đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY ENGLISH

SOLVED PAPERS 2018

1. A carbon resistor of $(47 \pm 4.7) k \Omega$ is to be marked with rings of different colours for its
identification. The colour code sequence will be

A. Yellow- Green-Violet-Gold

B. Yellow-Violet-Orange-Silver
C. Violet-Yellow-Orange-Silver
D. Green-Orange-Violet-Gold

Answer: B

D Watch Video Solution

2. A set of ' n ' equal resistor, of value of ' R ' each are connected in series to a battery of emf ' E ' and internal resistance ' R '. The current drawn is I. Now, the ' n ' resistors are connected in parallel to the same battery.

Then the current drawn from battery becomes
10.1. The value of ' n ' is
A. 20
B. 11
C. 10
D. 9

Answer: C

- Watch Video Solution

3. Which of the options give below are correct?

Answer: C

D Watch Video Solution

4. Unpolarised light is incident from air on a plane surface of a material of refractive index
μ. At a particular angle of incidence i, it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?

$$
\text { A. } i=\sin ^{-1}\left(\frac{1}{\mu}\right)
$$

B. Reflected light is polarised with its
electric vector perpendicular to the
plane of incidence.
C. Reflected light is polarised with its
electric vector parallel to the plane of incidence.

$$
\text { D. } i=\tan ^{-1}\left(\frac{1}{\mu}\right)
$$

Answer: B

D Watch Video Solution

5. In young's double slit experimental the separation d between the slits is 2 mm , the wavelength λ of the light used is $5896 \AA$ and
distance D between the screen and slitps is

100 cm. It is found that the angular width of
the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D)
the separation between the slits needs to be changed to
A. 2.1 mm
B. 1.9 mm
C. 1.8 mm
D. 1.7 mm

- Watch Video Solution

6. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
A. large focal length and large diameter
B. large focal length and small diamter
C. small focal length and large diameter
D. small focal length and small diameter

Answer: A

D Watch Video Solution

7. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
A. $2:-1$
B. 1:1
C. 1:1
D. 1: -2

Answer: B

- Watch Video Solution

8. An electron (mass m) with na initial velocity
$v=v_{0} i\left(v_{o}>O\right)$ is in an electric field $E=-E_{0} \hat{i}\left(E_{0}=\right.$ constant $\left.>0\right)$. It's deBroglie wavelength at time t is given by
A. $\lambda_{0} t$
B. $\lambda_{0}\left(1+\frac{e E_{0}}{m v_{0}} t\right)$
C. $\frac{\lambda_{0}}{\left(1+\frac{e E_{0}}{m v_{0}} t\right)}$

D. λ_{0}

Answer: C

D Watch Video Solution

9. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is.
A. 30
B. 10
C. 20
D. 15

Answer: C

- Watch Video Solution

10. The frequency of oscillation of current in
the indcutor is
A. $4: 1$
B. 1: 4
C. $1: 2$
D. $2: 1$

Answer: C

D Watch Video Solution
11. There identical point masses, each of mass 1 kg lie in the $x y$-plane at points $(0,0),(0,0.2 \mathrm{~m})$
and ($0,2 \mathrm{~m}, 0$). The net gravitational force on the mass at the origin is:

$$
\begin{aligned}
& \text { A. } I_{B}=20 \mu A, I_{C}=5 m A, \beta=250 \\
& \text { B. } I_{B}=25 \mu A, I_{C}=5 m A, \beta=200 \\
& \text { C. } I_{B}=40 \mu A, I_{C}=10 m A, \beta=250 \\
& \text { D. } I_{B}=40 \mu A, I_{C}=5 m A, \beta=125
\end{aligned}
$$

Answer: D

D Watch Video Solution

12. In a $p-n$ junction diode, change in temperature due to heating
A. does not affect resistance of $p-n$
junction
B. affects only forward resistance
C. affects only reverse resistance
D. affects the overall V-I characteristics of
p-n junction.

Answer: D
13. In the circuit shown in the figure, find the output

A. $\overline{A . B}+A . B$
B. $A \cdot \bar{B}+\bar{A} \cdot B$
C. $\overline{A . B}$
D. $\overline{A+B}$

Answer:

D Watch Video Solution

14. A coaxial cable is made up of two conductors. The inner conductor is solid is of
radius R_{1} and the outer coductor is hollow of inner radius R_{2} and outer radius R_{3}. The space between the conductors are carrying
currents of equal magnitudes and in oppsite direactions. then the variation of magnetic field with distance form the axis is best

plotted as:

A. $-y-$ direction
B. $+z-$ direction
C. $-z-$ direction
D. $-x$ - direction

Answer: B

- Watch Video Solution

15. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°.

