# ©゙doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - ARIHANT MATHS (ENGLISH) 

## VECTOR ALGEBRA

## Example

1. Classify the following measures as scalars and vectors
(i) 20 m north-west
(ii) 10 newton
(iii) $30 \mathrm{~km} / \mathrm{h}$
(iv) $50 \mathrm{~m} / \mathrm{s}$ towards north
(v) $10^{-19}$ coloumb
2. Represent graphically
(i) a displacement of $60 \mathrm{~km}, 40^{\circ}$ east of north
(ii) A displacement of 50 km south-east.

## - Watch Video Solution

3. In the following figure, which of the vectors are:
(i) Collinear
(ii) Equal
(iii) Co-initial
(iv) collinear but not equal .


Watch Video Solution
4. Find a unit vector parallel to the vector $-3 \hat{i}+4 \hat{j}$.
5. Let $a=12 \hat{i}+n \hat{j}$ and $|a|=13$, find th value of n .

## - Watch Video Solution

6. Write two different vectors having same magnitude.

## Watch Video Solution

7. If one side of a squre be represented by the vectors $3 \hat{i}+4 \hat{j}+5 \hat{k}$, then the area of the square is
A. 12
B. 13
C. 25
D. 50

## Answer: D

8. The direction cosines of the vector $3 \hat{i}-4 \hat{j}+5 \hat{k}$ are
A. $\frac{3}{5}, \frac{-4}{5}, \frac{1}{5}$
B. $\frac{3}{5 \sqrt{2}}, \frac{-4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. $\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$.

## Answer: B

## - Watch Video Solution

9. Show that the vector $i+j+k$ is equally inclined with the axes $O X, O Y$ and $O Z$.

## - Watch Video Solution

10. Let $A B$ be a vector in two dimensional plane with the magnitude 4 units and making an angle of $30^{\circ}$ with X -axis and lying in the first quadrant. Find the components of $A B$ along the two axes off coordinates. Hence, represent $A B$ in terms of unit vectors $\hat{i}$ and $\hat{j}$.

## - Watch Video Solution

11. Find the unit vector parallel to the resultant vector of $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$.

## - Watch Video Solution

12. If $\vec{a}, \vec{b}, \vec{c}$ be the vectors represented by theside sof a triangle, taken in order, then prove that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.

## - Watch Video Solution

13. If S is the mid-point of side QR of a $\triangle P Q R$, then prove that $P Q+P R=2 P S$.

## - Watch Video Solution

14. If $A B C D E F$ is a regular hexagon, prove that $A D+E B+F C=4 A B$.

## - Watch Video Solution

15. If $A=(0,1) B=(1,0), C=(1,2), D=(2,1)$, prove that $\vec{A} B=\vec{C} D$.

## - Watch Video Solution

16. If the position vectors of $A$ and $B$ respectively $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$, then find AB
17. Vectors drawn the origin $O$ to the points $A, B$ and $C$ are respectively $\vec{a}, \vec{b}$ and $\overrightarrow{4} a-\overrightarrow{3} b$. find $\vec{A} C$ and $\vec{B} C$.

## - Watch Video Solution

18. Find the direction cosines of the vector joining the points $A(1,2,3)$ and $B(1,2,1)$, directed from A to B .

## - Watch Video Solution

19. Let $\alpha, \beta, \gamma$ be distinct real numbers. The points with position vectors $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}, \beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}, \gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}$
A. are collinear
B. form an equilateral triangle
C. form a scalene triangle
D. form a right angled triangle

## Answer:

## - Watch Video Solution

20. If the position vectors of the vertices of a triangle be $2 \hat{i}+4 \hat{j}-\hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}$ and $3 \hat{i}+6 \hat{j}-3 \hat{k}$, then the triangle
A. right angled
B. isosceles
C. equilateral
D. none of these

Answer: A:B

## - Watch Video Solution

21. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is

## - Watch Video Solution

22. If $\vec{a}, \vec{b}$ are any two vectors, then give the geometrical interpretation of relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$

## - Watch Video Solution

23. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is

## - Watch Video Solution

24. If $\vec{a}$ is a non-zero vector of modulus $a$ and $m$ is a non-zero scalar, then $m \vec{a}$ is a unit vector if
A. $m= \pm 1$
B. $m=|a|$
C. $m=\frac{1}{|a|}$
D. $m= \pm 2$

## Answer: C

## - Watch Video Solution

25. For a non-zero vector $a$, the set of real number, satisfying $|(5-x) a|<|2 a|$ consists of all x such that
A. $0<x<3$
B. $3<x<7$
C. $-7<x<-3$
D. $-7<x<3$
26. Find a vector of magnitude ( $5 / 2$ ) units which is parallel to the vector $3 \hat{i}+4 \hat{j}$.

## - Watch Video Solution

27. If $D, E$ and $F$ are the mid-points of the sides $B C, C A$ and $A B$ respectively of the $\triangle A B C$ and $O$ be any point, then prove that $O A+O B+O C=O D+O E+O F$

## - Watch Video Solution

28. Find the position vectors of the points which divide the join of the points $2 \vec{a}-3 \vec{b}$ and $3 \vec{a}-2 \vec{b}$ internally and externally in the ratio $2: 3$.

## - Watch Video Solution

29. The position vectors of the vertices $A, B$ and $C$ of a triangle are $\hat{i}-\hat{j}-3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $-5 \hat{i}+2 \hat{j}-6 \hat{k}$, respectively. The length of the bisector AD of the $\angle B A C$, where D is on the segment BC , is
A. $\frac{3}{4} \sqrt{3}$
B. $\frac{1}{4}$
C. $\frac{11}{2}$
D. None of these

## Answer: A

## - Watch Video Solution

30. The median $A D$ of the triangle $A B C$ is bisected at $E$ and $B E$ meets $A C$ at F. Find AF:FC.
A. $3 / 4$
B. $1 / 3$
C. $1 / 2$
D. $1 / 4$

## Answer: B

## - Watch Video Solution

31. The sum of the magnitudes of two forces acting at a point is 16 N . The resultant of these forces is perpendicular to the smaller force has a magnitude of 8 N . If the smaller force is magnitude x , then the value of x is (A) $2 \mathrm{~N}(\mathrm{~B}) 4 \mathrm{~N}(\mathrm{C}) 6 \mathrm{~N}(\mathrm{D}) 7 \mathrm{~N}$
A. 13,5
B. 12,6
C. 14,4
D. 11,7

## Answer: A

32. The length of longer diagonal of the parallelogram constructed on $5 a+2 b$ and $a-3 b$. If it is given that $|a|=2 \sqrt{2},|b|=3$ and angle between a and b is $\frac{\pi}{4}$ is
A. 15
B. $\sqrt{113}$
C. $\sqrt{593}$
D. $\sqrt{369}$

## Answer: C

## - Watch Video Solution

33. The vector $\vec{c}$, directed along the internal bisector of the angle between

$$
\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k} \text { and } \vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k} \text { with }|\vec{c}|=5 \sqrt{6} \text {, is }
$$

A. (a) $\frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$
B. (b) $\frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k})$
C. (c) $\frac{5}{3}(\hat{i}+7 \hat{j}+2 \hat{k})$
D. (d) $\frac{5}{3}(-5 \hat{i}+5 \hat{j}+2 \hat{k})$

## Answer: A

## - Watch Video Solution

34. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

## - Watch Video Solution

35. Prove that the ponts $A(1,2,3), B(3,4,7), C(-3,-2,-5)$ are collinear and find the ratio in which $B$ divides $A C$.

## - Watch Video Solution

36. If the position vectors of $A, B, C$ and $D$ are
$2 \hat{i}+\hat{j}, \hat{i}-3 \hat{j}, 3 \hat{i}+2 \hat{j}$ and $\hat{i}+\lambda \hat{j}$ respectively and $\mid A B \| C D$. Then $\lambda$ will be
A. -8
B. -6
C. 8
D. 6

## Answer: B

## - Watch Video Solution

37. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear if (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these
A. -40
B. 40
C. 20
D. none of these

## Answer: A

## - Watch Video Solution

38. If $\mathrm{a}, \mathrm{b}$ and c are three non-zero vectors such that no two of these are collinear. If the vector $a+2 b$ is collinear with $c$ and $b+3 c$ is collinear with $a($ $\lambda$ being some non-zero scalar), then $a+2 b+6 c$ is equal to
A. A. 0
B. B. $\lambda b$
C. C. $\lambda c$
D. D. $\lambda a$

## Answer: A

39. Check whether the given three vectors are coplnar or non- coplanar : $-2 \hat{i}-2 \hat{j}+4 \hat{k},-2 \hat{i}+4 \hat{j}-2 \hat{k}, 4 \hat{i}-2 \hat{j}-2 \hat{k}$.

## - Watch Video Solution

40. If the vectors $4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\hat{i}+5 \hat{j}+4 \hat{k}$ are coplanar, then $m$ is equal to
A. 38
B. 0
C. 10
D. -10

## Answer: C

41. If $a, b$ and $c$ are non-coplanar vectors, prove that $3 a-7 b-4 c, 3 a-2 b+c$ and $a+b+2 c$ are coplanar.

## Watch Video Solution

42. The value of $\lambda$ for which the four points
$2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\hat{i}-\lambda \hat{j}+6 \hat{k}$ are coplanar.
A. 8
B. 0
C. -2
D. 6

## Answer: C

43. 

$P(a+2 b+c), Q(a-b-c), R(3 a+b+2 c)$ and $S(5 a+3 b+5 c)$ are coplanar given that $\mathrm{a}, \mathrm{b}$ and c are non-coplanar.

## - Watch Video Solution

44. Show that the vectors
$\hat{i}-3 \hat{j}+2 \hat{k}, 2 \hat{i}-4 \hat{j}-\hat{k}$ and $3 \hat{i}+2 \hat{j}-\hat{k}$ and linearly independent.

## - Watch Video Solution

45. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then:
A. (a) $\alpha=1, \beta=-1$
B. (b) $\alpha=1, \beta= \pm 1$
C. (c) $\alpha= \pm 1, \beta= \pm 1$
D. (d) $\alpha= \pm 1, \beta=1$

Answer: D

## - Watch Video Solution

46. The non-zero vectors are $\vec{a}, \vec{b}$ and $\vec{c}$ are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between $\vec{a}$ and $\vec{c}$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\pi$
D. 0

## Answer: C

## - Watch Video Solution

47. A unit vector $\widehat{a}$ makes an angle $\frac{\pi}{4}$ with z-axis, if $\widehat{a}+\hat{i}+\hat{j}$ is a unit vector then $\widehat{a}$ is equal to
(A) $\hat{i}+\hat{j}+\frac{\hat{k}}{2}$
(B) $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
(C) $\quad-\frac{\hat{i}}{2}-\hat{\jmath} 2+\frac{\hat{k}}{\sqrt{2}}$
$\frac{\hat{i}}{2}-\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
A. А. $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}+\frac{\hat{k}}{\sqrt{2}}$
в. в. $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. C. $-\frac{\hat{i}}{2}-\frac{\hat{j}}{2}+\frac{\hat{k}}{\sqrt{2}}$
D. D. none of these

## Answer: C

## - Watch Video Solution

48. If the resultannt of two forces of magnitudes $P$ and $Q$ acting at a point at an angle of $60^{\circ}$ is $\sqrt{7} Q$, then $P / Q$ is
A. 1
B. $\frac{3}{2}$
C. 2
D. 4

## Answer: C

## - Watch Video Solution

49. The vector $\vec{a}$ has the components $2 p$ and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, $\vec{a}$ has components $(p+1)$ and 1 , then $p$ is equal to a. $-4 \mathrm{~b} .-1 / 3 \mathrm{c} .1 \mathrm{~d}$. 2
A. $p=0$
B. $\mathrm{p}=1$ or $p=-\frac{1}{3}$
C. $\mathrm{p}=-1$ or $p=\frac{1}{3}$
D. $\mathrm{p}=1$ or $p=-1$

