©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY ENGLISH

MAGNETISM AND MATTER

Example

1. Consider a sort magnetic dipole o f magnetic length 10 cm . Find its geometric length.
2. A thin bar magnet of length 2 L is bent at the mid-point so that the angle between them is 60°. The new length of the magnet is

- Watch Video Solution

3. A steel wire, of length I has a magnetic moment M . Its is then bent into a semi-circular arc. The new magnetic moment is
4. Two magnetic poles, one of the which is four times stronger than the other, exert a force of 10gf on each other when placed at a distance of 20 cm . Find the strength of each pole.

- Watch Video Solution

5. Two similar magnetic poles, having pole strengths in the ration 1:3 and placed 1 m apart. Find the point where a unit pole
experiences no net force due to these two poles

D Watch Video Solution

6. Find the magnetic field due to a dipole of magnetic moment $3 A m^{2}$ at a point 5 m away from it in the direction making angle of 45° with the dipole exists
7. A bar magnet of length 0.1 m has pole strength of 50A-m. Calculate the magnetic field at distance of 0.2 m from tis centre on
(i) its axial line and (ii) it equatorial line.

D Watch Video Solution

8. Calculate the magnetic induction at a point

1 away from a proton, measured along its axis
of spin. The magnetic moment of the proton is
$1.4 \times 10^{-26} A-m^{2}$
9. A short bar magnet has a magnetic moment
of $0 \cdot 48 J T^{-1}$. Give the direction and magnitude of the magnetic field produced by the magnet at a distance of 10 cm from the centre of the magnet on (i) the axis (ii) the equatorial line (normal bisector) of the magnet.

D
 Watch Video Solution

10. A current of 6 A is flowing through a 20 turns circular coil of radius 5 cm . The coil lies in
the $x y$-plane. What is the magnitude and direction of the magneitc dipole moment assocaited with it?

D Watch Video Solution

11. A current I flows in a conducting wire of lenth L. If we bent it in a circular form, then calculate its magnetic dipole moment.
12. The electron in hydrogen atom moves with
a speed of $2.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius
$5.3 \times 10^{-11} \mathrm{~cm}$. Find the magnetic moment of
the orbiting electron.

D Watch Video Solution

13. A closely wound solenoid of 800 turns and area of cross section $2 \cdot 5 \times 10^{-4} m^{2}$ carries a current of $3 \cdot 0 A$. Explain the sense in which
the solenoid acts like a bar magnet. What is its associated magnetic moment?

- Watch Video Solution

14. A magnetic of magnetic moment placed along the X-axis in an magnet field .Find the torque acting on the magnetic field

- Watch Video Solution

15. A bar magnet when placed at an angle of
30° to the direction of magnetic field of $5 \times 10^{-2} \mathrm{~T}$, experiences a moment of couple 2.5×10^{-6}. If the length of the magnet is 5 cm , then what will be its pole strength?

D Watch Video Solution

16. The work done in turning a magnet of magnetic moment ' M ' by an angle of 90° from
the meridian is ' n ' times the corresponding
work done to turn it through an angle of 60°, where ' n ' is given by

D Watch Video Solution

17. A bar magnet of magnetic moment 2.0
$A-m^{2}$ is free to rotate about a vertical axis
through its centre. The magnet is released
from rest from the east west position. Find the kinetic energy of the magnet as it takes the north south position. The horizontal component of the earth's magnetic field as
$B=25 \mu T$. Earth's magnetic field is from south to north.

- Watch Video Solution

18. A short bar magnet of moment $0 \cdot 32 J T^{-1}$
is placed in a uniform external magnetic field
of $0 \cdot 15 T$, if the bar is free to rotate in the plane of the field, which orientations would correspond to its, (i) stable and (ii) unstable equilibrium? What is the potential energy of the magnet in each case?
19. Consider the situation shown in the diagram, where A small magnetised needle A is placed at a centre marked, as 0 . The direction of its mangetic moment Is indicated by arrow.

The other arrow show different position (and orientations of the magnetic moment) of antoher identical magnetised eedle X .

In which configuration the system is not in equlibrium?
(ii) In which configuration is the system in (a)
stable and (b) unsable equilibrium
(iii) Which configuration corresponds to the lowest potentials energy among all the configuration shown

X_{6}

- Watch Video Solution

20. A magnetic needle is free to oscillate in a uniform magnetic field as shown in the figure.

The magnetic moment of magnetic needle
7.2Am and moment of inertia
$I=6.5 \times 10^{-6} \mathrm{kgm}^{2}$. The number of
oscillation performed in 5s are 10. Calculate the magnitude of magnetic field?

- Watch Video Solution

21. A compass needle whose magnetic moment is $60 \mathrm{Am}^{2}$ pointing geographical north at a certain place where the horizontal component of earth's magnetic field is $40 \times 10^{-6} \mathrm{Wbm}^{-2}$ experiences a torque of $1.2 \times 10^{-3} \mathrm{Nm}$. The declination of the place is

D Watch Video Solution

22. In the magnetic meridian of a certain place,
the horizontal component of earth's magnetic
fied is $0.26 G$ and the dip angle is 60°. Find
a. Vertical component of earth's magnetic field
b. the net magnetic field at this place

- Watch Video Solution

23. The horizontal and veritical components of
eaths's field at a place ar 0.22 gauss of 0.38
gauss, respectively. Calculate the angle of dip and resultant intensity of earth's field.

- Watch Video Solution

24. A planet revolves around the sun in an elliptical orbit. The linear speed of the planet will be maximum at:

D Watch Video Solution

25. A magnetic needle suspended in a vertical plane at 30° from the magnetic meridian
makes an angle of 45° with the horizontal.

Find the true angle of dip.

D Watch Video Solution

26. A ship is to reach a place of 10° south of west. In which direction should it be steered if
the declination at the place is 18° west of north.
27. A dip circle shows an apparent dip of 45°
at a place where the true dip is 30°. If the dip circle is rotated through 90°, what apparent dip will it show?

- Watch Video Solution

28. A short magnet $\left(M=4 \times 10^{-2}\right)$ lying in
a horizontal plane with its north pole points
37° east of north. Find the net horizontal field
a ta point of the magnet of 0.1 m away from it

$$
\left(B_{h}=11 \mu T\right)\left(\sin 37^{\circ}=3 / 5, \cos 37^{\circ}=4 / 5\right)
$$

- Watch Video Solution

29. The earth's magnetic field at geomagnetic poles has a magnitude $8 \times 10^{-5} T$. Find the magnitude and the direction of the field at a point on the earth's surface where the radius makes an angle of 120° with its axis of the earth's assumed magnetic dipole. What is the
inclination dip at this point?

- Watch Video Solution

30. A bar magnet 30 cm long is placed in magnetic meridian with its north pole pointing south. The neutral point is observed at a distance of 30 cm from its centre.

Calculate the pole strength of the magnet.

Given horizontal component of earth's field is
$0 \cdot 34 G$.

D Watch Video Solution

31. A short bar magnet is placed with its north pole pointing north. The neutral point is 10 cm away from the centre of the magnet. If $H=0.4 G$, calculate the magnetic moment of the magnet.

D Watch Video Solution

32. In a tangent galvanometer, when a current of 10 mA is passed, the deflection is 31°. By what percentage, the current has to be increased, so at to produce a deflection of 42° ?

- Watch Video Solution

33. The coil of a tangent galvanometer of
radius 12 cm is having 200 turns. If the horizontal component of earth's magnetic
field is $25 \mu T$. Find the current which gives a deflection of 60°.

D Watch Video Solution

34. A bar magnet of length 5 cm , width 3 cm and height 2 cm takes 5 s to complete an oscillation in viberation magnetometer placed in a horizontal magnetic field of $20 \mu T$. The mass of this bar magnet is $250 \mathrm{~g}(\mathrm{a})$. Find the magnetic moment of the magnet. (b) If the magnet is put in the magnetormer with its
0.5 cm edge horizontal, what would be the new time period?

D Watch Video Solution

35. A magnetic needle performs 20 oscillations per minute in a horizontal plane. If the angle of dip be 30°, then how many oscillation per minute will this needle perform in vertical, north south plane and in vertical east -west plane?
36. A magnet performs 15 oscillations per minute in a horizontal plane, where angle of dip is 60° and earth is total field is 0.5G. At another place, where total field is 0.6 G , the magnet performs 20 Oscillation per minutes. What is the angle of dip at this place.

