

India's Number 1 Education App

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

CONTINUITY AND DIFFERENTIABILITY

Jee Main 5 Years At A Glance

1. Let
$$S=\Big\{t\in R\colon f(x)=|x-\pi|\Big(e^{|x|}-1\Big)\sin|x| \text{ is not differentiable}$$
 at t} Then the set S is equal to: (1) ϕ (2) {0} (3) $\{\pi\}$ (4) $\{0,\pi\}$

A. {0}

B. $\{\pi\}$

C. $\{0, \pi\}$

 $D. \emptyset (an empty set)$

Answer: D

2. If the function
$$f$$
 defined as $f(x)=\frac{1}{x}-\frac{k-1}{e^{2x}-1}, x\neq 0$, is continuous at $x=0$, then the ordered pair $(k,f(0))$ is equal to :

Answer: A

3. If
$$x=\sqrt{2^{\cos ec^{-1}t}}$$
 and $y=\sqrt{2^{\sec^{-1}t}}(|t|\geq 1)$ then (dy)/(dx) is equal to.

$$\mathsf{B.}-rac{y}{x}$$

$$\mathsf{C.} - \frac{x}{y}$$

D. x/y

Answer: B

Watch Video Solution

4. the derivative of $\frac{\tan^{-1}(6x\sqrt{x})}{1-9x^3}$ is $\sqrt{x}g(x)$ then g(x) is:

A.
$$\frac{3}{1+9x^3}$$

$$\mathsf{B.}\;\frac{9}{1+9x^3}$$

C.
$$\frac{3x\sqrt{x}}{1-9x^3}$$

D.
$$\frac{3x}{1-9x^3}$$

Answer: B

5. Let f be a polynomial function such that f(3x) = f'(x); f''(x), for all $x \in R$. Then :

then

D.
$$f(b)-f'(b)+f''(b)=10$$

Answer: B

6.

Watch Video Solution

6. If
$$y=\left[x+\sqrt{x^2-1}
ight]^{15}+\left[x-\sqrt{x^2-1}
ight]^{15},$$
 $\left(x^2-1
ight)rac{d^2y}{dx^2}+xrac{dy}{dx}$ is equal to

B.
$$224y^2$$

C. $225y^2$

D. 225 y

Answer: D

Watch Video Solution

7. For $x \in R, f(x) = |\log 2 - \sin x|$ and g(x) = f(f(x)), then

A. $g'(0) = -\cos(\log 2)$

B. g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$

C. g is not differentiable at x = 0

 $D. g'(0) = \cos(\log 2)$

Answer: D

8. Let $a,b\in R, (a\in 0)$. If the funtion f defined as

$$f(x)= \left\{egin{array}{ll} rac{2x^2}{a} & 0 \leq x < 1 \ a & 1 \leq x < \sqrt{2} \ rac{2b^2-4b}{x^3} & \sqrt{2} < x < \infty \end{array}
ight.$$
 is a continous in $[0,\infty)$. Then, (a,b)=

A.
$$\left(-\sqrt{2},1-\sqrt{3}\right)$$

B.
$$\left(\sqrt{2},1+\sqrt{3}\right)$$

C.
$$\left(\sqrt{2},1-\sqrt{3}\right)$$

D.
$$(-\sqrt{2}, 1+\sqrt{3})$$

Answer: C

Watch Video Solution

9. If the function

$$f(x)=\left\{egin{array}{ccc} -x & x<1 \ a+\cos^{-1}(x+b) & 1\leq x\leq 2 \end{array}
ight.$$
 is differentiable at x=1, then

A.
$$\frac{\pi+2}{2}$$

 $\frac{a}{b}$ is equal to

is:

B. 4

D. (16)/(5)

Answer: C

Watch Video Solution

10. If the function.

 $g(x) = \left\{egin{array}{ll} k\sqrt{x+1} & 0 \leq x \leq 3 \\ mx+2 & 3 < x \leq 5 \end{array}
ight.$ is differentiable, then the value of k+m

B. $\frac{\pi-2}{2}$

 $\mathsf{C.}\,\frac{-\pi-2}{2}$

D. $-1 - \cos^{-1}(2)$

Answer: A

11. If Rolle's theoram holds for the function $f(x)2x^3+bx^2+cx$,

$$xarepsilon[-1,1], ext{ at the point } ext{x} = rac{1}{2}, ext{then 2b + c equals}:$$

Answer: B

Watch Video Solution

12. If f and g are differentiable functions in [0, 1] satisfying f(0)=2=g(1), g(0)=0 and f(1)=6 , then for some $c\in]0,1[$ (1)

(4)

2f'(c) = g'(c) (2) 2f'(c) = 3g'(c) (3) f'(c) = g'(c)

$$f^{\prime}(c)=2g^{\prime}(c)$$

A. f'(c) g'(c)

B. f'(c) 2g'(c)

Answer: B

Watch Video Solution

13. If f(x) is continuous and
$$f\!\left(\frac{9}{2}\right)=\frac{2}{9}$$
 , then : $\lim_{x o 0}f\!\left(\frac{1-\cos 3x}{x^2}\right)$ =

A.
$$\frac{9}{2}$$

B. $\frac{2}{9}$

C. 0

D. $\frac{8}{9}$

Answer: B

14. If the Rolle's theorem holds for the function $f(x) = 2x^3 + ax^2 + bx$ in the interval [-1,1] for the point $c=\frac{1}{2}$, then the value of 2a+b is :