## Answer: B

## - Watch Video Solution

50. $A B C$ is an isosceles triangle right angled at $A$. forces of magnitude $2 \sqrt{2}, 5$ and 6 act along $\mathrm{BC}, \mathrm{CA}$ and AB respectively. The magnitude of their resultant force is
A. 4
B. 5
C. $11+2 \sqrt{2}$
D. 30

## Answer: B

51. A line segment has length 63 and direction ratios are $3,-2,6$. The components of the line vector are
A. $-27,18,54$
B. $27,-18,54$
C. $27,-18,-54$
D. $-27,-18,-54$

## Answer: B

## - Watch Video Solution

52. If the vectors $6 \hat{i}-2 \hat{j}+3 \hat{k} k, 2 \hat{i}+3 \hat{j}-6 \hat{k}$ and $3 \hat{i}+6 \hat{j}-2 \hat{k}$ form a triangle, then it is
A. right angled
B. obtuse angled
C. equilateral
D. isosceles

## Answer: B

## - Watch Video Solution

53. The position vectors of the points $A, B, C$ are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively. These points
A. form an isosceles triangle
B. form a right angled triangle
C. are collinear
D. form a scalene triangle

## Answer: C

## - Watch Video Solution

54. The position vector of a point C with respect to B is $\hat{i}+\hat{j}$ and that of B with respect to A is $\hat{i}-\hat{j}$. The position vector of C with respect to A is
A. $2 \hat{i}$
B. $2 \hat{j}$
C. $-2 \hat{j}$
D. $-2 \hat{i}$

## Answer: A

## - Watch Video Solution

55. In a $\triangle A B C$, if $2 \mathrm{AC}=3 \mathrm{CB}$, then $2 \mathrm{OA}+3 \mathrm{OB}$ is equal to
A. 50 C
B. $-O C$
C. $O C$
D. none of these

## - Watch Video Solution

56. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vector of point $A, B, C$ and $D$, respectively referred to the same origin $O$ such that no three of these point are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, than prove that quadrilateral $A B C D$ is a parallelogram.
A. square
B. rhombus
C. rectangle
D. parallelogram

## Answer: D

57. P is a point on the side BC off the $\triangle A B C$ and Q is a point such that $P Q$ is the resultant of $A P, P B$ and $P C$. Then, $A B Q C$ is a
A. square
B. rectangle
C. parallelogram
D. trapezium

## Answer: C

## - Watch Video Solution

58. If $A B C D$ is a parallelogram and the position vectors of $A, B$ and $C$ are $\hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $7 \hat{i}+7 \hat{j}+7 \hat{k}$, then the poisitionn vector of D will be
A. $7 \hat{i}+5 \hat{j}+3 \hat{k}$
B. $7 \hat{i}+9 \hat{j}+11 \hat{k}$
C. $9 \hat{i}+11 \hat{j}+13 \hat{k}$
D. $8 \hat{i}+8 \hat{j}+8 \hat{k}$

## Answer: B

## - Watch Video Solution

59. $A B C D$ is a parallelogram whose diagonals meet at P . If O is a fixed point, then $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}$ equals :
A. (a) $\overrightarrow{O P}$
B. (b) $2 \overrightarrow{O P}$
C. (c) $3 \overrightarrow{O P}$
D. (d) $4 \overrightarrow{O P}$

## Answer: D

60. If $C$ is the middle point of $A B$ and $P$ is any point outside $A B$, then
A. $P A+P B=P C$
B. $P A+P B=2 P C$
C. $\mathrm{PA}+\mathrm{PB}+\mathrm{PC}=0$
D. $P A+P B+2 P C=0$

## Answer: B

## - Watch Video Solution

61. Let $\mathrm{O}, \mathrm{O}$ and G be the circumcentre, orthocentre and centroid of a
$\triangle A B C$ and S be any point in the plane of the triangle.
Statement -1: $\overrightarrow{O^{\prime} A}+\overrightarrow{O^{\prime} B}+\overrightarrow{O^{\prime} C}=2 \overrightarrow{O^{\prime} O}$
Statement $-2: \overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}=3 \overrightarrow{S G}$
A. $O O^{\prime}$
B. $2 O^{\prime} O$
C. $200^{\prime}$
D. 0

## Answer: B

## - Watch Video Solution

62. Five points given by $A, B, C, D$ and $E$ are in a plane. Three forces $A C, A D$ and AE act at A annd three forces $\mathrm{CB}, \mathrm{DB}$ and EB act B . then, their resultant is
A. 2AC
B. 3 AB
C. 3DB
D. 2 BC

## Answer: B

63. In a regular hexagon
$A B C D E F, A \vec{B}=a, B \vec{C}=\vec{b}$ and $\vec{C} D=$. Then $\vec{A} E=$ $\vec{a}+\vec{b}+\vec{c}$ b. $2 \vec{a}+\vec{b}+\vec{c}$ c. $\vec{b}+\vec{c}$ d. $\vec{a}+2 \vec{b}+2 \vec{c}$
A. $2 b-a$
B. $b-a$
C. $2 a-b$
D. $a+b$

## Answer: A

## - Watch Video Solution

64. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then angle between $\vec{a}$ and $\vec{b}$ is: a. $\frac{\pi}{2}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{6}$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

## Answer: B

## - Watch Video Solution

65. If $\vec{a} \& \vec{b}$ are the position vectors of $A \& B$ respectively and $C$ is a point on $A B$ produced such that $A C=3 A B$ then the position vector of $C$ is:
A. (a) $3 \vec{a}-\vec{b}$
B. (b) $3 \vec{b}-\vec{a}$
C. (c) $3 \vec{a}-2 \vec{b}$
D. (d) $3 \vec{b}-2 \vec{a}$
66. Let $A$ and $B$ be points with position vectors $\vec{a}$ and $\vec{b}$ with respect to origin $O$. If the point $C$ on $O A$ is such that $2 \overrightarrow{A C}=\overrightarrow{C O}, \overrightarrow{C D}$ is parallel to
$\overrightarrow{O B}$ and $|\overrightarrow{C D}|=3|\overrightarrow{O B}|$ then $\overrightarrow{A D}$ is (A) $\vec{b}-\frac{\vec{a}}{9}$ (B) $3 \vec{b}-\frac{\vec{a}}{3}$
$\vec{b}-\frac{\vec{a}}{3}$ (D) $\vec{b}+\frac{\vec{a}}{3}$
A. $3 b-\frac{a}{2}$
B. $3 b+\frac{a}{2}$
C. $3 b-\frac{a}{3}$
D. $3 b+\frac{a}{3}$

## Answer: C

## - Watch Video Solution

67. If the position vector of a point A is $\vec{a}+2 \vec{b}$ and $\vec{a}$ divides AB in the ratio $2: 3$, then the position vector of B , is
A. $2 a-b$
B. $b-2 a$
C. $a-3 b$
D. $b$

## Answer:

## - Watch Video Solution

68. If $D, E$ and $F$ are respectively, the mid-points of $A B, A C$ and $B C$ in $\triangle A B C$, then $\mathrm{BE}+\mathrm{AF}$ is equal to
A. DC
B. $\frac{1}{2} B F$
C. $2 B F$
D. $\frac{3}{2} B F$
69. In a quadrilateral $P Q R S, \vec{P} Q=\vec{a}, \vec{Q} R=\vec{b}, \vec{S} P=\vec{a}-\vec{b}, M$ is the midpoint of $\vec{Q}$ Rand $X$ is a point on $S M$ such that $S X=\frac{4}{5} S M$. Prove that $P, X a n d R$ are collinear.
A. $P X=\frac{1}{5} P R$
B. $P X=\frac{3}{5} P R$
C. $P X=\frac{2}{5} P R$
D. none of these

## Answer: B

## - Watch Video Solution

70. Orthocenter of an equilateral triangle $A B C$ is the origin $O$. If $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$, then $\overrightarrow{A B}+2 \overrightarrow{B C}+3 \overrightarrow{C A}=$
A. 3 c
B. 3 a
C. 0
D. 3 b

## Answer: B

## - Watch Video Solution

71. If $\vec{a}, \vec{b}$ and $\vec{c}$ are position vectors of $A, B$, and $C$ respectively of $\Delta A B C$ and if $|\vec{a}-\vec{b}|,|\vec{b}-\vec{c}|=2,|\vec{c}-\vec{a}|=3$, then the distance between the centroid and incenter of $\triangle A B C$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

## Answer: C

## - Watch Video Solution

72. Let position vectors of point $A, B$ and $C$ of triangle $A B C$ represents be $\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$. Let $l_{1}, l_{2}$ and $l_{3}$ be the length of perpendicular drawn from the orthocenter ' O ' on the sides $\mathrm{AB}, \mathrm{BC}$ and CA , then $\left(l_{1}+l_{2}+l_{3}\right)$ equals
A. $\frac{2}{\sqrt{6}}$
B. $\frac{3}{\sqrt{6}}$
C. $\frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{6}}{3}$.

## Answer: C

## - Watch Video Solution

73. ABCDEF is a regular hexagon in the $x-y$ plance with vertices in the anticlockwise direction. If $\vec{A} B=2 \hat{i}$, then $\overrightarrow{C D}$ is
A. $\hat{i}+3 \hat{j}$
B. $\hat{i} 9+2 \hat{j}$
C. $-\hat{i}+3 \hat{j}$
D. none of these

## Answer:

## - Watch Video Solution

74. The vertices of a triangle are $A(1,1,2), B(4,3,1)$ and $C(2,3,5)$. The vector representing internal bisector of the angle $A$ is
A. $\hat{i}+\hat{j}+2 \hat{k}$
B. $2 \hat{i}-2 \hat{j} j+\hat{k}$
C. $2 \hat{i}+2 \hat{j}+\hat{k}$
D. none of these

## Answer: C

## - Watch Video Solution

75. Let $\vec{a}=(1,1,-1), \vec{b}=(5,-3,-3)$ and $\vec{c}=(3,-1,2)$. If $\vec{r}$ is collinear with $\vec{c}$ and has length $\frac{|\vec{a}+\vec{b}|}{2}$, then $\vec{r}$ equals
A. $\pm 3 c$
B. $\pm \frac{3}{2} c$
C. $\pm c$
D. $\pm \frac{2}{3} c$

## Answer: C

76. In a trapezium $A B C D$ the vector $B \vec{C}=\lambda \overrightarrow{A D}$. If $\vec{p}=A \vec{C}+\overrightarrow{B D}$ is coillinear with $\overrightarrow{A D}$ such that $\vec{p}=\mu \overrightarrow{A D}$, then
A. $\mu=\lambda+1$
B. $\lambda=\mu+1$
C. $\lambda+\mu=1$
D. $\mu=2+\lambda$

## Answer: A

## - Watch Video Solution

77. If the position vectors of the points $A, B$ and $C$ be $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $a \hat{i}+b \hat{j}+c \hat{k}$ respectively, then the points $\mathrm{A}, \mathrm{B}$ and C are collinear, if
A. $a=b=c=1$
B. $a=1, b$ and $c$ are arbitrary scalars
C. $a b=c=0$
D. $c=0, a=1$ and $b$ is arbitrary scalars

Answer: D

## - Watch Video Solution

78. Let $a, b$ and $c$ be distinct non-negative numbers and the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$ lie in a plane, then the quadratic equation $a x^{2}+2 c x+b=0$ has
A. real annd equal roots
B. real and unequal roots
C. unreal roots
D. both roots real and positive

## Answer: A

## D Watch Video Solution

79. The number of distinct real values of $\lambda$ for which the vectors $\vec{a}=\lambda^{3} \hat{i}+\hat{k}, \vec{b}=\hat{i}-\lambda^{3} \hat{j}$ and $\vec{c}=\hat{i}+(2 \lambda-\sin \lambda) \hat{j}-\lambda \hat{k}$ are coplanar is
A. (a) 0
B. (b) 1
C. (c) 2
D. (d) 3

