©゙ doubtnut

MATHS

BOOKS - DISHA PUBLICATION MATHS

(HINGLISH)

APPLICATION OF INTEGRALS

Jee Main 5 Year At A Glance

1. Let $g(x)=\cos x^{2}, f(x)=\sqrt{x}$, and $\alpha, \beta(\alpha<\beta)$ be the roots of the quadratic equation $18 x^{2}-9 \pi x+\pi^{2}=0$. Then the area (in
sq. units) bounded by the curve $y=(g o f)(x)$ and the lines $x=\alpha, x=\beta$ and $y=0$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{2}(\sqrt{3}+1) \\
& \text { B. } \frac{1}{2}(\sqrt{3}-\sqrt{2}) \\
& \text { C. } \frac{1}{2}(\sqrt{2}-1) \\
& \text { D. } \frac{1}{2}(\sqrt{3}-1)
\end{aligned}
$$

Answer: D

- Watch Video Solution

2. If the area of the region bounded by the curves,
$y=x^{2}, y=\frac{1}{x}$ and
$y=0$ and $x=t(t>1)$ is 1 sq. unit, then t is equal to :
A. $\frac{4}{3}$
B. $e^{\frac{2}{3}}$
C. $\frac{3}{2}$
D. $e^{\frac{3}{2}}$

Answer: B
3. The area (in sq. units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y \quad\right.$ and $y \leq 1+\sqrt{x}\}$ is :
A. $\frac{5}{2}$
B. $\frac{59}{12}$
C. $\frac{3}{2}$
D. $\frac{7}{3}$

Answer: A

- Watch Video Solution

4. The angle between the curves $x^{2}+y^{2}=4$ and

$$
x^{2}=3 y \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \sqrt{3}}+\frac{\pi}{3} \\
& \text { B. } \frac{1}{\sqrt{3}}+\frac{2 \pi}{3} \\
& \text { C. } \frac{1}{2 \sqrt{3}}+\frac{\pi}{3} \\
& \text { D. } \frac{1}{\sqrt{3}}+\frac{4 \pi}{3}
\end{aligned}
$$

Answer: D
5. The area (in sq. units) of the region $\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \leq 0\right\}$, is
A. $\pi-\frac{4 \sqrt{2}}{3}$
B. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
C. $\pi-\frac{4}{3}$
D. $\pi-\frac{8}{3}$

Answer: D

- Watch Video Solution

6. The area (in sq. units) of the region described by

$$
A=\left\{(x, y): y \geq x^{2}-5 x+4, x+y>1, y \leq 0\right\}
$$

is
A. $\frac{19}{6}$
B. $\frac{17}{6}$
C. $\frac{7}{2}$
D. $\frac{13}{6}$

Answer: A
7. The area (in sq. units) of the region described by

$$
\left\{(x, y): y^{2} \leq 2 x \text { and } y \geq 4 x-1\right\} \text { is- }
$$

A. $\frac{15}{64}$
B. $\frac{9}{32}$
C. $\frac{7}{32}$
D. $\frac{5}{64}$

Answer: B

- Watch Video Solution

8. The area (in square unit) of the region bounded
by the curves $y=x^{3}$ and $y=2 x^{2}$ is-
A. $\frac{3}{5}$
B. $\frac{1}{3}$
C. $\frac{4}{3}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

9. The area of the region described by
$A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is:
A. $\frac{\pi}{2}-\frac{2}{3}$
B. $\frac{\pi}{2}+\frac{2}{3}$
C. $\frac{\pi}{2}+\frac{4}{3}$
D. $\frac{\pi}{2}-\frac{4}{3}$

Answer: C

- Watch Video Solution

10. Let $A=\left\{(x, y) ; y^{2} \leq 4 x, y-2 x \leq-4\right\}$ The

 area (insurunits) of the region A isA. 8
B. 9
C. 10
D. 11

Answer: B

- Watch Video Solution

Exercise 1 Concept Builder Topicwise

1. The area of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $\mathrm{x}=1$ is
A. $\frac{1}{9}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
B. $\left(9 \sec ^{-1} 3-\sqrt{8}\right)$ sq unit
C. $\left(\sqrt{8}-9 \sec ^{-1} 3\right)$ sq unit
D. None of the above

