©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

CONIC SECTIONS

Jee Main 5 Years At A Glance

1. If the tangent at $(1,7)$ to curve $x^{2}=y-6$ touches the circle
$x^{2}+y^{2}+16 x+12 y+c=0$ then the value of c is
A. 185
B. 85
C. 95
D. 195

Watch Video Solution

2. Tangent and normal are drawn at $\mathrm{P}(16,16)$ on the parabola $y^{2}=16 x$ which intersect the axis of the parabola at A and B respectively. If C is the centre of the circle through the points P, A and B and $\angle C P B=\theta$ then the value of $\tan \theta$ is
A. 2
B. 3
C. $\frac{4}{3}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. Two sets A and B } \quad \text { A. are as under } \\
& A=|(a, b) \in R \times R:|a-5|<1 \text { and }| b-5 \mid<1\} B=[(a, b) \in R \times I
\end{aligned}
$$

(1) $B \subset A$ (2) $A \subset B$ (3) $A \cap B=\phi($ anemptyset $)(4) \neq i t h e r A$ sub B n or B sub A
A. $A \subset B$
B. $A \cap B=\phi$ (an empty set)
C. neither $A \subset B$ nor $B \subset A$
D. $B \subset A$

Answer: A

- Watch Video Solution

4. Tangents are drawn to the hyperbola $4 x^{2}-y^{2}=36$ at the points P and Q . If these tangents intersect at the point $\mathrm{T}(0,3)$ then the area (in sq units) of $\triangle P T Q$ is
A. $54 \sqrt{3}$
B. $60 \sqrt{3}$
C. $36 \sqrt{3}$
D. $45 \sqrt{3}$

Answer: D

- Watch Video Solution

5. If a circle C, whose radius is 3 , touches externally the circle, $x^{2}+y^{2}+2 x-4 y-4=0$ at the point (2,2) ,then the length of intercept cut by this circle C, the x-axis is equal to :
A. $\sqrt{5}$
B. $2 \sqrt{3}$
C. $3 \sqrt{2}$
D. $2 \sqrt{5}$

Answer: D

- Watch Video Solution

6. v20.1
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{9}$
D. $\frac{1}{3}$

Answer: D

- Watch Video Solution

7. The locus of the point of intersection of the lines, $\sqrt{2} x-y+4 \sqrt{2} k=0$ and $\sqrt{2} k x+k y-4 \sqrt{2}=0(\mathrm{k}$ is any non-zero real parameter), is:
A. A hyperbola with length of its transverse axis $8 \sqrt{2}$
B. An ellipse with length of its major axis $8 \sqrt{2}$
C. An eliipse whose eccentricity $\frac{1}{\sqrt{3}}$
D. A hyperbola whose eccentricity is $\sqrt{3}$

Answer: A

- Watch Video Solution

8. The radius of a circle, having minimum area, which touches the curve $y=4-x^{2}$ and the lines $\mathrm{y}=|\mathrm{x}|$, is
A. $4(\sqrt{2}+1)$
B. $2(\sqrt{2}+1)$
C. $2(\sqrt{2}-1)$
D. $4(\sqrt{2}-1)$

Answer:

9. A hyperbola passes through the point $P(\sqrt{2}, \sqrt{3})$ and has foci at $(\pm 2,0)$. Then the tangent to this hyperbola at P also passes through the point : $(\sqrt{3}, \sqrt{2})$
(2) $(-\sqrt{2},-\sqrt{3})$
(3) $(3 \sqrt{2}, 2 \sqrt{3})$
(4) $(2 \sqrt{2}, 3 \sqrt{3}$
A. $(-\sqrt{2},-\sqrt{3})$
B. $(3 \sqrt{2}, 2 \sqrt{3})$
C. $(2 \sqrt{2}, 3 \sqrt{3})$
D. $(\sqrt{2}, \sqrt{3})$

Answer: C

- Watch Video Solution

10. Let $z \in C$, the set of complex numbers. Thenthe equation, $2|z+3 i|-|z-i|=0$ represents :
A. a circle with radius $\frac{8}{3}$.
B. a circle with diameter $\frac{10}{3}$.
C. an ellipse with length of major axis $\frac{16}{3}$.
D. an ellipse with length of minor axis $\frac{16}{9}$

Answer: A

- Watch Video Solution

11. If a point P has co-ordinates $(0,-2)$ and Q is any point on the circle $x^{2}+y^{2}-5 x-y+5=0$, then the maximum value of $(P Q)^{2}$ is: (a) $\frac{25+\sqrt{6}}{2}$ (b) $14+5 \sqrt{3}$ (c) $\frac{47+10 \sqrt{6}}{2}$ (d) $8+5 \sqrt{3}$
A. $\frac{25+\sqrt{6}}{2}$
B. $14+5 \sqrt{3}$
C. $\frac{47+10 \sqrt{6}}{2}$
D. $8+5 \sqrt{3}$

Answer: B

12. If two parallel chords of a circle, having diameter 4 units, lie on the opposite sides of the centreand subtend angles $\cos ^{-1}\left(\frac{1}{7}\right)$ and $\sec ^{-1}(7)$ at the centre respectively, then the distance betweenthese chords, is: (a) $\frac{4}{\sqrt{7}}$ (b) $\frac{8}{\sqrt{7}}$ (c) $\frac{8}{7}$ (d) $\frac{16}{7}$
A. $\frac{4}{\sqrt{7}}$
B. $\frac{8}{\sqrt{7}}$
C. $\frac{8}{7}$
D. $\frac{16}{7}$

Answer: B

- Watch Video Solution

13. If the common tangents to the parabola $x^{2}=4 y$ and the circle $x^{2}+y^{2}=4$ intersectat the point P , then the distance of P from the origin, is.
A. $\sqrt{2}+1$
B. $2(3+2 \sqrt{2})$
C. $2(\sqrt{2}+1)$
D. $3+2 \sqrt{2}$