One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
A. 30°

$$
\text { B. } 45^{\circ} \mathrm{C}
$$

C. $60^{\circ} \mathrm{C}$
D. zero

Answer: B

D Watch Video Solution

16. A driver having a definite reaction time is
capable of stopping his car over a distance of

30 m on seeing a red traffic signal, when the speed of the car is $72 \mathrm{~km} / \mathrm{hr}$ andover a distance of 10 m when the speed is $36 \mathrm{~km} / \mathrm{hr}$.

Find the distance over which he can stop the car if it were running at a speed of $54 \mathrm{~km} / \mathrm{hr}$.

Assume that his reaction time and the deceleration of the car remains same in all the three cases.
A. 30 cm towards the mirror
B. 36 cm away from the mirror
C. 30 cm away from the mirror
D. 36 cm towards the mirror

Answer: B
17. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance
A. 1.389 H
B. 138.88 H
C. 0.138 H
D. 13.89 H

Answer: D

D Watch Video Solution

18. An electron falls from rest through a
vertical distance h in a uniform and vertically
upward directed electric field E . the direction
of electric field is now reversed, keeping its
magnitude the same. A proton is allowed to
fall from rest in it through the same vertical distance h.The time of fall of the electron, in comparison to the time of flal of the proton is
A. 10 times greater
B. 5 times greater
C. smaller
D. equal

Answer: C

D Watch Video Solution

19. The electrostatic force between the metal
plate of an isolated parallel plate capacitro C
having charge Q and area A, is
A. proportional to the square root of the
distance betweenthe plates
B. linearly proportional to the distance
between the plates
C. independent of the distance between
the paltes
D. inversely proportional to the distance between the plates.

Answer: C

20. A metallic rod of mass per unit length
$0.5 \mathrm{kgm}^{-1}$ is lying horizontally on a straght inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to
slide down by flowing a current throguh it when a magnetic field of induction $0.25 T$ is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
A. 14.76 A
B. 5.98 A
C. 7.14 A
D. 11.32 A

Answer: D

D Watch Video Solution

21. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnetic is switched on, then the diamagnetic rod is pushed up,
out of the horizontal magnetic field. Hence the rod gains horizontal potential energy. the work required to do this comes from
A. The lattice structure of the material of the rod
B. the magnetic field
C. the current source
D. the induced electric field du to the
changing magnetic field

- Watch Video Solution

22. A satellite is launched into a circular orbit of radius R around the earth while a second satellite is launched into an orbit of radius
1.02R. The percentage difference in the time period is:
A. 2.74 W
B. 0.43 W
C. 0.79 W

D. 1.13 W

Answer: C

D Watch Video Solution

23. Current senstivity of moving coil galvanometer is $5 \operatorname{div} / m A$ and its voltage senstivity (angular deflection per unit voltage applied) is $20 \operatorname{div} / V$. The resistance of the galvanometer is

A. ${ }^{`} 250$ Ohm

B. ${ }^{`} 25 \mathrm{Ohm}$
C. 40 Ohm
D. ${ }^{`} 500$ Ohm

Answer: A

D Watch Video Solution

Aiims

1. A metal wire has a resistance of 35Ω. If its
length is increased to double by drawing it,
then its new resistance will be
А. 70Ω
B. 140Ω
C. 105Ω
D. 35Ω

Answer: B

2. Four particles of masses $m, 2 m, 3 m$ and $4 m$

 are kept in sequence at the corners of a square of side a. The magnitude of gravitational force acting on a particle of mass m placed at the centre of the square sill be:A. zero
B. $\frac{k \lambda}{R}$
C. $\frac{2 k \lambda}{R}$
D. $(k \pi \lambda) R$

Answer: C

- Watch Video Solution

3. Positive charge Q is distributed uniformly over a circular ring of radius R. A particle having a mass m and a negative charge q , is placed on its axis at a distance x from the centre. Find the force on the particle. Assuming x is very less than R , find the time period of oscillation of the particle if it is released from there.
A. $\left[\frac{16 \pi^{3} \varepsilon_{0} R^{3} m}{Q q}\right]^{1 / 2}$
B. $\left[\frac{8 \pi^{2} \varepsilon_{0} R^{3}}{q}\right]^{\frac{1}{2}}$
C. $\left[\frac{2 \pi^{3} \varepsilon R^{3}}{3 q}\right]^{1 / 2}$
D. None of these

Answer: A

- Watch Video Solution

4. An infinite number of identical capacitors
each of capacitance $1 m F$ are connected as
shown in the figure. Then the equivalent
capacitance between A and B is.