Answer: B

- Watch Video Solution

2. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

3. The area bounded by the curve $y^{2}(2 a-x)=x^{3}$ and the line $\mathrm{x}=2 \mathrm{a}$ is
A. $3 \pi a^{2}$ sq. unit
B. $\frac{3 \pi a^{2}}{2}$ sq. unit
C. $\frac{3 \pi a^{2}}{4}$ sq. unit
D. $\frac{6 \pi a^{2}}{5}$ sq. unit

Answer: B

- Watch Video Solution

4. The area bounded by the x-axis, the curve $y=f(x)$, and the lines $x=1, x=b$ is equal to
$\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is $\sqrt{x-1}$
(b) $\sqrt{x+1} \sqrt{x^{2}+1}$ (d) $\frac{x}{\sqrt{1+x^{2}}}$
A. $\sqrt{x-1}$
B. $\sqrt{x+1}$
C. $\sqrt{x^{2}+1}$
D. $\frac{x}{1+\sqrt{x^{2}}}$

Answer: D
5. The area between the curves $y=2 x^{4}-x^{2}$, the x-axis and the ordinates of two minima of the be curve is (A) $\frac{7}{240}$ (B) $\frac{7}{120}$ (C) $\frac{7}{60}$ (D) None of these
A. $\frac{7}{120}$
B. $\frac{9}{120}$
C. $\frac{11}{120}$
D. $\frac{13}{120}$

Answer: A
(D) Watch Video Solution
6. What is the area of the parabola $x^{2}=y$ bounded by the lines $y=1$?
A. $\frac{1}{3}$ square unit
B. $\frac{2}{3}$ square unit
C. $\frac{4}{3}$ square unit
D. 2 square unit

Answer: C
7. If the ordinate $x=$ a divides the area bounded by the curve $y=1+\frac{8}{x^{2}}$ and the ordinates $x=2, x=4$ into two equal parts, then a is equal to
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $3 \sqrt{2}$
D. None of these

Answer: B
8. The area under the curve
$y=|\cos x-\sin x|, 0 \leq x \leq \frac{\pi}{2}$, and above x-axis is: (A) $2 \sqrt{2}+2$ (B) 0 (C) $2 \sqrt{2}-2$ (D) $2 \sqrt{2}$
A. $2 \sqrt{2}$
B. $2 \sqrt{2}-2$
C. $2 \sqrt{2}+2$
D. 0

Answer: B

- Watch Video Solution

9. Calculate the area bounded by the curve $y=x(3-x)^{2}$ the x-axis and the ordinates of the maximum and minimum points of the curve.
A. 1 sq. unit
B. 2 sq. unit
C. 4 sq. unit
D. None of these

Answer: C
10. The area of the ellipse
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in first quadrant is 6π sq. units.
The ellipse is rotated about its centre in anti-
clockwise direction till its major axis coincides with
y-axis. Now the area of the ellipse in first quadrant is........ π sq. units.
A. 2
B. 4
C. 6
D. 8
11. The area bounded by the graph of
$y=f(x), f(x)>0 \quad$ on $\quad[0, \mathrm{a}] \quad$ and $\quad x$-axis is $\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$ then find the value of $f\left(\frac{\pi}{2}\right)$.
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. None of these

Answer: B

D Watch Video Solution

12. The area between the curve $y=1-|x|$ and the x - axis is equal to
A. 1 sq. unit
B. $\frac{1}{2}$ sq. unit
C. $\frac{1}{3}$ sq. unit
D. 2sq. Unit
13. What is the area of the parabola $y^{2}=x$ bounde by its latus rectum?
A. $2 b^{2} / 3$ square unit
B. $4 b^{2} / 3$ square unit
C. b^{2} square unit
D. $8 b^{2} / 3$ square unit