Answer: C

- Watch Video Solution

14. Consider an ellipse, whose centre is at the origin and its major axis is along the x-axis. If its eccentricity is and the $\frac{3}{5}$ distance between its foci is 6, then the area (in sq, units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is :
A. 8
B. 32
C. 80
D. 40

Answer: D

D Watch Video Solution

15. The locus of the point of intersection of thestraight lines $t x-2 y-3 t=0, x-2 t y+3=0(t \in R$, is
A. an ellipse with eccentricity $\frac{2}{\sqrt{5}}$
B. an ellipse with the length of major axis 6
C. a hyperbola with eccentricity $\sqrt{5}$
D. a hyperbola with the length of conjugate axis 3

Answer: D

- Watch Video Solution

16. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of a circle S , whose centre is at
$(-3,2)$, then the radius of S is: (1) $5 \sqrt{2}(2) 5 \sqrt{3}$ (3) 5 (4) 10
A. 5
B. 10
C. $5 \sqrt{2}$
D. $5 \sqrt{3}$

Answer: D

- Watch Video Solution

17. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the centre C of the circle, $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its centre at P is : (1)

$$
\begin{array}{ll}
x^{2}+y^{2}-4 x+8 y+12=0 & \text { (2) } \quad x^{2}+y^{2}-x+4 y-12=0 \tag{3}\\
x^{2}+y^{2}-\frac{x}{4}+2 y-24=0 & \text { (4) } x^{2}+y^{2}-4 x+9 y+18=0
\end{array}
$$

A. $x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
B. $x^{2}+y^{2}-4 x+9 y+18=0$
C. $x^{2}+y^{2}-4 x+8 y+12=0$
D. $x^{2}+y^{2}-x+4 y-12=0$

Answer: C

- Watch Video Solution

18. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is: (1) $\frac{4}{3}$ (2) $\frac{4}{\sqrt{3}}$ (3) $\frac{2}{\sqrt{3}}$ (4) $\sqrt{3}$
A. $2 \sqrt{3}$
B. $\sqrt{3}$
C. $\frac{4}{3}$
D. $\frac{4}{\sqrt{3}}$

Answer: A

19. A circle passes through $(-2,4)$ and touches y-axis at $(0,2)$. Which one of following equations can represents diameter of the circle? 1)
$4 x+5 y-6=0$
2) $2 x-3 y+10=0$
3) $3 x+4 y-3=0$
$5 x+2 y+4=0$
A. $2 x-3 y+10=0$
B. $3 x+4 y-3=0$
C. $4 x+5 y-6=0$
D. $5 x+2 y+4=0$

Answer: A

- Watch Video Solution

20. If the tangent at a point on the ellipse $\frac{x^{2}}{27}+\frac{y^{2}}{3}=1$ meets the coordinate axes at A and B, and the origin, then the minimum area (in sq. units) of the triangle $O A B$ is:
A. $3 \sqrt{3}$
B. $\frac{9}{2}$
C. 9
D. $\frac{9}{\sqrt{3}}$

Answer: C

- Watch Video Solution

21. Let a and b respectively be the semi-transverse and semi-conjugate axes of a hyperbola whose eccentricity satisfies the equation $9 e^{2}-18 e+5=0$. If $S(5,0)$ is a focus and $5 x=9$ is the corresponding directrix of this hyperbola, then $a^{2}-b^{2}$ is equal to
A. -7
B. -5
C. 5
D. 7

D Watch Video Solution

22. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \varepsilon R$, is a : (1) straight line parallel to x-axis. (2) straight line parallel to y-axis (3) circle of radius $\sqrt{2}$ (4) circle of radius $\sqrt{3}$
A. circle of radius $\sqrt{2}$.
B. circle of radius $\sqrt{3}$.
C. straight line parallel to x-axis
D. straight line parallel to y-axis

Answer: A

D Watch Video Solution

23. The number of common tangents to the circles $x^{2}+y^{2}-4 x-6 y-12=0$ and $x^{2}+y^{2}+6 x+18 y+26=0$, is
A. 3
B. 4
C. 1
D. 2

Answer: A

- Watch Video Solution

24. Let O be the vertex and Q be any point on the parabola, $x^{2}=8 y$. It the point P divides the line segment $O Q$ internally in the ratio $1: 3$, then the locus of P is : (1) $x^{2}=y(2) y^{2}=x$ (3) $y^{2}=2 x(4) x^{2}=2 y$
A. $y^{2}=2$
B. $x^{2}=2 Y$
C. $x^{2}=y$
D. $y^{2}=x$

Answer: B

- Watch Video Solution

25. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, is: (1) $\frac{27}{4}$ (2) 18 (3) $\frac{27}{2}$ (4) 27
A. $\frac{27}{2}$
B. 27
C. $\frac{27}{4}$
D. 18

Answer: B

26. Tangents are drawn to $x^{2}+y^{2}=16$ from the point $P(0, h)$. These tangents meet the $x-a \xi s$ at AandB. If the area of triangle $P A B$ is minimum, then $h=12 \sqrt{2}$ (b) $h=6 \sqrt{2} h=8 \sqrt{2}$ (d) $h=4 \sqrt{2}$
A. $4 \sqrt{2}$
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $4 \sqrt{3}$

Answer: A

- Watch Video Solution

27. If $y+3 x=0$ is the equation of a chord of the circle, $x^{2}+y^{2}-30 x=0$, then the equation of the circle with this chord as diameter is:

$$
\text { A. } x^{2}+y^{2}+3 x+9 y=0
$$

B. $x^{2}+y^{2}+3 x-9 y=0$
C. $x^{2}+y^{2}-3 x-9 y=0$
D. $x^{2}+y^{2}-3 x+9 y=0$

Answer: D

- Watch Video Solution

28. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centred at ($0, \mathrm{y}$), passing through origin and touching the circle C externally, then the radius of T is equal to (1) $\frac{\sqrt{3}}{\sqrt{2}}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{2}$ (3) $\frac{1}{4}$
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{\sqrt{3}}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

- Watch Video Solution

29. The slope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is (a) $\frac{1}{2}$ (b) $\frac{3}{2}$ (c) $\frac{1}{8}$ (d) $\frac{2}{3}$
A. $\frac{1}{8}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