A. $1 \mu F$
B. $2 \mu F$
C. $\frac{1}{2} \mu F$

D. ∞

Answer: B

D Watch Video Solution

5. In the circuit in fig. If no current flows
through the galvanometer when the key k is
closed, the bridge is balanced. The balancing
condition for bridge is

A. $\frac{C_{1}}{C_{2}}=\frac{R_{1}}{R_{2}}$
B. $\frac{C_{1}}{C_{2}}=\frac{R_{2}}{R_{1}}$
C. $\left(\frac{C_{1}^{2}}{C_{2}^{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}\right)$
D. $\frac{C_{1}^{2}}{C_{2}^{2}}=\frac{R_{2}}{R_{1}}$

Answer: B

- Watch Video Solution

6. In a series $C-R$ circuit shown in figureure,
the applied voltage is 10 V and the voltage across capacitor is found to 8 V . The voltage across R, and the phase difference between
current and the applied voltage will
respectively be

A. $6 \mathrm{~V}, \tan ^{-1}\left(\frac{4}{3}\right)$
B. $3 V, \tan ^{-1}\left(\frac{3}{4}\right)$
C. $6 V, \tan ^{-1}\left(\frac{5}{3}\right)$
D. None of these

Answer: A

- Watch Video Solution

7. A system S consists of two coils A and B. The
coil, A carries a steady current I. While the coil
B is suspended nearby as shown in figure.
Now, if the system is heated, so as to raise the temperature of two coils steadily, then

A. the two coils shows attraction
B. the two coils shows repulsion
C. there is no change in the position of the two coils

D. induced current are not possible in coil

 BAnswer: A

D Watch Video Solution
8. A long straight wire, carrying current I, is bent at its midpoint to form an angle of 45°.

Find the induction of magnetic field at point P, distant R from the point of bending (as shown in)

A. $\frac{(\sqrt{2}-1) \mu_{0} l}{4 \pi R}$
B. $\frac{(\sqrt{2}+1) \mu_{0} l}{4 \sqrt{2} \pi R}$

> C. $\frac{\sqrt{2-1} \mu_{0} l}{4 \sqrt{2} \pi R}$
> D. $\frac{(\sqrt{2}+1) \mu_{0} l}{4 \sqrt{2} \pi R}$

Answer: A

- Watch Video Solution

9. An element $d \vec{l}=d x \hat{i}$ (where $d x=1 \mathrm{~cm}$)
is placed at the origin and carries a large current $i=10 A$. What is the magnetic field on the Y -axis at a distance of 0.5 m ?
A. $2 \times 10^{-8} \hat{k} T$
B. $4 \times 10^{-8} \hat{k} T$
C. $-2 \times 10^{-8} \hat{k} T$
D. $-4 \times 10^{-8} \hat{k} T$

Answer: B

D Watch Video Solution

10. The coil in figure carries current $i=2.00 \mathrm{~A}$ in
the direction indicated is parallel to an $x z$
plane, has 3.00 turns and an area of
$4.00 \times 10^{-3} \mathrm{~m}^{2}, \quad$ and lies in a uniform magnetic field
$\bar{B}=(2.00 \hat{i}-3.00 \hat{j}-4.00 \hat{k}) m T$. What are (a) the orientation energy of the coil in the magnetic field and (b) the torque (in unitvector notation) on the coil due to the magnetic field?

- Watch Video Solution

11. Consider the following figure, a uniform magnetic field of 0.2 T is directed along the positive X-axis. The magnetic flux through top surface of the figure.