Answer: D
14. The value of $a(a>0)$ for which the area bounded by the curves
$y=\frac{x}{6}+\frac{1}{x^{2}}, y=0, x=a, a n d x=2 a$ has the least value is
A. 2
B. $\sqrt{2}$
C. $2^{1 / 3}$
D. 1

Answer: D
15. The curve $y=x^{2}-7 x+10$ intersects the x axis at the points A and B. Then the area bounded by the curve and the line $A B$ is
A. $4 \frac{1}{2}$ sq unit
B. 4 sq unit
C. 6 sq unit
D. 2 sq unit

Answer: A
16. What is the area bounded by the lines

$$
x=0, y=0 \text { and } x+y+2=0 ?
$$

A. $\frac{1}{2}$ square unit
B. 1square unit
C. 2 square unit
D. 4 square unit

Answer: C

- Watch Video Solution

17. The area (in sq. units) bounded by the curve $|y|=|\ln | x| |$ and the coordinate axes is
A. 2
B. 1
C. 5
D. $2 \sqrt{2}$

Answer: B

- Watch Video Solution

18. Find the area bounded by the curve

$y=\sin ^{-1} x$ and the line $x=0,|y|=\frac{\pi}{2}$.
A. 1
B. 2
C. π
D. 2π

Answer: B

- Watch Video Solution

19. The area of the region (in sq units), in the first quadrant, bounded by the parabola $y=9 x^{2}$ and the lines $x=0, y=1$ and $y=4$, is
A. $7 / 9$
B. $14 / 3$
C. $7 / 3$
D. $14 / 9$

Answer: D

20. The area enclosed between the graph of $y=x^{3}$ and the lines $\mathrm{x}=0, \mathrm{y}=1, \mathrm{y}=8$ is
A. $\frac{45}{4}$
B. 14
C. 7
D. None of these

Answer: A

- Watch Video Solution

21. The area of the region bounded by the curve $x=2 y+3$ and the lines $y=1, y=-1$ is
A. 4 sq. units
B. $\frac{3}{2}$ sq. units
C. 6 sq. units
D. 8 sq. units

Answer: C

- Watch Video Solution

22. The area of the region bounded by

$$
y^{2}=2 x+1 \text { and } x-y-1=0 \text { is }
$$

> A. $\frac{2}{3}$
> B. $\frac{4}{3}$
> C. $\frac{8}{3}$
> D. $\frac{16}{3}$

Answer: D

23. The area bounded by the curve
$y=\left[\frac{x^{2}}{64}+2\right], y=x-1, y=x-1$ and $x=0$ above the x-axis will be-(Where [] represents greatest integer function)
A. 2 sq unit
B. 3 sq unit
C. 4 sq unit
D. None of these

Answer: C

24. The figure shows a $\triangle A O B$ and the parabola $y=x^{2}$. The ratio of the area of the $\Delta A O B$ to the area of the region AOB of the parabola $y=x^{2}$ is equal to

A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{7}{8}$
D. $\frac{5}{6}$

Answer: B

D Watch Video Solution

25. If the area enclosed by $y^{2}=4 a x$ and the line
$y=a x$ is $\frac{1}{3}$ sq.units, then the area enclosed by
$y=4 x$ with the same curve in sq. units is
A. 8 sq unit
B. 4 sq unit
C. $4 / 3$ sq unit
D. $8 / 3$ sq unit

Answer: D

(D) Watch Video Solution

26. Which of the following is not the area of the region bounded by $y=e^{x}$ and $\mathrm{x}=0$ and $\mathrm{y}=\mathrm{e}$?
A. e-1
B. $\int_{1}^{e} \operatorname{In}(e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{0}^{e} I n y d y$

Answer: A,D

D Watch Video Solution

27. Find the area of the region bounded by: the parabola $y=x^{2}$ and the line $y=x$
A. $\frac{1}{6}$ sq. units
B. $\frac{1}{3}$ sq. units
C. $\frac{1}{2}$ sq. units
D. None of these
28. The area above the x-axis enclosed by the curves $x^{2}-y^{2}=0$ and $x^{2}+y-2=0$ is