A. 1

B. -1

C. 2

D. -2

Answer: B

Watch Video Solution

Exercise 1 Concept Builder Topicwise

1. Let $\frac{\left(e^x-1\right)^2}{\sin\left(\frac{x}{a}\right)\log\left(1+\frac{x}{4}\right)}$ for $x \neq 0$ and f(0)=12. If f is continuous

at x = 0, then the value of a is equal to

Answer: D

A. 1

B. -1

C. 2

D. 3

Watch Video Solution

2. If the function $f(X)=\left\{egin{array}{cc} \left(\cos x ight)^{1/x} & x eq 0 \ k & x=0 \end{array} ight.$ is continuous at x=0, then the value of k, is

- A. 1
- B. -1
- C. 0
- D. e

Answer: A

The value of a for which the function 3. $f(x) = f(x) = \left\{ rac{(4^x - 1)\hat{3}}{\sin(xa)\log\{(1 + x^23)\}}, x
eq 012(\log 4)^3, x = 0
ight.$ may

be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

B. 2

C. 3

D. Nne of these

Answer: D

4. If
$$R o R$$
 is defined by $f(x)=egin{cases} rac{2\sin x-\sin 2x}{2x\cos x}, & ext{if} & x
eq 0 \ a, & ext{if} & x=0 \end{cases}$

then the value of a so that f is continuous at x = 0 is

A. 2

B. 1

C. -1

D. 0

Answer: D

Watch Video Solution

5. Let $f(x)=\left\{egin{array}{ll} 5^{1/x}, & x<0 \ \lambda[x], & x\geq 0 \end{array} ight.$ and $\lambda\in R$, then at x = 0

A. f is discontinuous

B. f is continuous only,if λ =0

C. f is continuous only,whatever λ may be

D. None of these

Watch Video Solution

6. Determine the value of a,b,c for which the function

$$f(x) = igg\{rac{\sin(a+1)x+\sin x}{x}crac{\sqrt{x+bx^2}-\sqrt{x}}{bx^{rac{3}{2}}}$$

fx < 0f or $x = 0iscont \in uousatx = 0f$ or x > 0

A.
$$a=rac{-3}{2}, c=rac{1}{2}, b=0$$

B.
$$a=rac{3}{2}, c=rac{1}{2}, b
eq 0$$

C.
$$a=rac{-3}{2}, c=rac{1}{2}, b
eq 0$$

D. None of these

Answer: C

7. If
$$f(x)=\left\{egin{array}{ll} rac{1-\sqrt{2}\sin x}{\pi-4x}, & & x
eq rac{\pi}{4}\ a & , & & x=rac{\pi}{4} \end{array}
ight.$$

is continuous at $x=rac{\pi}{4}$, then a =

B. 2

C. 1

D.
$$\frac{1}{4}$$

Answer: D

Watch Video Solution

8. The function $f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$ is not defined at $x = \pi$.

The value of $f(\pi)$ so that f(x) is continuous at $x=\pi$ is

A.
$$-\frac{1}{2}$$

$$\cdot \frac{1}{2}$$

C. -1

D. 1

Answer: C

Watch Video Solution

9. Determine a & b so that f is continuous at $x=\frac{\pi}{2}$

whre $f(x)=egin{bmatrix} rac{1-\sin^3x}{3\cos^2x} & ext{if} & x<rac{\pi}{2} \ a & ext{if} & x=rac{\pi}{2} \ rac{b\left(1-\sin x
ight)}{\left(\pi-2x
ight)^2} & ext{if} & x>rac{\pi}{2} \ \end{pmatrix}$

$$\mathsf{B.}\left(\frac{1}{2},2\right)$$

$$\mathsf{C.}\left(rac{1}{2},4
ight)$$

D. None of these

Answer: C

10. Let
$$f(x)$$
 be a function defined as $f(x)=\left\{rac{x^2-1}{x^2-2|x-1|-1},x
eq 1rac{1}{2},x=1 ext{ Discuss the continuity of the function at }x=1.$

- A. The function is continuous for all values of x
- B. The function is continuous only for x > 1
- C. The function is continuous at x = 1
- D. The function is not continuous at x = 1

Answer: D

11. If
$$f(x)=\left[rac{8^x-4^x-2^x+1^2}{x^2},\;x>0e^x\sin x+4x+k\ln 4,\;x\leq 0
ight]$$
 is continuous at $x=0,\;$ then find the value of $k\cdot$

B. 2log2

C. log2

D. None of these

Answer: C

Watch Video Solution

12. The number of points at which the function $f(x) = \frac{1}{\log}|x|$ is discontinuous is (1) 0 (2) 1 (3) 2 (4) 3

A. 1

B. 2

C. 3

D. 4

Answer: C

13. If
$$f(x) = egin{cases} -x^2, & when x \leq 0 \ 5x-4, & ext{when } 0 < x \leq 1 \ 4x^2-3x, & ext{when } 1 < x < 2 \ 3x+4, & when x \geq 2 \end{cases}$$
 ,then

- A. f(x) is continuous at x = 0
- B. f(x) is continuous at x = 2
- C. f(x) is discontinuous at x = 1
- D. None of these

