: (c)
4. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b .2 c .3 d .4
A. 1
B. 2
C. 3
D. 4

Answer: (a, d)

- Watch Video Solution

5. A line I passing through the origin is perpendicular to the lines 1: $(3+t) \hat{i}+(-1+2 t) \hat{j}+(4+2 t) \hat{k}-\infty<t<\infty$ and $1_{-}(2):(3+2 s)$ Then the coordinate(s) of the point(s) on 1_{2} at a distance of $\sqrt{17}$ from the point of intersection of 1 and 1_{1} is (are)
A. $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$
B. $(-1,-1,0)$
C. $(1,1,1)$
D. $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$

Answer: (b, d)

- Watch Video Solution

6. Perpendicular are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$. The feet of perpendiculars lie on the line.
A. $\frac{x}{5}=\frac{y-1}{8}=\frac{z}{3}$
B. $\frac{x}{3}=\frac{y-1}{3}=\frac{z-2}{8}$
C. $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$
D. $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$

Answer: (d)

7. If the straight lines $\frac{x-1}{2}=\frac{y+1}{k}=\frac{z}{2}$ and $\frac{x+1}{5}=\frac{y+1}{2}=\frac{z}{k}$ are coplanar, then the plane(s) containing these two lines is/are
A. $y+2 z=-1$
B. $y+z=-1$
C. $y-z=-1$
D. $y-2 z=-1$

Answer: (b, c)

- Watch Video Solution

8. If the distance between the plane $A x-2 y+z=d$. and the plane containing the lies $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{4-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$, then $|d|$ is
9. Read the following passage and answer the questions. Consider the lines
$L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$
$L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
Q. The distance of the point $(1,1,1)$ from the plane passing through the point ($-1,-2,-1$) and whose normal is perpendicular to both the lines L_{1} and L_{2}, is
A. $\frac{2}{\sqrt{75}}$ unit
B. $\frac{7}{\sqrt{75}}$ units
C. $\frac{13}{\sqrt{75}}$ unit
D. $\frac{23}{\sqrt{75}}$ units

Answer: (c)

- Watch Video Solution

10. Read the following passage and answer the questions. Consider the lines
$L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$
$L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
Q. The shortest distance between L_{1} and L_{2} is
A. 0 unit
B. $\frac{17}{\sqrt{3}}$ units
C. $\frac{41}{5 \sqrt{3}}$ units
D. $\frac{17}{5 \sqrt{3}}$ units

Answer: (d)

- Watch Video Solution

11. Consider the line $L 1: x+1 / 3=y+2 / 1=z+1 / 2 L 2: x-2 / 1=y+2 / 2=z-3 / 3$ The unit vector perpendicular to both $L 1$ and $L 2$ lines is
A. $\frac{-\hat{i}+7 \hat{j}+7 \hat{k}}{\sqrt{99}}$
B. $\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{\sqrt{99}}$
C. $\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{\sqrt{99}}$
D. $\frac{7 \hat{i}-7 \hat{j}-\hat{k}}{\sqrt{99}}$

Answer: (b)

- Watch Video Solution

12. Consider three planes $P_{1}: x-y+z=1, P_{2}: x+y-z=-1$ and $P_{3}: x-3 y+3 z=2$. Let L_{1}, L_{2}, L_{3} be the lines of intersection of the planes P_{2} and P_{3}, P_{3} and P_{1}, P_{1} and P_{2} respectively.

Statement I Atleast two of the lines L_{1}, L_{2} and L_{3} are non-parallel.
Statement II The three planes do not have a common point.
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

Answer: (d)

D Watch Video Solution

13. Consider the planes $3 x-6 y-2 z=15 a n d 2 x+y-2 z=5$. find the angle between these planes

- Watch Video Solution

14. If the image of the point $P(1,-2,3)$ in the plane, $2 x+3 y-4 z+22=0$ measured parallel to the line, $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$ is Q , then $P Q$ is equal to : $\sqrt{42}$ (2) $6 \sqrt{5}$ (3) $3 \sqrt{5}(4) 3 \sqrt{42}$
A. $3 \sqrt{5}$
B. $2 \sqrt{42}$
C. $\sqrt{42}$
D. $6 \sqrt{5}$