A. zero
B.

C. $0.8 \mathrm{~m}-\mathrm{Wb}$

$$
\text { D. }-1.8 \mathrm{~m}-\mathrm{Wb}
$$

Answer: C

D Watch Video Solution

12. An idal coil of 10 is connected in series with
a resitance of 5Ω and a battery of 5 V . After 2 s ,
after the connection is made, the current flowing (in ampere) in the circuit is
A. (1-e)
B.e
C. e^{-1}
D. $\left(1-e^{-1}\right)$

Answer: D

D Watch Video Solution

13. In the circuit, shown the galvanometer G of resistance 60Ω is shifted by a resistance $r=0.02$
Ω. The current through R is nearly 1 A . The
value of resistance R (in ohm) is nearly.

A. 1.00Ω
B. 5.00Ω
C. 11.0Ω

D. 6.0Ω

Answer: C

- Watch Video Solution

14. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi f(2 \pi f L+R)} \\
& \text { B. } \frac{1}{\pi f(2 \pi f L+R)} \\
& \text { C. } \frac{1}{2 \pi f(2 \pi f L-R)} \\
& \text { D. } \frac{1}{\pi f(2 \pi f L-R)}
\end{aligned}
$$

Answer: C

D Watch Video Solution

15. The log - log graph between the energy E
of an electron and its de - Broglie wavelength
λ will be

(c) $\log \lambda$
C.

(d) $\log \lambda \underbrace{\longrightarrow}_{\log E}$
D.

Answer: C

D Watch Video Solution

16. The half life of a radioactive substance is 20
minutes . The approximate time interval
$\left(t_{2}-t_{1}\right)$ between the time t_{2} when $\frac{2}{3}$ of it
had decayed and time t_{1} when $\frac{1}{3}$ of it had decay is
A. 14 min
B. 20 min
C. 28 min
D. 7 min

Answer: B

D Watch Video Solution
17. The diode used at a constant potential drop of 0.5 V at all currents and maximum power rating of 100 mW . What resistance must be connected in series diode, so that current in circuit is maximum?

A. 200Ω
B. 6.67Ω
C. 5Ω
D. 15Ω

Answer: C

D Watch Video Solution

18. An upolarised beam of intensity $2 a^{2}$ passes
through a thin polarioid. Assuming zero absorption in the polariod, the intensity of emergent plane polarised light is
A. $2 a^{2}$
B. a^{2}
C. $\sqrt{2} a^{2}$
D. $\frac{a^{2}}{2}$

Answer: B

D Watch Video Solution

19. A hydrogen like atom of atomic number Z is in and excited state of quantum number $2 n$. It can emit a maximum energy photon of 204 eV .

If it makes a transition to quantum state n, photon of energy 40.8 eV is emitted. Find n, Z and the gound state energy (in eV) for this atom, Also calculate the minimum energy (in
eV) that can be emitted by this atom during de-exitation, Ground state energy of hydrogen atom is 13.6 eV
A. $10.32 M h z$
B. 10.61 kHz
C. 5.31 MHz
D. 5.31 kHz

Answer: B

D Watch Video Solution

20. A diode detector is used to detect an amplitude modulated wave of 60% modulation by using a condenser of capacity

250 pico farad in parallel with a load resistance 100 kilo ohm. Find the maximum modulated frequency which could be detected by it.
A. 1.89 mm
B. 4 mm
C. 1 mm
D. 3 mm

Answer: A

D Watch Video Solution
21. A circular loop of radius 0.3 cm lies parallel
to amuch bigger circular loop of radius 20 cm .

The centre of the small loop is on the axis of
the bigger loop. The distance between their centres is 15 cm . If a current of 2.0 A flows through the smaller loop, then the flux linked with bigger loop is
A. $9.1 \times 10^{-11} \mathrm{~Wb}$
B. $6 \times 10^{-11} \mathrm{~Wb}$
C. $3.3 \times 10^{-11} W b$
D. $6.6 \times 10^{-9} \mathrm{~Wb}$

Answer: A

22. In the adjoining circuit diagram, the readings of ammeter and voltmeter are 2 A and 120 V , respectively. If the value of R is 75Ω, then the voltmeter resistance will be

A. 100Ω
B. 150Ω

C. 300Ω

D. 75Ω

Answer: C

- Watch Video Solution

Assertion And Reasons

1. Assertion: Mass of a body decreases slightly
when it is negatively charged.

Reason: Charging is due to transfer of electrons.

D Watch Video Solution

2. Assertion: A dielectric slabis inserted between plates of an isolated capacitor. charge on capacitor will remain same.

Reason Charge on an isolated system is conserved.
3. Assertion: Terminal voltage of a cell is greater than emf of cell during charging of the cell.

