

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

APPLICATION OF INTEGRALS

Jee Main 5 Year At A Glance

1. Let
$$g(x) = \cos x^2$$
, $f(x) = \sqrt{x}$, and α , $\beta(\alpha < \beta)$ be the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$. Then the area (in

sq. units) bounded by the curve y = (gof)(x) and

the lines x=lpha, x=eta and y=0 is

A.
$$rac{1}{2} ig(\sqrt{3}+1ig)$$

B. $rac{1}{2} ig(\sqrt{3}-\sqrt{2}ig)$
C. $rac{1}{2} ig(\sqrt{2}-1ig)$
D. $rac{1}{2} ig(\sqrt{3}-1ig)$

2. If the area of the region bounded by the curves,

 $y=x^2, y=rac{1}{x}$ and the lines $y=0 ext{ and } x=t(t>1)$ is 1 sq. unit, then t is equal to :

A.
$$\frac{4}{3}$$

B. $e^{\frac{2}{3}}$
C. $\frac{3}{2}$
D. $e^{\frac{3}{2}}$

Answer: B

Watch Video Solution

3. The area (in sq. units) of the region $ig\{(x,y)\colon x\ge 0,\,x+y\le 3,\,x^2\le 4y$ and $y\le 1+\sqrt{x}ig\}$ is :

A.
$$\frac{5}{2}$$

B. $\frac{59}{12}$
C. $\frac{3}{2}$
D. $\frac{7}{3}$

Answer: A

4. The angle between the curves $x^2 + y^2 = 4$ and

$$x^2 = 3y$$
 is

A.
$$\frac{1}{2\sqrt{3}} + \frac{\pi}{3}$$

B. $\frac{1}{\sqrt{3}} + \frac{2\pi}{3}$
C. $\frac{1}{2\sqrt{3}} + \frac{\pi}{3}$
D. $\frac{1}{\sqrt{3}} + \frac{4\pi}{3}$

5. The area (in sq. units) of the region $ig\{(x,y): y^2\leq 2x ext{ and } x^2+y^2\leq 4x, x\geq 0, y\leq 0ig\},$ is

A.
$$\pi - \frac{4\sqrt{2}}{3}$$

B. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$
C. $\pi - \frac{4}{3}$
D. $\pi - \frac{8}{3}$

6. The area (in sq. units) of the region described by $A=ig\{(x,y)\!:\!y\geq x^2-5x+4,x+y>1,y\leq 0ig\}$ is

A.
$$\frac{19}{6}$$

B. $\frac{17}{6}$
C. $\frac{7}{2}$
D. $\frac{13}{6}$

Answer: A

Watch Video Solution

7. The area (in sq. units) of the region described by $\{(x,y): y^2 \le 2x \text{ and } y \ge 4x-1\}$ is-A. $rac{15}{64}$

$$B. \frac{9}{32}$$
C. $\frac{7}{32}$
D. $\frac{5}{64}$

Answer: B

Watch Video Solution

8. The area (in square unit) of the region bounded

by the curves $y=x^3$ and $y=2x^2$ is-

A.
$$\frac{3}{5}$$

B. $\frac{1}{3}$
C. $\frac{4}{3}$
D. $\frac{3}{4}$

9. The area of the region described by

$$A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$$
 is :
A. $\frac{\pi}{2} - \frac{2}{3}$
B. $\frac{\pi}{2} + \frac{2}{3}$
C. $\frac{\pi}{2} + \frac{4}{3}$
D. $\frac{\pi}{2} - \frac{4}{3}$