Answer: B

Watch Video Solution

14. The points of discontinuity of the function $\lim_{n\to\infty} \left(\frac{(2\sin x)^{2n}}{3^n - (2\cos x)^{2n}} \right)$

B. $\left\{n\pi\pm\frac{\pi}{3},n\varepsilon I\right\}$

C. $\left\{n\pi\pm\frac{\pi}{6},n\varepsilon I\right\}$

Answer: C

Watch Video Solution

15. Let $f(x) = \left[x^3 - 3
ight]$, where [.] is the greatest integer function, then

- the number of points in the interval (1,2) where function is discontinuous is (A) 4 (B) 5 (C) 6 (D) 7
 - A. 5
 - B. 4
 - C. 6
 - D. 3

Answer: C

16. If
$$f(x)=\left\{egin{array}{ll} x-1,&x<0\ rac{1}{4},&x=0\ x^2,&x>0 \end{array}
ight.$$

A.
$$\lim_{x
ightarrow 0+} f(x) = 1$$

B.
$$\lim_{x \to 0-} f(x) = 1$$

C.
$$f(X)$$
 is discontinuous at $x = 0$

D. None of these

Answer: C

Watch Video Solution

17. The number of points at which the function $f(x)=\frac{1}{x-[x]}([.\,])$ denotes, the greatest integer function) is not continuous is

A. 1

B. 2

C. 3

D. None of these

Answer: D

Watch Video Solution

18. If $f(x) = \{(\sin x; x \text{ rational}) \ (\cos x; x \text{ is irrational}) \ ext{then the function}$ is

A. discontinuous at $x=n\pi+\pi/4$

B. continuous at $x=n\pi+rac{\pi}{4}$

C. discontinuous at all x

D. None of these

Answer: B

19. If
$$f(x)=egin{cases} 1&,& ext{when}0< x\leq rac{3\pi}{4}\ 2(\sin)rac{2}{9}x&,& ext{when}rac{3\pi}{4}< x<\pi \end{cases}$$
 , then

A. f(x) is continuous at x = 0

B. f(x) is continuous at $x=\pi$

C. f(x) is continuous at $x=rac{3\pi}{4}$

D. f(x) is discontinuous at $x=rac{3\pi}{4}$

Answer: C

Watch Video Solution

20. If f(x) = sgn(x) and $g(x) = (1 - x^2)$, then the number of points of discontinuity of function f(g(x)) is -

A. exact two

B. exactly three

C. finite and more than 3

D. infinitely many

Answer: A

Watch Video Solution

- **21.** If $f(x)=egin{cases} x,x\leq 1 \\ x^2+bx+c, & x>1 \end{cases}$ then find the values of b and c if f(x) is differentiable at x=1.
 - A. b=c=1
 - B. b=-1,c=1
 - C. b=0,c=1
 - D. b=-1,c=0

Answer: B

22. Let
$$f(x) = |\sin x|$$
 .Then

A. f is everywhere differentiable

B. f is everywhere continuous but no differentiable at x = $n\pi$, $n\varepsilon Z$

C. f is everywhere continuous but not differentiable at x

$$(2n+1)rac{\pi}{2}, narepsilon Z$$

D. None of these

Answer: B

Watch Video Solution

23. $f(x)=maximum \{2sinx,1-cosx\}$ is not differentiable when x is equal to

A. 1

B. -1

C. 0

D.
$$\pi-\cos^{-1}\!\left(rac{3}{5}
ight)$$

Answer: D

Watch Video Solution

24. Let $f: R \to R$ be such that f (1) = 3 and f'(1) = 6. Then,

$$\lim_{x o 0} \, \left[rac{f(1+x)}{f(1)}
ight]^{1/x}$$
 equals

- A. 1
- B. $e^{1/2}$
- $\mathsf{C}.\,e^2$
- D. e^3

Answer: C

25. If f (x) = $ae^{|x|}+b|x|^2; a,b\varepsilon R$ and f(x) is differentiable at x=0.Then ,a

and b are

A. a= 0,
$$b \varepsilon R$$

C. b=0,
$$a\varepsilon R$$

Answer: A

26. Let
$$f(x)=egin{cases} x\sin\left(rac{1}{x}
ight)+\sin\left(rac{1}{x^2}
ight) &; x
eq 0 \\ 0 &; x=0 \end{cases}$$
, then $\lim_{x o\infty}\,f(x)$ is equal to

A. f is differentiable at
$$x = 0$$
 an $x = 1$

B. f is differentiable at
$$x = 0$$
 but not at $x = 1$

C. f is differentiable at x = 1 but not at x = 0

D. f is neither differentiable at x = 0 nor at x = 1

Answer: B

Watch Video Solution

27. If
$$f(x)=egin{cases} \sqrt{x}\Big(1+x\sinrac{1}{x}\Big), & x>0 \ -\sqrt{-x}\Big(1+x\sinrac{1}{x}\Big), & x<0 \ 0, & ,x=0 \end{cases}$$
 then f(x) is

A. continuous as well as differentiable at x = 0

B. continuous but not differentiable at x = 0

C. differentiable but not continuous at x = 0

D. neither continuous nor differentiable at x = 0

Answer: B

View Text Solution

28. The left hand derivative of $f(x) = [x] \sin(\pi x)$ at x = k, k is an integer, is

A.
$$(-1)^k(k-1)\pi$$

B.
$$(-1)^{k-1}(k-1)\pi$$

$$\mathsf{C.}\left(\,-\,1
ight)^{k}k\pi$$

D.
$$(-1)^{k-1}k\pi$$

Answer: A

Watch Video Solution

29. Let $f\!:\!R o R$ be a function defined by $f(x)=\max{}.\left\{x,x^3\right\}\!.$ The set of all points where f(x) is NOT differenctiable is