- Watch Video Solution

37. The time period of viberation of two magnets in sum position (magnets placed
with similar poles on one sides one above the other) is 3 s . When polarity of weaker magnet is reversed the combination makes 12 oscillations per minutes. What is the ratio of magnetic moments of two magnets?

- Watch Video Solution

38. A small bar magnet having a magnitic moment of $9 \times 10^{-3} \mathrm{Am}^{-2}$ is suspended at
its centre of gravity by a light torsionless string at a distance of $10^{-2} m$ vertically above
a long, straight horizontal wire carrying a current of 1.0A from east to west. Find the
frequency of oscillation of the magnet about its equilibrium position. The moment of inertia of the magnet is $6 \times 10^{-9} \mathrm{kgm}^{2}$.($\left.H=3 \times 10^{-5} T\right)$.

D Watch Video Solution

39. A thin rectangular magnet suspended freely has a period of oscillation equal to T.

Now it is broken into two equal halves (each
having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is T^{\prime}, then ratio $\frac{T^{\prime}}{T}$ is

D Watch Video Solution

40. The time period of the magnetic in an oscillation pmagnetometer in the earth magnetic field is 2 s . A short bar magnet is placed to the north of the magnetometer, at a separation 10 cm from the oscillation magnet,
with its north pole pointing towards north.
The time period beceomes half. Calculate the magnetic moment of this short magnet.

- Watch Video Solution

41. The magnetic moment of a magnet $(15 \mathrm{~cm} \times 2 \mathrm{~cm} \times 1 \mathrm{~cm}) i s 1.2 A-m^{2}$. Calculate
its intensity of magnetisation

D Watch Video Solution

42. Relative permeability of iron is 5500 , then
its magnetic susceptibility will be

D Watch Video Solution

43. The magnetic field of 20CGS units produces of a flux of 2400 CGS units in a bar of cross section $0.2 \mathrm{~cm}^{2}$ Calculate the (i) permeability and (ii) susceptibility of the bar.

- Watch Video Solution

44. A solenoid having 2000 turns/m has a core of a material with relative permeability 220 .

The area of core is $4 \mathrm{~cm}^{2}$ and carries a current of 5A. Calculate (a) Magnetic intensity (b)

Magneic field (c) Magnetisation (I) of the core Also calculate the pole strength developed.

D Watch Video Solution

45. The space within a current carrying solenoid is filled with magneisum having magnetic suscepitbiliy. $x=M_{g}=1.2 \times 10^{-5}$.

What will be the percentage increase in magnetic field?

D Watch Video Solution

46. Consider a bar magnet having pole strength 2A-m, magnetic length 4 cm and area of cros-section $1 \mathrm{~cm}^{2}$ Find
(I) the magnetisation I
(II) the magneic intensity H and
(III) the magnetic field at the centre of magnet

D Watch Video Solution

47. The magnetic susceptibility of a paramagnetic material at $-73^{\circ} \mathrm{Cis} 0.0075$, its
value at $-173^{\circ} \mathrm{C}$ will be

- Watch Video Solution

48. A solenoid having 5000 turns $/ \mathrm{m}$ carries a current of 2 A . An aluminium ring at temperature 300 K inside the solenoid provides the core, (a) If the magnetisation I is $2 \times 10^{-2} \frac{A}{m}$. Find the susceptibility of aluminium at 300 K (b) If temperature of the aluminium ring is 320 K , what will be the magnetisation?
49. The hysteresis loss for a specimen of iron
weighing 15 kg is equivalent at
$300 \mathrm{Jm}^{-3} \mathrm{cyc} \leq^{-1}$ Find the loss of energy
per hour at 25 cycle s^{-1}. Density of iron is $7500 \mathrm{kgm}^{-3}$

D Watch Video Solution

50. The coercive force for a certain permanent magnet is $4.0 \times 10^{4} \mathrm{Am}^{-1}$. This magnet is placed inside a long solenoid of 40 turns $/ \mathrm{cm}$
and a current is passed in the solenoid to demagnetize it completely. Find the current.

D Watch Video Solution

1. Magnetic length is
A. less than geometric length
B. equal to geometric length
C. greater than geometric length

D. none of these

Answer:

- Watch Video Solution

2. Magnetic lines of force due to a bar magnet
do not intersect because
A. a point is always has a single net magnetic field
B. the line is always diverge from a single point
C. the is always diverge froma single point
D. none of these

Answer:

D Watch Video Solution
3. SI unit of magnetic pole strength is
A. A-m
B. $A-m^{-1}$
C. $A-m^{-2}$
D. $A-m^{2}$

Answer:

D Watch Video Solution

4. A bar magnet of magnetic moment M_{1} is axially cut into two equal parts. If these two pieces are arranged perpendiucular to each
other, the resultant magnetic moment is M_{2}.
Then the vale of $\frac{M_{1}}{M_{2}}$ is
A. $\frac{1}{2 \sqrt{2}}$
B. 1
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer:

(Watch Video Solution
5. At a point on the right bisector of a magnetic dipole, the magnetic
A. potential varies as $1 / r^{2}$
B. potential is zero at all points on the
right bisector
C. field varies as r^{2}
D. field is perpendicular to the axis of dipole

Answer:

6. The ratio of the magnetic fields due to small
bar magnet in end position and on broad side position is (at equal distance from the magnet)
A. $1 / 4$
B. $1 / 2$
C. 1
D. 2

Answer:

D Watch Video Solution

7. Two solenoids acting as short bar magnets P and Q are arranged such that their centres are
on the X-axis and are separated by a large distance. The magnetic axes of P and Q are along X and Y-axes, respectively. At a point R, midway between their centres, if B is the magnitude of induction due to Q, then the
magnitude of total induction at R due to the magnitude is
A. 3B
B. \sqrt{B}
C. $\frac{\sqrt{5}}{2} B$
D. B

Answer:
(Watch Video Solution
8. The intensity of magnetic field due to an
isolated pole of strength m at a pont distant r
from it will be proportional to

> A. $\frac{m}{r^{2}}$
> B. $m r^{2}$
> C. $\frac{r^{2}}{m}$
> D. $\frac{m}{r}$

Answer:

D Watch Video Solution
9. A particle of charge q and mass m moves in a circular orbit of radius r with angular speed
ω. The ratio of the magnitude of its magnetic moment to that of its angular momentum depends on
A. $-\frac{q}{2 m}$
B. $\frac{q \omega r^{2}}{2}$
C. $\frac{q \omega}{2 m r^{2}}$
D. $\frac{q \omega r^{2}}{2 m}$
10. A bar magnet of magnetic moment \vec{M} is placed in a magnetic field of induction \vec{B}. The torque exerted on it is
A. $M \times B$
B. $-B . M$
C. M.B
D. $M+B$
11. The couple acting on a magnet of length

10 cm and pole strength $15 \mathrm{~A}-\mathrm{m}$, kept in a field of $B=2 \times 10^{-5}$, at an angle of 30° is

$$
\begin{aligned}
& \text { А. } 1.5 \times 10^{-5} N-m \\
& \text { B. } 1.5 \times 10^{-3} N-m \\
& \text { C. } 1.5 \times 10^{-2} N-m \\
& \text { D. } 1.5 \times 10^{-6} N-m
\end{aligned}
$$

12. A bar magnet is held at a right angle to a uniform magnetic field. The couple acting on the magnet is to be halved by rotating it from the position. The angle of rotation is
A. 60°
B. 45°
C. 30°
D. 75°

Answer:

D Watch Video Solution

13. If a bar magnet moment M is freely
suspended in a uniform magnetic field of
strength field of strength B, then the work done in rotating the magent through an angle θ is

$$
\text { A. } M B(1-\sin \theta)
$$

B. $M B \sin \theta$
C. $M B \cos \theta$
D. $M B(1-\cos \theta)$

Answer:

- Watch Video Solution

14. The effect due to uniform magnetic field on
a freely suspended magnetic needle is as follows
A. Both torque and net force are present
B. torque is present but no net force
C. Both torque and net force are absent
D. net force is presetn but not torque

Answer:

D Watch Video Solution

15. The net magnetic flux through any closed
surface, kept in a magnetic field is
A. zero
B. $\frac{\mu_{0}}{4 \pi}$
C. $4 \pi \mu_{0}$
D. $\frac{4 \mu_{0}}{\pi}$

Answer:

D Watch Video Solution

52

1. The earth's magnetic field is
A. $10^{-4} T$
B. $10^{-5} T$
C. $10^{-6} T$
D. None of these

Answer:

D Watch Video Solution

2. Magentic meridian is a
A. point

B. horizontal plane

C. veritcal plane
D. line along N-S

Answer:

D Watch Video Solution

3. The angle between the magnetic merdian and geographical merdian is called
A. angle of dip

B. angle of declination

C. magnetic moment
D. power of magnetic field

Answer:

D Watch Video Solution
4. The angle of dip at the magnetic equator is
A. 0°
B. 30°
C. 60°
D. 90°

Answer:

- Watch Video Solution

5. Earth's magnetic field always has a horizontal component except at
A. magnetic equator
B. magnetic pole
C. geographical north pole
D. everywhere

Answer:

D Watch Video Solution

6. If $H=\frac{1}{\sqrt{3}} V$, then find angle of dip. (where

symbols have their usual meaning)
A. 60°
B. 30°
C. 45°
D. 90°

Answer:

- Watch Video Solution

7. Let V and H be the vertical and horizontal

components of earth's magnetic field at any point on earth. Near the north pole
A. $V \gg H$
B. $V \ll H$
C. $V=H$
D. V-H-O

Answer:

D Watch Video Solution

8. If a magnet is suspended an angle 30° to
the magnetic field at any point on eath. Near the north pole.
A. $\tan ^{-1}(\sqrt{3} / 2)$
B. $\tan ^{-1}(\sqrt{3})$
C. $\left(\tan ^{-1}\right) \frac{3}{\sqrt{2}}$
D. $\left(\tan ^{-1}\right) \frac{2}{\sqrt{3}}$

Answer:

D Watch Video Solution

9. The dip at a place is delta. For measuring it,
the axis of the dip needle is perpendicular to
the magnetic meridian. If the axis of the dip
needle makes angle θ with the magnetic meridian, the apparent dip will be given $\tan \delta_{1}$ which is equal to:
A. $\tan \delta \operatorname{cosec} \theta$
B. $\tan \delta \sin \theta$
C. $\tan \delta \cos \theta$
D. $\tan \delta \sec \theta$

Answer:

D Watch Video Solution
10. At a neutral point
A. field of magnet is zero
B. field of earth is zero
C. field of magnetic is perpendicular to field
to earth
D. none of the above

Answer:

D Watch Video Solution

11. TANGENT GALVANOMETER

A. capacitance
B. current
C. resistance

D. potential difference

Answer:

12. Two tangent galvanometer A and B are identical except in their number of turns. They are connected in series. On passing a current through them, deflections of 60° and 30° are produced. The ration of the number of turns in A and B is
A. $1: 3$
B. $3: 1$
C. 1:2
D. $2: 1$

Answer:

- Watch Video Solution

13. Vibration magnetometer is used for comparing
A. magnetic fields
B. earth's field
C. magnetic moment
D. All of these

Answer:

D Watch Video Solution

14. The time period of a freely suspended bar magnet in a field is 2 s . It is cut into two equal parts along its axis, then the time period is
A. 4 s
B. 0.5 s
C. 2s
D. 0.25 s

Answer:

D Watch Video Solution

15. A bar magnet suspended freely in a uniform magnetic field is vibrating with a time period of 3 s . If the field strength is increased to 4 times of the earlier field strength, then the time period (in second) will be
A. 12
B. 6

C. 1.5

D. 0.75

Answer:

(Watch Video Solution

53

1. Which one of the following is a nonmagneticsubstance?
A. Iron
B. Nickel

C. Cobalt

D. Brass

Answer: D

D Watch Video Solution

2. What is the SI unit of permeability

A. $A m^{-1}$
B. A-m
C. Henrym $^{-1}$
D. No unit, it is a dimensionless number

Answer: C

D Watch Video Solution

3. The unit of magnetic susceptiblity is

A. H
B. Wb / m

C. A/m

D. None of these

Answer: D

- Watch Video Solution

4. The relation connecting B, H nad I in SI
system is
A. $\mathrm{B}=\mathrm{H}+1$
B. $\mathrm{B}=\mathrm{H}-1$

$$
\text { C. } B=\mu_{0}(H+1)
$$

$$
\text { D. } b=\mu_{0}(H-I)
$$

Answer: C

D Watch Video Solution

5. An example of a diamagnetic substance is
A. aluminium copper
B. copper
C. iron

D. nickel

Answer: B

- Watch Video Solution

6. Out of dia, para and ferromagnetism, the
universal property of all substances is
A. diamagnetism
B. ferro magnesium
C. paramagnetic

D. all of these

Answer: A

D Watch Video Solution

7. The magnetic susceptibility is negative for

A. diamagnetism materials
B. Paramagnetic materials
C. Ferromagnetic materials

D. all of these

D Watch Video Solution

8. Identify the paramagnetic substance

A. Iron
B. Aluminium
C. Nickel
D. Hudrogen

9. Which of the following is true?

A. Diamagnetism
 is
 temperature

dependent

B. Paramagnetism
is temperature

dependnt
C. Paramagnetism is magnetic independent
D. None of these

- Watch Video Solution

10. Magenetic permeability is maximum for
A. diamagnetic substance
B. paramagnetic substance
C. inversion temperature
D. all of these
11. Temperature above which a ferromagnetic substance becomes paremagnetic is called
A. neutral temperature
B. Curie temperature
C. inversion temperature

D. critical temperature

Answer: B
12. Substance in which the magnetic moment of a single atom is not zero, is know as
A. diamagnetism
B. ferromagnitism
C. Paramagnetism is magnetic independent
D. ferrimagneitsm

Answer: C

- Watch Video Solution

13. Liquid oxygen remains suspended between two pole faces of a magnet because it is
A. diamagnetic
B. paramagnetic
C. ferromagnetic
D. antiferromagnetic

Answer: B
14. The only property possessed by ferromagnetic substance is
A. hysteresis
B. susceptiility
C. directional property
D. attracting magnetic substances

Answer: A
(D) Watch Video Solution
15. The permanent magnet is made fron which one of the following substances?
A. diamagnetic substance
B. Paramagnetic
C. Ferromagnetic
D. Electromagnetic

Answer: C

- Watch Video Solution

Medical Gallery

1. A bar magnet is hung by a thin cotton
thread in a uniform horizontal magnetic field and is in equilibrium state. The energy required to rotate it by 60 is W . Now the torque required to keep the magnet in this new position is
A. $\frac{W}{\sqrt{3}}$
B. $\sqrt{3} W$
c. $\frac{\sqrt{3} W}{2}$
D. $\frac{2 W}{\sqrt{3}}$

Answer: B

D Watch Video Solution

Others

1. A magnet is placed in iron poweder and the
taken out, them maximum iron powder is at
A. some distannce away from north pole
B. some distance away from north pole
C. the middle of the magnet
D. the end of the magnet

Answer: D

D Watch Video Solution

2. A permanet magnet
A. attracts all substance
B. attracts only magnetic substance

C. attracts magnetic substance and repels

all non-magnetic substances

D. attracts non-magnetic substances and repels magnetic substances

Answer: B

D Watch Video Solution

3. Magnetic field is measured by
A. pyrometer
B. hydrometer

C. thermometer fluxmeter

D.

Answer: D

D Watch Video Solution

4. Lines which represent places of constant angle of dip are called
A. isoclinic line
B. isogonic line
C. isoclinic lines
D. isodynamic lines

Answer: C

D Watch Video Solution

5. A line passing through places having zero
value of magnetic dip is called
A. isoclinic line
B. agonic line
C. isogonic line
D. aclinic line

Answer: D

- Watch Video Solution

6. A clinic lines are the lines joining places of
A. zero dip
B. equal dip

C. zero declination

D. equal declination

Answer: A

D Watch Video Solution

7. The arms of a deflection magnetometer in
the $\tan B$ posittion are placed
A. east-west
B. north- south

C. north-east

D. south- west

Answer: B

D Watch Video Solution

8. IF the current is doubled, the deflection is also doubled in
A. a tangent galvanometer
B. a moving coil galvanometer

C. Both (a) and (b)

D. None of the above

Answer: B

- Watch Video Solution

9. Which of the following is diamagetic ?

A. Aluminium
B. Quartz
C. Nickel

D. Bismuth

Answer: D

D Watch Video Solution

10. The permeablitiy of paramgentic substance
is
A. slinght more than vacuum
B. slight less than vacuum
C. much more than vaccum

D. None of the above

Answer: A

D Watch Video Solution

11. What are the SI units of magnetic field induction or magnetic flux density?
A. tesla
B. weber / meter ${ }^{2}$
C. newton / ampere-meter

D. All of these

Answer: D

D Watch Video Solution

12. Magnetic field intensity is defined as
A. magnetic moment per unit volume
B. magnetic indction force acting ona unit magnetic pole
C. number of lines of force crossing per unit area
D. number of lineas of forces corssing per unit volume