30. The locus of the foot of prependicular drawn from the center of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is

$$
\text { A. }\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}
$$

B. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
C. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$

Answer: A

- Watch Video Solution

31. The circle $x^{2}+y^{2}-6 x-10 y+k=0$ does not touch or intersect the coordinate axes, and the point $(1,4)$ is inside the circle. Find the range of value of k.
A. $(0,25)$
B. $(25,39)$
C. $(9,25)$
D. $(25,29)$

Answer: D

32. Let $\mathrm{a} \& \mathrm{~b}$ be any two numbers satisfying $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{4}$. Then, the foot of the perpendicular from the origin on variable line $\frac{x}{a}+\frac{y}{b}=1$ lies on
A. a hyperbola with each semi-axis $=\sqrt{2}$
B. a hyperbola with each semi-axis $=2$
C. a circle of radius $=2$
D. a circle of radius $=\sqrt{2}$

Answer: C

- Watch Video Solution

33. If the circle whose diameter is the major axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ meets the minor axis at point P and the orthocentre of $\Delta P F_{1} F_{2}$ lies on the ellipse, where F_{1} and F_{2} are foci of the ellipse, then the square of the eccentricity of the ellipse is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

Exercise 1 Concept Builder Topicwise 1

1. If the $y=m x+1$, of the circle $x^{2}+y^{2}=1$ subtends an angle of measure 45° of the major segment of the circle then value of m is -
A. $2 \pm \sqrt{2}$
B. $-2 \pm \sqrt{2}$
C. $-1 \pm \sqrt{2}$
D. $-2 \pm \sqrt{2}$

Answer: C

- Watch Video Solution

2. Point $(1,2)$ relative to the circle $x^{2}+y^{2}+4 x-2 y-4=0$ is a/an
A. exterior point
B. interior point, but not centre
C. boundary point
D. centre

Answer: A

- Watch Video Solution

3. Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then $2 r$ equals
A. $\sqrt{P Q \cdot R S}$
B. $(P Q+R S)^{2}$
C. $2 P Q . R \frac{S}{P Q+R S}$
D. $\sqrt{\left(P Q^{2}+R S^{2}\right)^{/ 2}}$

Answer: A

- Watch Video Solution

4. Find the equation of the circle having the lines $x^{2}+2 x y+3 x+6 y=0$ as its normal and having size just sufficient to contain the circle $x(x-4)+y(y-3)=0$
A. $x^{2}+y^{2}+3 x-6 y-40=0$
B. $x^{2}+y^{2}+6 x-3 y-45=0$
C. $x^{2}+y^{2}+8 x+4 y-20=0$
D. $x^{2}+y^{2}+4 x+8 y+20=0$

- Watch Video Solution

5. Let A be the centre of the circle $x^{2}+y^{2}-2 x-4 y-20=0$.The tangents at the points $B(1,7)$ and $C(4,-2)$ on the circle meet at the point D .If Δ denotes the area of the quadrilateral $A B C D$,then $\frac{\Delta}{25}$ is equal to
A. 150
B. 75
C. $75 / 2$
D. None of these

Answer: B

- Watch Video Solution

6. The locus of the centre of a circle which touches externally the circle $x^{2}+y^{2}-6 x-6 y+14=0$ and also touches Y -axis, is given by the equation
A. $x^{2}-6 x-10 y+14=0$
B. $x^{2}-10 x-6 y+14=0$
C. $y^{2}-6 x-10 y+14=0$
D. $y^{2}-10 x-6 y+14=0$

Answer: D

- Watch Video Solution

7. Tangents are drawn from the point (h, k) to ${ }^{\wedge}$ circle $x^{2}+y^{2}=a^{2}$; Prove that the area of the triangle formed by them and the straight line joining their point of contact is $\frac{a\left(h^{2}+k^{2}-a^{2}\right)^{\frac{3}{2}}}{h^{2}+k^{2}}$
A. $\frac{\left(h^{2}+k^{2}-a^{2}\right)^{3 / 2}}{h^{2}+k^{2}}$
B. $\frac{\left(h^{2}+k^{2}-a^{2}\right)^{1 / 2}}{h^{2}+k^{2}}$
C. $\frac{\left(h^{2}+k^{2}-a^{2}\right)^{3 / 2}}{h^{2}+k^{2}}$
D. $\frac{\left(h^{2}+k^{2}-a^{2}\right)^{1 / 2}}{h^{2}+k^{2}}$

Answer: A

Watch Video Solution

8. The parametric equations of the circle $x^{2}+y^{2}+m x+m y=0$ are
A. $x=-\frac{m}{2}+\frac{m}{\sqrt{2}} \cos \theta, y=\frac{m}{2}+\frac{m}{\sqrt{2}} \sin \theta$
В. $x=-\frac{m}{2}+\frac{m}{\sqrt{2}} \cos \theta, y=-\frac{m}{2}+\frac{m}{\sqrt{2}} \sin \theta$
C. $x=0, y=0$
D. None of the above

Answer: B

9. If a line segement $A M=a$ moves in the plane $X O Y$ remaining parallel to $O X$ so that the left endpoint A slides along the circle $x^{2}+y^{2}=a^{2}$, then the locus of M.
A. $x^{2}+y^{2}=4 a^{2}$
B. $x^{2}+y^{2}=2 a x$
C. $x^{2}+y^{2}=2 a y$
D. $x^{2}+y^{2}-2 a x-2 a y=0$

Answer: B

- Watch Video Solution

Exercise 1 Concept Builder Topicwise 2

1. The point $\binom{P+1}{P}$ (where [.] denotes the greatest integer function), lyinginside the region bounded by the circle $x^{2}+y^{2}-2 x-15=0$ and $x^{2}+y^{2}-2 x-7=0$, then :
A. $P \in[-1,0) \cup[0,1) \cup[1,2)$
B. $P \in[-1,2)-\{0,1\}$
C. $P \in(-1,2)$
D. None of these