Answer: (b)

- Watch Video Solution

15. The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$ having normal perpendicular to both the lines $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}$ is
A. $\frac{20}{\sqrt{74}}$ units
B. $\frac{10}{\sqrt{83}}$ units
C. $\frac{5}{\sqrt{83}}$ units
D. $\frac{10}{\sqrt{74}}$ units

- Watch Video Solution

16. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is
A. $3 \sqrt{10}$
B. $10 \sqrt{3}$
C. $\frac{10}{\sqrt{3}}$
D. $\frac{20}{3}$

Answer: (b)

- Watch Video Solution

17. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the place, $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to: (1) 26 (2) 18 (3) 5 (4) 2
A. 26
B. 18
C. 5
D. 2

Answer: (d)

- Watch Video Solution

18. The disatance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$, is
A. $2 \sqrt{14}$
B. 8
C. $3 \sqrt{21}$
D. 13
19. The equation of the plane containing the line $2 x-5 y+z=3 ; x+y+4 z=5$, and parallel to the plane, $x+3 y+6 z=1$, is: (1) $2 x+6 y+12 z=13$ (2) $x+3 y+6 z=-7$
$x+3 y+6 z=7(4) 2 x+6 y+12 z=-13$
A. $2 x+6 y+12 z=13$
B. $x+3 y+6 z=-7$
C. $x+3 y+6 z=7$
D. $2 x+6 y+12 z=-7$

Answer: (c)

- Watch Video Solution

20. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{2}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: (a)

D Watch Video Solution

21. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line (1) $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$
$\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$
$\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$
(3) $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$
A. $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$
B. $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$
C. $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$
D. $\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$

D Watch Video Solution

22. Distance between two
parallel planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
A. $\frac{3}{2}$
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$

Answer: (c)

- Watch Video Solution

23. If the lines $\left.\frac{x-2}{1}=\frac{y-3}{1}\right) \frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar then k can have (A) exactly two values (B) exactly thre values
(C) any value (D) exactly one value
A. any value
B. exactly one value
C. exactly two value
D. exactly tree value

Answer: (c)

- Watch Video Solution

24. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z-3=0$
B. $x-2 y+2 z+1=0$
C. $x-2 y+2 z-1=0$
D. $x-2 y+2 z+5=0$

- Watch Video Solution

25. If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal to
A. a) -1
B. b) $\frac{2}{9}$
C. с) $\frac{9}{2}$
D. d) 0

Answer: (c)

- Watch Video Solution

26. If the angle between the line $x=\frac{y-1}{2}=(z-3)(\lambda)$ and the plane $x+2 y+3 z=4 i s \cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ equals
A. (a) $\frac{3}{2}$
B. (b) $\frac{2}{5}$
C. (c) $\frac{5}{3}$
D. (d) $\frac{2}{3}$

Answer: (d)

- Watch Video Solution

27. Statement-I The point $A(1,0,7)$ is the mirror image of the point $B(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.
Statement-II The line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisect the line segment joining $A(1,0,7)$ and $B(1,6,3)$.
A. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
B. statement-I is true, Statement-II is false.
C. Statement-I is false, Statement -II is true.
D. statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.

Answer: (d)

- Watch Video Solution

28. The length of the perpendicular drawn from the point $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ is
A. $\sqrt{66}$
B. $\sqrt{29}$
C. $\sqrt{33}$
D. $\sqrt{53}$

Answer: (d)

29. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is : (1) $3 \sqrt{10}$ (2) $10 \sqrt{3}$ (3) $\frac{10}{\sqrt{3}}$ (4) $\frac{20}{3}$
A. $3 \sqrt{5}$
B. $10 \sqrt{3}$
C. $5 \sqrt{3}$
D. $3 \sqrt{10}$

Answer: (b)

- Watch Video Solution

30. A line $A B$ in three-dimensional space makes angles 45° and 120° with the positive X-axis and The positive Y-axis, respectively. If $A B$ makes an acute angle θ with the positive Z -axis, then θ equals
A. 30°
B. 45°
C. 60°
D. 75°

Answer: (c)

- Watch Video Solution

31. Statement-I The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$.

Statement-II The plane $x-y+z=5$ bisect the line segment joining $A(3,1,6)$ and $B(1,3,4)$.
A. Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.
B. Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.
C. Statement-I is true, Statement-II is false.
D. Statement-I is false, Statement -II is true.