Answer: C

O Watch Video Solution

10. Let $A=ig\{(x,y);y^2\leq 4x,y-2x\leq -4ig\}$ The

area (insurunits) of the region A is

A. 8

B. 9

C. 10

D. 11

Answer: B

Watch Video Solution

Exercise 1 Concept Builder Topicwise

1. The area of the smaller segment cut off from the

circle $x^2+y^2=9$ by x = 1 is

A.
$$rac{1}{9}ig(9\,{
m sec}^{-1}\,3-\sqrt{8}ig)$$
 sq unit

B.
$$\left(9 \sec^{-1} 3 - \sqrt{8}
ight)$$
 sq unit

C.
$$\left(\sqrt{8}-9\sec^{-1}3
ight)$$
 sq unit

Answer: B

Watch Video Solution

2.	The	area	enclosed	between	the	curve
$y = \log_e(x+e)$ and the coordinate axes is						
	A. 1					
	B. 2					
	C. 3					
	D. 4					
Answer: A						

3. The area bounded by the curve $y^2(2a-x) = x^3$ and the line x = 2a is A. $3\pi a^2$ sq. unit B. $\frac{3\pi a^2}{2}$ sq. unit

C.
$$rac{3\pi a^2}{4}$$
 sq. unit

D.
$$rac{6\pi a^2}{5}$$
 sq. unit

Answer: B

Watch Video Solution

4. The area bounded by the x-axis, the curve
$$y = f(x)$$
, and the lines $x = 1, x = b$ is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all $b > 1$, then $f(x)$ is $\sqrt{x - 1}$ (b) $\sqrt{x + 1} \sqrt{x^2 + 1}$ (d) $\frac{x}{\sqrt{1 + x^2}}$

- A. $\sqrt{x-1}$
- $\mathsf{B}.\sqrt{x+1}$

C.
$$\sqrt{x^2+1}$$

D.
$$rac{x}{1+\sqrt{x^2}}$$

5. The area between the curves $y = 2x^4 - x^2$, the

x-axis and the ordinates of two minima of the be curve is (A) $\frac{7}{240}$ (B) $\frac{7}{120}$ (C) $\frac{7}{60}$ (D) None of these

A.
$$\frac{7}{120}$$

B. $\frac{9}{120}$
C. $\frac{11}{120}$
D. $\frac{13}{120}$

Answer: A

6. What is the area of the parabola $x^2=y$

bounded by the lines y = 1 ?

A.
$$\frac{1}{3}$$
 square unit
B. $\frac{2}{3}$ square unit
C. $\frac{4}{3}$ square unit

D. 2 square unit

7. If the ordinate x = a divides the area bounded by the curve $y = 1 + \frac{8}{x^2}$ and the ordinates x = 2, x = 4 into two equal parts, then a is equal to

A.
$$\sqrt{2}$$

- B. $2\sqrt{2}$
- C. $3\sqrt{2}$
- D. None of these

Answer: B

Watch Video Solution

8. The area under the curve $y=|\cos x-\sin x|, 0\leq x\leq rac{\pi}{2}$, and above x-axis is: (A) $2\sqrt{2}+2$ (B) 0 (C) $2\sqrt{2}-2$ (D) $2\sqrt{2}$

A. $2\sqrt{2}$

- $\mathsf{B.}\,2\sqrt{2}-2$
- $\mathsf{C.}\,2\sqrt{2}+2$

D. 0

Answer: B

9. Calculate the area bounded by the curve $y = x(3-x)^2$ the x-axis and the ordinates of the maximum and minimum points of the curve.

A. 1 sq. unit

B. 2 sq. unit

C. 4 sq. unit

D. None of these

10. The area of the ellipse

 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ in first quadrant is 6π sq. units. The ellipse is rotated about its centre in anticlockwise direction till its major axis coincides with y-axis. Now the area of the ellipse in first quadrant is....... π sq. units.

A. 2

B. 4

C. 6

D. 8

11. The area bounded by the graph of y = f(x), f(x) > 0 on [0,a] and x-axis is $\frac{a^2}{2} + \frac{a}{2}\sin a + \frac{\pi}{2}\cos a$ then find the value of $f\left(\frac{\pi}{2}\right)$.