(a)
$$\{-1,1\}$$

(b)
$$\{-1,0\}$$

(c) $\{0, 1\}$

(d) $\{-1, 0, 1\}$

A. {-1,1}

Answer: D

30. If
$$f(x)=\left\{egin{array}{ll} rac{\left \lfloor x
ight
floor-1}{x-1}, & x
eq 1 \ 0 & , & x=1 \end{array}
ight.$$
 then f(x) is

- A. continuous as well as differentiable at x = 1
- B. differentiable but not continuous at x = 1
- C. ontinuous but not differentiable at x = 1
- D. neither continuous nor differentiable at x = 1

Answer: D

View Text Solution

31. If f(x) = $\begin{cases} e^x + ax & \text{for } x < 0 \\ b(x-1)^2 & \text{for } x \ge 0 \end{cases}$, is differentiable at x =0,then (a,b) is

- A. (-3,-1)
- B. (-3,1)
- C.(3,1)
- D.(3,-1)

Answer: B

Watch Video Solution

32. If $f(x)=\lim_{n
ightarrow\infty}\,rac{ an\pi x^2+\left(x+1
ight)^n\sin x}{x^2+\left(x+1
ight)^n}$ then

A. f is continuous at x = 0

B. f is differentiable at x =0

C. f is continuous but not differentiable at x = 0

D. None of these

Answer: D

Watch Video Solution

33. If $f(x)=\sqrt[3]{rac{x^4}{|x|}}$,x eq 0 and f(0)=0 is:

A. continuous for all x but not differentiable for any x

B. continuous and differentiable for all x

C. continuous for all x and differentiable for all x
eq 0

D. continuous and differentiable for all x
eq 0

Answer: C

34. Let $f \colon R o R$ be a function such

that

$$figg(rac{x+y}{3}igg)=rac{f(x)+f(y)}{3}, f(0)=0 \, ext{ and }\, f'(0)=3$$
 ,then

A. f(x) is a quadratic function

B. f(x) is continuous but not differentiable

C. f(x) is differentiable in R

D. f(x) is bounded in R

Answer: C

Watch Video Solution

35. If $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log a)^n$, then at x = 0, f(x)

A. has no limit

B. is discontinuous

C. is continuous but not differentiable

D. is differentiable

Answer: D

Watch Video Solution

36. If $f(x)=egin{cases} xe^{-\left(rac{1}{|x|}+rac{1}{x}
ight)} & x
eq 0 \ 0 & x=0 \end{cases}$ then f(x) is

A. discontinuous everywhere

B. continuous as well as differentiabe for all x

C. continuous for all x but not differentiable at x = 0

D. neither differentiable nor continuous at x = 0

Answer: C

37. If $u=f\left(x^{3}\right),v=g\left(x^{2}\right),f'(x)=\cos x,andg'(x)=\sin x,then\frac{du}{dx}$

is $\frac{3}{2}x\cos x^3\cos ecx^2$ $\frac{2}{2}\sin x^3\sec x^2\tan x$ (d) none of these

A.
$$\frac{1}{2}x\cos x^3\cos ec^2$$

$$B. \frac{3}{2}x\cos x^3\cos ec^2$$

C.
$$\frac{1}{2}x\sec x^3\sin x^2$$

D.
$$\frac{3}{2}x\sec x^3\cos ecx^2$$

Answer: B

38. If
$$y=\frac{(a-x)\sqrt{a-x}-(b-x)\sqrt{x-b}}{a}$$
, $then\frac{dy}{dx}$ wherever it is defined is $\frac{x+(a+b)}{\sqrt{(a-x)(x-b)}}$ (b) $\frac{2x-a-b}{2\sqrt{a-x}\sqrt{x-b}}-\frac{(a+b)}{2\sqrt{(a-x)(x-b)}}$

(d)
$$\frac{2x + (a+b)}{2\sqrt{(a-x)(x-b)}}$$

A.
$$\frac{x+(a+b)}{\sqrt{(a-x)(x-b)}}$$

B.
$$\frac{2x-a-b}{2\sqrt{(a-x)(x-b)}}$$

C.
$$\dfrac{(a+b)}{2\sqrt{(a-x)(x-b)}}$$

D.
$$\dfrac{2x+(a+b)}{2\sqrt{(a-x)(x-b)}}$$

Answer: B

Watch Video Solution

39. If $x=rac{1-t^2}{1+t^2}$ and $y=rac{2t}{1+t^2}$, then $rac{dy}{dx}$ is equal to

A.
$$-\frac{y}{x}$$

$$\boldsymbol{x}$$

B.
$$\frac{y}{x}$$

$$\mathsf{C.} - rac{x}{y}$$

D.
$$\frac{x}{y}$$

Answer: C

40.
$$\frac{d}{dx} \left[\sin^2 \cot^{-1} \sqrt{\frac{1-x}{1+x}} \right]$$
 is

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}-\frac{1}{2}$$

Answer: B

Watch Video Solution

41. Differentiate $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ with respect to $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$, if