Reason: The emf of a cell is always greater than its terminal voltage.

D Watch Video Solution

4. Assertion : Magnetic field interacts with a moving charge and not with a stationary charge.

Reason : A moving charge produces a
magnetic field.
(A)If both Assertion \& Reason are True \& the

Reason is a correct explanation of the

Assertion.
(B)If both Assertion \& Reason are True but

Reason is not a correct explanation of the

Assertion.
(C)If Assertion is True but the Reason is False.
(D)If both Assertion \& Reason are false.

D Watch Video Solution

5. Assertion: Bulb generally get fused when they are switched on or off.

Reason: When we switch on or off, a circuit current changes in it rapidly.
(A) If both Assertion \& Reason are True \&the

Reason is a correct explanation of the Assertion.
(B) If both Assertion \& Reason are True but

Reason is not a correct explanation of the Assertion.
(C) If Assertion is True but the Reason is False.
(D) If both Assertion \& Reason are false.
6. Assertion: A convex mirror always make a virtual image.

Reason: The ray always diverge after reflection
from the convex mirror.

D Watch Video Solution

7. Assertion: if a glass slab is placed in front of
one of the slits, then fringe with will decreases.

Reason: Glass slab with produce an additional path difference.

D Watch Video Solution

8. Assertion: If electrons in an atom were stationary, then they would fall into the nucleus.

Reason: Electrostatic force of attraction acts between negatively charged electrons and positive nucleus.
9. Radioactive nuclei emit β^{-1} particles.

Electrons exist inside the nucleus.

D Watch Video Solution

10. Assertion: Thickness of depletion layer is
fixed in all semiconductor devices.

Reason: No free charge carriers are available
in deplection layer.

1. What is the magnetic moment of an electron

orbiting in a circular orbit of radius r with a speed v ?
A. $e v \frac{r}{2}$
B. evr
C. $\frac{e r}{2 v}$
D. None of these

- Watch Video Solution

2. Two point charges $q_{1}=2 \times 10^{-3} \mathrm{C}$ and $q_{2}=-3 \times 10^{-6} C$ are separated by a distance $x=10 \mathrm{~cm}$. Find the magnitude and nature of the force between the two charges.
A. $2 \times 10^{-3} \mathrm{~N}$
B. $6 \times 10^{-3} \mathrm{~N}$
C. $5 \times 10^{-3} \mathrm{~N}$
D. $1 \times 10^{-3} \mathrm{~N}$

Answer: B

- Watch Video Solution

3. Find $R_{\neq t}$ between A and B.

A. 60Ω
B. 40Ω

С. 70Ω

D. 20Ω

Answer: B

- Watch Video Solution

4. In the circuit shown in the figure,

A. 0.5 A
B. 0.2 A
C. 0.041666666666667
D. 0.083333333333333

Answer: A

- Watch Video Solution

5. Find $V_{P}-V_{Q}$ in the circuit shown in figure.

A. 6.68 V
B. 8 V
C. 4.35 V
D. 7 V

Answer: C

- Watch Video Solution

6. If a capacitor having capacittance $2 F$ and
plate separation of 0.5 cm will have area
A. $1130 \mathrm{~cm}^{2}$
B. $1130 m^{2}$
C. $1130 \mathrm{~km}^{2}$
D. none of these

Answer: C

D Watch Video Solution

7. Find the capacitance in shown figure

A. $\frac{2 K A \varepsilon_{0}}{(K+1) d}$
B. $\frac{2 K A \varepsilon_{0}}{d}$

> C. $\frac{(K+1) A \varepsilon_{0}}{2 d}$
> D. $\frac{2 K A \varepsilon_{0}}{\left(K^{2}+1\right) d}$

Answer: A

D Watch Video Solution

8. If minimum deviation $=30^{\circ}$, then speed of
light in shown prism will be

$$
\begin{aligned}
& \text { A. } \frac{3}{\sqrt{2}} \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { B. } \frac{1}{\sqrt{2}} \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{2}{\sqrt{3}} \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { D. } \frac{2 K A \varepsilon_{0}}{\left(K^{2}+1\right) d}
\end{aligned}
$$

Answer: A

D Watch Video Solution

9. A current .l. flows through a metallic wire of
radius .r. and the free electrons in it drift with
a velocity v_{d}. Calculate the drift velocity of the free electrons through the wire of the same
material, having double the radius, when same

current flows through it.