A. 1

B. $\frac{1}{2}$ C. $\frac{1}{3}$

D. None of these

12. The area between the curve y = 1 - |x| and the x- axis is equal to

A. 1 sq. unit

B.
$$\frac{1}{2}$$
 sq. unit
C. $\frac{1}{3}$ sq. unit

D. 2sq. Unit

Answer: A

- 13. What is the area of the parabola $y^2 = x$ bounde by its latus rectum ?
 - A. $2b^2/3$ square unit
 - B. $4b^2/3$ square unit
 - C. b^2 square unit
 - D. $8b^2/3$ square unit

14. The value of a(a > 0) for which the area bounded by the curves $y = \frac{x}{6} + \frac{1}{x^2}, y = 0, x = a, andx = 2a$ has the least value is_

A. 2

B. $\sqrt{2}$

C. $2^{1/3}$

D. 1

15. The curve $y = x^2 - 7x + 10$ intersects the x-axis at the points A and B. Then the area bounded by the curve and the line AB is

A.
$$4rac{1}{2}$$
sq unit

B. 4 sq unit

C. 6 sq unit

D. 2 sq unit

Answer: A

16. What is the area bounded by the lines x=0, y=0 and x+y+2=0? A. $rac{1}{2}$ square unit

- B. 1square unit
- C. 2 square unit
- D. 4 square unit

17. The area (in sq. units) bounded by the curve $|y| = |\ln|x| \mid$ and the coordinate axes is

A. 2

B. 1

C. 5

D. $2\sqrt{2}$

Answer: B

18. Find the area bounded by the curve $y = \sin^{-1} x$ and the line $x = 0, |y| = \frac{\pi}{2}$. A. 1 B. 2 C. π

D. 2π

Answer: B

19. The area of the region (in sq units), in the first quadrant, bounded by the parabola $y = 9x^2$ and the lines x = 0, y = 1 and y = 4, is

A. 7/9 B. 14/3 C. 7/3

D. 14/9

20. The area enclosed between the graph of $y = x^3$ and the lines x=0, y=1, y=8 is

A.
$$\frac{45}{4}$$

B. 14

D. None of these

Answer: A

21. The area of the region bounded by the curve

x=2y+3 and the lines $y=1,\,y=\,-1$ is

A. 4 sq. units

B.
$$\frac{3}{2}$$
 sq. units

C. 6 sq. units

D. 8 sq. units

22. The area of the region bounded by

$$y^2 = 2x + 1$$
 and $x - y - 1 = 0$ is
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{8}{3}$
D. $\frac{16}{3}$

23. The area bounded by the curve $y = \left[\frac{x^2}{64} + 2\right], y = x - 1, y = x - 1$ and x = 0 above the x-axis will be-(Where [] represents greatest integer function)

A. 2 sq unit

B. 3 sq unit

C. 4 sq unit

D. None of these

24. The figure shows a $\triangle AOB$ and the parabola $y = x^2$. The ratio of the area of the $\triangle AOB$ to the area of the region AOB of the parabola $y = x^2$ is equal to

A.
$$\frac{3}{5}$$

B. $\frac{3}{4}$
C. $\frac{7}{8}$

Answer: B

Watch Video Solution

25. If the area enclosed by $y^2 = 4ax$ and the line y = ax is $\frac{1}{3}$ sq.units, then the area enclosed by y = 4x with the same curve in sq. units is

A. 8 sq unit

B. 4 sq unit

C. 4/3 sq unit
D. 8/3 sq unit

Answer: D

26. Which of the following is not the area of the region bounded by $y = e^x$ and x=0 and y= e?

B.
$$\int_{1}^{e} In(e+1-y) dy$$

C. $e - \int_{0}^{1} e^{x} dx$
D. $\int_{0}^{e} Iny dy$

Answer: A,D

27. Find the area of the region bounded by: the parabola $y = x^2$ and the line y = x

A.
$$\frac{1}{6}$$
 sq. units
B. $\frac{1}{3}$ sq. units
C. $\frac{1}{2}$ sq. units

D. None of these

28. The area above the x-axis enclosed by the curves $x^2 - y^2 = 0$ and $x^2 + y - 2 = 0$ is A. $\frac{5}{3}$ B. $\frac{7}{3}$