## Answer: A

## - Watch Video Solution

80. The points $A(2-x, 2,2), B(2,2-y, 2), C(2,2,2-z)$ and $D(1,1,1)$ are coplanar, then locus of $P(x, y, z)$ is
A. $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
B. $x+y+z=1$
C. $\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}=1$
D. none of these

## Answer: A

## - Watch Video Solution

81. $p=2 a-3 b, q=a-2 b+c$ and $r=-3 a+b+2 c$, where $a, b, c$ being non-coplanar vectors, then the vector $-2 a+3 b-c$ is equal to
A. (a) $p-4 q$
B. (b) $\frac{-7 q+r}{5}$
C. (c) $2 p-3 q+r$
D. (d) $4 p-2 r$

## Answer: B

## - Watch Video Solution

82. If $a_{1}$ and $a_{2}$ are two values of a for which the unit vector $a \vec{i}+b \vec{j}+\frac{1}{2} \vec{k}$ is linearly dependent with $\vec{i}+2 \vec{j}$ and $\vec{j}-2 \vec{k}$, then $\frac{1}{a_{1}}+\frac{1}{a_{2}}$ is equal to
A. (a) 1
B. (b) $\frac{1}{8}$
C. (c) $\frac{-16}{11}$
D. (d) $\frac{-11}{16}$

## Answer: C

## - Watch Video Solution

83. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle $\theta$ and is doubled in magnitude. It now becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. The values of x are
A. 1
B. $\frac{-2}{3}$
C. 2
D. $\frac{4}{3}$

## Answer: B::C

## - Watch Video Solution

84. $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. If three vectors $\vec{p}, \vec{q}$, and $\vec{r}$ are parallel to $\vec{a}, \vec{b}$, and $\vec{c}$, respectively, and have integral but different magnitudes, then among the following options, $|\vec{p}+\vec{q}+\vec{r}|$ can take a value equal to a. 1 b. 0 c. $\sqrt{3}$ d. 2
A. 1
B. 0
C. $\sqrt{3}$
D. 2

## D Watch Video Solution

85. $A, B$ and $C D$ are four points such that $\overrightarrow{A B}=m(2 \hat{i}-6 \hat{j}+2 \hat{k}) \overrightarrow{B C}=(\hat{i}-2 \hat{j})$ and $\overrightarrow{C D}=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}$
. If $C D$ intersects $A B$ at some points $E$, then
A. $m \geq \frac{1}{2}$
B. $n \geq \frac{1}{3}$
C. $m=n$
D. $m<n$

## Answer: A::B

86. If non-zero vectors $\vec{a}$ and $\vec{b}$ are equally inclined to coplanar vector $\vec{c}$, then $\vec{c}$ can be
A. $\frac{|a|}{|a|=2|b|} a+\frac{|b|}{|a|+|b|} b$
B. $\frac{|b|}{|a|+|b|} a+\frac{|a|}{|a|+|b|} b$
C. $\frac{|a|}{|a|+|b|} a+\frac{|b|}{|a|+2|b|} b$
D. $\frac{|b|}{2|a|+|b|} a+\frac{|a|}{2|a|+|b|} b$

## Answer: B::D

## - Watch Video Solution

87. 

$x \hat{i}+(x+1) \hat{j}+(x+2) \hat{k},(x+3) \hat{i}+(x+4) \hat{j}+(x+5) \hat{k}$ and $(x+6) \hat{i}$ are coplanar if $x$ is equal to a. 1 b. -3 c. 4 d. 0
A. 1
B. -3
C. 4
D. 0

## Answer: A::B::C::D

## - Watch Video Solution

88. Given three vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are non-zero and non-coplanar vectors. Then which of the following are coplanar.
A. $a+b, b+c, c+a$
B. $a-b, b+c, c+a$
C. $a+b, b-c, c+a$
D. $a+b, b+c, c-a$

## Answer: B::C::D

## - Watch Video Solution

89. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and $\hat{l}$, and $a_{1}, a_{2}, a_{3}, a_{4}$ are four non-zero vectors such that no vector can be expressed as a linear combination of other $(\lambda-1)\left(a_{1}-a_{2}\right)+\mu\left(a_{2}+a_{3}\right)+\gamma\left(a_{3}+a_{4}-2 a_{2}\right)+a_{3}+\delta a_{4}=0$, then
A. (a) $\lambda=1$
B. (b) $\mu=-\frac{2}{3}$
C. (c) $\gamma=\frac{2}{3}$
D. (d) $\delta=\frac{1}{3}$

## Answer: A: B::D

## (D) Watch Video Solution

90. 

> Statement
$|\vec{a}|=3,|\vec{b}|=\operatorname{and}|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|=5$. Statement $\quad 2$ :
The length of the diagonals of a rectangle is the same.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: A

## - Watch Video Solution

91. Statement 1: If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then $\vec{a}$ and $\vec{b} \quad$ are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: A

## D Watch Video Solution

92. Assertion: If $I$ is the incentre of $\triangle A B C$, then $|\operatorname{vec}(\mathrm{BC})| \operatorname{vec}(\mathrm{IA})$
$+|\operatorname{vec}(\mathrm{CA})| \quad \operatorname{vec}(\mathrm{IB}) \quad+|\operatorname{vec}(\mathrm{AB})| \quad \operatorname{vec}(\mathrm{IC}) \quad=0$

Reason:IfOisthe or ig $\in$, thentheposition $\longrightarrow$ rofcentroidof
/_ABCis $\frac{\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}}{3}$
A. Both $A$ and $R$ are correct and $R$ is the correct explanation of $A$
B. Both $A$ and $R$ are correct but $R$ is not the correct explanation of $A$
C. A is correct but R is incorrect
D. $R$ is correct but $A$ is incorrect

## Answer: B

## - Watch Video Solution

93. Statement 1: If $\vec{u}$ and $\vec{v}$ are unit vectors inclined at an angle $\alpha a n d \vec{x}$ is a unit vector bisecting the angle between them, then $\vec{x}=(\vec{u}+\vec{v}) /(2 \sin (\alpha / 2)$. Statement 2: If $\operatorname{Delta} A B C$ is an isosceles triangle with $A B=A C=1$, then the vector representing the bisector of angel $A$ is given by $\vec{A} D=(\vec{A} B+\vec{A} C) / 2$.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: D

## - Watch Video Solution

94. Statement I: If $a=2 \hat{i}+\hat{k}, b=3 \hat{j}+4 \hat{k}$ and $c=\lambda a+\mu b$ are coplanar, then $c=4 a-b$.

Statement II: A set vector $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is said to be linearly independent, if every relation of the form
$l_{1} a_{1}+l_{2} a_{2}+l_{3} a_{3}+\ldots+l_{n} a_{n}=0$ implies that
$l_{1}=l_{2}=l_{3}=\ldots=l_{n}=0$ (scalar) .
A. Statement-I and statement II ar correct and Statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: B

## D Watch Video Solution

95. Statement 1 : Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that $\vec{a}=2 \hat{i}+\hat{k}, v e b=3 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=-\hat{i}+7 \hat{j}-5 \hat{k}$. Then OABC is tetrahedron.
Statement 2 : Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are non-coplanar. Then OABC is a tetrahedron, where $O$ is the origin.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## D Watch Video Solution

96. Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ be the position vectors of four points $A, B, C a n d D$ and $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$. Then points $A, B, C, a n d D$ are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $(\vec{P} Q, \vec{P} \operatorname{Rand} \vec{P} S)$ are coplanar. Then $\vec{P} Q=\lambda \vec{P} R+\mu \vec{P} S$, where $\lambda$ and $\mu$ are scalars.
A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect
97. Given that $p(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear find the ratio in which $Q$ divides PR
A. 1:2
B. 1:3
C. 3: 1
D. 2:1

## Answer: C

## - Watch Video Solution

98. Given that $p(1,2,-4), Q(5,4,-6)$ and $R(0,8,-10)$ are collinear find the ratio in which Q divides PR
A. 1:2
B. 1:3
C. 3:1
D. 2:1

## Answer: B

## - Watch Video Solution

99. $A B C D$ is a parallelogram. $L$ is a point on $B C$ which divides $B C$ in the ratio 1:2. AL intersects BD at P.M is a point on $D C$ which divides $D C$ in the ratio 1:2 and AM intersects BD in Q.
$P Q: D B$ is equal to
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

## - Watch Video Solution

100. Let $A, B, C, D, E$ represent vertices of a regular pentangon $A B C D E$. Given the position vector of these vertices be $\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{b}, \lambda a$ and $\lambda b$ respectively.
Q. AD divides EC in the ratio
A. $1-\cos \frac{3 \pi}{5}: \cos \frac{3 \pi}{5}$
B. $1+2 \cos \frac{2 \pi}{5}: \cos \frac{\pi}{5}$
C. $1+2 \cos \frac{\pi}{5}: 2 \cos \frac{\pi}{5}$
D. none of these

## Answer: C

## - Watch Video Solution

101. Let $A, B, C, D, E$ represent vertices of a regular pentangon $A B C D E$. Given the position vector of these vertices be $\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{b}, \lambda a$ and $\lambda b$ respectively.
Q. AD divides EC in the ratio
A. $\cos \frac{2 \pi}{5}: 1$
B. $\cos \frac{3 \pi}{5}: 1$
C. $1: 2 \cos \frac{\pi}{5}$
D. 1: 2

## Answer: C

## - Watch Video Solution

102. In a parallelogram $O A B C$, vectors $\vec{a}, \vec{b}, \vec{c}$ are respectively the positions of vectors of vertices $A, B, C$ with reference to O as origin. A point $E$ is taken on the side $B C$ which divide the line $2: 1$ internally. Also the line segment AE intersect the line bisecting the angle $O$ internally in
point $P$. If $C P$, when extended meets $A B$ in point $F$. Then The position vector of point $P$, is

## - Watch Video Solution

103. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES $A, B, C$ with reference to $O$ as origin. A point $E$ is taken on the side $B C$ which divides it in the ratio of 2:1 also, the line segment $A E$ intersects the line bisecting the angle $\angle A O C$ internally at point $P$. if $C P$ when extended meets $A B$ in points $F$, then
$Q$. The position vector of point $P$ is
A. $\frac{2|a|}{||a|-3| c|\mid}$
B. $\frac{|a|}{||a|-3| c|\mid}$
C. $\frac{3|a|}{||a|-3| c \mid}$
D. $\frac{3|c|}{3||c|-|a||}$

## Answer: B

104. The direction ( $\theta$ ) of $\vec{E}$ at point P due to uniformly charged finite rod will be

105. $P, Q$ have position vectors $\vec{a} \& \vec{b}$ relative to the origin ${ }^{\prime} O^{\prime} \& X, Y a n d \vec{P} Q$ internally and externally respectgively in the ratio 2:1 Vector $\vec{X} Y=\frac{3}{2}(\vec{b}-\vec{a})$ b. $\frac{4}{3}(\vec{a}-\vec{b})$ c. $\frac{5}{6}(\vec{b}-\vec{a})$ d. $\frac{4}{3}(\vec{b}-\vec{a})$

## - Watch Video Solution

106. $A(1,-1,-3), B(2,1,-2) \& C(-5,2,-6)$ are the position vectors of the vertices of a triangle $A B C$. The length of the bisector of its internal angle at A is :

## - Watch Video Solution

107. Let $A B C$ be a triangle whose centroid is $G$, orthocentre is H and circumcentre is the origin ' $O$ '. If $D$ is any point in the plane of the triangle such that no three of $\mathrm{O}, \mathrm{A}, \mathrm{C}$ and D are collinear satisfying the relation. $\mathrm{AD}+\mathrm{BD}+\mathrm{CH}+3 \mathrm{HG}=\lambda H D$, then what is the value of the scalar $\lambda$.