Answer: D

- Watch Video Solution

2. If two circles $S_{1}=x^{2}+y^{2}+2 g x+2 f y+c=0 \quad$ and $S_{2}=x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ to be cut orthogonally then show that $: 2 g g^{\prime}+2 f f^{\prime}=c+c^{\prime}$
A. $2 g_{1} g_{2}+2 f_{1} f_{2}=c_{1}+c_{2}$
B. $2 g_{1} g_{2}-2 f_{1} f_{2}=c_{1}+c_{2}$
C. $2 g_{1} g_{2}+2 f_{1} f_{2}=c_{1}-c_{2}$
D. $2 g_{1} g_{2}-2 f_{1} f_{2}=c_{1}-c_{2}$

D Watch Video Solution

3. The chord of contact of tangents from a point P to a circle passes through Q. If $l_{1} a n d l_{2}$ are the length of the tangents from $\operatorname{Pand} Q$ to the circle, then $P Q$ is equal to $\frac{l_{1}+l_{2}}{2} \quad$ (b) $\frac{l_{1}-l_{2}}{2} \sqrt{l 12+l 22}$
$2 \sqrt{l 12+l 22}$
A. $\frac{l_{1}+l_{2}}{2}$
B. $\frac{l_{1}-l_{2}}{2}$
C. $\sqrt{l_{1}^{2}+l_{1}^{2}}$
D. $\sqrt{l_{1} l_{2}}$

Answer: C

4. If the circles $x^{2}+y^{2}+2 g x+2 f y+c=0 \quad$ bisects $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ then the length of the common chord of these two circles is -
A. $2 g^{\prime}\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f f^{\prime}\right)=c-c^{\prime}$
B. $2 g\left(g-g^{\prime}\right)+2 f\left(f-f^{\prime}\right)=c-c^{\prime}$
C. $g^{\prime}\left(g-g^{\prime}\right)+f^{\prime}\left(f-f f^{\prime}\right)=c-c^{\prime}$
D. None of these

Answer: A

- Watch Video Solution

5. Let number of points of intersection and number of common tangents of two circles $\quad x^{2}+y^{2}-6 x-2 y+1=0 \quad$ and $x^{2}+y^{2}+2 x-6 y+9=0$ be m and n respectively. Which of the following is/are
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

6. If the equation $x \cos \theta+y \sin \theta=p r e p r e s e n t s$ the equation of common chord $A P Q B$ of the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}(a>b)$ then AP is equal to :
A. $\sqrt{a^{2}+p^{2}}+\sqrt{b^{2}+p^{2}}$
B. $\sqrt{a^{2}-p^{2}}+\sqrt{b^{2}-p^{2}}$
C. $\sqrt{a^{2}-p^{2}}-\sqrt{b^{2}-p^{2}}$
D. $\sqrt{a^{2}+p^{2}}-\sqrt{b^{2}+p^{2}}$

Answer: C

- Watch Video Solution

7. Consider a family of circles which are passing through the point ($-1,1$) and are tangent to x-axis. If (h, k) are the co-ordinates of the centre of the circles, then the set of values of k is given by the interval (1)
$0<k<$
(2) $k \geq$
(3) $\prec=k \leq$
(4) $k \leq$
A. $-\frac{1}{2} \leq k \leq \frac{1}{2}$
B. $k \leq \frac{1}{2}$
C. $0 \leq k \leq \frac{1}{2}$
D. $k \geq \frac{1}{2}$

Answer: D

- Watch Video Solution

1. If the ends of a focal chord of the parabola $y^{2}=8 x$ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then $x_{1} x_{2}+y_{1} y_{2}$ is equal to
A. 12
B. 20
C. 0
D. -12

Answer: D

- Watch Video Solution

2. The point $(2 a, a)$ lies inside the region bounded by the parabola $x^{2}=4 y$ and its latus rectum. Then,

$$
\text { A. } 0 \leq a \leq 1
$$

B. $0<a<1$
C. $a>1$
D. $a<1$

Answer: B

- Watch Video Solution

3. Find the equation of the lines joining the vertex of the parabola $y^{2}=6 x$ to the point on it which have abscissa 24 .
A. $y \pm 2 x=0$
B. $2 y \pm x=0$
C. $x \pm 2 y=0$
D. $2 x \pm y=0$

Answer: B

4. The one end of the latus rectum of the parabola $y^{2}-4 x-2 y-3=0$ is at
A. $(0,-1)$
B. $(0,1)$
C. $(0,-3)$
D. $(3,0)$

Answer: A

- Watch Video Solution

5. If the focal distance of a point on the parabola
$y^{2}=8 x$ is 4 , then its ordinate can be
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: D

- Watch Video Solution

6. The equation of parabola whose vertex and focus lie on the axis of x at distances a and a_{1} from the origin respectively, is
A. $y^{2}=4\left(a_{1}-a\right)(x-a)$
B. $y^{2}=4\left(a_{1}-a\right)\left(x-a_{1}\right)$
C. $y^{2}=4\left(a-a_{1}\right)\left(x-a_{1}\right)$
D. $y^{2}=4\left(a-a_{1}\right)(x-a)$

Answer: A

- Watch Video Solution

7. The locus of the vertices of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is:
A. $x y=\frac{105}{64}$
B. $x y=\frac{3}{4}$
C. $x y=\frac{35}{16}$
D. $x y=\frac{64}{105}$

Answer: A

- Watch Video Solution

8. Find the point on the parabolas $x^{2}=2 y$ which is closest to the point $(0,5)$.
A. $(\pm 2 \sqrt{2}, 4)$
B. $(\pm 2,2)$
C. $(\pm 3,9 / 2)$
D. $(\pm \sqrt{2}, 1)$

Answer: A

- Watch Video Solution

9. A point p is such that the sum of squares of its distance from the axes of coordinates is equal to the square of its distance from the line $x-y=1$. Find the locus of P
A. a straight line at right angle to the given line
B. a circle concentric with the given circle
C. a parabola with its axis parallel to the given line
D. a parabola with its axis perpendicular to the given line