Answer: B

C. $\frac{8}{3}$

D. $\frac{10}{3}$

29. Area bounded by the parabola $y = x^2 - 2x + 3$ and tangents drawn to it from the point P(1, 0) is equal to

A.
$$4\sqrt{2}$$
 sq. units
B. $\frac{4\sqrt{2}}{3}$ sq. units
C. $\frac{8\sqrt{2}}{3}$ sq. units
D. $\frac{16\sqrt{2}}{3}$ sq. units

Answer: B

30. The area between the curves $y = x^2$ and $y = \frac{2}{1+x^2}$ is equal to A. $\pi - \frac{2}{3}$ B. $\pi + \frac{2}{3}$ C. $-\pi - \frac{2}{3}$

D. None of these

31. If the area enclosed by $y^2 = 4ax$ and the line y=ax is $rac{1}{3}$ sq. unit, then the roots of the equation $x^2 + 2x = a$, are

A. -4 and 2

B. 2 and 4

C. -2 and -4

D. 8 and -8

32. The area of the region bounded by the parabola $\left(y-2
ight)^2=x-1$, the tangent to the parabola at the point (2,3) and the x-axis is

A. 6

B. 9

C. 12

D. 3

Answer: B

33. Find the area lying in the first quadrant and bounded by the curve $y=x^3$ and the line y=4x.

A. 2

B. 3

C. 4

D. 8

34. Area bounded by the circle $x^2 + y^2 = 1$ and the curve |x| + |y| = 1 is

A. 2π

 $\mathsf{B.}\,\pi-2$

 $\mathsf{C.}\,\pi$

 $\mathsf{D.}\,\pi+3$

Answer: B

35. AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in which OA = a, OB = b. Then find the area between the arc AB and the chord AB of the ellipse.

A. πab sq. units

B. $(\pi-2)$ sq. units C. $\displaystyle \frac{ab(\pi+2)}{2}$ sq. units D. $\displaystyle \frac{ab(\pi-2)}{4}$ sq. units

36. Find the area enclosed between the curves:

$$y = \log_e(x+e), x = \log_eigg(rac{1}{y}igg)$$
 & the x-axis.

A. 2 sq unit

B.1 sq unit

C. 4 sq unit

D. None of these

37. Find the area bounded by the curves $x^2 + y^2 = 25, \, 4y = \left|4 - x^2\right|, \,$ and x = 0 above the x-axis.

A.
$$2 + \frac{25}{2} \sin^{-1} \left(\frac{4}{5}\right)$$

B. $2 + \frac{25}{4} \sin^{-1} \left(\frac{4}{5}\right)$
C. $2 + \frac{25}{2} \sin^{-1} \left(\frac{1}{5}\right)$

D. None of these

38. The area bounded by the curves
$$y = xe^x, y = xe^{-x}$$
 and the line $x = 1$ is $\frac{2}{e}squares$ (b) $1 - \frac{2}{e}squares$ $\frac{1}{e}squares$ (d) $1 - \frac{1}{e}squares$

Answer: A

Watch Video Solution

39. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B(4, 5) and C(6, 3).

A. 2

B. 4

C. 7

D. 8

Answer: C

Watch Video Solution

40. If y = f(x) makes positive intercepts of 2 and 1 unit on x and y-coordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_{0}^{2} x f'(x) dx$, is

A. 3/2

B. 1

C.5/4

D. - 3/4

41. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If S_1 , S_2 , S_3 are the areas of these parts numbered from top to bottom, respectively, then

A. 1:2:1

B. 1:2:3

C. 2:1:2

D. 1:1:1

Walch Video Solution

42. The area bounded by the curve

$$y^2ig(a^2+x^2ig) = x^2ig(a^2-x^2ig)$$
 is

A.
$$a^2(\pi-2)$$
 sq unit

B.
$$a^2(\pi+2)$$
 sq unit

C.
$$a^2(\pi-1)$$
 sq unit

D.
$$a^2(\pi+1)$$
 sq unit

43. Prove that area common to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its auxiliary circle $x^2 + y^2 = a^2$ is equal to the area of another ellipse of semi-axis aanda - b.