A. $4 v_{d}$
B. $\frac{v_{d}}{4}$
C. $16 v_{d}$
D. $\frac{v_{d}}{16}$

Answer: C
(Watch Video Solution
10. Find i in shown figure.

A. 0.2 A
B. 0.1 A
C. 0.3 A
D. 0.4 A

Answer: B

- Watch Video Solution

11. which of these is a fustion reaction ?
A. $-(1)^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} \mathrm{He}$
B. $-(0)^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{92} K r+3{ }_{0}^{1} n$
C. Uranium decay
D. None of the above
12. An electron is accelerated through a potential difference V . Write the expression for its final speed , if it was initially at rest.
A. $\sqrt{2} F$
B. F
C. 2 F
D. $\frac{F}{2}$

- Watch Video Solution

13. An atomic power nuclear reactor can deliver $300 M W$. The energy released due to
fission of each nucleus of uranium atom U^{238}
is 170 MeV . The number of uranium atoms
fissioned per hour will be.
A. 30×10^{25}
B. 4×10^{22}
C. 10×10^{2}

D. 5×10^{15}

Answer: B

- Watch Video Solution

14. in the fusion reaction
${ }_{1} H^{2}+{ }_{1} H^{2} \rightarrow{ }_{2} H e^{3}+{ }_{0} N^{1}$, are masses of deuteron and neutron expressed in amu are
2.015, 3.017 and 1.0009, respectively, if 1 kg of deuterium undergoes complete fusion, then
find the amount of total energy released.
$1 \mathrm{amu}=931.5 \mathrm{ME} \mathrm{V} / c^{2}$.
A. $9.0 \times 10^{13} \mathrm{~J}$
B. $20 \times 10^{5} \mathrm{~J}$
C. $5 \times 10^{16} \mathrm{~J}$
D. 8×10^{5} J

Answer: A
(Watch Video Solution
15. A prism of crown glass with refracting angle of 5° and mean refractive index $=1.151$ is combined with a flint glass prism of refractive index $=1.65$ to produce deviation. Find the angle of fiint glass.
A. 3.92°
B. 4.68°
C. 5.32°
D. 7.28°
16. Two slits are separated by a distance of
0.5 mm and illuminated with light of
$\lambda=6000 \AA$. If the screen is placed 2.5 m from
the slits. The distance of the third bright image from the centre will be
A. 1.5 mm
B. 3 mm
C. 6 mm

D. 9 mm

Answer: D

D Watch Video Solution

17. Calculate the dispersive power for crown glass from the given data

$$
\mu_{v}=1.523 \text { and } \mu_{r}=1.5145
$$

A. 0.01639
B. 1.05639

C. 0.05639

D. 2.05639

Answer: A

D Watch Video Solution

18. The force of attractions between two
charges $8 \mu C$ and $-4 \mu C$ is 0.2 N . Find the distance of separation.
A. 1.2 m
B. 12 m
C. 120 m
D. 0.12 m

Answer: D

D Watch Video Solution

19. In a L-C circuit, angular frequency at resonance is ω. What will be the new angular
frequency when inductor's inductance is made
two times and capacitor's capacitance is made

four times?

A. $\frac{\omega}{2} \sqrt{2}$
B. $\frac{\omega}{\sqrt{2}}$
C. 2ω
D. $\frac{2 \omega}{\sqrt{2}}$

Answer: A
(Watch Video Solution
20. If an electron is moving with velocity v produces a magnetic field \vec{B}, then

> A. $B \propto v \propto \frac{1}{r}$
> B. $B \propto v \propto \frac{1}{r^{2}}$
> C. $B \propto v^{2} \propto \frac{1}{r}$
> D. $B \propto v^{2} \propto \frac{1}{r^{2}}$

Answer: B

D Watch Video Solution

21. A regular hexagone of side a. A wire of
length 24 a is coiled on that hexagone. If current in hexagone is I , then find the magnetic moment.

A. $6 \sqrt{3} l a^{2}$
B. $3 \sqrt{3} l a^{2}$
C. $\frac{3 \sqrt{3}}{2} l a^{2}$
D. $6 l a^{2}$

Answer: A

D Watch Video Solution

22. The refractive index of glass is 1.5 . The speed of light in glass is
A. $3 \times 10^{8} \mathrm{~m} / / \mathrm{s}$
B. $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $4 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: B
(D) Watch Video Solution