Answer: D

- Watch Video Solution

10. Find the value of P such that the vertex of $y=x^{2}+2 p x+13$ is 4 units above the x-axis.
A. 2
B. ± 4
C. 5
D. ± 3

Answer: D

- Watch Video Solution

Exercise 1 Concept Builder Topicwise 4

1. find the common tangents of the circle $x^{2}+y^{2}=2 a^{2}$ and the parabolay ${ }^{2}=8 a x$
A. $x= \pm(y+2 a)$
B. $y= \pm(x+2 a)$
C. $x= \pm(y+a)$
D. $y= \pm(x+a)$

Answer: B

- Watch Video Solution

2. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on the parabola $y^{2}=4 b x$ meets the parabola again in the point $\left(b t_{2}^{2}, 2 b t_{2},\right)$ then
A. $t_{2}=t_{1}+\frac{2}{t_{1}}$
B. $t_{2}=-t_{1}-\frac{2}{t_{1}}$
C. $t_{2}=-t_{1}+\frac{2}{t_{1}}$
D. $t_{2}=t_{1}-\frac{2}{t_{1}}$

Answer: B

- Watch Video Solution

3. The length of the chord of the parabola $x^{2}=4 y$ passing through the vertex and having slope cot α is
A. $4 \cos \alpha \cos e c^{2} \alpha$
B. $4 \tan \alpha \sec \alpha$
C. $4 \sin \alpha \sec ^{2} \alpha$
D. None of these

Answer: A

- Watch Video Solution

4. Prove that the equation of the parabola whose focus is $(0,0)$ and tangent at the vertex is $x-y+1=0$ is $x^{2}+y^{2}+2 x y-4 x+4 y-4=0$.
A. $x^{2}+y^{2}+2 x y-4 x+4 y-4=0$
B. $x^{2}-4 x+4 y-4=0$
C. $y^{2}-4 x+4 y-4=0$
D. $2 x^{2}+2 y^{2}-4 x y-x+y-4=0$

Answer: A

- Watch Video Solution

5. If a chord which is normal to the parabola at one end subtend a right angle at the vertex, then angle to the axis is
A. 1
B. -2
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

6. PN is any ordinate of the parabola $y^{2}=4 a x$, the point M divides PN in the ratio $m: n$. Find the locus of M.
A. $y^{2}=\left(m^{-\frac{1}{2}}-m^{-\frac{1}{2}}\right)^{2} a x$
B. $y^{2}=\left(m^{-\frac{1}{2}}+m^{-\frac{1}{2}}\right)^{2} a x$
C. $y^{2}=\left(m^{-\frac{1}{2}}-m^{-\frac{1}{2}}\right)^{2} a$
D. None of these

Answer: B

- Watch Video Solution

7. the tangent drawn at any point P to the parabola $y^{2}=4 a x$ meets the directrix at the point K. Then the angle which $K P$ subtends at the focus is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{2}$

Answer: C

- Watch Video Solution

8. Two parabolas $y^{2}=4 a\left(x-\lambda_{1}\right)$ and $x^{2}=4 a\left(y-\lambda_{2}\right)$ always touch each other (λ_{1}, λ_{2} being variable parameters). Then their point of contact lies on a
A. $x y=a^{2}$
B. $x y=2 a^{2}$
C. $x y=4 a^{2}$
D. None of these

Answer: C

9. Three normals to the parabola $y^{2}=x$ are drawn through a point (C, O) then $\mathrm{C}=$
A. $C=\frac{1}{4}$
B. $C=\frac{1}{2}$
C. $C \geq \frac{1}{2}$
D. None of these

Answer: C

- Watch Video Solution

Exercise 1 Concept Builder Topicwise 5

1. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is
$x^{2}+16 y^{2}=16$
(2) $x^{2}+12 y^{2}=16 \quad$ (3) $4 x^{2}+48 y^{2}=48$
$4 x^{2}+64 y^{2}=48$
A. $x+12 y^{2}=16$
B. $4 x^{2}+48 y^{2}=48$
C. $4 x^{2}+64 y^{2}=49$
D. $x^{2}+16 y^{2}=16$

Answer: A

- Watch Video Solution

2. An ellipse has $O B$ as the semi-minor axis, FandF' as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

3. The curve
represented
$x=2(\cos t+\sin t)$ and $y=5(\cos t-\sin t)$ is
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: C

- Watch Video Solution

4. If a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ moves along the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and if C is the centre of the ellipse, then, $4 \max \{C P)+5 \min \{C P\}=$
A. 25
B. 40
C. 45
D. 54

Answer: B

D Watch Video Solution

5. If the focal distance of an end of the minor axis of an ellipse (referred to its axes as the axes of $x a n d y$, respectively) is k and the distance between its foci is $2 h$, them find its equation.
A. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{k^{2}+h^{2}}=1$
B. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}-k^{2}}=1$
C. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{k^{2}-h^{2}}=1$
D. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}}=1$

Answer: C

- Watch Video Solution

6. A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m . Find the equation of the posts traced by the man.
A. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
B. $x^{2}+y^{2}=25$
C. $x^{2}+y^{2}=9$
D. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$

Answer: A

7. The parametric form of the ellipse $4(x+1)^{2}+(y-1)^{2}=4$ is
A. $x=\cos \theta-1, y=2 \sin \theta-1$
B. $x=2 \cos \theta-1, y=2 \sin \theta+1$
C. $x=\cos \theta-1, y=2 \sin \theta+1$
D. $x=\cos \theta+1, y=2 \sin \theta+1$

Answer: C

- Watch Video Solution

8. Eccentricity of ellipse whose equation is
$x=3(\cos t+\sin t), y=4(\cos t-\sin t)$ where t is parameter is
A. $1 / 2$
B. $1 / \sqrt{3}$
C. $\sqrt{7} / 4$
D. $2 / \sqrt{3}$

Answer: C

- Watch Video Solution

9. If $P=(x, y), F_{1}=(3,0), F_{2}=(-3,0)$, and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equal 8 (b) 6 (c) 10 (d) 12
A. 8
B. 6
C. 10
D. 12