> A. $\frac{5}{3}$
> B. $\frac{7}{3}$
> C. $\frac{8}{3}$
> D. $\frac{10}{3}$

Answer: B
29. Area bounded by the parabola
$y=x^{2}-2 x+3$ and tangents drawn to it from the point $P(1,0)$ is equal to
A. $4 \sqrt{2}$ sq. units
B. $\frac{4 \sqrt{2}}{3}$ sq. units
C. $\frac{8 \sqrt{2}}{3}$ sq. units
D. $\frac{16 \sqrt{2}}{3}$ sq. units

Answer: B
30. The area between the curves $y=x^{2}$ and

$$
y=\frac{2}{1+x^{2}} \text { is equal to }
$$

$$
\begin{aligned}
& \text { A. } \pi-\frac{2}{3} \\
& \text { В. } \pi+\frac{2}{3} \\
& \text { С. }-\pi-\frac{2}{3}
\end{aligned}
$$

D. None of these

Answer: D
31. If the area enclosed by $y^{2}=4 a x$ and the line
$y=a x$ is $\frac{1}{3}$ sq. unit, then the roots of the equation $x^{2}+2 x=a$, are
A. -4 and 2
B. 2 and 4
C. -2 and -4
D. 8 and -8

Answer: A

- Watch Video Solution

32. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 6
B. 9
C. 12
D. 3

Answer: B
33. Find the area lying in the first quadrant and bounded by the curve $y=x^{3}$ and the line $y=4 x$.
A. 2
B. 3
C. 4
D. 8

Answer: D

- Watch Video Solution

34. Area bounded by the circle $x^{2}+y^{2}=1$ and the curve $|x|+|y|=1$ is
A. 2π
B. $\pi-2$
C. π
D. $\pi+3$

Answer: B

- Watch Video Solution

35. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. Then
find the area between the arc $A B$ and the chord $A B$ of the ellipse.
A. $\pi a b s q$. units
B. $(\pi-2)$ sq. units
C. $\frac{a b(\pi+2)}{2}$ sq. units
D. $\frac{a b(\pi-2)}{4}$ sq. units

Answer: D
36. Find the area enclosed between the curves:

$$
y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right) \& \text { the x-axis. }
$$

A. 2 sq unit
B. 1 sq unit
C. 4 sq unit
D. None of these

Answer: A

- Watch Video Solution

37. Find the area bounded by the curves
$x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|, \quad$ and $x=0$ above the x-axis.

$$
\begin{aligned}
& \text { A. } 2+\frac{25}{2} \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } 2+\frac{25}{4} \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { C. } 2+\frac{25}{2} \sin ^{-1}\left(\frac{1}{5}\right)
\end{aligned}
$$

D. None of these

Answer: A

38. The area bounded by the curves
$y=x e^{x}, y=x e^{-x} \quad$ and the line $x=1$ is
$\frac{2}{e}$ sqünits
(b)
its
$1-\frac{1}{e}$ sqünits
A. $\frac{2}{e}$
B. $1-\frac{2}{e}$
C. $\frac{1}{e}$
D. $1-\frac{1}{e}$

Answer: A
39. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.
A. 2
B. 4
C. 7
D. 8

Answer: C

- Watch Video Solution

40. If $y=f(x)$ makes positive intercepts of 2 and

1 unit on x and y-coordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_{0}^{2} x f^{\prime}(x) d x$, is
A. $3 / 2$
B. 1
C. $5 / 4$
D. $-3 / 4$

Answer: D

41. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then
A. 1:2:1
B. 1:2:3
C. 2:1:2
D. 1:1:1

Answer: D

42. The area bounded by the curve

$$
y^{2}\left(a^{2}+x^{2}\right)=x^{2}\left(a^{2}-x^{2}\right) \text { is }
$$

A. $a^{2}(\pi-2)$ sq unit
B. $a^{2}(\pi+2)$ sq unit
C. $a^{2}(\pi-1)$ sq unit
D. $a^{2}(\pi+1)$ sq unit

Answer: A
43. Prove that area common to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ and \quad its auxiliary circle $x^{2}+y^{2}=a^{2}$ is equal to the area of another ellipse of semi-axis $a a n d a-b$.