Answer: C

D Watch Video Solution
13. Permeability is defined as the ratio between
A. magnetic induction and susceptibility

B. magnetic indction and magnetising field

C. magnetisi induction

D. magnetising
 field and magnetic

 induction
Answer: B

D Watch Video Solution

14. Hysteresis loss for steel isthat for iron.
A. lesser than
B. equal to
C. greater than
D. Either (b) and (c)

Answer: C

D Watch Video Solution
15. Heteropycnosis is exhibited by
A. parmagnetic
B. ferromagnetic
C. diamagentic
D. All of these

Answer: B

D Watch Video Solution
16. Which of the following materials has got the maximum retentvity ?
A. Copper

B. Zinc

C. Soft iron
D. Hard iron

Answer: C

D Watch Video Solution

17. The area enclosed by a hysteresis loop is a measure of
A. retentivity

B. susceptibility

C. permeability

D. energ loss per cycle

Answer: D

D Watch Video Solution

18. Which of the following is the most suitable

 mateial for making permanent magnet ?A. Steel

B. Soft iron

C. Copper

D. Nickel

Answer: A

D Watch Video Solution

19. The materials suitable for making electromagnets should have
A. high retentivity and high corecivity
B. low retentivity and low coerivity
C. high retentivity and low coercivity
D. low retenivity and high corecivity

Answer: C

D Watch Video Solution

20. Which of the following is most suitable for the core of electromagnets?
A. Iron

B. Steel

C. Soft iron
D. Cu- Ni alloy

Answer: C

D Watch Video Solution

21. A magnetic needle is kept in a non uniform magnetic field. It experiences
A. a force and torque
B. a force but not a torque
C. a torque but not a force
D. Neither a tarque nor a froce

Answer: A

D Watch Video Solution

22. The variation of magnetic susceptibility
(χ) with temperature for a diamagnetic substance is best represented by

Answer: B
(Watch Video Solution
23. The angle between the earth's magnetic and the earth's geographic axis is
A. zero
B. 11.5°
C. 23°
D. None of the above

Answer: B

- Watch Video Solution

24. If a magnet is hanged with its magnetic axis then it stops in
A. magnetiic meridian
B. geometric meridian
C. angle of dip

D. None of the above

Answer: A

- Watch Video Solution

25. A dip circle is placed perpendicular to the magnetic meridian then thte magnetic needle will aligh
A. vertical
B. horizontal
C. in any direction
D. at an angle of dip to the horizontal

Answer: A

26. A dip circle is at right angles to the magnetic meridian. What will be the apparent dip?
A. (a) 0°
B. (b) 30°
C. (c) 60°
D. (d) 90°

Answer: D

D Watch Video Solution
27. A compose needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It
A. stay in north-south direction only
B. stay in east-west direction only
C. becomes rigid showing no movenent
D. stay in any position

Answer: D

D Watch Video Solution
28. A magnet is placed horizontally on ground
with its north pole towards the geographic north pole of the earth. The natural point obtained
A. magnetic axis
B. magnetic centre
C. perpendicular divider of magnetic axis
D. N and S poles

Answer: A
29. Due to the earth's magnetic field, charged cosmic ray particles
A. require greater kinetic energy to reach
the equator than pole
B. require less kinetic energy to reach the
equator than pole
C. can never reach the pole
D. can never reach the quator

Answer: C

D Watch Video Solution

30. A magnetic needle suspended horizontally
by an unspun silk fibre, oscillates in the horizontal plane because of the restoring force originating mainly from
A. the torsion of the silk fibre
B. the force of gravity
C. the horizontal componet of earth's magnetic field

D. All of these

Answer: C

D Watch Video Solution

31. An electron moving around the nucleus with an angular momenturm I has a magnetic moment

> A. $\frac{e}{m} l$
> B. $\frac{e}{2 m} l$
> C. $\frac{2 e}{m} l$
> D. $\frac{e}{2 \pi m} l$

Answer: B

D Watch Video Solution

32. A vibration magnetometer is placed at the

 south pole, then the time period will beA. zero
B. infinity
C. same as at magnetic equator
D. same as at any other place on earth

Answer: B

D Watch Video Solution

33. Which of the following statements are ture about the magnetic susceptibility $\chi(m)$ of paramagnetic substance?
A. Value of χ_{m} is respectively proportional to the absolute temperature of the sample
B. χ_{m} is positive at all temperature
C. χ_{m} is negative at all temperature
D. χ_{m} does not depends on the temperature of the sample

Answer: A: B
34. The angle which the total magnetic field of earth makes with the surface of the called

- Watch Video Solution

35. Resultant force acting on a diamagentic material in a magnetic field is in direction

- Watch Video Solution

36. The mathematical equation for magnetic field lines of force is

D Watch Video Solution
37. Two lines of force due to a bar magnet

D Watch Video Solution

38. What is happens to the force between magnetic poles when their pole strenght and
the distance between them both gets doubled
?

D Watch Video Solution

39. If a magnet of pole strenth m is divided into four parts such that the length and width of each part is half that of initial one, then the pole strength of each part will be
A. $m / 4$

$$
\text { B. } m / 2
$$

C. $m / 8$
D. 4 m

Answer: B

D Watch Video Solution

40. Two magnets have the same length and
the same pole strenght. But one of the magnets have a small hole at its centre. Then
A. Both have equal magnetic moment
B. One with hole has smaller magnetic moment
C. One with hole has larger magnetic moment
D. One with hole loses magnetism through
the hole

Answer: B
(Watch Video Solution
41. The magnetic field at a distance d from a short bar magnet in longitudinal and transverse positions are in the ratio.

D Watch Video Solution

42. If a diamagnetic substance is brought near north or south pole of a bar magnet, it is
A. attracted by the poles
B. repelled by the poles

C. attracted by the north pole and repelled

by the south pole

D.

Answer: B

D Watch Video Solution
43. The magnet field lines due to a bar magnet are correctly shown in
(a)
A.

D.
(d)

Answer: D

44. Suscepitbility is positive and large for a

D Watch Video Solution

45. Torques τ_{1} and τ_{2} are required for a magnetic needle to remain perpendicular to the magnetic fields at two different places. The magnetic field at those places are B1 and B2 respectively, then $\frac{B_{1}}{B_{2}}$ is
46. A dip circle is taken to geomagnetic equator. The needle is allowed to move in a
vertical plane perpendicular to the magnetic meridian. The needle will stay

D Watch Video Solution

47. At the magnetic north pole of the earth, the value of horizontal component of earth's magnetic field and angle of dip are, respectively
48. When the magnetic inclination (dip) was measured at various places on earth, in one of the following countries it was found to be zero. Which to be zero. Which one was it ?

- Watch Video Solution

49. In a deflection magnetometer, the needle is short and the pointer is long because, the
50. A curve between magnetic moment and temperature of magnet is
(a)
A.

(b)

B.
C.

Answer: C

- Watch Video Solution

51. The tangents deflection produced in $\tan \mathrm{A}$ and B positions by a short magnet at equal distances are in the ratio .

- Watch Video Solution

52. The relative permeability is represented by μ_{r} and susceptibility is denoted by χ for a
magnetic substance then for a paramagnetic substance.
A.
B.
C.
D.

Answer: D
(Watch Video Solution
53. When a piece of a ferromagnetic sobstance
is put in a uniform magnetic field, the flux density inside it is four times the flux density away from the piece. The magnetic permeability of the material is
A. 1
B. 2
C. 3
D. 4
54. Which of the four the graphs may best represent the current-deflection realation in a tangent galvanormetre?

55. If a diamagnetic solution is poured into a

U-tube and one aem of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will

D Watch Video Solution

56. A paramagnetic liquid is taken in a U-tube and arranged so that one of its limbs is kept between pole pieces of the magnet. The liquid level in the limb
57. The magnetic moment of a length 10 cm amd pole strenth 4.0 Am will be

- Watch Video Solution

58. All these magnetic materials loss their magnetic properties when
59. When a ferromagnetic material is heated above its Curie temperature , the material

- Watch Video Solution

60. Above the Curie temperature, the susceptility of a ferromagentic substance varies
61. The given figure represents a material which is
A. paramagnetic
B. diamagnetic
C. ferromagnetic
D. none of these

Answer: B

D Watch Video Solution
62. A long thin magnet of moment M is bent into a semi circle. The decrease in the magnetic moment is

D Watch Video Solution

63. A magnet of magnetic moment M amd pole
strenth m is divided in two equal parts, then
magnetic moment of each part will be
64. Two identical thin bar magnets, each of length L and pole strength m are placed at right angles to each other, with the N pole of one touching the S-pole of the other. Find the magnetic moment of the system.