Answer: C

Watch Video Solution

1. If the chords of contact of tangents from two poinst $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are at right angles, then find the value of $\frac{x_{1} x_{2}}{y_{1} y_{2}}$.
A. $\frac{a^{4}}{b^{4}}$
B. $\frac{b^{4}}{a^{4}}$
C. $-\frac{a^{4}}{b^{4}}$
D. $-\frac{b^{4}}{a^{4}}$

Answer: C

- Watch Video Solution

2. If p is the length of the perpendicular from the focus S of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to a tangent at a point P on the ellipse, then $\frac{2 a}{S P}-1=$
A. $\frac{a^{2}}{p^{2}}$
B. $\frac{b^{2}}{p^{2}}$
C. p^{2}
D. $\frac{a^{2}+b^{2}}{p^{2}}$

Answer: B

- Watch Video Solution

3. Let d be the perpendicular distance from the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the tangent drawn at a point P on the ellipse. If $F_{1} \& F_{2}$ are the two foci of the ellipse, then show the $\left(P F_{1}-P F_{2}\right)^{2}=4 a^{2}\left[1-\frac{b^{2}}{d^{2}}\right]$.
A. $4 a^{2}\left(1-\frac{b^{2}}{d^{2}}\right)$
B. $a^{2}\left(1-\frac{b^{2}}{d^{2}}\right)$
C. $4 b^{2}\left(1-\frac{a^{2}}{d^{2}}\right)$
D. $b^{2}\left(1-\frac{a^{2}}{d^{2}}\right)$

Answer: A

4. The sum of the squares of the perpendiculars on any tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from two points on the minor axis each at a distance $a e$ from the center is $2 a^{2}$ (b) $2 b^{2}$ (c) $a^{2}+b^{2} a^{2}-b^{2}$
A. $2 a^{2}$
B. $2 b^{2}$
C. $a^{2}+b^{2}$
D. $a^{2}-b^{2}$

Answer: A

- Watch Video Solution

5. If the chords of contact of tangents from two points (α, β) and (γ, δ) to the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{2}=1$ are perpendicular, then $\frac{\alpha \gamma}{\beta \delta}=$
A. $\frac{4}{25}$
B. $-\frac{4}{25}$
C. $\frac{25}{4}$
D. $-\frac{25}{4}$

Answer: D

- Watch Video Solution

6. Which one of the following points lies outside the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right) ?$
A. $(a, 0)$
B. $(b, 0)$
C. $(-a, 0)$
D. (a, b)

Watch Video Solution

Exercise 1 Concept Builder Topicwise 7

1. It the eccentricity of the hyerbola
$x^{2}-y^{2} \cos c e^{2} \alpha=25$ is $\sqrt{5}$ time the eccentricity of the ellipse $x^{2} \cos c e^{2} \alpha+y^{2}=5$, then α is equal to :
A. $\tan ^{-1} \sqrt{2}$
B. $\sin ^{-1} \sqrt{\frac{3}{4}}$
C. $\tan ^{-1} \sqrt{\frac{2}{5}}$
D. $\sin ^{-1} \sqrt{\frac{2}{5}}$

Answer: A

- Watch Video Solution

2. The vertices of the hyperbola $9 x^{2}-16 y^{2}-36 x+96 y-252=0$ are
A. $(6,3),(-2,3)$
B. $(6,3),(-6,3)$
C. $(-6,3),(-6,-3)$
D. $(2,3),(-2,3)$

Answer: A

- Watch Video Solution

3. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide write the value of b^{2}.
A. 9
B. 1
C. 5
D. 7

Answer: D

Watch Video Solution

4. The eccentricity of the hyperbola canjugate to $(x-1)^{2}-3(y-1)^{2}=1$ is
A. 3
B. 2
C. $\frac{2}{\sqrt{3}}$
D. $\frac{3}{2}$

Answer: B

- Watch Video Solution

5. If the eccentricity of the hyperbola $x^{2}-y^{2} \sec ^{2} \theta=4$ is $\sqrt{3}$ time the eccentricity of the ellipse $x^{2} \sec ^{2} \theta+y^{2}=16$, then the volue of θ equal
A. $\frac{\pi}{6}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

6. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is
A. $x^{2}+\sec ^{2} \theta-y^{2} \sec ^{2} t \hat{e}=1$
B. $x^{2} \sec ^{2} \theta-y^{2} \cos e c^{2} \theta=1$
C. $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
D. $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

Answer: A

7. If e_{1} is the eccentricity of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ and e_{2} is the eccentricity of the hyperbola passing through the foci of the ellipse and $e_{1} e_{2}=1$, then equation of the hyperbola is
A. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
B. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=-1$
C. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=-1$
D. $\frac{x^{2}}{9}-\frac{y^{2}}{36}=1$

Answer: B

- Watch Video Solution

8. Which of the following is INCORRECT for the hyperbola $x^{2}-2 y^{2}-2 x+8 y-1=0$
A. Its eccentricity is $\sqrt{2}$
B. Length of the transverse axis is $2 \sqrt{3}$
C. Length of the conjugate axis is $2 \sqrt{6}$
D. Latus rectum is $4 \sqrt{3}$

Answer: A

- Watch Video Solution

9. Find the equation of the hyperbola whose diretrix is $2 x+y=1$, focus $(1,2)$ and eccentricity $\sqrt{3}$.
A. $7 x^{2}-2 y^{2}+12 x y-2 x+14-22=0$
B. $5 x^{2}-2 y^{2}+10 x y+2 x+5 y-20=0$
C. $4 x^{2}+8 y^{2}+8 x y+2 x-2 y+10=0$
D. None of these

Answer: A

Exercise 1 Concept Builder Topicwise 8

1. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec c \phi, b \tan \phi)$ (where $\theta+\phi=\frac{\pi}{2}$ be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ If (h, k) is the point of intersection of the normals at P and Q then k is equal to (A) $\frac{a^{2}+b^{2}}{a}$
(B) $-\left(\frac{a^{2}+b^{2}}{a}\right)$
(C) $\frac{a^{2}+b^{2}}{b}$
(D) $-\left(\frac{a^{2}+b^{2}}{b}\right)$
A. $\frac{a^{2}+b^{2}}{a}$
B. $-\left(\frac{a^{2}+b^{2}}{a^{2}}\right)$
C. $-\frac{a^{2}+b^{2}}{b}$
D. $-\left(\frac{a^{2}+b^{2}}{b}\right)$