## - Watch Video Solution

108. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be unit vectors such that $\vec{a}+\vec{b}-\vec{c}=0$. If the area of triangle formed by vectors $\vec{a}$ and $\vec{b}$ is $A$, then what is the value of $4 A^{2}$ ?

## - Watch Video Solution

109. The values of $x$ for which the angle between the vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute, and the angle, between the vector $\vec{b}$ and the axis of ordinates is obtuse, are

## - Watch Video Solution

110. If the
points
$a(\cos \alpha+\hat{i} \sin \gamma), b(\cos \beta+\hat{i} \sin \beta)$ and $c(\cos \gamma+\hat{i} \sin \gamma) \quad$ are
collinear, then the value of $|z|$ is ___ where $z=b c \sin (\beta-\gamma)+c a \sin (\gamma-\alpha)+a b \sin (\alpha+\beta)+3 \hat{i}$

## - Watch Video Solution

111. A particle, in equilibrium, is subjected to four forces $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}$ and $\vec{F}_{4}$,
$\vec{F}_{1}=-10 \hat{k}, \vec{F}_{2}=u\left(\frac{4}{13} \hat{i}-\frac{12}{13} \hat{j}+\frac{3}{13} \hat{k}\right), \vec{F}_{3}=v\left(-\frac{4}{13} \hat{i}-\frac{12}{13} \hat{j}+\right.$ then find the values of $u, v$ and $w$

## - Watch Video Solution

112. Find the all the values of $\lambda$ such that $(x, y, z)!=(0,0,0)$ and $x(\hat{i}+\hat{j}+3 \hat{k})+y(3 \hat{i}-3 \hat{j}+\hat{k})+z(-4 \hat{i}+5 \hat{j})=\lambda(x \hat{i}+y \hat{j}+z \hat{k})$

## - Watch Video Solution

113. If G is the centroid of $\triangle A B C$ and $G^{\prime}$ is the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$ then $\overrightarrow{A A^{\prime}}+\overrightarrow{B B^{\prime}}+\overrightarrow{C C}{ }^{\prime}=$

## - Watch Video Solution

114. If $D, E$ and $F$ are the mid-points of the sides $B C, C A$ and $A B$, respectively of a $\triangle A B C$ and O is any point, show that
(i) $\mathrm{AD}+\mathrm{BE}+\mathrm{CF}=\mathrm{O}$
(ii) $\mathrm{OE}+\mathrm{OF}+\mathrm{DO}=\mathrm{OA}$

## - Watch Video Solution

115. If $\vec{A} n d \vec{B}$ are two vectors and $k$ any scalar quantity greater than zero, then prove that $|\vec{A}+\vec{B}|^{2} \leq(1+k)|\vec{A}|^{2}+\left(1+\frac{1}{k}\right)|\vec{B}|^{2}$.

## - Watch Video Solution

116. If O is the circumcentre and O ' the orthocenter of $\triangle A B C$ prove that
(i) $\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=3 \mathrm{SG}$, where S is any point in the plane of $\triangle A B C$.
(ii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC=OO}$

Where, AP is diameter of the circumcircle.

## D View Text Solution

117. about to only mathematics

## - Watch Video Solution

118. Statement -1 : If a transversal cuts the sides $\mathrm{OL}, \mathrm{OM}$ and diagonal ON of a parallelogram at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then
$\frac{O L}{O A}+\frac{O M}{O B}=\frac{O N}{O C}$
Statement -2: Three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ are collinear iff there exist scalars $x, y, z$ not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$, where $x+y+z=0$.
119. If $D, E$ and $F$ are three points on the sides $B C, C A$ and $A B$, respectively, of a triangle $A B C$ such that the lines $A D, B E$ and $C F$ are concurrent, then show that

$$
\frac{B D}{C D} \cdot \frac{C E}{A E} \cdot \frac{A F}{B F}=-1
$$

## - Watch Video Solution

120. 

$\vec{A}(t)=f_{1}(t) \hat{i}+f_{2}(t) \hat{j}$ and $\vec{B}(t)=g(t) \hat{i}+g_{2}(t) \hat{j}, t \in[0,1], f_{1}, f_{2}, g_{1} g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non-zero vectors for all $t$ and $\vec{A}(0)=2 \hat{i}+3 \hat{j}, \vec{A}(1)=6 \hat{i}+2 \hat{j}, \vec{B}(0)=3 \hat{i}+2 \hat{i}$ and $\vec{B}(1)=2 \hat{i}$ Then,show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some $t$.

## D Watch Video Solution

121. Prove that if $\cos \alpha \neq 1, \cos \beta \neq 1$ and $\cos \gamma \neq 1$, then the vectors $a=\hat{i} \cos \alpha+\hat{j}+\hat{k}, b=\hat{i}+\hat{j} \cos \beta+\hat{k}$ and $c=\hat{i}+\hat{j}+\hat{k} \cos \gamma$ can never be coplanar.

## - Watch Video Solution

122. If the vectors $x \hat{i}+\hat{j}+\hat{k}, \hat{i}+y \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+z \hat{k}$ are coplanar where, $x \neq 1, y \neq 1$ and $z \neq 1$, then prove that
$\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}=1$

## - Watch Video Solution

123. If $\vec{a}, \vec{b}$ and $\vec{c}$ are any three non-coplanar vectors, then prove that points
$l_{1} \vec{a}+m_{1} \vec{b}+n_{1} \vec{c}, l_{2} \vec{a}+m_{2} \vec{b}+n_{2} \vec{c}, l_{3} \vec{a}+m_{3} \vec{b}+n_{3} \vec{c}, l_{4} \vec{a}+m_{4}$
are coplanar if $\left|\begin{array}{llll}l_{1} & l_{2} & l_{3} & l_{4} \\ m_{1} & m_{2} & m_{3} & m_{4} \\ n_{1} & n_{2} & n_{3} & n_{4} \\ 1 & 1 & 1 & 1\end{array}\right|=0$
124. If $r_{1}, r_{2}$ and $r_{3}$ are the position vectors of three collinear points and scalars $l$ and $m$ exists such that $r_{3}=l r_{1}+m r_{2}$, then show that $l+m=1$.

## - Watch Video Solution

125. Show that points with position vectors $2 \vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-\vec{c}$ and $6 \vec{a}-7 \vec{b}+7 \vec{c}$ are collinear. It is given that vectors $\vec{a}, \vec{b}$ and $\vec{c}$ and non-coplanar.

## - Watch Video Solution

## Exercise For Session 1

1. Classify the following measures as scalars and vector:
(i) 20 kg weight
(ii) $45^{\circ}$
(iii) 10 m south-east
(iv) $50 \mathrm{~m} / \mathrm{sec}^{2}$

## - Watch Video Solution

2. Represent the following graphically: A displacement of $70 \mathrm{~km}, 40^{\circ}$ north of west.
3. In the given figure, $A B C D E F$ is a regular hexagon, which vectors are:

(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.

## - Watch Video Solution

4. Answer the following as true or false.(i) $\rightarrow a$ and $-\rightarrow a$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.(iii) Two vectors having same magnitude are collinear.(iv) Two collinear vectors having the same magni

## - Watch Video Solution

5. Find the perimeter of a triangle with sides $3 \hat{i}+4 \hat{j}+5 \hat{k}, 4 \hat{i}-3 \hat{j}-5 \hat{k}$ and $7 \hat{i}+\hat{j}$.

## - Watch Video Solution

6. Find the angle of vector $\vec{a}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ with $x$-axis.

## - Watch Video Solution

7. Write the direction ratios of the vector $r=\hat{i}-\hat{j}+2 \hat{k}$ and hence calculate its direction cosines.

## - Watch Video Solution

## Exercise For Session 2

1. If $a=2 \hat{i}-\hat{j}+2 \hat{k}$ and $b=-\hat{i}+\hat{j}-\hat{k}$, then find $\mathrm{a}+\mathrm{b}$. Also, find a unit vector along $\mathrm{a}+\mathrm{b}$.

## - Watch Video Solution

2. Find a unit vector in the direction of the resultant of the vectors $(\hat{i}+2 \hat{j}+3 \hat{k}),(-\hat{i}+2 \hat{j}+\hat{k})$ and $(3 \hat{i}+\hat{j})$.

## - Watch Video Solution

3. Find the direction cosines of the resultant of the vectors $(\hat{i}+\hat{j}+\hat{k}),(-\hat{i}+\hat{j}+\hat{k}),(\hat{i}-\hat{j}+\hat{k})$ and $(\hat{i}+\hat{j}-\hat{k})$.

## - Watch Video Solution

4. In a regular hexagon $A B C D E F, \overrightarrow{A E}$

## - Watch Video Solution

5. Prove that $3 \overrightarrow{O D}+\overrightarrow{D A}+\overrightarrow{D B}+\overrightarrow{D C}$ is equal to $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}$.

## - Watch Video Solution

> 6. In $A B C D E F, \overline{A B}+\overline{A C}+\overline{A D}+\overline{A E}+\overline{A F}=k \overline{A D}$ then k is equal to

## - Watch Video Solution

7. $A B C D E$ is a pentagon. Prove that the resultant of forces $\overrightarrow{A B}, \overrightarrow{A E}, \overrightarrow{B C}, \overrightarrow{D C}, \overrightarrow{E D}$ and $\overrightarrow{A C}$ is $3 \overrightarrow{A C}$.

## - Watch Video Solution

8. about to only mathematics

## - Watch Video Solution

9. If $P(-1,2)$ and $Q(3,-7)$ are two points, express the vector $P Q$ in terms of unit vectors $\hat{i}$ and $\hat{j}$ also, find distance between point $P$ and $Q$. What is the unit vector in the direction of $P Q$ ?

## - Watch Video Solution

10. If $\overrightarrow{O P}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\overrightarrow{O Q}=3 \hat{i}-4 \hat{j}+2 \hat{k}$ find the modulus and direction cosines of $\overrightarrow{P Q}$.
11. Show that the points $A, B$ and C having position vectors $(3 \hat{i}-4 \hat{j}-4 \hat{k}),(2 \hat{i}-\hat{j}+\hat{k})$ and $(\hat{i}-3 \hat{j}-5 \hat{k})$ respectively, from the vertices of a right-angled triangle.

## - Watch Video Solution

12. If $a=2 \hat{i}+2 \hat{j}-\hat{k}$ and $|x \vec{a}|=1$, then find x .

## - Watch Video Solution

13. If $p=7 \hat{i}-2 \hat{j}+3 \hat{k}$ and $q=3 \hat{i}+\hat{j}+5 \hat{k}$, then find the magnitude of $p-2 q$.

## - Watch Video Solution

14. Find a vector in the direction of $5 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude 8 units.

## - Watch Video Solution

15. If $a=\hat{i}+2 \hat{j}+2 \hat{k}$ and $b=3 \hat{i}+6 \hat{j}+2 \hat{k}$, then find a vector in the direction of a and having magnitude as $|b|$.

## - Watch Video Solution

16. Find the position vector of a point R which divides the line joining the point $P(\hat{i}+2 \hat{j}-\hat{k})$ and $Q(-\hat{i}+\hat{j}+\hat{k})$ in the ratio $2: 1$ internally .

## - Watch Video Solution

17. If the position vector of one end of the line segment $A B$ be $2 \hat{i}+3 \hat{j}-\hat{k}$ and the position vector of its middle point be $3(\hat{i}+\hat{j}+\hat{k})$,
then find the position vector of the other end.

## - Watch Video Solution

Exercise For Session 3

1. Show that the points $A(1,3,2), B(-2,0,1)$ and $C(4,6,3)$ are collinear.

## - Watch Video Solution

2. If the position vectors of the points $A, B$ and $C$ be $a, b$ and $3 a-2 b$ respectively, then prove that the points $\mathrm{A}, \mathrm{B}$ and C are collinear.

## - Watch Video Solution

3. The position vectors of four points $P, Q, R$ annd $S$ are $2 a+4 c, 5 a+$ $3 \sqrt{3} b+4 c,-2 \sqrt{3} b+c$ and $2 a+c$ respectively, prove that PQ is parallel to RS.