 $x \in (-\infty, -1)$

$$\mathsf{C.}-1/2$$

Answer: A

Watch Video Solution

42. If
$$f(x)=2\sin^{-1}\sqrt{1-x}+\sin^{-1}\left(2\sqrt{x(1-x)}\right)$$
 where $x\in\left(0,\frac{1}{2}\right)$, then $f'(x)$ has the value equal to (i) $\frac{2}{x\sqrt{1-x}}$ (ii) 0 (iii) $-\frac{2}{x\sqrt{1-x}}$ (iv) π

A.
$$\dfrac{2}{\sqrt{x(1-x)}}$$

B. zero

$$\mathsf{C.} - \frac{2}{\sqrt{x(1-x)}}$$

D. π

Answer: B

43. The derivative of
$$\sin^{-1}\!\left(\frac{2x}{1+x^2}\right)$$
 with respect to $\cos^{-1}\!\left(\frac{1-x^2}{1+x^2}\right)$ is

44. If $x=\sin t\cos 2t$ and $y=\cos t\sin 2t$, then at $t=\frac{\pi}{4}$, the value of

C. 2

Answer: A

Watch Video Solution

$$\frac{dy}{dx}$$
 is equal to:

B. 2

c.
$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\mathsf{D.}-\frac{1}{2}$$

Answer: C

Watch Video Solution

45. If $x = \sec \theta - \cos \theta$ and $y = \sec^n \theta - \cos^n \theta$ then show that

$$\left(x^2+4
ight)\left(rac{dy}{dx}
ight)^2=n^2ig(y^2+4ig)$$

A.
$$\frac{y^2+4}{n^2(x^2+4)}$$

B.
$$\dfrac{y^2+4}{n(x^2+4)}$$
C. $\dfrac{n^2(y^2+4)}{x^2+4}$

D.
$$\frac{n\left(y^2+4\right)}{x^2+4}$$

Answer: C

Watch Video Solution

46. Let $y=x^3-8x+7$ and x=f(t). If $\frac{dy}{dt}=2$ and x=3 at t=0, then $\frac{dx}{dt}$ at t=0 is given by 1 (b) $\frac{19}{2}$ (c) $\frac{2}{10}$ (d) none of these

B. (1+logx)logx
$$\log x$$

Watch Video Solution

Answer: A

A. $\frac{2}{19}$

 $\mathsf{B.}\;\frac{3}{5}$

c. $\frac{-1}{17}$

 $D. \frac{5}{16}$

47. If
$$x^y=e^{x-y}$$
 then $\frac{dy}{dx}$?

A.
$$(1 + \log x)^2$$

C.
$$\frac{\log x}{\left((1+\log x)\right)^2}$$
D. $(\log x)^2.2$

Answer: C

48. If
$$y = \sin x + e^x$$
, then $\frac{d^2x}{dy^2} = \frac{1}{2}$

A.
$$rac{\sin x - e^x}{\left(\cos x + e^x
ight)^2}$$

B.
$$\frac{\sin x - e^x}{\left(\cos x + e^x\right)^3}$$

C.
$$\frac{\sin x - e^x}{\left(\cos x - e^x\right)^2}$$

D.
$$(-\sin x + e^x)^{-1}$$

Answer: B

- **49.** If $f(x) = |\log_e|x||$, then f'(x) equals
 - A. $\frac{1}{|x|}, x\pi 0$
 - B. 1/x for |x| gt 1 and -1/x for |x| lt1
 - $\mathsf{C.} \frac{1}{x} \quad \text{for} \quad |x| > 1 \quad \text{and} \quad \frac{1}{x} \quad \text{for} \quad |x| < 1$

D. 1/x for x gt 0 and -1/x for x lt 0

Answer: B

Watch Video Solution

- **50.** If $f(x)=x^4 anig(x^3ig)-x1nig(1+x^2ig),\,$ then the value of $\dfrac{d^4(f(x))}{dx^4}$ at x=0 is 0 (b) 6 (c) 12 (d) 24
 - A. 0

 - B. 6
 - C. 12
 - D. 24

Answer: A

51. let
$$y=t^{10}+1, ext{ and } x=t^8+1, ext{ then } \dfrac{d^2y}{dx^2}$$
 is

A. 5/2t

 $\mathsf{B.}\ 20t^8$

c. $\frac{5}{16t^6}$

D. None of these

Answer: C

52. If
$$x=\exp\Bigl\{ an^{-1}\Bigl(rac{y-x^2}{x^2}\Bigr)\Bigr\}$$
 then dy/dx equals

A.
$$2x[1+ an(\log x)]+x\sec^2(\log x)$$

$$\texttt{B.}\,x[1+\tan(\log x)]+x\sec^2(\log x)$$

$$\mathsf{C.}\,2x[1+\tan(\log x)]+x^2\sec^2(\log x)$$

D.
$$2x[1+ an(\log x)]+\sec^2(\log x)$$

Answer: A

Watch Video Solution

53. If $y = \log^n x$, where \log^n means $\log \log \log \ldots$

(repeated n time), then x $\log x \log^2 x \log^3 x \dots \log^{n-1} x \log^n x$ dy/dx is equal