- Watch Video Solution

65. A short bar magnet pleaced with its axis at 30° with a uniform external magnetic field of 0.16 Tesla expriences a torque of magnitude
0.032 Joule. The magnetic moment of the bar magnet will be

- Watch Video Solution

66. A bar magnet when placed at an angle of 30° to the direction of magnetic field induction of $5 \times 10^{-2} T$, experiences a moment of couple $25 \times 10^{-6} N-m$. If the length of the magnet is 5 cm its pole strength is

D Watch Video Solution

67. A bar magnet of magnetic moment
$3.0 A-m^{2}$ is placed in a uniform magnetic induction field of $2 \times 10^{-5} T$. If each pole of the magnet experiences a force of $6 \times 10^{-4} N$, the length of the magnet is

- Watch Video Solution

68. A toroid of n turns, mean radius R and cross-sectional radius a carries current I. It is
placed on a horizontal table taken as x-y plane. Its magnetic moment \vec{M}
A. is non-zero and points in the Z direaction by symmetry
B. points along the axis of the toroid

$$
(m=m \phi)
$$

C. is zero, otherwise there would be a field
falling as $\frac{1}{r^{3}}$ at large distance outside the toriod
D. is pointing radially outwards

Answer: C

D Watch Video Solution

69. A magnet of magnetic moment M is
situated with its axis along the direction of a
magnetic field of strength B. The work done in
rotating it by an angle of 180° will be
A. $-M B$
B. $+M B$
C. zero

D. $+2 M B$

Answer: D

D Watch Video Solution

70. A magnet of magnetic moment $2 J T^{-1}$ is
aligned in the direction of magnetic field of
$0.1 T$. What is the net work done to bring the magnet normal to the magnrtic field?
A. 0.1 J
B. $0.2 J$
C. 1 J
D. 2 J

Answer: B

D Watch Video Solution

71. A planar coil having 15turns carries 20 A currennt. The coil is oriented with respect to
the unifrom magnetic field $B=0.5 T$ such that its direction area is $A=-0.04 \hat{i} m^{2}$. The
potenial energy of the coil in the given

orientation is

A. 0
B. +0.72
C. 6J

$$
\text { D. }-1.44 \mathrm{~J}
$$

Answer: C
(Watch Video Solution
72. The magnetic Held of the earth can be modeled by that ofa point dipole placed at the centre of the earth. The dipole axis makes an angle of 11.3° with the axis of the earth. At Mumbai, declination is nearly zero. Then,
A. the declination varies between $11.3^{\circ} W$
to $11.3^{\circ} \mathrm{E}$
B. the least declination is 0°
C. the plane defined by dipole axis and the earth axis passes through Greenwhich

D. declination averaged over the earth

 must be always negative
Answer: A

D Watch Video Solution

73. The magnetic filed on the axis of a short bar magnet at a distance of 10 cm is 0.2 oersted. What will be the field at a point, distant 5 cm on the line perpendicular to the axis and passing through the magnet ?
A. 0.025 oersted
B. 0.2 oersted
C. 0.4 oersted
D. 0.8 oersted

Answer: D

D Watch Video Solution

74. If the angle of dip at two places are 30° and 45° respectively, then the ratio of
horizontal components of earth's magnetic
field at the two places will be
A. $\sqrt{3}: \sqrt{2}$
B. $1: \sqrt{2}$
C. $1: \sqrt{3}$
D. 1:2

Answer: A
(Watch Video Solution
75. The earth's magnetic field at a certain place
has a horizontal component 0.3 Gauss and the total strength 0.5 Gauss. The angle of dip is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{3}{4}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{3}{4}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{4}{3}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{4}{3}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

76. At a certain place the angle of dip is 30°
and the horizontal component of earth's
magnetic field is 0.50 oersted. The earth's total magnetic field is
A. $\sqrt{3}$
B. 1
C. $1 / \sqrt{3}$
D. $\frac{1}{2}$

Answer: C
77. In a permanent magnet at room temperature

D Watch Video Solution

78. A dip needle lies initially in the magnetic merdian when it shows an angle of $\operatorname{dip} \theta$ at a place. The dip circle is rotated through an angle x in the horizontal plane and then it shows an angle of $\operatorname{dip} \theta^{\prime}$. Then $\frac{\tan \theta^{\prime}}{\tan \theta}$ is

- Watch Video Solution

79. For substance hysteresis $(B-H)$ curve are as shown in figure. For making temporary magnet which of the following is the best?

(d)

Answer: D

D Watch Video Solution

80. A bar magnet is oscillating in the earth's magnetic field with a time period T. If the mass is increased four times, then its time period will be:

- Watch Video Solution

81. When 2 amperes current is passed through
a tangent galvanometer, it gives a deflection of 30°. For 60° deflection, the current must be

D Watch Video Solution

82. Two tangent galvanometers having coils of the same radius are connected in series. A current flowing in them produces deflections of 60° and 45° respectively. The ratio of the number of turns in the coils is

- Watch Video Solution

83. A bar magnet of length 3 cm has points A
and B along its axis at distance of 24 cm and

48 cm on the opposite sides. Ratio of magnetic field at these points will be
84. The magnetic moment produced in a substance of $1 g m i s 6 \times 10^{-7}$ ampere, metre ${ }^{2}$.

If its density is $5 \mathrm{gm} / \mathrm{cm}^{3}$, then the intensity of magnetisation in A / m will be

- Watch Video Solution

85. A short bar magnet is arranged with its
north pole pointing gergraphical north. It is
found that the horizontal component of earth's magnetic induction $\left(B_{H}\right)$ is balaced by
the magnetic induction of the magnet at a point which is at a distance of 20 cm from its centre .The magnetic moment of the magnet is $\left(\right.$ if $\left.H=4 \times 10^{-5} W b m^{-2}\right)$

D Watch Video Solution

86. A long magnetic needle of length 2 L , magnetic moment M amd pole strength m units is broken into two pieces at the middle.

The magnetic moment amd pole strength of each piece will be
87. Consider the two idealised systems
(i) a parallel plate capacitor with large plates
and small separation and
(ii) a long solenoid of length $L \gg R$, radius of cross section.

In (i) \vec{E} is ideally treated as a constant between plates and zero outside. In
magnetic field is constant inside the solenoid and zero outside. These idealised
assumptions, however, contradict fundamental

laws as below

D Watch Video Solution

88. Due to a small magnet intensity at a distance x in the end on position is 9 Gauss.

What will be the intensity at a distance $\frac{x}{2}$ on broad side on position?
A. 9 gauss
B. 4 gauss
C. 36 gauss
D. 4.5 gauss

Answer: C

D Watch Video Solution

89. A magnet oscillating in a horizontal plane
has a time period of 2 seconds at a place where the angle of dip is 30° and 3 seconds at another place where the angle of dip is 60°.

The retio of resultant magnetic field at the two places is
A. $\frac{4 \sqrt{3}}{7}$
B. $\frac{4}{9 \sqrt{3}}$
C. $\frac{9}{4 \sqrt{3}}$
D. $\frac{9}{\sqrt{3}}$

Answer: C

- Watch Video Solution

90. Two short magnets of equal dipole moments M are fastened perpendicularly at their centres (figure). The magnitude of the magnetic field at a distance d from the centre on the bisector of the right angle is
(\#\#HCV_VOL2_C36_E01_006_Q01\#\#)
A. $\frac{\mu_{0}}{4 \pi} \frac{M}{d^{3}}$
B. $\frac{\mu_{0}}{4 \pi} \frac{\sqrt{2} M}{d^{3}}$
C. $\frac{\mu_{0}}{4 \pi} \frac{2 \sqrt{2} M}{d^{3}}$
D. $\frac{\mu_{0}}{4 \pi} \frac{2 M}{d^{3}}$

Answer: B

D Watch Video Solution

91. Two bar magnets of the same length and
breadth but having magnetic moments M and
$2 M$ are joined with like poles together and suspended by a string. The time of oscillation of this assembly in a magnetic field of strength B is 3 sec . What will be the period of oscillation, if the polarity of one of the
magnets is changed and the combination is

again made to oscillate in the same field ?