$$
\begin{aligned}
& \text { A. }(a+b)^{2} \tan ^{-1 \frac{b}{a}} \\
& \text { B. }(a+b)^{2} \tan ^{-1 \frac{a}{b}} \\
& \text { C. } 4 a b \frac{\tan ^{-1}(b)}{a} \\
& \text { D. } 4 a b \frac{\tan ^{-1}(a)}{b}
\end{aligned}
$$

Answer: C

44. If $C_{1} \equiv y=\frac{1}{1+x^{2}}$ and $C_{2} \equiv y=\frac{x^{2}}{2}$ be two curve lying in XY plane. Then
A. area bounded by $y=\frac{1}{1+x^{2}}$ and $\mathrm{y}=0$ is $\frac{\pi}{2}$
B. area bounded by c_{1} and c_{2} is $\frac{\pi}{2}-1$
C. area bounded by c_{1} and c_{2} is $1-\frac{\pi}{2}$
D. area bounded by curve $y=\frac{1}{1+x^{2}}$ and x axis is $\frac{\pi}{2}$?

Answer: B
45. The area bounded by $y=x^{2}+3$ and $y=2 x+3$ is (in sq. units)
A. $\frac{12}{7}$
B. $\frac{4}{3}$
C. $\frac{3}{4}$
D. $\frac{8}{3}$

Answer: B

D Watch Video Solution
46. The area bounded by the curves

$$
y=x e^{x},=x e^{-x} \text { and the line } x=1
$$

$$
\begin{aligned}
& \text { A. } e+\frac{1}{e} \\
& \text { B. } e+\frac{1}{e}+2 \\
& \text { C. } e+\frac{1}{e}-2 \\
& \text { D. } e-\frac{1}{e}+2
\end{aligned}
$$

Answer: C

- Watch Video Solution

47. The area bounded by the curve $y=x^{2}$, the normal at $(1,1)$ and the x-axis is:
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. None

Answer: A

- Watch Video Solution

48. Find the area bounded by the y-axis,
$y=\cos x, a n d y=\sin x w h e n 0 \leq x \leq \frac{\pi}{2}$.
A. $2(\sqrt{2-1})$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

49. Find the area bounded by curves

$$
\begin{aligned}
& (x-1)^{2}+y^{2}=1 \text { and } x^{2}+y^{2}=1 . \\
& \text { A. }\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \\
& \text { B. } \frac{2 \pi}{3} \\
& \text { C. } \frac{\sqrt{3}}{2} \\
& \text { D. }\left(\frac{2 \pi}{3}+\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

50. $f(x)=\min \{2 \sin x, 1-\cos x, 1\}$ then $\int_{0}^{\pi} f(x) d x$ is equal to
A. $\frac{\pi}{3}+1-\sqrt{3}$
B. $\frac{2 \pi}{3}-1+\sqrt{3}$
C. $\frac{2 \pi}{3}-1-\sqrt{3}$
D. $\frac{5 \pi}{6}+1-\sqrt{3}$

Answer: D

- Watch Video Solution

1. The slope of the tangent to a curve $y=f(x)$ at
$(x, f(x))$ is $2 x+1$. If the curve passes through
the point $(1,2)$ then the area of the region bounded by the curve, the x-axis and the line

$$
x=1 \text { is (A) } \frac{5}{6} \text { (B) } \frac{6}{5} \text { (C) } \frac{1}{6} \text { (D) } 1
$$

5
A. $\frac{5}{6}$ sq unit
B. $\frac{6}{5}$ sq unit
C. $\frac{1}{6}$ sq unit
D. 6 sq unit
2. The area of the region bounded by the curves
$y=|x-2|, \mathrm{x}=1, \mathrm{x}=3$ and thex $-a \xi \operatorname{sis}(A) 3(B) 2$
(C) $1(D) 4^{`}$
A. 4
B. 3
C. 2
D. 1

Answer: D
3. The area bounded by $y=|\sin x|, X$-axis and the
line $|x|=\pi$ is
A. 2 sq unit
B. 1 sq unit
C. 4 sq unit

D. None of these

Answer: C

- Watch Video Solution

4.