to

- A. log x
- $B.\log^n x$
- C. 1/logx
- D. 1

Answer: B

A.
$$(1+x)/x$$

B. 1/x

C. (1-x)/x

D. x/(1+x)

Answer: C

Watch Video Solution

55. $\frac{d}{dx} \left[\log \left\{ e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right\} \right]$ equals $\frac{x^2-1}{x^2-4}$ (b) 1 (c) $\frac{x^2+1}{x^2-4}$ (d)

$$e^xrac{x^2-1}{x^2-4}$$
A. $rac{x^2-1}{x^2-4}$

B. 1

c. $\frac{x^2+1}{x^2-4}$

D. $e^x \frac{x^2 + 1}{x^2 - 4}$

Answer: A

56. If :
$$y = \frac{1}{x}$$
, then: $\frac{dy}{\sqrt{1+y^4}} + \frac{dx}{\sqrt{1+x^4}} =$

B. 1

C. x/v

D. y/x

Answer: A

57. If
$$y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\dots\infty}}}$$
, then $\dfrac{dy}{dx}$ is equal to

A.
$$\frac{y\cos x}{2y-1}$$

$$\mathsf{B.}\;\frac{\cos x}{2y+1}$$

$$\mathsf{C.} \; \frac{\cos x}{2u-1}$$

D. None of these

Answer: C

Watch Video Solution

58. The equation $x \log x = 3 - x$ has, in the interval (1,3) :

A. exactly one root

B. atmost one root

C. atleast one root

D. no root

Answer: C

59. In $\left[0,1\right]$ Lagranges Mean Value theorem in NOT applicable to

$$f(x)=igg\{rac{1}{2}- imes<rac{1}{2}igg(rac{1}{2}-xigg)^2x\geqrac{1}{2}igg.$$
 b. $f(x)=igg\{rac{s\in x}{x},x
eq01,x=0\, ext{ c. }f(x)=x|x| ext{ d. }f(x)=|x|$

A.
$$f(x)=egin{cases} rac{1}{2}-x & x<rac{1}{2}\ \left(rac{1}{2}-x
ight)^2 & x\geqrac{1}{2} \end{cases}$$
B. $f(x)=egin{cases} rac{\sin x}{x}, & x
eq 0\ 1, & x=0 \end{cases}$

C. f(x)=x|x|

D. f(x)=|x|

Answer: A

Watch Video Solution

60. Rolle's theorem hold for the function $f(x)=x^3+bx^2+cx, 1\leq x\leq 2$ at the point 4/3, the values of b and c are

B. b=-5,c=8

C. b=5,c=-8

D. b=-5,c=-8

Answer: B

Watch Video Solution

- **61.** The value of x in the interval [4,9] at which the function $f(x) = \sqrt{x}$ satisfies the mean value theoram is
 - A. $\frac{13}{4}$

 $\mathsf{B.}\;\frac{17}{4}$

 $\mathsf{C.}\,\,\frac{21}{4}$

D. $\frac{25}{4}$

Answer: D

62. The value of c in (0,2) satisfying the Mean Value theorem for the function $f(x)=x(x-1)^2,$ xarepsilon[0,2] is equal to

A.
$$\frac{3}{4}$$

$$\mathsf{B.}\;\frac{4}{3}$$

C.
$$\frac{1}{3}$$

D. $\frac{2}{3}$

Answer: B

Watch Video Solution

63. If $f(x)>x;\ orall x\in R.$ Then the equation $f(f(x))-x=0,\$ has

A. exactly once in(a,b)

B. atmost once in (a,b)

C. atleast once in (a,b)

D. None of these

Answer: B

Watch Video Solution

64. If $f(x) = x^a \log x$ and f(0) = 0 then the value of lpha for which Rolle's

theorem can be applied in [0,1] is

A. -2

B. -1

C. 0

D.1/2

Answer: D

 $\mathbf{65.}$ If f(x) satisfies the requirements of Lagrange's mean value theorem on

[0, 2] and if f(0)= 0 and
$$f'(x) \leq rac{1}{2}$$

- A. |f(x)|le2
- B. f(x)le1
- C. f(x)=2x
- D. f(x)=3 for atleast one x in [0,2]

Answer: B

Watch Video Solution

Exercise 2 Concept Applicator

1. In order that the function $f(x)=\left(x+1\right)^{\cot x}$ is continuous at x = 0, the value of f(0) must be defined as

A. e

 $B.C^2$

 $\mathsf{C}.\,e^3$

D. None of these

Answer: A

Watch Video Solution

- **2.** The function $f\!:\!R-\{0\} o R$ given by $f(x)=rac{1}{x}-rac{2}{e^2x-1}$ can be made continuous at x=0 by defining f(0) as
 - A. 0