A. $\sqrt{3} s$
B. $3 \sqrt{3} s$
C. $3 s$
D. 6 s

Answer: B
(Watch Video Solution
92. The period of oscillation of a suspended
thin cylindrical magnet is 4 seconds. It is
broken into exactly two halves. Find the period
of oscillation of each half when freely
suspended.
A. 4 s
B. 2s
C. 1s
D. $2 \sqrt{2} s$

Answer: B
93. For ferromagnetic material, the relative permeability (mu_(r)), versus magnetic intensity (H) has the following shape

Answer: D

D Watch Video Solution

94. Two magnets of same size and mass make respectively 10 and 15 oscillations per minute at certain place. The ratio of their magnetic moment is
A. $4: 9$
B. 9: 4
C. 2:3
D. $3: 2$

Answer: A

D Watch Video Solution
95. There are four light weight rod samples
A, B, C and D separately suspended by thread. A
bar magnet is showly brought near each
sample and the following observations are noted
A. C is a diamagnetic material
B. D is of a ferromagnetic material
C. A is of a non-magnetic meterial
D. B is of a paramagnetic material

Answer: D

D Watch Video Solution

96. Two like mangetic poles of strength 10 and

40 SI units are separated by a distance 30 cm .

The intensity of magnetic field is zero on the line joining them
A. At a point 10 cm from the stronger pole
B. At a point 20 cm from the stronger pole
C. At the mid point
D. At infinity

Answer: B
97. A magnet makes 40 oscillations per minute
at a place having magnetic field intensity of
$0.1 \times 10^{-5} T$. At another place, it takes 2.5 sec
to complete one vibrating. The value of earth's
horizontal field at that place is
A. $0.25 \times 10^{-6} T$
B. $0.36 \times 10^{6} T$
C. $0.66 \times 10^{-8} T$
D. $1.2 \times 10^{-6} T$

Answer: B

- Watch Video Solution

98. A circuit coil of radius 20 cm and 20 turns
of wire is mounted vertically withits plane in
the magnetic meridian. A small magnetic needle placed at the center of the coil is deflected through 45° when a current is passed through the coil. What is the value of the current? (horizontal induction of earth's field $=3.6 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
A. 0.6 A
B. 6 A
C. $6 \times 10^{-3} A$
D. 0.06 A

Answer: A

- Watch Video Solution

99. A dip circle is adjusted so that its needle moves freely in the magnetic meridian. In this
position, the angle of dip ia 40°. Now the dip
circle is rotated so that the plane in which the needle moves makes an angle of 30° with the magnetic meridian. In this position the needle will dip by an angle
A. 40°
B. 30°
C. more than 40°
D. less than 40°

Answer: A

100. An iron rod of $0 \cdot 2 \mathrm{~cm}^{2}$ cross-sectional area is subjected to a magnetising field of $1200 \mathrm{Am}^{-1}$. The suscaptibility of iron is 599.

Find the permeability and the magnetic flux produced.
A. $0.904 W b$
B. $1.81 \times 10^{-5} \mathrm{~Wb}$
C. $0.904 \times 10^{-5} W b$
D. $5.43 \times 10^{-5} W b$

Answer: B

- Watch Video Solution

101. A paramagnetic sample shows a net magnetisation of $8 \mathrm{Am}^{-1}$ when placed in an external magnetic field of $0 \cdot 6 T$ at a temperature of $4 K$. When the same sample is
placed in an external magnetic field of $0 \cdot 2 T$
at a temperature of $16 K$, the magnetisation
will be
A. $\frac{32}{3} A m^{-1}$
B. $\frac{2}{3} A m^{-1}$
C. $6 A m^{-1}$
D. $2.4 A m^{-1}$

Answer: B

D Watch Video Solution

102. The plane of dip circle is set in the geographic meridian and the apparent dip is
θ_{1}. It is then set in a vertical plane
perpendicular to the geographic meridian.

Now, the apparent dip is θ_{2}. The angle of declination θ at that place is

> A. $\theta=\tan ^{-1}\left(\tan \delta_{1} \tan \delta_{2}\right)$
> B. $\theta=\tan ^{-1}\left(\tan \delta_{1}+\tan \delta_{2}\right)$
> C. $\theta=\tan ^{-1}\left(\frac{\tan \delta_{1}}{\tan \delta_{2}}\right)$
> D. $\theta=\tan ^{-1}\left(\tan \delta_{1}-\tan \delta_{2}\right)$

Answer: C

D Watch Video Solution

103. Figure shows a small magnetised needle P placed at a point O. The arrow shows the direction of magnetic moment. The other arrows show different positions (and orientations of the magnetic moment) of another identical magnetised needle Q .

(a) In which configuration is the system not in equilibrium?
(b) In which configuration is the system in (i) stable and (ii) unstable equilibrium?
(c) Which configuration corresponds to the lowest potential energy among all the configurations shown?
A. $P Q_{3}$
B. $P Q_{4}$
C. $P Q_{5}$
D. $P Q_{6}$

Answer: D

D Watch Video Solution

104. Two short magnets of magnetic moment
$1000 \mathrm{Am}^{2}$ are placed as shown at the corners
of a square of side 10 cm . The net magnetic
induction at P is

A. 0.1 T
B. 0.2 T
C. 0.3T
D. 0.4T

Answer: A

- Watch Video Solution

105. Two magnets are held together in a vibration magnetometer and are allowed to oscillate in the earth's magnetic field with like poles togather, 12 oscillations per minute are made but for unlike poles togather only 4 oscillations per minute are axecuted. The ratio of their magnetic miments is
A. 3:1
B. 1:3

C. $3: 5$

D. 5:4

Answer: D

D Watch Video Solution

106. A magnet is suspended in such a way that
it oscillates in the horizontal plane. It makes

20 oscillations per minute at a place where dip
angle is 30° and 15 oscillations minute at a
place where dip angle is 60°. The ratio of total earth's magnetic field at the two places is
A. $3 \sqrt{3}: 8$
B. $16: 9 \sqrt{3}$
C. $4: 9$
D. $2 \sqrt{2}: 3$

Answer: B
107. Two identical short bar magnets, each
having magnetic moment M, are placed a distance of $2 d$ apart with axes perpendicular to each other in a horizontal plane. The magnetic induction at a point midway between them is
A. $\frac{\mu_{0}}{4 \pi}(\sqrt{2}) \frac{M}{d^{3}}$
B. $\frac{\mu_{0}}{4 \pi}(\sqrt{3}) \frac{M}{d^{3}}$
C. $\left(\frac{2 \mu_{0}}{4 \pi}\right) \frac{M}{d^{3}}$
D. $\frac{\mu_{0}}{4 \pi}(\sqrt{5}) \frac{M}{d^{3}}$

Answer: D

D Watch Video Solution

108. A short magnet oscillation in vibration magnetometer with a frequency 10 Hz . A downward current of 15 A is established in a long vertical wire placed 20 cm to the West of the magnet. The new frequency of the short magnet is (the horizontal of the component os earth's magnetic field is 12μ)
A. 4 Hz
B. 2.5 Hz
C. 9 Hz
D. 15 Hz

Answer: D

D Watch Video Solution

109. Two bar magnets having same geometry with magnetic moments M and $2 M$, are firstly placed in such a way what their similar poles
are same side then its time period of oscillation is T_{1}. Now the polarity of one of the magnet is reversed then time period of oscillation will be:-
A. $T_{1}<T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}=T_{2}$
D. $T_{1}=\infty, T_{1}=0$

Answer: A

110. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is
$2 s$. The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be
A. 2 s
B. $\frac{2}{3} s$
C. $2 \sqrt{3} s$

$$
\text { D. } \frac{2}{\sqrt{3}} s
$$

Answer: B

D Watch Video Solution

111. Assertion: The poles of magnet cannot be separated by breaking into two pieces.

Reason: The magnetic moment will be reduced
to half when a magnet is broken into two equal pieces.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: B

112. Assertion (A): It is not necessary that every magnet has one north pole and one south pole.

Reason (R): It is a basic fact that magnetic poles occur in pairs
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: D

D Watch Video Solution

113. Assertion: Basic difference between an
electric line and magnetic line of force is that
former is discontinuous and the latter is continuous or endless.

Reason: No electric lines of force exist inside a charged body but magnetic lines do exist inside a magnet.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: B

D Watch Video Solution

114. Assertion (A): The net magnetic flux coming out of a closed surface is always zero.

Reason (R): Unlike poles of equal strength exist together
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

D Watch Video Solution

115. Assertion:Horizontal component of eath's magnetic field (H) has been chosen as a magnetic element instead of the vertical component (V).