## Watch Video Solution

4. If three points $A, B$ and $C$ have position vectors $(1, x, 3),(3,4,7)$ and $(y,-2,-5)$, respectively and if they are collinear, then find ( $\mathrm{x}, \mathrm{y}$ ).

## - Watch Video Solution

5. Find the condition that the three points whose position vectors, $a=a \hat{i}+b \hat{j}+c \hat{k}, b=\hat{i}+c \hat{j}$ and $c=-\hat{i}-\hat{j}$ are collinear.

## - Watch Video Solution

6. a and b are non-collinear vectors. If $c=(x-2) a+b$ and $d=(2 x+1) a-b$ are collinear vectors, then find the value of $x$.

## - Watch Video Solution

7. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three vectors of which every pair is non-collinear, if the vectors $a+b$ and $b+c$ are collinear with $c$ annd a respectively, then find $a+b+c$.

## - Watch Video Solution

8. Show that vectors $\hat{i}-\hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}+\hat{k}$ and $7 \hat{i}+3 \hat{j}-4 \hat{k}$ are coplanar.

## - Watch Video Solution

9. If the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar, the prove that $a=-4$.

## - Watch Video Solution

10. Show that the vectors $a-2 b+4 c,-2 a+3 b-6 c$ and $-b+2 c$ are coplanar vector, where a,b,c are non-coplanar vectors.

## - Watch Video Solution

11. If $\vec{a}, \vec{b}$ and $\vec{c}$ are non-coplanar vectors, prove that the four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

## - Watch Video Solution

## Exercise Single Option Correct Type Questions

1. If $a=3 \hat{i}-2 \hat{j}+\hat{k}, b=2 \hat{i}-4 \hat{j}-3 \hat{k}$ and $c=-\hat{i}+2 \hat{j}+2 \hat{k}$, then $a+b+c$ is
A. $3 \hat{i}-4 \hat{j}$
B. $3 \hat{i}+4 \hat{j}$
C. $4 \hat{i}-4 \hat{j}$
D. $4 \hat{i}+4 \hat{j}$

## Answer: C

## - Watch Video Solution

2. What should be added in vector $a=3 \hat{i}+4 \hat{j}-2 \hat{k}$ to get its resultant a unit vector $\hat{i}$ ?
A. $-2 \hat{i}-4 \hat{j}+2 \hat{k}$
B. $-2 \hat{i}+4 \hat{j}-2 \hat{k}$
C. $2 \hat{i}+4 \hat{j}-2 \hat{k}$
D. none of these

## Answer: A

## - Watch Video Solution

3. If $a=2 \hat{i}+2 \hat{j}-8 \hat{k}$ and $b=\hat{i}+3 \hat{j}-4 \hat{k}$, then the magnitude of $\mathrm{a}+\mathrm{b}$ is equal to
A. 13
B. $\frac{13}{5}$
C. $\frac{3}{13}$
D. $\frac{4}{13}$

## Answer: A

## - Watch Video Solution

4. If $a=2 \hat{i}+5 \hat{j}$ and $b=2 \hat{i}-\hat{j}$, then the unit vector along $\mathrm{a}+\mathrm{b}$ will be
A. $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$
B. $\hat{i}+\hat{j}$
C. $\sqrt{2}(\hat{i}+\hat{j})$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: D
5. Find the unit vector parallel to the resultant vector of $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$.
A. $\frac{1}{7}(3 \hat{i}+\hat{j}+\hat{k})$
B. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
C. $\frac{\hat{i}+\hat{j}+2 \hat{k}}{\sqrt{6}}$
D. $\frac{1}{\sqrt{69}}(-\hat{i}-\hat{j}+8 \hat{k})$

## Answer: A

## - Watch Video Solution

6. If $a=\hat{i}+2 \hat{j}+3 \hat{k}, b=-\hat{i}+2 \hat{j}+\hat{k}$ and $c=3 \hat{i}+\hat{j}$, then the unit vector along its resultant is
A. $3 \hat{i}+5 \hat{j}+4 \hat{k}$
B. $\frac{3 \hat{i}+5 \hat{j}+4 \hat{k}}{50}$
c. $\frac{3 \hat{i}+5 \hat{j}+4 \hat{k}}{5 \sqrt{2}}$
D. none of these

## Answer: C

## - Watch Video Solution

7. If $a=(2,5)$ and $b=(1,4)$, then vector parallel to $(\mathrm{a}+\mathrm{b})$ is
A. $(3,5)$
B. $(1,1)$
C. $(1,3)$
D. $(8,5)$

## Answer: C

8. In the $\triangle A B C, A B=a, A C=c$ and $B C=b$, then
A. $a+b+c=0$
B. $a+b-c=0$
C. $a-b+c=0$
D. $-a+b+c=0$

## Answer: B

## - Watch Video Solution

9. If O is origin annd the position vector fo A is $4 \hat{i}+5 \hat{j}$, then unit vector parallel to OA is
A. $\frac{4}{\sqrt{41}} \hat{i}$
B. $\frac{5}{\sqrt{41}} \hat{i}$
C. $\frac{1}{\sqrt{41}}(4 \hat{i}+5 \hat{j})$
D. $\frac{1}{\sqrt{41}}(4 \hat{i}-5 \hat{j})$

## - Watch Video Solution

10. The position vectors of the points $A, B$ and $C$ are $\hat{i}+2 \hat{j}-\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}+2 \hat{k}$, respectively. If A is chosen as the origin, then the position vectors of B and C are
A. $\hat{i}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
B. $\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
C. $-\hat{j}+2 \hat{k}, \hat{i}--\hat{j}+3 \hat{k}$
D. $-\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$

## Answer: D

## - Watch Video Solution

11. The position vectors of $P$ and $Q$ are $5 \hat{i}+4 \hat{j}+a \hat{k}$ and $-\hat{i}+2 \hat{j}-2 \hat{k}$, respectively. If the distance between them is 7 , then find the value of $a$.
A. $-5,1$
B. 5,1
C. 0,5
D. 1,0

## Answer: A

## - Watch Video Solution

12. If position vector of points $A, B$ and $C$ are respectively $\hat{i}, \hat{j}$, and $\hat{k}$ and $A B=C X$, then position vector of point X is
A. $-\hat{i}+\hat{j}+\hat{k}$
B. $\hat{i}-\hat{j}+\hat{k}$
C. $\hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

## Answer: A

## - Watch Video Solution

13. The position vectors of $A$ and $B$ are $2 \hat{i}-9 \hat{j}-4 \hat{k}$ and $6 \hat{i}-3 \hat{j}+8 \hat{k}$ respectively, then the magnitude of $A B$ is
A. 11
B. 12
C. 13
D. 14

## Answer: D

14. If the position vectors of $P$ and $Q$ are $(\hat{i}+3 \hat{j}-7 \hat{k})$ and $(5 \hat{i}-2 \hat{j}+4 \hat{k})$, then $|\mathrm{PQ}|$ is
A. $\sqrt{158}$
B. $\sqrt{160}$
C. $\sqrt{161}$
D. $\sqrt{162}$

## Answer: D

## - Watch Video Solution

15. If the position vectors of P and $Q$ are $\hat{i}+2 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$ respectively, the cosine of the angle between PQ and Z -axis is
A. $\frac{4}{\sqrt{162}}$
B. $\frac{11}{\sqrt{162}}$
C. $\frac{5}{\sqrt{162}}$
D. $\frac{-5}{\sqrt{162}}$

## Answer: B

## - Watch Video Solution

16. If the position vectors of A and B are $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$, then the direction cosine of $A B$ along $Y$-axis is
A. $\frac{4}{\sqrt{162}}$
B. $-\frac{5}{\sqrt{162}}$
C. -5
D. 11

## Answer: B

17. The direction cosines of vector $a=3 \hat{i}+4 \hat{j}+5 \hat{k}$ in the direction of positive axis of $X$, is
A. A. $\pm \frac{3}{\sqrt{50}}$
B. B. $\frac{4}{\sqrt{50}}$
C. C. $\frac{3}{\sqrt{50}}$
D. D. $-\frac{4}{\sqrt{50}}$

## Answer: C

## - Watch Video Solution

18. The direction cosines of the vector $3 \hat{i}-4 \hat{j}+5 \hat{k}$ are
А. А. $\frac{3}{5},-\frac{4}{5}, \frac{1}{5}$
B. B. $\frac{3}{5 \sqrt{2}}, \frac{-4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$
C. C. $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. D. $\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$.

## - Watch Video Solution

19. The point having position vectors
$2 \hat{i}+3 \hat{j}+4 \hat{k}, 3 \hat{i}+4 \hat{j}+2 \hat{k}$ and $4 \hat{i}+2 \hat{j}+3 \hat{k}$ are the vertices of
A. A. right angled triangle
B. B. isosceles triangle
C. C. equilateral triangle
D. D. collinear

## Answer: C

## - Watch Video Solution

20. If the position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and C of a $\triangle A B C$ are $7 \hat{j}+10 k,-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}, \quad$ respectively, the
triangle is
A. A. equilateral
B. B. isosceles
C. C. scalene
D. D. right angled and isosceles also

## Answer: D

## - Watch Video Solution

21. If $a, b$ and $c$ are the position vectors of the vertices $A, B$ and $C$ of the $\triangle A B C$, then the centroid of $\triangle A B C$ is
A. A. $\frac{a+b+c}{3}$
B. B. $\frac{1}{2}\left(a+\frac{b+c}{2}\right)$
C. C. $a+\frac{b+c}{2}$
D. D. $\frac{a+b+c}{2}$

## D Watch Video Solution

22. If $a$ and $b$ are position vector of two points $A, B$ and $C$ divides $A B$ in ratio 2:1, then position vector of C is
A. $\frac{a+2 b}{3}$
B. $\frac{2 a+b}{3}$
C. $\frac{a+2}{3}$
D. $\frac{a+b}{2}$

## Answer: A

## - Watch Video Solution

23. Find the position vector of the point which divides the join of the points $(2 \vec{a}-3 \vec{b})$ and $(3 \vec{a}-2 \vec{b})$ (i) internally and (ii) externally in
the ratio $2: 3$.
A. $\frac{12}{5} a+\frac{13}{5} b$
B. $\frac{12}{5} a-\frac{13}{5} b$
C. $\frac{3}{5} a-\frac{2}{5} b$
D. none of these

## Answer: B

## - Watch Video Solution

24. If $O$ is origin and $C$ is the mid - point of $A(2,-1)$ and $B(-4,3)$. Then value of $O C$ is
A. $\hat{i}+\hat{j}$
B. $\hat{i}-\hat{j}$
C. $-\hat{i}+\hat{j}$
D. $-\hat{i}-\hat{j}$

## - Watch Video Solution

25. If the position vectors of the points $A$ and $B$ are $\hat{i}+3 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}-3 \hat{k}$, then what will be the position vector of the mid-point of $A B$
A. $\hat{i}+2 \hat{j}-\hat{k}$
B. $2 \hat{i}+\hat{j}-2 \hat{k}$
C. $2 \hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$

## Answer: B

26. The position vectors of A and B are $\hat{i}-\hat{j}+2 \hat{k}$ and $3 \hat{i}-\hat{j}+3 \hat{k}$. The position vector of the middle points of the line $A B$ is
A. $\frac{1}{2} \hat{i}-\frac{1}{2} \hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{j}+\frac{5}{2} \hat{k}$
C. $\frac{3}{2} \hat{i}-\frac{1}{2} \hat{j}+\frac{3}{2} \hat{k}$
D. none of these

## Answer: B

## - Watch Video Solution

27. If the vector $\vec{b}$ is collinear with the vector $\vec{a}(2 \sqrt{2},-1,4)$ and $|\vec{b}|=10$, then
A. $a \pm b=0$
B. $a \pm 2 b=0$
C. $2 a \pm b=0$
D. none of these