B. 1

C. 2

D. -1

Answer: B

3. Let
$$f(x)=egin{array}{c|cccc} 1 & 1 & 1 \ 3-x & 5-3x^2 & 3x^3-1 \ 2x^2-1 & 3x^5-1 & 7x^8-1 \ \end{array}$$
 then the equation of

$$f(x) = 0$$
 has

A.
$$f(x) = 0$$
 has at least two real roots

B.
$$f'(x) = 0$$
 has at least one real root

Answer: D

Watch Video Solution

4. Find the value of a for which the following function is continuous at a given point.

$$f(x) = \left\{ rac{\sin[x]}{[x+1]}, \; f \; ext{or} \; \; x > 0 rac{\cos\pi}{2}[x] \over [x]}, \; f \; ext{or} \; \; x < 0 \, at \, x = 0, \; \; a, \; at \, x = 0
ight.$$

where [x] denotes the greatest less than or equal to $x\cdot$

B. equal to 1

C. equal to -1

D. indeterminate

Answer: A

Watch Video Solution

5. The value of a for which the function $f(x)=f(x)=\left\{rac{(4^x-1)\hat{3}}{\sin(xa)\log\{(1+x^23)\}}, x
eq 012(\log 4)^3, x=0
ight.$ may

be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

A. 1

B. 2

C. 3

D. None of these

Answer: D

Watch Video Solution

- 6. If f(x) $=rac{8^x-4^x-2^x+1}{x^2},$... x>0 is continuous at x $=e^x\sin x+\pi x+\lambda$. In 4, ... $x\leq 0$

- = 0 , then : λ =
 - A. $4\log_e 2$
 - $B.2\log_e 2$
 - $\mathsf{C.}\log_e 2$
 - D. None of these

Answer: C

7. The function defined by $f(x)=\left\{egin{array}{ccc} \left(rac{1}{x^2+e^2-x}
ight)^{-1} & x
eq 2 \\ k & , & x=2 \end{array}
ight.$, is

continuous from right at the point x = 2, then k is equal to

B.1/4

C. - 1/4

D. None of these

Answer: B

8. In the Mean Value theorem
$$\dfrac{f(b)-f(a)}{b-a}=f'(c)$$
 if $a=0, b=\dfrac{1}{2}$ and f(x)=x(x-1)(x-2) the value of c is

A.
$$1 - \frac{\sqrt{15}}{6}$$

B.
$$1 + \sqrt{15}$$

$$\mathsf{C.}\,1-\frac{\sqrt{}}{6}$$

D. $1 + \sqrt{21}$

Answer: C

Watch Video Solution

9.

f(x+y) = f(x) + f(y)f or $all x, y \in R$, Leg

 $f(x) iscont \in uous at x = 0, show that f(x)$ is continuous at all x.

If

A. (-∞,∞)

B. (0,∞)

C. (-∞,0)

D. (2,∞)

Answer: A

10. Which of the following is true about

$$f(x) = \left\{ egin{array}{ll} rac{(x-2)}{|x-2|} \Big(rac{x^2-1}{x^2+1}\Big) & x
eq 2 \ rac{3}{5} & x=2 \end{array}
ight.$$

A. f(x) is continuous at x=2

B. f(x) has removable discontinuity at x=2

C. f(x) has non-removable discontinuity at x = 2

D. Discontinuity at x = 2 cab be removed by redefining function at x = 2

Answer: C

Watch Video Solution

11. Let f be a continuous function on R such that (1) $\sin e^n$ n^2

$$figg(rac{1}{4n}igg) = rac{\sin e^n}{e^{n^2}} + rac{n^2}{n^2+1}$$
 Then the value of $f(0)$ is

A. 1

B. 2

C. -1

D. -2

Answer: A

Watch Video Solution

12. if $y = \log x \cdot e^{\left(\tan x + x^2\right)}$, then $\frac{dy}{dx}$ is equal to

A.
$$e^{\left(\tan x + x^2\right)}\left[rac{1}{x} + \left(\sec^2 x + x
ight)\!\log x
ight]$$

$$\mathsf{B.}\,e^{\,\left(\tan x\,+\,x^2\right)}\left[\frac{1}{x}\,+\,\left(\sec^2x\,-\,x\right)\!\log x\right]$$

C.
$$e^{\left(\tan x + x^2\right)} \left[rac{1}{x} + \left(\sec^2 x + 2x
ight) \log x
ight]$$

D.
$$e^{\left(\tan x + x^2\right)} \left[rac{1}{x} + \left(\sec^2 x - 2x
ight) \log x
ight]$$

Answer: C

$$f(x) = ig\{ a + \sin^{-1}(x+b), x \geq 1x, x < 1 ext{ is differentiable at } x = 1.$$

of

aandb

if

values

Find

the

13.

Answer: A

14. Which of the following functions is not differentiable at x=1?

A.
$$f(x)=\left(x^2-1
ight) |(x-1)(x-2)|$$

B.
$$f(x)=\sin(|x-1|)-|x-1|$$

C.
$$f(x)=tan(|x-1|)+|x-1|$$

Watch Video Solution

15. If

$$f(x) = rac{x}{1+x} + rac{x}{(x+1)(2x+1)} + rac{x}{(2x+1)(3x+1)} + \ldots$$
to ∞

,then at x = 0,f(x)

- (a) has no limit
- (b) is discontinuous
- (c) is continuous but not differentiable
- (d) is differentiable
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: D

16. if
$$f(x)=\left(x^2-4\right)\left|\left(x^3-6x^2+11x-6\right)\right|+\frac{x}{1+|x|}$$
 then set of points at which the function if non differentiable is

Answer: D

Watch Video Solution

17. Number of point where function f(x) defined as

$$f{:}\left[0,2\pi
ight]
ightarrow R, f(x) = egin{dcases} 3 - \left|\cos x - rac{1}{\sqrt{2}}
ight|, & \left|\sin x
ight| < rac{1}{\sqrt{2}} \ 2 + \left|\cos x + rac{1}{\sqrt{2}}
ight|, & \left|\sin x
ight| \geq rac{1}{\sqrt{2}} \end{cases}$$
 is non

differentiable is

- A. 2
- B. 3
- C. 4
- D. 5

Answer: C

Watch Video Solution

18. If the function $f(x)=\left[\frac{(x-2)^3}{a}\right]\sin(x-2)+a\cos(x-2),$ [.] denotes the greatest integer function, is continuous in [4,6], then find the values of a.