Reason: Most of our experiments are
performed in horizontal configuration. So, H is more relevant.
A. If both Assertain and Reason are true and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

D Watch Video Solution

116. Assertion: At neutral point, a compass needle may point out in any arbitrary direction.

Reason: Magnetic field of earth is balanced by
field due to magnets at neutral point.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

D Watch Video Solution

117. Assertion (A): Steel is attracted by a magnet

Reason (R): Steel is a magnetic substance
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false

D. If Assertion is false but Reason in true.

Answer: C

- Watch Video Solution

118. Assertion (A): Relative magnetic permeability has no units and no
dimmensions

Reason (R): $\mu_{r}=\mu / \mu_{0}$, where the symbols
have their standard meaning.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

119. Assertion (A): If one arm of a U - tube containing a diamagnetic solution is placed in between the poles of a strong magnet with the level in line with the field, the level of the solution falls,

Reason (R): Diamagnetic substances do not aligned with the field
A. If both Assertain and Reason are true and Reason is the correct explanation of
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

D Watch Video Solution

120. Assertion (A): The earth's magnetic field is due to iron present in its core.

Reason (R): At a high tempeature magnet losses its magnetic property or magnetism.
A. If both Assertain and Reason are true and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of Assertain

C. If Assertion is true but Reason is false

D. If Assertion is false but Reason in true.

Answer: D

D Watch Video Solution

121. Assertion (A): Earth's magnetic field inside
a closed iron box is less as compared to the outside

Reason (R): The magnetic permeability of iron
is low
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: C

122. Assertion: To protect any instrument from external magnetic field, it is put inside an iron body.

Reason: Iron is a magnetic substance.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain

C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: B

D Watch Video Solution

123. Assertion (A): $\chi-T$ graph for a diamagnetic material is a straight line parallel to T - axis

Reason (R): This is because susceptibility of a
diamagnetic material is not affected by temperature
A. If both Assertain and Reason are true and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

- Watch Video Solution

124. Assertion: When radius of circular loop
carrying current is doubled, its magnetic moment becomes four times.

Rrason: Magnetic moment depends on area of the loop.
A. If both Assertain and Reason are true and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

D Watch Video Solution

125. Assertion (A): A magnetic suspended
freely in an uniform magnetic field experiences
no net force, but a torque that tends to align
the magnet along the field when it is deflected
form equilibrium position

Reason (R): Net force $m B-m B=0$, but the
forces on north and south poles being equal, unlike and parallel make up a couple that tends to align the magnet, along the field.
A. If both Assertain and Reason are true

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

D Watch Video Solution

126. Assertion: Time period of vibration of a
pair of magnets in sum position is always
smaller than in difference position.

Reason: 'T=2pi sqrt(I//MH)', where symbols have their standard meaning.
A. If both Assertain and Reason are true and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain

C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: B

D Watch Video Solution

127. Assertion: The ferromagnetic substance do not obey Curie's law.

Reason: At Curie point a ferromagnetic
substance start behaving as a paramagnetic subsrance.
A. If both Assertain and Reason are true and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: B

D Watch Video Solution

128. Assertion : Soft iron is used as
transformer core.

Reason oft iron has narrow hysteresis loop.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: A

- Watch Video Solution

129. Assertion : The properties of

paramagnetic and ferromagnetic substance
are not effected by heating.
Reason : As temperature rises, the alignment of molecular magnets gradually decreases.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain

C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: C

D Watch Video Solution

130. With reference to magnetic dipole, match
the tems of Column I with the tems of Column
li and Choose the correct option from the

codes given below.

Column I	Column II
(A) Dipole moment	(p) $-\mathrm{M} \cdot \mathrm{B}$
(B) Equatiorial field for a short dipole	(q) $\mathrm{M} \times \mathrm{B}$
(C) Axial field for a short dipole	(r) $-\mu_{0} \mathrm{~m} / 4 \pi r^{3}$
(D) External field : Torque	(s) \mathbf{m}
(E) External field : Energy	(t) $\mu_{0} 2 \mathrm{~m} / 4 \pi r^{3}$

- Watch Video Solution

131. Consider the expression for magnetic potential energy U_{m} obtained in previous question, match the tems of colum I with the tems of Column II and choose the correct

option from the codes given below.

Column I
Column II
(A) Potential energy at $\theta=90^{\circ}$ (p) Minimum
(B) Potential energy at $\theta=0^{\circ} \quad$ (q) Maximum
(C) Potential energy at $\theta=180^{\circ}$ (r) Zero

- Watch Video Solution

132. Match the terms of Column I with the tems of Column II and choose the correct option from the codes given below.

Column I
Column II

(A)	Negative susceptibility	(p)	Ferromagnetic
(B)	Positive and small susceptibility	(q)	Diamagnetic

(C) Positive and large susceptibility (r) Paramagnetic
133. Match the terms of Column I with the items of Column II and choose the correct option from the codes given below.

Column I

Column II
$\begin{array}{ll}\text { (A) Diamagnetic } & \text { (p) } \mu \gg \mu_{0}, \mu_{r} \gg 1 \text { and } \chi \gg 1\end{array}$
(B) Paramagnetic
(q) $-1 \leq \chi<0, \leq \mu_{r}<1$ and $\mu<\mu_{0}$
(C) Ferromagnetic
(r) $0<\chi<\varepsilon, 1<\mu_{r},<1+\varepsilon$ and $\mu>\mu_{0}$
134. Which magnetic have negative susceptibility?
A. paramagnetic material onty
B. ferromagnetic material only
C. paramagnetic and ferromagnetic
materials
D. diamagnetic materials only

Answer: D

135. The variation of magnetic susceptibility (x)

with absolute temperature T for a paramagnetic material is

C

D.

Answer: B

D Watch Video Solution

136. Let r be the distance of a point on the axis
of a magnetic dipole from its centre. The
magnetic field at such a point is proportional
to

$$
\begin{aligned}
& \text { A. } \frac{1}{r} \\
& \text { B. } \frac{1}{r^{2}} \\
& \text { C. } \frac{1}{r^{3}}
\end{aligned}
$$

D. none of these

Answer: C

D Watch Video Solution

137. Let r be the distance of a point on the axis
of a magnetic dipole from its centre. The magnetic field at such a point is proportional to
A. $1 / r$
B. $1 / \mathrm{r} 2$
C. $1 / r 3$
D. NOT

Answer: B

D Watch Video Solution

138. The effective length of magnet is 31.4 cm and its pole strength is 0.8 Am . The magnetic moment, if it is bent in the form of a semicircle is... $A-m^{2}$.
A. 1.2
B. 1.6
C. 0.16
D. 0.12

Answer: C

D Watch Video Solution

139. The vertical component of earth's magnetic field at a place is $\sqrt{3}$ times the
horizontal component the value of angle of

dip at this place is

A. 60°
B. 30°
C. 45°
D. 0°

Answer: A
(Watch Video Solution
140. A tangent galvanometer has a coil of 50
turns and a radius of 20 cm . The horizontal
component of the earth's magnetic field is
$B_{H}=3 \times 10^{-5} T$. Find the current which gives a diflection of 45°).
A. 0.39 A
B. 0.29 A
C. 0.19 A
D. 0.09 A

Answer: C
141. The correct between intensity of magnestisation (I) and magnetic field (H) for a
ferromagnetic substance is given by

B.
c.
D.

Answer: B

D View Text Solution

142. A bar magnet with magnetic moment
$2.5 \times 10^{3} \mathrm{JT}^{-2}$ is rotating in horizontal plane
in the space containing magnetic induction
$B=4 \times 10^{5} T$. The work done in rotating the magnet slowly from a direction parallel to the
field to a direction 45° from the field, is (in joule).
A. 0
B. 0.2
C. 0.03
D. 0.02

Answer: C

D Watch Video Solution

143. Core of electromagnets are made of ferromagnetic materials which have
A. low permeability and high retentivity
B. high permeability and low retentivity
C. low permeability and low retentivity
D. high permeability and high retentivity

Answer: B

D Watch Video Solution

144. If the magnetising field on a ferromagnetic material is increased, its permeability is
A. decrease
B. increase
C. is unaffected
D. may be increase or decrease

Answer: A

D Watch Video Solution
145. Following figures show the arrangement of bar magnets in different configurations.

Each magnet has magnetic dipole moment M.

Which configuration has highest net magnetic

dipole moment ?