## Answer: C

## - Watch Video Solution

28. If $\vec{a}, \vec{b}$ are the position vectors of the points $(1,-1),(-2, m)$, find the value of $m$ for which $\vec{a}$ and $\vec{b}$ are collinear.
A. 4
B. 3
C. 2
D. 0

## Answer: C

## - Watch Video Solution

29. The points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, if $a$ is equal to
A. -8
B. 4
C. 8
D. 12

## Answer: C

## - Watch Video Solution

30. The vectors $\hat{i}+2 \hat{j}+3 \hat{k}, \lambda \hat{i}+4 \hat{j}+7 \hat{k},-3 \hat{i}-2 \hat{j}-5 \hat{k}$ are collinear, of $\lambda$ is equal to (A)3 (B) 4 (C)5 (D) 6
A. 3
B. 4
C. 5
D. 6

## Answer: A

## - Watch Video Solution

31. If the points $a+b, a-b$ and $a+k b$ be collinear, then k is equal to
A. A. 0
B. B. 2
C. C. -2
D. D. any real number

## Answer: D

## - Watch Video Solution

32. If the position vectors of $A, B, C$ and $D$ are $2 \hat{i}+\hat{j}, \hat{i}-3 \hat{j}, 3 \hat{i}+2 \hat{j}$ and $\hat{i}+\lambda \hat{j}$ respectively and $\overrightarrow{A B}|\mid \overrightarrow{C D}$. Then $\lambda$ will be
A. -8
B. -6
C. 8
D. 6

## Answer: B

## - Watch Video Solution

33. If the vectors $3 \hat{i}+2 \hat{j}-\hat{k}$ and $6 \hat{i}-4 x \hat{j}+y \hat{k}$ are parallel, then the value of $x$ and $y$ will be
A. $-1,-2$
B. $1,-2$
C. $-1,2$
D. 1,2

## Answer: A

## - Watch Video Solution

34. If $a$ and $b$ are two non collinear vectors; then every vector $r$ coplanar with $a$ and $b$ can be expressed in one and only one way as a linear combination: $x a+y b=0$.
A. (a) $x=0$, but $y$ is not necessarily zero
B. (b) $y=0$, but $x$ is not necessarily zero
C. (c) $x=0, y=0$
D. (d)none of these

## Answer: C

35. Four non-zero vectors will always be
A. linearly dependent
B. linearly independent
C. either (a) or (b)
D. none of these

## Answer: A

## D Watch Video Solution

36. The vectors $a, b$ and $a+b$ are
A. collinear
B. coplanar
C. non-coplanar
D. none of these

## - Watch Video Solution

37. Find the all the values of lambda such that $(x, y, z) \neq(0,0,0)$ and $x(\hat{i}+\hat{j}+3 \hat{k})+y(3 \hat{i}-3 \hat{j}+\hat{k})+z(-4 \hat{i}+5 \hat{j})=\lambda(x \hat{i}+y \hat{j}+z \hat{k})$
A. A. $-2,0$
B. B $0,-2$
C. C. $-1,0$
D. D. $0,-1$

## Answer: D

## - Watch Video Solution

38. The number of integral values of $p$ for which $(p+1) \hat{i}-3 \hat{j}+p \hat{k}, p \hat{i}+(p+1) \hat{j}-3 \hat{k}$ and $-3 \hat{i}+p \hat{j}+(p+1) \hat{k}$ are
linearly dependent vectors is $q$
A. 0
B. 1
C. 2
D. 3

## Answer: B

## - Watch Video Solution

39. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{288}$

## - Watch Video Solution

40. In the figure, a vectors $x$ satisfies the equation $x+w=v$. then, $x$ is equal to

A. $2 a+b+c$
B. $a+2 b+c$
C. $a+b+2 c$
D. $a+b+c$

## Answer: B

## - Watch Video Solution

41. Vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+4 \hat{k}$ are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are
A. not coplanar
B. coplanar but cannot form a triangle
C. coplanar and form a triangle
D. coplanar and can form a right angled triangle.

## Answer: B

## - Watch Video Solution

42. If $\mathrm{OP}=8$ and OP makes angles $45^{\circ}$ and $60^{\circ}$ with OX -axis and OY -axis respectively, then OP is equal to
A. $8(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$
B. $4(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$
C. $\frac{1}{4}(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$
D. $\frac{1}{8}(\sqrt{2} \hat{i}+\hat{j} \pm \hat{k})$

## Answer: B

## - Watch Video Solution

43. Let $\mathrm{a}, \mathrm{b}$ and c be three unit vectors such that $3 a+4 b+5 c=0$. Then which of the following statements is true?
A. $a$ is parallel to $b$
B. $a$ is perpendicular to $b$
C. $a$ is neither parallel nor perpendicular to $b$
D. none of these

Answer: D

## ( Watch Video Solution

44. if $A, B, C, D$ and $E$ are five coplanar points, then $\overrightarrow{D A}+\overrightarrow{D B}+\overrightarrow{D C}+\overrightarrow{A E}+\overrightarrow{B E}+\overrightarrow{C E}$ is equal to :
A. DE
B. 3DE
C. 2DE
D. 4ED

Answer: B

## - Watch Video Solution

45. If the vectors $\vec{a}$ and $\vec{b}$ are linearly independent satisfying $(\sqrt{3} \tan \theta+1) \vec{a}+(\sqrt{3} \sec \theta-2) \vec{b}=0$, then the most general values of $\theta$ are
A. $n \pi-\frac{\pi}{6}, n \in Z$
B. $2 n \pi \pm \frac{11 \pi}{6} n \in Z$
C. $n \pi \pm \frac{\pi}{6}, n \in Z$
D. $2 n \pi+\frac{11 \pi}{6}, n \in Z$

## Answer: D

## - Watch Video Solution

46. The unit vector bisecting $\overrightarrow{O Y}$ and $\overrightarrow{O Z}$ is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{j}+\hat{k}}{\sqrt{2}}$
D. $\frac{-\hat{j}+\hat{k}}{\sqrt{2}}$.

## Answer: C

## - Watch Video Solution

47. A line passes through the points whose position vectors are $\hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at unit distance from the first point is (A) $\frac{1}{5}(5 \hat{i}+\hat{j}-7 \hat{k})$

$$
\begin{equation*}
\frac{1}{5}(5 \hat{i}+9 \hat{j}-13 \hat{k}) \text { (C) }(\hat{i}-4 \hat{j}+3 \hat{k}) \text { (D) } \frac{1}{5}(\hat{i}-4 \hat{j}+3 \hat{k}) \tag{B}
\end{equation*}
$$

A. А. $\frac{1}{5}(5 \hat{i}+\hat{j}-7 \hat{k})$
B. $\frac{1}{5}(4 \hat{i}+9 \hat{j}-15 \hat{k})$
c. $(\hat{i}-4 \hat{j}+3 \hat{k})$
D. $\frac{1}{5}(\hat{i}-4 \hat{j}+3 \hat{k})$

## Answer: A

48. If $D, E$ and $F$ be the middle points of the sides $B C, C A$ and $A B$ of the $\triangle A B C$, then $A D+B E+C F$ is
A. A. a zero vector
B. B. a unit vector
C. C. 0
D. D. none of these

## Answer: A

## - Watch Video Solution

49. If $P$ and $Q$ are the middle points of the sides $B C$ and $C D$ of the parallelogram $A B C D$, then $A P+A Q$ is equal to
A. AC
B. $\frac{1}{2} A C$
C. $\frac{2}{3} A C$
D. $\frac{3}{2} A C$

## Answer: D

## - Watch Video Solution

50. If the figure formed by the four points
$\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}, 3 \hat{i}+5 \hat{j}-2 \hat{k}$ and $\hat{k}-\hat{j}$ is
A. rectangle
B. parallelogram
C. trapezium
D. none of these

Answer: C

## - Watch Video Solution

51. $A$ and $B$ are two points. The position vector of $A$ is $6 b-2 a$. $A$ point $P$ divides the line $A B$ in the ratio $1: 2$. if $a-b$ is the position vector of $P$, then the position vector of $B$ is given by
A. A. $7 \mathrm{a}-15 \mathrm{~b}$
B. B. $7 a+15 b$
C. C. $15 a-7 b$
D. D. $15 a+7 b$

## Answer: A

## - Watch Video Solution

52. If three points $A, B$ and $C$ are collinear, whose position vectors are $\hat{i}-2 \hat{j}-8 \hat{k}, 5 \hat{i}-2 \hat{k}$ and $11 \hat{i}+3 \hat{j}+7 \hat{k}$ respectively, then the ratio in which $B$ divides $A C$ is
A. A. 1: 2
B. B. $2: 3$
C. C. $2: 1$
D. D. $1: 1$

## Answer: B

## D Watch Video Solution

53. If in a triangle $A B=a, A C=b$ and $D, E$ are the mid-points of $A B$ and $A C$ respectively, then $D E$ is equal to
A. $\frac{a}{4}-\frac{b}{4}$
B. $\frac{a}{2}-\frac{b}{2}$
C. $\frac{b}{4}-\frac{a}{4}$
D. $\frac{b}{2}-\frac{a}{2}$

## Answer: D

54. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is
A. $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}-8 \hat{k})$
B. $\frac{1}{69}(\hat{i}+2 \hat{j}-8 \hat{k})$
C. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$
D. $\frac{1}{69}(-\hat{i}-2 \hat{j}+8 \hat{k})$

## Answer: C

## - Watch Video Solution

55. If $A, B$ and $C$ are the vertices of a triangle with position vectors $\vec{a}, \vec{b}$ and $\vec{c}$ respectively and $G$ is the centroid of $\triangle A B C$, then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$ is equal to
A. 0
B. $A+B+C$
C. $\frac{a+b+c}{3}$
D. $\frac{a+b-c}{3}$

## Answer: A

## - Watch Video Solution

56. Consider the regular hexagon $A B C D E F$ with centre at $O$ (origin).
Q. $A D+E B+F C$ is equal to
A. 0
B. 2 AB
C. 3 AB
D. 4 AB

## Answer: D

57. $A B C D E$ is a pentagon. Forces $A B, A E, D C$ and $E D$ act at a point. Which force should be added to this systemm to make the resultant 2AC?
A. AC
B. $A D$
C. $B C$
D. $B D$

## Answer: C

## - Watch Video Solution

58. In a regular hexagon $A B C D E F$, prove that $A B+A C+A D+A E+A F=3 A D$.
A. 2
B. 3
C. 4
D. 6

## Answer: B

## - Watch Video Solution

59. Let us define the length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ and $|a|+|b|+|c|$.

This definition coincides with the usual definition of length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ if an only if
A. $a=b=c=0$
B. any two of a,b and c are zero
C. any one of $a, b$ and $c$ is zero
D. $a+b+c=0$

## Answer: B

## - Watch Video Solution

60. If $a$ and $b$ are two non-zero and non-collinear vectors then $a+b$ and $a-b$ are
A. linearly dependent vectors
B. linearly independent vectors
C. linearly dependent annd independent vectors
D. none of these

## Answer: B

## - Watch Video Solution

61. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between $\vec{a}$ and $\vec{b}$ can lie in the interval
A. $(\pi / 2, \pi / 2)$
B. $(0, \pi)$
C. $(\pi / 2,3 \pi / 2)$
D. $(0,2 \pi)$

## Answer: C

## - Watch Video Solution

62. The magnitudes of mutually perpendicular forces $a, b$ and $c$ are 2,10 and 11 respectively. Then the magnitude of its resultant is
A. 12
B. 15
C. 9
D. none of these

## Answer: B

## - Watch Video Solution

63. If $\hat{i}-3 \hat{j}+5 \hat{k}$ bisects the angle between $\widehat{a}$ and $-\hat{i}+2 \hat{j}+2 \hat{k}$, where $\widehat{a}$ is a unit vector, then
A. $a=\frac{1}{105}(41 \hat{i}+88 \hat{j}-40 \hat{k})$
B. $a=\frac{1}{105}(41 \hat{i}+88 \hat{j}+40 \hat{k})$
C. $a=\frac{1}{105}(-41 \hat{i}+88 \hat{j}-40 \hat{k})$
D. $a=\frac{1}{105}(41 \hat{i}-88 \hat{j}-40 \hat{k})$

## Answer: D

## - Watch Video Solution

64. Let $\vec{a}=\hat{i}$ be a vector which makes an angle of $120^{\circ}$ with a unit vector $\vec{b}$ in XY plane. then the unit vector $(\vec{a}+\vec{b})$ is
A. $-\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2} \hat{j}$
B. $-\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}$
C. $\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2} \hat{j}$
D. $\frac{\sqrt{3}}{2} \hat{i}-\frac{1}{2} \hat{j}$

## Answer: C

## - Watch Video Solution

65. 