- A. $a \varepsilon [8, 64]$
- B. $a\varepsilon(0,8]$
- C. $aarepsilon[64,\infty]$
- D. None of these

Answer: C

Watch Video Solution

19. If g is the inverse function of $fandf'(x)=\sin x, theng'(x)$ is $\cos ec\{g(x)\}$ (b) $\sin\{g(x)\}-\frac{1}{\sin\{g(x)\}}$ (d) none of these

A. cosec{g(x)}

 $B. sin{g(x)}$

 $\mathsf{C.} - \frac{1}{\sin\{g(x)\}}$

D. $cos{g(x)}$

Answer: A

Watch Video Solution

20. Which of the following function is not differentiable at x = 0?

$$f(x) = \min \{x, \sin x\}$$

$$f(x) = \{0, x \geq 0x^2, x < 0\}$$

(c)

B. Only (ii)

 $f(x) = x^2 sqn(x)$

C. Only (iii)

D. All of the above

Answer: D

Watch Video Solution

21. If $y=\left[(\tan x)^{\tan x}
ight]^{\tan x}$,then at $x=rac{\pi}{4}$, the value of $rac{dy}{dx}=$

A. 1

B. 3

C. 4

D. 0

Answer: D

22. Given
$$F(x)=f(x)\phi(x)$$
 and $f'(x)\phi'(x)=c$ then prove that

$$F^{\prime\prime}, rac{x}{F}(x) = rac{f^{\prime\prime}}{f} + rac{\phi^{\prime\prime}}{\phi} + 2c$$

B.
$$\dfrac{1}{y}\dfrac{d^2y}{dx^2}$$
C. $y\dfrac{d^2y}{dx^2}$

A. $\frac{d^2y}{dx^2}$

D. None of these

Answer: B

Watch Video Solution

23. Let $f\!:\!R\overset{\displaystyle
ightarrow}{R}$ be a function defined by $f(x)=M\in\{x+1,|x|+1\}$.

Then which of the following is true? (1) $f(x) \geq 1f$ or $all x \in R(2)f(x)$

is not differentiable at x=1 (3) f(x) is differentiable everywhere (4) f(x) is not differentiable at x=0

- A. f(x) is differentiable everywhere
- B. f(x) is not differentiable at x = 0
- C. f(x) > 1 for all $x \in R$
- D. f(x) is not differentiable at x = 1

Answer: A

24. If
$$(x-a)^2 + (y-b)^2 = c^2$$
, for some $c > 0$

24. If
$$(x-a)^2+(y-b)^2=c^2,$$
 for some $c>0,$ $provethat rac{\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{rac{3}{2}}}{rac{d^2y}{dx^2}}isaconstant\in dependen o f$ a and b.

- A. is a constant dependent on a
- B. is a constant dependent on b
- C. is a constant independent of a and b
- D. 0

Answer: C

Watch Video Solution

- **25.** Let f"(x) be continuous at x = 0 and f"(0) = 4 then value of $\lim_{x\to 0} \frac{2f(x)-3f(2x)+f(4x)}{x^2}$
 - A. 12
 - B. 10
 - C. 6
 - D. 4

Answer: A

Watch Video Solution

26. If f(x) and g(x) ar edifferentiable function for $0 \le x \le 1$ such that f(0)=2,g(0),f(1)=6,g(1)=2, then in the interval (0,1)

A. f'(x) = 0, for all x

B. f'(x) = 2g'(x), for at least one x

C. f'(x) = 2g'(x), for atmost one x

D. None of these

Answer: B

Watch Video Solution

27. Let $f[2,7] \to [0,\infty)$ be a continuous and differentiable function.

Then, the value of

$$(f(7)-f(2))rac{{(f(7))}^2+{(f(2))}^2+f(2).\ f(7)}{3}$$
 is

A. $5f^{2}(c)f'(c)$

(where $c \in (2,7)$)

B.
$$5f'(c)$$

C. f(c)f'(c)

Answer: A

Watch Video Solution

- **28.** The equation $e^{x-8} + 2x 17 = 0$ has :-
 - A. two real roots
 - B. one real root
 - C. eight real roots
 - D. four real roots

Answer: B

Watch Video Solution

29. If $f(x) = \frac{ an[x]\pi}{\left[1+\left|\log(\sin^2x+1)
ight|
ight]}$,where [.] denotes the greatest

integer function and |.| stands for the modulus of the function,thenf(x) is

A. discontinuous
$$\forall x \in I$$

B. continuous $\forall x$

C. non differentiable $\, orall \, x - arepsilon \, I \,$

D. a periodic function with fundamental period I.

Answer: B

View Text Solution

30. If f''(x) =- f(x) and g(x) = f'(x) and
$$F(x)=\left(f\left(\frac{x}{2}\right)\right)^2+\left(g\left(\frac{x}{2}\right)\right)^2$$
 and given that F(5) =5, then F(10) is

A. 5

B. 10

C. 0

D. 15

Answer: A