The
value
of
integrals
$\int_{-2}^{2} \max \{x+|x|, x-[x]\} d x \quad$ where represents the greatest integer function is
A. 4
B. 5
C. $\frac{7}{2}$
D. $\frac{9}{4}$

Answer: B
5. Sketch the curves and identify the region bounded by the curves
$x=\frac{1}{2}, x=2, y=\log x a n y=2^{x}$. Find the area of this region.
A. $\frac{4}{3}$ sq. unit
B. $\frac{5}{3}$ sq. unit
C. $\frac{3}{2}$ sq. unit
D. None of these

Answer: D

6. Area enclosed by the curve $x^{2} y=36$, the X-axis and the lines $x=6$ and $x=9$, is
A. 6
B. 1
C. 4
D. 2

Answer: D
7. The area between the curve $y=2 x^{4}-x^{2}$, the x axis, and the ordinates of the two minima of the curve is
A. $\frac{3}{120}$ sq unit
B. $\frac{5}{120}$ sq unit
C. $\frac{1}{20}$ sq unit
D. $\frac{7}{120}$ sq unit

Answer: D

- Watch Video Solution

8. Area bounded by the curve
$y=\log _{e} x, x=0, y \leq 0$ and x -axis is:
A. 1 sq. unit
B. 2 sq. unit
C. $\frac{1}{2}$ sq. unit
D. None of these

Answer: A
9. If $[x]$ denotes the integral part of x and $f(x)=\min (x-[x],-x-[-x])$ show that: $\int_{-2}^{2} f(x) d x=1$
A. 1
B. 2
C. $\frac{3}{2}$
D. 0

Answer: A

- Watch Video Solution

10. The area of the plane region bounded by the
curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
A. 1 sq. unit
B. $\frac{1}{3}$ sq. unit
C. $\frac{2}{3}$ sq. unit
D. $\frac{4}{3}$ sq. unit

Answer: D

D Watch Video Solution
11. Area bounded by the curve $x y^{2}=a^{2}(a-x)$
and the y -axis is $\frac{\pi a^{2}}{2}$ squinits (b) πa^{2} squinits $3 \pi a^{2}$ squinits (d) None of these
A. $\pi a^{2} / 2$ sq. unit
B. πa^{2} sq. unit
C. $3 \pi a^{2}$ sq. unit
D. None of these

Answer: B
12. The value of k for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, the straight line $x=1$ and $x=k$ and the x -axis is equal to $16 / 3$
A. 1
B. 3
C. -1
D. 4

Answer: A

13. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}$,
$x=0, y=1 a n d y=4$.
A. $\frac{7}{3}$ Sq. unit
B. $\frac{4}{5}$ Sq. unit
C. $\frac{3}{4}$ Sq. unit
D. None of these

Answer: A
14. The area bounded by the curve $x=2-y-y^{2}$

and Y -axis is

A. $-\frac{9}{2}$
B. $\frac{9}{2}$
C. 9
D. -9

Answer: B

- Watch Video Solution

15. Let f and g be continuous functions on [$0, a]$
such
$f(x)=f(x)=f(a-x)$ and $g(x)+g(a-x)=4$
, then $\int_{0}^{a} f(x) g(x) \mathrm{dx}$ is equal to
A. $\int_{a}^{b}(f(x)-g(x)) d x$
B. $\int_{a}^{b}(p(x)-q(x)) d x$
C. $\int_{a}^{b}|p(x)-q(x)| d x$
D. None of these

Answer: C
16. The area bounded by the curves $y=\sin x, y=$ $\cos x$ and y-axis in 1 quadrant is -
A. $(\sqrt{2}-1)$ sq. unit
B. 1 sq. unit
C. $\sqrt{2}$ sq. unit
D. $(1+\sqrt{2})$ sq. unit

Answer: A

- Watch Video Solution

17. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.
A. 12π
B. 3π
C. 24π
D. π