A. n
B.

(b) | N | S |
| :--- | :--- |
| S | N |

Answer: C

D Watch Video Solution

146. A bar magnet of moment M and pole strength m is cut into parts of equal lengths.

The magetic moment and pole strength of either part is
A. $\frac{M}{2}, \frac{m}{2}$
B. $M, \frac{m}{2}$
C. $\frac{M}{2}, m$

D. M, n

Answer: C

- Watch Video Solution

147. A susceptibility of a certain magnetic material is 400. What is the class of the magnetic material?
A. Diamagnetic
B. Paramagnetic

C. Ferromagnetic

D. Ferroelectric

Answer: C

D Watch Video Solution

148. A paramagnetic sample shows a net magnetisation of $0.8 A-m^{-1}$ when plced in an external mgnetic field of 0.8 T at a temperature of 5 K . Whent the same sample is
placed in an external magnetic field of 0.4T at temperature of 20K, the magnetisation will be

A. $0.8 A m^{-1}$
B. $0.8 A m^{-2}$
C. $0.1 A m^{-1}$
D. $0.1 A m^{-2}$

Answer: c
(Watch Video Solution
149. Nickel shows ferromagnetic property at room temperature. If the temperature is increased beyond curie temperature, then it

will show

A. paramagnetic
B. anti-ferromagnetism
C. diamagnetism
D. no magnetic property

Answer: A
150. The intensity of magnetisation of a bar magnet is $5 \times 10^{4} A-m^{-1}$. The magnetic length and the area of cross section of the magnet are 12 cm and $1 \mathrm{~cm}^{-2}$ respectivley. The magnitude of magnetic moment of this bar magnet (in SI unit) is.
A. 0.6
B. 1.3
C. 1.2
D. 2.4

Answer: A

D Watch Video Solution

151. The magnetic susceptibility of a metrial of
a rod is 299. Permeatbility of vaccum μ_{0}
A. $3771 \times 10^{-7} \mathrm{Hm}^{-1}$
B. $3771 \times 10^{-5} \mathrm{Hm}^{-1}$
C. $3770 \times 10^{-6} \mathrm{Hm}^{-1}$
D. $3771 \times 10^{-8} \mathrm{Hm}^{-1}$

Answer: A

D Watch Video Solution

152. A wire of length I meter carrying current i
ampere is bent in form of circle. Magnetic moment is

$$
\begin{aligned}
& \text { A. } \frac{L^{2} I^{2}}{4 \pi} \\
& \text { B. } \frac{L I}{4 \pi}
\end{aligned}
$$

C. $\frac{L^{2} I}{4 \pi}$
D. $\frac{L I}{4 \pi}$

Answer: C

D Watch Video Solution

153. An electron in a circular orbit of radius
0.05 mm performs $10^{16} \mathrm{rev} / \mathrm{s}$. the magnetic moment due to this rotation of electron is

$$
\left(\in A-m^{2}\right)
$$

A. 2.16×10^{-23}
B. 3.21×10^{-22}
C. 3.21×10^{-24}
D. 1.26×10^{-23}

Answer: D

D Watch Video Solution

154. A bar magnet of lenth l and magnetic dipole moment ' M ' is bent in the form of an arc as shown in figure. The new magnetic

A. M
B. $\frac{3}{\pi} M$
C. $\frac{2}{\pi} M$
D. $\frac{M}{2}$

Answer: B

D Watch Video Solution

155. The horizontal and vertical components of earth's magnetic field at a place are 0.3G and
0.52G. The earth's magnetic field and the angle of dip are
A. $0.3 G$ and $\delta=30^{\circ}$
B. $0.4 G$ and $\delta=40^{\circ}$
C. $0.5 G$ and $\delta=50^{\circ}$
D. $0.6 G$ and $\delta=60^{\circ}$

Answer: D

D Watch Video Solution

156. A bar magnet of pole strength 10A-m is
cut into two equal parts breathwise. The pole
strength of each magnet is
A. 5A-m
B. 10A-m
C. 15A
D. 15A-m

Answer: A

D Watch Video Solution

157. A short magnet of magnetic induction
fields B_{1}, B_{2}, B_{3} values on this line at points
which are at distance $30 \mathrm{~cm}, 60 \mathrm{~cm}$ and 90 cm respectivley from the centre of the magnet is
A. $27: 3: 37: 1$
B. $37.3: 1: 27$
C. $27: 8: 3.37$
D. $1: 2: 3$

Answer: A

D Watch Video Solution

158. A bar magnet of moment of inertia I is
vibrated in a magnetic field of inducton is
$0.4 \times 10^{-4} T$. The time period period of
vibration is 12 sec . The magnetic moment of the magnet is $120 \mathrm{Am}^{2}$. The moment of inertia of the magnet is ("in"kgm^(2))` approximately

$$
\text { A. } 172.8 \times 10^{-4}
$$

B. 2.1×10^{-2}
C. 1.57×10^{2}
D. 1728×10^{-2}

Answer: A

D Watch Video Solution
159. On heating a ferromagnetic substance above curie temperature
A. becomes paramagnetic
B. becomes diamagnetic
C. remains ferromagnetic with constant magnetic susceptibility
D. becomes electromagnetic

Answer: A

D Watch Video Solution
160. The work done in turning a magnet of magnetic moment ' M ' by an angle of 90° from the meridian is ' n ' times the corresponding work done to turn it through an angle of 60°, where ' n ' is given by
A. 1
B. 2
C. $1 / 2$
D. $1 / 4$

Answer: B
161. A dip needle vibrates in the vertical plane perpendicular to the magnetic meridian. The time period of vibration is found to be 2 sec .

The same needle is then allowed to vibrate in
the horizontal plane and the time period is
again found to be 2 seconds. Then the angle of dip is
A. 0°
B. 30°
C. 45°
D. 90°

Answer: C

D Watch Video Solution

162. The dipole moment of a short bar magnet
is $1.25 A-m^{2}$. The magnetic field on its axis
at a distance of 0.5 metre from the centre of
the magnet is
A. $1 \times 10^{-4} N A^{-1} m^{-1}$
B. $2 \times 10^{-6} N A^{-1} m^{-1}$
C. $4 \times 10^{-2} N A^{-1} m^{-1}$
D. $6.64 \times 10^{-8} N A^{-1} m^{-1}$

Answer: B

D Watch Video Solution
163. The horizontal component of the earth's magnetic field at a place is $3 \times 10^{-4} T$ and the
dip is $\tan ^{-1}\left(\frac{4}{3}\right)$. A metal rod of length
0.25 m placed in the north -south position and is moved at a constant speed of $10 \mathrm{~cm} / \mathrm{s}$ towards the east. The emf induced in the rod will be
A. $1 \mu V$
B. $5 \mu V$
C. $7 \mu V$
D. $10 \mu V$

Answer: D
164. Assertion: Suceptibility is defined as the ration of intensity of magnetisation I to magnetic intensituy H .

Reason: Greater the value of susceptibility smaller the value of intensity of magnetisation I.
A. If both Assertain and Reason are true
and Reason is the correct explanation of

Assertain
B. If both Assertain and Reason are true
but Reason is not correct explantion of

Assertain
C. If Assertion is true but Reason is false
D. If Assertion is false but Reason in true.

Answer: C

- Watch Video Solution

165. The real angle of dip, if a magnet is suspended at an angle of 30° to the magnetic meridian and the dip needle makes an angle of 45° with horizontal, is:
A. $\tan ^{-1}(3 / \sqrt{2})$
B. $\tan ^{-1}(\sqrt{3})$
C. $\tan ^{-1}(3 / \sqrt{2})$
D. $\tan ^{-1}(2 / \sqrt{3})$

Answer: D

166. If a steel wire of length I and magnetic moment M is bent into a semicircular are, the the new magnetic moment is
A. $M \times l$
B. $\frac{M}{l}$
C. $\frac{2 M}{\pi}$
D. M

Answer: C
167. An iron rod of volume $10^{-4} m^{3}$ and relative permeability 1000 is placed inside a long solenoid wound with 5 turns $/ \mathrm{cm}$. If a current of $0.5 A$ is passed through the solenoid, then the magnetic moment of the rod is
A. $20 \mathrm{Am}{ }^{2}$
B. $25 A m^{2}$
C. $30 A m^{2}$

D. $35 A \mathrm{~m}^{2}$

Answer: B

D Watch Video Solution

168. Two tangent galvanometers A and B have coils of radii 8 cm and 16 cm respectively and
resistance $80 h m$ each. They are connected in parallel to a cell of emf $4 V$ and negligible internal resistance. The deflections produced
are 30° and 60° respectivley. A has 2 turns.

What is the number of turns in B ?
A. 18 turns
B. 12 turns
C. 6 turns
D. 2 turns

Answer: B
(Watch Video Solution