A.
$$(a + b)^{2} \tan^{-1\frac{b}{a}}$$

B. $(a + b)^{2} \tan^{-1\frac{a}{b}}$
C. $4ab \frac{\tan^{-1}(b)}{a}$
D. $4ab \frac{\tan^{-1}(a)}{b}$

Answer: C

44. If $C_1 \equiv y = rac{1}{1+x^2}$ and $C_2 \equiv y = rac{x^2}{2}$ be two curve lying in XY plane. Then A. area bounded by $y=rac{1}{1+x^2}$ and y=0 is $rac{\pi}{2}$ B. area bounded by c_1 and c_2 is $\frac{\pi}{2} - 1$ C. area bounded by c_1 and c_2 is $1-\frac{\pi}{2}$ D. area bounded by curve $y = rac{1}{1+r^2}$ and xaxis is $\frac{\pi}{2}$?

Answer: B

45. The area bounded by $y = x^2 + 3$ and y = 2x + 3 is (in sq. units)

A.
$$\frac{12}{7}$$

B. $\frac{4}{3}$
C. $\frac{3}{4}$
D. $\frac{8}{3}$

Answer: B

46. The area bounded by the curves

$$y = xe^x$$
, $= xe^{-x}$ and the line $x = 1$
A. $e + \frac{1}{e}$
B. $e + \frac{1}{e} + 2$
C. $e + \frac{1}{e} - 2$
D. $e - \frac{1}{e} + 2$

Answer: C

O Watch Video Solution

47. The area bounded by the curve $y = x^2$, the normal at (1, 1) and the x-axis is:

A.
$$\frac{4}{3}$$

B. $\frac{2}{3}$
C. $\frac{1}{3}$

D. None

48. Find the area bounded by the y-axis, $y=\cos x, andy=\sin xwhen 0\leq x\leq rac{\pi}{2}$. A. $2(\sqrt{2-1})$

- $\mathsf{B.}\,\sqrt{2}-1$
- $\mathsf{C}.\,\sqrt{2}+1$
- D. $\sqrt{2}$

Answer: B

49. Find the area bounded by curves

$$(x-1)^2 + y^2 = 1$$
 and $x^2 + y^2 = 1$.
A. $\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$
B. $\frac{2\pi}{3}$
C. $\frac{\sqrt{3}}{2}$
D. $\left(\frac{2\pi}{3} + \frac{\sqrt{3}}{2}\right)$

Answer: A

Watch Video Solution

50. $f(x) = \min \left\{ 2 \sin x, 1 - \cos x, 1 \right\}$ then $\int_0^\pi f(x) dx$ is equal to

A.
$$\frac{\pi}{3} + 1 - \sqrt{3}$$

B.
$$rac{2\pi}{3}-1+\sqrt{3}$$

C.
$$rac{2\pi}{3}-1-\sqrt{3}$$

D.
$$rac{5\pi}{6}+1-\sqrt{3}$$

Answer: D

Watch Video Solution

Exercise 2 Concept Builder

1. The slope of the tangent to a curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2) then the area of the region bounded by the curve, the x-axis and the line x = 1 is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