Given
three
vectors
$\vec{a}=6 \hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-6 \hat{j}$ and $\vec{c}=-2 \hat{i}+21 \hat{j} \quad$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\overrightarrow{~ T h e n ~ t h e ~ r e s o l u t i o n ~ o f ~ t h e ~ v e c t o r ~} \vec{\alpha}$ into components with respect to $\vec{a}$ and $\vec{b}$ is given by a. $3 \vec{a}-2 \vec{b}$ b. $3 \vec{b}-2 \vec{a}$ c. $2 \vec{a}-3 \vec{b}$ d. $\vec{a}-2 \vec{b}$
A. $3 \mathrm{a}-2 \mathrm{~b}$
B. $3 \mathrm{~b}-2 \mathrm{a}$
C. $2 \mathrm{a}-3 \mathrm{~b}$
D. $a-2 b$

## Answer: C

66. ' $I$ ' is the incentre of triangle $A B C$ whose corresponding sides are $a, b, c$, rspectively. $a \vec{I} A+b \vec{I} B+c \vec{I} C$ is always equal to (a). $\overrightarrow{0}$ (b).
$(a+b+c) \vec{B} C$ (c). $(\vec{a}+\vec{b}+\vec{c}) \vec{A} C$ (d). $(a+b+c) \vec{A} B$
A. 0
B. $(a+b+c) B C$
C. $(a+b+c) A C$
D. $(a+b+c) A B$

## Answer: A

## - Watch Video Solution

67. If $\vec{x}$ and $\vec{y}$ are two non-collinear vectors and ABC is a triangle with
side lengths a, b and c satisfying
$(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} \times \vec{y})=\overrightarrow{0}, \quad$ then triangle $A B C$ is
A. an acute angled triangle
B. an obtuse angled triangle
C. a right angled triangle
D. a scalane triangle

## Answer: C

## - Watch Video Solution

68. If $\vec{x}$ and $\vec{y}$ are two non-collinear vectors and $\mathrm{a}, \mathrm{b}$, and c represent the sides of a satisfying $(a-b) \vec{x}+(b-c) \vec{y}+(c-a)(\vec{x} \times \vec{y})=0$, then $A B C$ is (where $\overrightarrow{\times} x \vec{y}$ is perpendicular to the plane of $x a n d y$ ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle
A. an acute angled triangle
B. ann obtuse angled triangle
C. a right angled triangle
D. a scalene triangle

## Answer: A

## - Watch Video Solution

69. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.
A. $P \sqrt{2}$
B. $P$
C. $P \sqrt{3}$
D. none of these

## Answer: A

## - Watch Video Solution

70. If $\vec{b}$ is a vector whose initial point divides the join of $5 \hat{i}$ and $5 \hat{j}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, then, $k$ lies in the interval
a. $[-6,-1 / 6]$
b. $(-\infty,-6] \cup[-1 / 6, \infty)$
c. $[0,6]$
d. none of these

## - Watch Video Solution

71. If $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $2 \hat{i}+5 \hat{j}+7 \hat{k}$ are the position vectors of the vertices $A, B$ and $C$, respectively, of triangle $A B C$, then the position vector of the point where the bisector of angle $A$ meets $B C$ is
A. $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})$
B. $\frac{2}{3}(6 \hat{i}+12 \hat{j}-8 \hat{k})$
C. $\frac{1}{3}(-6 \hat{i}-8 \hat{j}-9 \hat{k})$
D. $\frac{2}{3}(-6 \hat{i}-12 \hat{j}+8 \hat{k})$

## Answer: A

## - Watch Video Solution

72. If $\vec{a}$ and $\vec{b}$ are two unit vectors and $\theta$ is the angle between them, then the unit vector along the angular bisector of $\vec{a}$ and $\vec{b}$ will be given by
A. $\frac{a-b}{2 \cos (\theta / 2)}$
B. $\frac{a+b}{2 \cos (\theta / 2)}$
C. $\frac{a-b}{\cos (\theta / 2)}$
D. none of these

## D Watch Video Solution

73. A, B, C and D have position vectors $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$, repectively, such that $\vec{a}-\vec{b}=2(\vec{d}-\vec{c})$. Then
A. AB and CD bisect each other
B. BD and AC bisect each other
C. $A B$ and $C D$ trisect each other
D. BD and AC trisect each other

## Answer: D

## - Watch Video Solution

74. On the xy plane where O is the origin, given points, $A(1,0), B(0,1)$ and $C(1,1)$. Let $P, Q$, and $R$ be moving points on the
line
$\overline{O P}=45 t \overline{(O A)}, \overline{O Q}=60 t \overline{(O B)}, \overline{O R}=(1-t) \overline{(O C)}$ with $t>0$. If the three points $P, Q$ and $R$ are collinear then the value of $t$ is equal to

A $\frac{1}{106}$
B $\frac{7}{187}$
C $\frac{1}{100}$
D none of these
A. $\frac{1}{106}$
B. $\frac{7}{187}$
C. $\frac{1}{100}$
D. none of these

## Answer: B

## - Watch Video Solution

75. If $a+b+c=\alpha d, b+c+d=\beta a$ and $a, b, c$ are non-coplanar, then the sum of $a+b+c+d=$
A. 0
B. $\alpha a$
C. $\beta b$
D. $(\alpha+\beta) c$

## Answer: A

## - View Text Solution

76. The position vectors of the points $P$ and $Q$ with respect to the origin $O$ are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-2 \hat{k}$, respectively. If $M$ is a point on PQ , such that OM is the bisector of POQ , then $\overrightarrow{O M}$ is
A. $2(\hat{i}-\hat{j}+\hat{k})$
B. $2 \hat{i}+\hat{j}-2 \hat{k}$
C. $2(-\hat{i}+\hat{j}-\hat{k})$
D. $2(\hat{i}+\hat{j}+\hat{k})$

## Answer: B

## - Watch Video Solution

77. $A B C D$ is a quadrilateral. $E$ is the point of intersection of the line joining the midpoints of the opposite sides. If $O$ is any point and $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=x \vec{O} E$, thenx is equal to a. 3 b. 9 c. 7 d .4
A. 3
B. 9
C. 7
D. 4

Answer: D
78. In the $\triangle O A B, \mathrm{M}$ is the midpoint of $\mathrm{AB}, \mathrm{C}$ is a point on OM , such that $2 O C=C M . \mathrm{X}$ is a point on the side OB such that $\mathrm{OX}=2 \mathrm{XB}$. The line XC is produced to meet OA in Y . Then $\frac{O Y}{Y A}=$
A. $\frac{1}{3}$
B. $\frac{2}{7}$
C. $\frac{3}{2}$
D. $\frac{2}{5}$

## Answer: B

## - Watch Video Solution

79. Points $X$ and $Y$ are taken on the sides $Q R$ and RS, respectively of a parallelogram $P Q R S$, so that $Q X=4 X R$ and $R Y=4 Y S$. The line $X Y$ cuts the line PR at Z. Then, PZ is
A. $\frac{21}{25} P R$
B. $\frac{16}{25} P R$
C. $\frac{17}{25} P R$
D. none of these

## Answer: A

## - Watch Video Solution

80. Find the value of $\lambda$ so that the points $P, Q, R$ and $S$ on the sides $O A$, $O B, O C$ and $A B$, respectively, of a regular tetrahedron $O A B C$ are coplanar. It is given that $\frac{O P}{O A}=\frac{1}{3}, \frac{O Q}{O B}=\frac{1}{2}, \frac{O R}{O C}=\frac{1}{3}$ and $\frac{O S}{A B}=\lambda$.
A. $\lambda=\frac{1}{2}$
B. $\lambda=-1$
C. $\lambda=0$
D. fo no value of $\lambda$

## Answer: B

81. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. $O$ being the origin and OA taken along the $x$-axis. A point $P$ is taken on a line parallel to the $z$-axis through the centre of the hexagon at a distance of 3 units from $\mathbf{O}$ in the positive $\mathbf{Z}$ direction. Then find vector $\overrightarrow{A P}$.
A. $-\hat{i}+3 \hat{j}+\sqrt{5} \hat{k}$
B. $\hat{i}-\sqrt{3} \hat{j}+5 \hat{k}$
C. $-\hat{i}+\sqrt{3} \hat{j}+\sqrt{5} \hat{k}$
D. $\hat{i}+\sqrt{3} \hat{j}+\sqrt{5} \hat{k}$

## Answer: C

## - Watch Video Solution

1. Find $\frac{d y}{d x}$ if $y=\frac{1}{2}-x^{4}$

## - Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and $\vec{a}$ form a triangle then $\vec{a}$ may be (A)
$-\hat{i}-\hat{k}$ (B) $\hat{i}-2 \hat{j}-\hat{k}$ (C) $2 \hat{i}+\hat{j}+\hat{j} k$ (D) hati+hatk
A. $-\hat{i}-\hat{k}$
B. $\hat{i}-2 \hat{j}-\hat{k}$
C. $2 \hat{j}+\hat{j}+\hat{k}$
D. $\hat{i}+\hat{k}$

## Answer: A::B::D

2. 

$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a particle has a magnitude equal to 5 units, then the value of $p$ is
A. -6
B. -4
C. 2
D. 4

Answer: B::C

## - Watch Video Solution

3. Let ABC be a triangle, the position vectors of whose vertices are
$7 \hat{j}+10 \hat{k},-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$. Then $\triangle A B C$ is
A. isosceles
B. equilateral
C. right angled
D. none of these

## Answer: A:C

## - Watch Video Solution

4. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is
A. $\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})$
B. $\frac{1}{7}(3 \hat{i}-6 \hat{j}-2 \hat{k})$
C. $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}+8 \hat{k})$
D. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$

Answer: A: D
5. If $A(-4,0,3)$ and $B(14,2,-5)$, then which one of the following points lie on the bisector of the angle between $\overrightarrow{O A}$ and $\overrightarrow{O B}$ ( 0 is the origin of reference) ?
A. $(2,2,4)$
B. $(2,11,5)$
C. $(-3,-3,-6)$
D. $(1,1,2)$

## Answer: A::C::D

## - Watch Video Solution

6. If points $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $p \hat{i}+q \hat{j}+r \hat{k}$ are collinear, then
A. $p=1$
B. $r=0$
C. $q \in R$
D. $q \neq 1$

Answer: A: B::D

## - Watch Video Solution

7. If $\vec{a}, \vec{b}$ and $\rightarrow$ are non-coplanar vectors and $\lambda$ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when
A. $\mu \in R$
B. $\lambda=\frac{1}{2}$
C. $\lambda=0$
D. no value of $\lambda$

Answer: A::B::C::D

## - Watch Video Solution

1. Statement 1 : In $\triangle A B C, \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$

Statement 2 : If $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$, then $\overrightarrow{A B}=\vec{a}+\vec{b}$
A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: C

## - Watch Video Solution

2. Statement I: $a=\hat{i}+p \hat{j}+2 \hat{k}$ and $b=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors, iff $p=\frac{3}{2}$ and $q=4$.