- Watch Video Solution

32. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$. Then, (α, β) equals
A. $(6,-17)$
B. $(-6,7)$
C. $(5,-15)$
D. $(-5,15)$

Answer: (b)

- Watch Video Solution

33. The projection of a vector on the three coordinate axes are $6,-3,2$, respectively. The direction cosines of the vector are
A. $6,-3,2$
B. $\frac{6}{5},-\frac{3}{5}, \frac{2}{5}$
C. $\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
D. $-\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$

Answer: (c)

- Watch Video Solution

34. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the $Y Z$-plane at the point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$. Then,
A. (a) $a=8, b=2$
B. (b) $a=2, b=8$
C. (c) $a=4, b=6$
D. (d) $a=6, b=4$

Watch Video Solution

35. If the straight lines
$\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to
A. a) -2
B. b) -5
C. c) 5
D. d) 2

Answer: (b)

- Watch Video Solution

36. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then \cos α equals a. $\frac{1}{\sqrt{3}}$ b. $\frac{1}{2}$ c. 1 d. $\frac{1}{\sqrt{2}}$
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{\sqrt{2}}$

Answer: (a)

- Watch Video Solution

37. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x axis and y-axis, then the angle that the line makes with the positive direction of z-axis is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

- Watch Video Solution

38. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are
A. $(4,9,-3)$
B. $(4,-3,3)$
C. $(4,3,5)$
D. $(4,3,-3)$

Answer: (a)
39.
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$

pendicular to each other if

A. $a a^{\prime}+c c^{\prime}=1$
B. $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=-1$
C. $\frac{a}{a^{\prime}}+\frac{c}{c^{\prime}}=-1$
D. $a a^{\prime}+c c^{\prime}=-1$

Answer: (d)

- Watch Video Solution

40. the image of the point $(-1,3,4)$ in the plane $x-2 y=0$ a.

$$
\left(-\frac{17}{3}, \frac{19}{3}, 4\right) \text { b. }(15,11,4) \text { c. }\left(-\frac{17}{3}, \frac{19}{3}, 1\right) \text { d. }\left(\frac{9}{5},-\frac{13}{5}, 4\right)
$$

A. $(15,11,4)$
B. $\left(-\frac{17}{3},-\frac{19}{3}, 1\right)$
C. $(8,4,4)$
D. $\left(\frac{9}{5}, \frac{-13}{5}, 4\right)$

Answer: (d)

- Watch Video Solution

41. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the mid point of the line joining the centre of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=$
, then α equals
A. 2
B. -2
C. 1
D. -1
42. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$ then the value of λ is
A. $-\frac{4}{3}$
B. $\frac{3}{4}$
C. $-\frac{3}{5}$
D. $\frac{5}{3}$

Answer: (d)

Watch Video Solution

43. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
A. a) 30°
B. b) 45°
C. c) 90°
D. d) 0°

Answer: (c)

- Watch Video Solution

44. The plane $x+2 y-z=4$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius
A. (a) $\sqrt{2}$
B. (b) 2
C. (c) 1
D. (d) 3

Answer: (c)

Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam

1.

Consider
the
line
$L_{1}: \frac{x-1}{2}=\frac{y}{-1}=\frac{z+3}{1}, L_{2}: \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2} \quad$ find \quad the angle between them.

- Watch Video Solution

2. Find $\frac{d y}{d x}$ if $a x-b y=\sin x$

[^0]: - Watch Video Solution