A.
$$\frac{5}{6}$$
 sq unit
B. $\frac{6}{5}$ sq unit
C. $\frac{1}{6}$ sq unit

D. 6 sq unit

2. The area of the region bounded by the curves y = |x - 2|, x=1, x=3 and $thex - a\xi sis(A)3(B)2$ (C)1(D)4`

A. 4

B. 3

C. 2

D. 1

3. The area bounded by y = |sin x|, X-axis and the

line $|x| = \pi$ is

A. 2 sq unit

B.1 sq unit

C. 4 sq unit

D. None of these

Answer: C

4. The value of integrals
$$\int_{-2}^{2} \max \{x + |x|, x - [x]\} dx$$
 where [.]

represents the greatest integer function is

A. 4

B. 5

C.
$$\frac{7}{2}$$

D. $\frac{9}{4}$

Answer: B

Watch Video Solution

5. Sketch the curves and identify the region bounded by the curves $x = \frac{1}{2}, x = 2, y = \log x any = 2^x$. Find the area of this region.

A.
$$\frac{4}{3}$$
 sq. unit
B. $\frac{5}{3}$ sq. unit
C. $\frac{3}{2}$ sq. unit

D. None of these

6. Area enclosed by the curve $x^2y=36$, the X-axis

and the lines x = 6 and x = 9, is

A. 6

B. 1

C. 4

D. 2

7. The area between the curve $y = 2x^4 - x^2$, the xaxis, and the ordinates of the two minima of the curve is

A.
$$\frac{3}{120}$$
 sq unit
B. $\frac{5}{120}$ sq unit
C. $\frac{1}{20}$ sq unit
D. $\frac{7}{120}$ sq unit

8. Area bounded by the curve
$$y = \log_e x, x = 0, y \le 0$$
 and x-axis is:

B. 2 sq. unit

C.
$$\frac{1}{2}$$
 sq. unit

D. None of these

9. If
$$[x]$$
 denotes the integral part of x and $f(x)=\min{(x-[x],\ -x-[-x])}$ show that: $\int_{-2}^2 f(x) dx=1$

A. 1

B. 2

C.
$$\frac{3}{2}$$

D. 0

10. The area of the plane region bounded by the curves $x+2y^2=0$ and $x+3y^2=1$ is equal to

A. 1 sq. unit

B.
$$\frac{1}{3}$$
 sq. unit
C. $\frac{2}{3}$ sq. unit
D. $\frac{4}{3}$ sq. unit

11. Area bounded by the curve $xy^2 = a^2(a - x)$ and the y-axis is $\frac{\pi a^2}{2}square{inits}$ (b) $\pi a^2square{inits}$ $3\pi a^2square{inits}$ (d) None of these

A. $\pi a^2/2$ sq. unit

B. πa^2 sq. unit

C. $3\pi a^2$ sq. unit

D. None of these

Answer: B

12. The value of k for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, the straight line x = 1 and x = k and the x-axis is equal to 16/3

A. 1

B. 3

C. -1

D. 4

13. Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4. A. $\frac{7}{3}$ Sq. unit

B.
$$rac{4}{5}$$
 Sq. unit
C. $rac{3}{4}$ Sq. unit

Answer: A

14. The area bounded by the curve $x = 2 - y - y^2$

and Y-axis is

A.
$$-\frac{9}{2}$$

B. $\frac{9}{2}$
C. 9

D. -9

Answer: B

15. Let f and g be continuous functions on [0, a]such that

$$f(x) = f(x) = f(a - x) \text{ and } g(x) + g(a - x) = 4$$

, then $\int_0^a f(x)g(x)dx$ is equal to
A. $\int_a^b (f(x) - g(x))dx$
B. $\int_a^b (p(x) - q(x))dx$
 $\int_a^b (p(x) - q(x))dx$

$$\mathsf{C}.\int_a^b |p(x)-q(x)|dx$$

D. None of these

Answer: C

16. The area bounded by the curves $y = \sin x$, y= $\cos x$ and y-axis in 1 quadrant is -

- A. $\left(\sqrt{2}-1
 ight)$ sq. unit
- B. 1 sq. unit
- C. $\sqrt{2}$ sq. unit
- D. $\left(1+\sqrt{2}
 ight)$ sq. unit