Answer: D

- Watch Video Solution

2. Tangents at any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cut the axes at A and B respectively, If the rectangle at OAPB (where O is origin) is completed then locus of point P is given by
A. $\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1$
B. $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=1$
C. $\frac{a^{2}}{y^{2}}-\frac{b^{2}}{x^{2}}=1$
D. None of these

Answer: A

- Watch Video Solution

3. The two conics $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ and $y^{2}=-\frac{b}{a} x$ intersect if and only if
A. $0<a \leq \frac{1}{2}$
B. $0<b \leq \frac{1}{2}$
C. $b^{2}>a^{2}$
D. $b^{2}<a^{2}$

Answer: B

- Watch Video Solution

4. If $x=9$ is the chord of contact of the hyperbola $x^{2}-y^{2}=9$ then the equation of the corresponding pair of tangents is

$$
\begin{align*}
& 9 x^{2}-8 y^{2}+18 x-9=0 \quad \text { (B) } \quad 9 x^{2}-8 y^{2}-18 x+9=0 \tag{C}\\
& 9 x^{2}-8 y^{2}-18 x-9=0 \text { (D) } 9 x^{\wedge} 2-8 y^{\wedge} 2+18 \mathrm{x}+9=0^{`}
\end{align*}
$$

A. $9 x^{2}-8 y^{2}+18 x-9=0$
B. $9 x^{2}-8 y^{2}-18 x+9=0$
C. $9 x^{2}-8 y^{2}-18 x-9=0$
D. $9 x^{2}-8 y^{2}+18 x+9=0$

Answer: C

5. The value of m, for wnich the line $y=m x+25 \frac{\sqrt{3}}{3}$ is a normal to the conic $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, IS
A. $-\frac{2}{\sqrt{3}}$
B. $\sqrt{3}$
C. $\frac{\sqrt{3}}{2}$
D. None of these

Answer: A

- Watch Video Solution

6. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ at four points $\quad P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), \quad$ and $\quad S\left(x_{4}, y_{4}\right)$, then $x_{1}+x_{2}+x_{3}+x_{4}=0 \quad y_{1}+y_{2}+y_{3}+y_{4}=0 \quad x_{1} x_{2} x_{3} x_{4}=C^{4}$ $y_{1} y_{2} y_{3} y_{4}=C^{4}$
A. $x_{1}+x_{2}+x_{3}+x_{4}=0$
B. $y_{1}+y_{2}+y_{3} y_{4}=2$
C. $x_{1} x_{2} x_{3} x_{4}=2 c^{4}$
D. $y_{1} y_{2} y_{3} y_{4}=2 c^{4}$

Answer: A

D Watch Video Solution

Exercise 2 Concept Applicator

1. A circle C_{1}, of radius 2 touches both x-axis and y - axis. Another circle C_{1} whose radius is greater than 2 touches circle and both the axes. Then the radius of circle is
A. $6-4 \sqrt{2}$
B. $6+4 \sqrt{2}$
C. $6-4 \sqrt{3}$
D. $6+4 \sqrt{3}$

Answer: B

- Watch Video Solution

2. The equation of tangents drawn from the origin to the circle $x^{2}+y^{2}-2 r x-2 h y+h^{2}=0$ are:
A. $x=0, y=0$
B. $x=1, y=0$
C. $\left(h^{2}-r^{2}\right) x-2 r h y=0, y=0$
D. $\left(h^{2}-r^{2}\right) x-2 r h y=0, x=0$

Answer: D

- Watch Video Solution

3. Let AB be a chord of the circle $x^{2}+y^{2}=r^{2}$ subtending a right angle at the centre.Then, the locus of the centroid of the $\Delta P A B$ as P moves on
the circle, is :
A. a parabola
B. a circle
C. an ellipse
D. a pair of straight lines

Answer: B

- Watch Video Solution

4. The line joining $(5,0)$ to $(10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio $2: 3$ at P then the locus of P is
A. a pair of straight lines
B. a circle
C. a straight line
D. None of these

Answer: B

- Watch Video Solution

5. Four distinct points $(2 k, 3 k),(1,0),(0,1)$ and $(0,0)$ lies on a circle for-
A. only one value of k
B. $0<K<1$
C. $k<0$
D. all integral values of k

Answer: A

Watch Video Solution

6. The number of integral values of λ for which the equation $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0$ is the equation fo a circle whose radius cannot exceed 5 , is 14 (b) 18 (c) 16 (d) none of these
A. 14
B. 18
C. 16
D. None of these

Answer: C

- Watch Video Solution

7. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find t
A. 10.02 m
B. 9.11 m
C. 10.76 m
D. 12.06 m

D Watch Video Solution

8. If from any point P, tangents PT, PT' are drawn to two given circles with centres A and B respectively, and if $P N$ is the perpendicular from P on their radical axis, then $P T^{2}-P T^{\prime 2}=$
A. PN. AB
B. $2 P N . A B$
C. $4 \mathrm{PN} . \mathrm{AB}$
D. None of these

Answer: B

9. $y=2 x$ is a chord of the circle $x^{2}+y^{2}-10 x=0$, then the equation of a circle with this chord as diameter is
A. 4
B. 2
C. 6
D. 0

Answer: C

- Watch Video Solution

10. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$, then
A. $d^{2}+(3 b-2 c)^{2}=0$
B. $d^{2}+(3 b+2 c)^{2}=0$
C. $d^{2}+(2 b+3 c)^{2}=0$
D. $d^{2}+(2 b+3 c)^{2}=0$

Answer: D

- Watch Video Solution

11.