Statement II: $a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $b=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.
A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: A

## Watch Video Solution

3. Statement 1: if three points $P, Q a n d R$ have position vectors $\vec{a}, \vec{b}$, and $\vec{c}$, respectively, and $2 \vec{a}+3 \vec{b}-5 \vec{c}=0$, then the points $P, Q$, andR must be collinear. Statement 2: If for three points $A, B$, and $C, \vec{A} B=\lambda \vec{A} C$, then points $A, B$, and $C$ must be collinear.
A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I
B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

## Answer: A

## - Watch Video Solution

Exercise Passage Based Questions

1. Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides OD and AB are parallel. Also, $\mathrm{OA}: C B=2: 1$ and $\mathrm{OD}: \mathrm{AB}=1: 3$.

Q. The ratio $\frac{A X}{X D}$ is
A. $3 / 4$
B. $1 / 3$
C. $2 / 5$
D. $1 / 2$

Answer: C
2. Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides $O D$ and $A B$ are parallel as shown in figure. Also, $O A: C B=2: 1$ and $O D: A B=1: 3$. if the diagonals $O C$ and $A D$ meet at $x$, find $O X: O C$.
A. $5 / 2$
B. 6
C. $7 / / 3^{`}$
D. 4

Answer: B

## - Watch Video Solution

3. If $A B C D E F$ is a regular hexagon then $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}$ equals :
A. (a) 2 AB
B. (b) 3 AB
C. (c) 4 AB
D. (d)none of these

Answer: C

Watch Video Solution
4. Consider the regular hexagon ABCDEF with centre at $\mathbf{O}$ (origin).
Q. Five forces $A B, A C, A D, A E, A F$ act at the vertex $A$ of a regular hexagon ABCDEF. Then, their resultant is (a)3AO (b)2AO (c)4AO (d)6AO
A. 3AO
B. 2 AO
C. 4AO
D. 6AO

## Answer: D

## - Watch Video Solution

5. Three points $A, B$, and $C$ have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?

Which of the following is true?
A. $A C=2 A B$
B. $A C=-3 A B$
C. $A C=3 A B$
D. none of these

Answer: C

## - Watch Video Solution

6. Three points $A, B$, and $C$ have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?

Which of the following is true?
A. $20 A-3 O B+O C=0$
B. $20 A+70 B+90 C=0$
C. $O A+O B+O C=0$
D. none of these

## Answer: A

## - Watch Video Solution

7. Three points $A, B$, and $C$ have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?
$B$ divided $A C$ in ratio
A. $2: 1$
B. 2: 3
C. 2: -3
D. 1:2

## Answer: D

## - Watch Video Solution

8. If two vectors $O A$ and $O B$ are there, then their resultant $O A+O B$ can be found by completing the parallelogram OACB and OC=OA+OB. Also, if $|O A|=|O B|$, then the resultant will bisect the angle between them.
Q. A vector C directed along internal bisector of angle between vectors
$A=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $B=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|C|=5 \sqrt{6}$ is
A. $\frac{5}{3}(\hat{i}-\hat{j}+\hat{k})$
B. $\frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$
C. $\frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k})$
D. $\frac{5}{3}(-5 \hat{i}+5 \hat{j}+3 \hat{k})$

## Answer: B

9. Find $\frac{d y}{d x}$ if $2 x-3 y=\sin x$

## - Watch Video Solution

10. Let $C: \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ be a differentiable curve i.e., $\exists \lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h} \forall t$
$\therefore \vec{r}{ }^{\prime}(t)=x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}+z^{\prime}(t) \hat{k}$
$\vec{r}^{\prime}(t)$ is tangent to the curve $C$ at the point $P[x(t), y(t), z(t)], \vec{r}^{\prime}(t)$ points in the direction of increasing $t$.

The point $P$ on the curve $\vec{r}(t)=(1-2 t) \hat{i}+t^{2} \hat{j}+2 e^{2(t-1)} \hat{k}$ at which the tangent vector $\vec{r}{ }^{\prime}(t)$ is parallel to the radius vector $\vec{r}(t)$ is:
A. (a) ( $-1,1,2)$
B. (b) $(1,-1,2)$
C. (c) ( $-1,1,-2)$
D. (d) $(1,1,2)$
11. Let $C$ : $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ be a differentiable curve, i.e.
$\exists \lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h} \forall t$
$\therefore \vec{r}{ }^{\prime}(t)=x^{\prime}(t) \hat{i}+y^{\prime}(t) \hat{j}+z^{\prime}(t) \hat{k}$
$\vec{r}^{\prime}(t)$ is tangent to the curve $C$ at the point $P[x(t), y(t), z(t)]$ and points in the direction of increasing $t$.

The tangent vector to $\vec{r}(t)=\left(2 t^{2}\right) \hat{i}+(1-t) \hat{j}+\left(3 t^{2}+2\right) \hat{k}$ at $(2,0,5)$ is:
A. (a) $4 \hat{i}+\hat{j}-6 \hat{k}$
B. (b) $4 \hat{i}-\hat{j}+6 \hat{k}$
C. (c) $2 \hat{i}-\hat{j}+6 \hat{k}$
D. (d) $2 \hat{i}+\hat{j}-6 \hat{k}$

## Answer: B

1. $a$ and $b$ form the consecutive sides of $a$ regular hexagon ABCDEF.

Column I
a. If $\mathbf{C D}=x \mathbf{a}+y \mathbf{b}$, then
p. $x=-2$
b. If $\mathbf{C E}=x \mathbf{a}+y \mathbf{b}$, then
q. $x=-1$
c. If $\mathbf{A E}=x \mathbf{a}+y \mathbf{b}$, then
r. $y=1$
d. If $\mathbf{A D}=-x \mathbf{b}$, then
s. $y=2$

## - Watch Video Solution

## Exercise Single Integer Answer Type Questions

1. If $\quad$ the $\quad$ resultant of $\quad$ three $\quad$ forces
$\vec{F}_{1}=p \hat{i}-3 \hat{j}-\hat{k}, \vec{F}_{2}=-5 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{F}_{3}=6 \hat{i}-\hat{k}$ acting on a particle has a magnitude equal to 5 units, then what is difference in the values of $p$ ?
2. Vectors along the adjacent sides of parallelogram are $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$. Find the length of the longer diagonal of the parallelogram.

## - Watch Video Solution

3. If vectors $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+2 \hat{k}$ are coplanar, then find the value of $(\lambda-4)$.

## - Watch Video Solution

4. If determinant of $A=5$ and $A$ is a square matrix of order 3 then find the determinant of $\operatorname{adj}(A)$

## - Watch Video Solution

5. Let $p$ be the position vector of orthocentre and $g$ is the position vector of the centroid of $\triangle A B C$, where circumcentre is the origin. If $p=k g$, then the value of $k$ is

## - Watch Video Solution

6. In a $\triangle A B C$, a line is drawn passing through centroid dividing $\mathbf{A B}$ internaly in ratio 2:1 and AC in $\lambda: 1$ (internally). The value of $\lambda$ is

## - Watch Video Solution

7. The vector $\vec{a}$ has the components $2 p$ and 1 w.r.t. a rectangular

Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, $\vec{a}$ has components $(p+1)$ and 1 , then $p$ is equal to $\mathbf{a} . ~-4 \mathbf{b} .-1 / 3 \mathbf{c} .1 \mathbf{d}$.

1. A vector $a$ has components $a_{1}, a_{2}, a_{3}$ in a right handed rectangular cartesian coordinate system $O X Y Z$ the coordinate axis is rotated about $z$ axis through an angle $\frac{\pi}{2}$. The components of $a$ in the new system

## - Watch Video Solution

2. Find the magnitude and direction of $r_{1}-r_{2}$ when $\left|r_{1}\right|=5$ and points North-East while $\left|r_{2}\right|=5$ but points North-West.

## - Watch Video Solution

3. Let $O A C B$ be a parallelogram with $O$ at the origin and $O C$ a diagonal.

Let $D$ be the midpoint of $O A$. using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.
4. $\triangle A B C$ is a triangle with the point P on side BC such that $3 \mathrm{BP}=2 \mathrm{PC}$, the point $Q$ is on the line CA such that $4 C Q=Q A$. Find the ratio in which the line joining the common point $R$ of $A P$ and $B Q$ and the point $S$ divides $A B$.

## - View Text Solution

5. In $\triangle A B C$ internal angle bisector $\mathrm{Al}, \mathrm{Bl}$ and CI are produced to meet opposite sides in $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Prove that the maximum value of $\frac{A I \times B I \times C I}{A A^{\prime} \times B B^{\prime} \times C C^{\prime}}$ is $\frac{8}{27}$

## - Watch Video Solution

6. Let $r_{1}, r_{2}, r_{3}, \ldots, r_{n}$ be the position vectors of points $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$ relative to an origin $\mathbf{O}$. show that if then a similar equation will also hold good with respect to any other origin O'. If $a_{1}+a_{2}+a_{3}+\ldots+a_{n}=0$.
7. Let $O A B C D$ be a pentagon in which the sides $O A$ and $C B$ are parallel and the sides $O D$ and $A B$ are parallel as shown in figure. Also, $O A: C B=2: 1$ and $O D: A B=1: 3$. if the diagonals $O C$ and $A D$ meet at $x$, find $O X: X C$.

## - Watch Video Solution

8. If $u, v$ and $w$ is a linearly independent system of vectors, examine the system $\quad \mathbf{p}, \mathbf{q} \quad$ and $\quad \mathbf{r}$, where $\quad p=(\cos a) u+(\cos b) v+(\cos c) w$ $q=(\sin a) u+(\sin b) v+(\sin c) w$ $r=\sin (x+a) u+\sin (x+b) v+\sin (x+c) w$ for linearly dependent.

## - Watch Video Solution

## Exercise Questions Asked In Previous 13 Years Exam

1. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{45}$

## Answer: C

## - Watch Video Solution

2. Let $\mathrm{a}, \mathrm{b}$ and c be three non-zero vectors which are pairwise noncollinear. If $a+3 b$ is collinear with $c$ and $b+2 c$ is collinear with $a$, then $a+3 b+6 c$ is
A. a+c
B. a
C. $c$
D. 0

## Answer: D

## - Watch Video Solution

3. The non-zero vectors $a, b$ and $c$ are related $b y a=8 b$ and $c=7 b$ angle between a and c is
A. $\pi$
B. 0
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: A
4. If $C$ is the mid-point of $A B$ and $P$ is any point outside $A B$, then
A. $P A+P B+P C=0$
B. $P A+P B+2 P C=0$
C. $P A+P B=P C$
D. $P A+P B=2 P C$

## Answer: D

## - View Text Solution

5. If $\mathrm{a}, \mathrm{b}$ and c are three non-zero vectors such that no two of these are collinear. If the vector $a+2 b$ is collinear with $c$ and $b+3 c$ is collinear with $a($
$\lambda$ being some non-zero scalar), then $a+2 b+6 c$ is equal to
A. $\lambda a$
B. $\lambda b$
C. $\lambda c$
D. 0

## Answer: D

## - View Text Solution

6. If $\vec{a}, \vec{b}$ and $\rightarrow$ are non-coplanar vectors and $\lambda$ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when
A. all value of $\lambda$
B. all except one value of $\lambda$
C. all except two value of $\lambda$
D. no value of $\lambda$

## Answer: C

7. Consider points $A, B, C$ annd $D$ with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k},-1 \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$, respectively. Then, ABCD is
A. square
B. rhombus
C. rectangle
D. none of these

Answer: D

## - Watch Video Solution

8. If $a, b$, and $c$ are all different and if
$\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$ Prove that $\mathbf{a b c}=-1$.
A. 2
B. -1
C. 1
D. 0

## Answer: B

## - Watch Video Solution

9. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle $\theta$ and doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then value of $x$ are $-\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 2
A. $\left\{-\frac{2}{3}, 2\right\}$
B. $\left(\frac{1}{3}, 2\right)$
C. $\left\{\frac{2}{3}, 0\right\}$
D. $\{2,7\}$