17. Find the area of the region bounded by the

ellipse
$$rac{x^2}{16}+rac{y^2}{9}=1.$$

A. 12π

B. 3π

 $\mathsf{C.}\,24\pi$

D. π

18. Find the area of the region enclosed by the curves $y = x \log x$ and $y = 2x - 2x^2$.

A.
$$\frac{5}{12}$$

B. $\frac{7}{12}$

D.
$$\frac{4}{7}$$

Answer: B

D. None of these

Answer: D

20. Find the area of the region bounded by the curves $y=x^2+2y=x, x=0, and x=3.$ A. $\frac{2}{21}$ B. 21 C. $\frac{21}{2}$ D. $\frac{9}{2}$ Answer: C

21. The area bounded by the parabola
$$y = (x+1)^2$$
 and $y = (x-1)^2$ and the line $y = \frac{1}{4}$ is (A) 4 sq. units (B) $\frac{1}{6}$ sq. units (C) $\frac{3}{4}$ sq. units (D) $\frac{1}{3}$ sq. units

A. 4 sq. units

B. 1/6 sq. units

C. 4/3 sq. units

D. 1/3 sq. units

Answer: D

22. The area of the region lying between the line

x-y+2=0 and the curve $x=\sqrt{y}$, is

A. 9

B. 9/2

C. 10/3

D. None of these

Answer: C

23. Area bounded by the curve $y = \sin x$ between .

x=0 and $x=2\pi$ is

A. The area bounded by the curve y = sin x

between x = 0 and x = 2p is 2 sq. units.

B. The area bounded by the curve $y = 2 \cos x$

and the X-axis from x = 0 to x = 2p is 8 sq.

units.

C. Both (a) and (b) are true.

D. Both (b) and (b) are false.

24. The maximum area of a rectangle whose two vertices lie on the x-axis and two on the curve $y = 3 - |x|, -3 \le x \le 3$

A. 9 sq. units

B. 9/4 sq. units

C. 3 sq. units

D. None of these

Answer: D

25. The area bounded by y-1 = |x|, y = 0 and $|x| = \frac{1}{2}$ will be :

A.
$$\frac{1}{4}$$

B. $\frac{3}{2}$
C. $\frac{5}{4}$

D. None of these

Answer: C

26. The area bounded by $f(x)=x^2, 0\leq x\leq 1, g(x)=-x+2, 1\leq x\leq 2$ and x-axis is

A. $\frac{3}{2}$ B. $\frac{4}{3}$

C.
$$\frac{8}{3}$$

D. None of these

Answer: D

27. Find the area of the region R which is enclosed curve $y \geq \sqrt{1-x^2}$ and the by max $\{|x|, |y|\} \le 4.$ A. $4 + \pi$ B. $6 + \pi$ C. 8 $-\frac{\pi}{2}$ $\mathsf{D.4} + \frac{\pi}{2}$ Answer: C

28. The area bounded by the curves
$$y = \sqrt{x}, 2y + 3 = x$$
, and x-axis in the 1st quadrant is 18 sq. units (b) $\frac{27}{4}$ s quaits $\frac{4}{3}$ s quaits (d) 9 sq. units

A. 9

 $\mathsf{B}.\,\frac{27}{4}$

C. 36

D. 18

29. Find the area bounded by the curve $y = 2x - x^2$ and the straight line y = -xA. $\frac{13}{2}$ sq unit

B.
$$\frac{3}{2}$$
 sq unit
C. $\frac{7}{2}$ sq unit

D.
$$\frac{21}{2}$$
 sq unit

Answer: B

30. The area of the region bounded by

$$x = \frac{1}{2}, x = 2, y = \ln x$$
 and $y = 2^x$ is
A. $\frac{4}{3}$ sq. units
B. $\frac{5}{3}$ sq. units
C. $\frac{3}{2}$ sq. units

D. None of these

Answer: D