Q57)
If
the
circle
$x^{2}+y^{2}+2 a x+c y+a=0$ and $x^{2}+y^{2}-3 a x+d y-1=0$
intersect at two distinct points Pand Q , then the line $5 \mathrm{x}+\mathrm{by}-\mathrm{a}=0$ will pass
through P and Q for A. No values of a B. Exactly one value of a C. Exactly two values of a D. Infinitely many value of a
A. exactly one value of a
B. no value of a
C. infinitely many values of a
D. exactly two values of a

Answer: B

12. A rod $A B$ of length 15 cm rests in between two coordinate axes in such a way that the end point A lies on x-axis and end point B lies on y-axis. A point $P(x, y)$ is taken on the rod in such a way that $A P=6 \mathrm{~cm}$. Show that the locus of P is an ellip
A. circle
B. ellipse
C. parabola
D. hyperbola

Answer: B

- Watch Video Solution

13. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum
A. 9 square units
B. 12 square units
C. 14 square units
D. 18 square units

Answer: D

- Watch Video Solution

14. The eccentricities of the ellipse $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1, \alpha>\beta$ and $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ are equal. Which one of the following is correct?
A. $4 \alpha=3 \beta$
B. $\alpha \beta=12$
C. $4 \beta=3 \alpha$
D. $9 \alpha=16 \beta$

Answer: C

15. The middle point of chord $x+3 y=2$ of the conic $x^{2}+x y-y^{2}=1$, is
A. $(5,-1)$
B. $(1,1)$
C. $(2,0)$
D. $(-1,1)$

Answer: D

- Watch Video Solution

16. If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ and $x^{2}-y^{2}=c^{2}$ cut at right angles, then:
A. $a^{2}+b^{2}=2 c^{2}$
B. $b^{2}-a^{2}=2 c^{2}$
C. $a^{2}-b^{2}=2 c^{2}$
D. $a^{2}-b^{2}=c^{2}$

Answer: C

- Watch Video Solution

17. If the line $x+m y+a m^{2}=0$ touches the parabola $y^{2}=4 a x$ then the ponit of contact is
A. $\left(-a m^{2}, 2 a m\right)$
B. $\left(-a m^{2},-2 a m\right)$
C. $\left(a m^{2},-2 a m\right)$
D. $\left(a m^{2}, 2 a m\right)$

Answer: C

18. The equation of the conic with focus at $(1,-1)$, directrix along $x-y+1=0$ and with eccentricity $\sqrt{2}$, is
A. $x^{2}-y^{2}=1$
B. $x y=1$
C. $2 x y-4 x+4 y+1=0$
D. $2 x y+4 x-4 y-1=0$

Answer: C

- Watch Video Solution

19. The equation of one of the common tangent to the parabola $y^{2}=8 x$ and $x^{2}+y^{2}-12 x+4=0$ is
A. $y=-x+2$
B. $y=x-2$
C. $y=x+2$
D. None of these

Answer: C

- Watch Video Solution

20. If two circles $(x-1)^{2}+(y-3)^{2}=r^{2} \quad$ and
$x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then
A. $r>2$
B. $2<r<8$
C. $r<2$
D. $r=2$

Answer: B

- Watch Video Solution

21. The number of points of intersection of the two curves $y=2 \sin x$ and $y=5 x^{2}+2 x+3$ is
A. 0
B. 1
C. 2
D. intinite

Answer: A

- Watch Video Solution

22. The equation of the ellipse with its centre at (1,2), focus at (6,2) and passing through the point $(4,6)$ is $\frac{(x-1)^{2}}{a^{2}}+\frac{(y-2)^{2}}{b^{2}}=1$, then
A. $a^{2}=1, b^{2}=25$
B. $a^{2}=25, b^{2}=20$
C. $a^{2}=20, b^{2}=25$
D. None of these

Answer: D

(Watch Video Solution

23. A normal chord of the parabola $y^{2}=4 a x$ subtends a right angle at the vertex if its slope is
A. 1
B. -2
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

24. Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. $a b$
B. 2 ab
C. $a b / 2$
D. $\sqrt{a b}$

Answer: B

- Watch Video Solution

25. The line $\mathrm{ax}+\mathrm{by}=1$ cute ellipse $c x^{2}+d y^{2}=1$ only once if
A. $c a^{2}+d b^{2}=1$
B. $\frac{c}{a^{2}}+\frac{d}{b^{2}}=1$
C. $\frac{a^{2}}{c}+\frac{b^{2}}{d}=1$
D. $a c^{2}+b d^{2}=1$

Answer: C

- Watch Video Solution

26. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer: D

27. The locus of he middle points of the chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which are at a constant disance 'd' form the cantre is
A. $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=d^{2}\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)$
B. $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=d^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)$
C. $\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{2}=d^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)$
D. None of these

Answer: B

- Watch Video Solution

28. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the positive end of the latus rectum.
A. $x+e y-a e^{3}=0$
B. $x-e y+a e^{3}=0$
C. $x-e y-a e^{3}=0$
D. $x+e y+a e^{3}=0$

Answer: C

- Watch Video Solution

29. If the line $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$ touches the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \sec \theta, b \tan \theta)$, then find θ.
A. $\sin ^{-1} m$
B. $\sin ^{-1}\left(\frac{a}{b m}\right)$
C. $\sin ^{-1}\left(\frac{b}{a m}\right)$
D. $\sin ^{-1}\left(\frac{b m}{a}\right)$

Answer: C

30. The length of the transverse axis of a hyperbola, $2 \cos 0$. the foci of the hyperbola are the same as that of the ellips ${ }^{`} 9 x^{\wedge}(2)+16 y^{\wedge}(2)=144$. the equation of the hypperbola is
A. $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{7-\cos ^{2} \alpha}=1$
B. $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{7+\cos ^{2} \alpha}=1$
C. $\frac{x^{2}}{1+\cos ^{2} \alpha}-\frac{y^{2}}{7+\cos ^{2} \alpha}=1$
D. $\frac{x^{2}}{1+\cos ^{2} \alpha}-\frac{y^{2}}{7-\cos ^{2} \alpha}=1$

Answer: A

- Watch Video Solution

