

MATHS

BOOKS - PATHFINDER MATHS (BENGALI ENGLISH)

RELATIONS, FUNCTIONS AND BINARY OPERATIONS

Question Bank

1. If A = {1,3,5,7}, B ={2,5}, find the number of

relations from A to B

Watch Video Solution

2. Let R be the relation on Z defined by R = $ig\{(a,b),a,b\in Z,a^2=b^2ig\}$ Find R

3. Let R be the relation on Z defined by R = $ig\{(a,b),a,b\in Z,a^2=b^2ig\}$ Find Domain of R

Watch Video Solution

4. Let R be the relation on Z defined by R =

 $ig\{(a,b),a,b\in Z,a^2=b^2ig\}$ Find Range of R.

5. Consider the relation \perp (perpendicular) on a set L of lines in plane. Show that this relation is symmetric and neither reflexive nor transitive.

6. Test whether the following relation is reflexive, symmetric, transitive, R_3 on R defined by (a,b) $\in R_3 \Leftrightarrow a^2 - 4ab + 3b^2 = 0.$

Watch Video Solution

7. Let R be the relation of congruency on the set

A of all triangles in a plane. Show that the

relation Ris an equivalence relation .

Watch Video Solution

8. Let m be fixed positive integer. Tow integers a amd are said to be congruent modulo m, written a=b (modm) if m divides a- b .Show that the relation of congruent modulo m is an equivalence relation .

9. Show that the number of equivalence relation

on the set (1,2,3) containing (1,2) and (2,1) is tow

Watch Video Solution

10. Let A={1,2,3....,19,20}. Let R be the equivalence

relation on $A \times A$ defined by (a,b) R(c,d) iff ad =

bc .Find the equivalence classes of (1,3)and (4,1).

11. Let f:R o R be defined as $egin{cases} 2x & +1 & x\leq 4\ X & + & 4x\geq 4 \end{cases}$ Show that f is not a function .

Watch Video Solution

12. Whether the following function are to :

$$R o R_+$$
 defined by f $f(x) = \sqrt{x}^2, x \in R$

13. Let A be a finite set. If $f\!:\!A o A$ is onto

show that f is one- one.

> Watch Video Solution

14. Let $f: R \to R$ be a function defined by $f(x)=\cos(2x+3)$. Show that this function is neither

one- one nor onto.

15. Let $f(x) = rac{ax}{x-1}, x
eq -1$.lf 10f(x)=x, find

the value of a.

> Watch Video Solution

16. Let f be function defined on [0,1] defined by: $f(x)=\{(x, ext{ if }, x, ext{ }\in, q), (1-x, ext{ if }, x
eq q)
angle$.Show that 10f(x)=x for $x\in [0,1].$

17. Find the domain and range of the following

function :
$$\sqrt{(x-1)(3-x)}$$

Watch Video Solution

18. If
$$f(x)=\sqrt{8x},$$
 $g(x)=x+2$, then

Watch Video Solution

19. Let A=[-1,1] and f:A o A be a function defined by f(x) =x|x|. Show that f is a rejection .

20. Show that the function f:N o N defined by

f(x)= $x^2 + x + 1 \in N$ is not invertible.

21. Let y= $ig\{n^2:n\in Nig\}$ subeN. consider f:

N
ightarrow Yas f(n)= n_2 . Show that is invertible. Find

the inverse of f.

22. Let f :R R- $\left\{\frac{3}{5}\right\} \rightarrow R - \left\{\frac{2}{5}\right\}$ be a function defined as f (x)= $\frac{2x}{5x+3}$. Find the inverse of the

function f.

23. Let A= $\left\{a + \sqrt{5}b : a, b \in Z\right\}$. Show that usual multiplication of numbers is binary operation on A

24. Let be binary operation on the set R defined by a*b = a+b+ab, a, $b \in R$. solve equation :2* (2*x)=7

Watch Video Solution

25. Number of binary opertions on the set $\{a, b\}$ are

26. Let * be a binary operation on N defined by $a*b=2^{5ab}, ab \in N.$ Discuss the commutativity if this binary operation.

27. Let A=N x N and *be a binary operation on A

defined by (a,b)*(c,d) =(a+c,b+d).Show(A*) has on

identity element.

28. Let * be a binary operation on Zdefined by a*b=a+b- 15 for $a, b \in Z$.Show that *is associative

Watch Video Solution

29. Let * be a binary operation on Zdefined by a*b=a+b- 15 for $a, b \in Z$. Show that *is

commutative

30. Let * be a binary operation on Zdefined by a*b=a+b- 15 for $a, b \in Z$. Find the identity element in (Z,*)

Watch Video Solution

31. Let * be a binary operation on Zdefined by a*b=a+b-15 for $a, b \in Z$ Find the inverse of an element in (Z ,*).

32. Let A= Q imes Q. Let * be a binary operation

Defined by: (a,b)*(c,d)= (ac,ad +b). Then

(i) find the identity element of (A,*)

Watch Video Solution

33. Let A= $Q \times Q$. Let * be a binary operation

Adifined by: (a,b)*(c,d)= (ac,ad +b). Then

find the invertible elements of (A,*)