Answer: A

- Watch Video Solution

18. Find the area of the region enclosed by the
curves $y=x \log x a n d y=2 x-2 x^{2}$.
A. $\frac{5}{12}$
B. $\frac{7}{12}$
C. 1
D. $\frac{4}{7}$

Answer: B

- Watch Video Solution

19. The area between the curves $y=x^{2}$ and

$$
y=\frac{2}{1+x^{2}} \text { is equal to }
$$

A. $\pi-\frac{2}{3}$
B. $\pi+\frac{2}{3}$
C. $-\pi-\frac{2}{3}$
D. None of these

Answer: D

- Watch Video Solution

20. Find the area of the region bounded by the
curves $y=x^{2}+2 y=x, x=0, a n d x=3$.
A. $\frac{2}{21}$
B. 21
C. $\frac{21}{2}$
D. $\frac{9}{2}$

Answer: C

- Watch Video Solution

21. The area bounded by the parabola $y=(x+1)^{2}$ and $y=(x-1)^{2}$ and the line
$y=\frac{1}{4}$ is (A) 4 sq. units (B) $\frac{1}{6}$ sq. units (C) $\frac{3}{4}$ sq.
units (D) $\frac{1}{3}$ sq. units
A. 4 sq. units
B. $1 / 6$ sq. units
C. $4 / 3$ sq. units
D. $1 / 3$ sq. units

Answer: D

22. The area of the region lying between the line $x-y+2=0$ and the curve $x=\sqrt{y}$, is
A. 9
B. $9 / 2$
C. $10 / 3$
D. None of these

Answer: C

- Watch Video Solution

23. Area bounded by the curve $y=\sin x$ between .

$$
x=0 \text { and } x=2 \pi \text { is }
$$

A. The area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 p$ is 2 sq. units.
B. The area bounded by the curve $y=2 \cos x$
and the X-axis from $x=0$ to $x=2 p$ is 8 sq.
units.
C. Both (a) and (b) are true.
D. Both (b) and (b) are false.

- Watch Video Solution

24. The maximum area of a rectangle whose two
vertices lie on the x-axis and two on the curve

$$
y=3-|x|,-3 \leq x \leq 3
$$

A. 9 sq. units
B. $9 / 4$ sq. units
C. 3 sq. units
D. None of these

Answer: D
25. The area bounded by $y-1=|x|, y=0$ and $|x|=\frac{1}{2}$ will be :
A. $\frac{3}{4}$
B. $\frac{3}{2}$
C. $\frac{5}{4}$
D. None of these

Answer: C

- Watch Video Solution

26.

The area
bounded
$f(x)=x^{2}, 0 \leq x \leq 1, g(x)=-x+2,1 \leq x \leq 2$
and x - axis is
A. $\frac{3}{2}$
B. $\frac{4}{3}$
C. $\frac{8}{3}$
D. None of these

Answer: D

- Watch Video Solution

27. Find the area of the region R which is enclosed by the curve $y \geq \sqrt{1-x^{2}}$ and max $\{|x|,|y|\} \leq 4$.
A. $4+\pi$
B. $6+\pi$
C. $8-\frac{\pi}{2}$
D. $4+\frac{\pi}{2}$

Answer: C
28. The area bounded by the curves
$y=\sqrt{x}, 2 y+3=x, \quad$ and $\quad x$-axis in the pst quadrant is 18 sq. units (b) $\frac{27}{4}$ squints $\frac{4}{3}$ squnits (d) 9 sq. units
A. 9
B. $\frac{27}{4}$
C. 36
D. 18

Answer: A

- Watch Video Solution

29. Find the area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$
A. $\frac{13}{2}$ sq unit
B. $\frac{9}{2}$ sq unit
C. $\frac{7}{2}$ sq unit
D. $\frac{21}{2}$ sq unit

Answer: B

- Watch Video Solution

30. The area of the region bounded by
$x=\frac{1}{2}, x=2, y=\ln x$ and $y=2^{x}$ is
A. $\frac{4}{3}$ sq. units
B. $\frac{5}{3}$ sq. units
C. $\frac{3}{2}$ sq. units
D. None of these

Answer: D

- Watch Video Solution

