© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

Mcqs

1. Slope of a line passing through $P(2,3)$ and intersecting the line, $x+y=7$ at a distance of 4 units from P, is
A. $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
B. $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
C. $\frac{\sqrt{7}-1}{\sqrt{7}+1}$
$\sqrt{7}+1$
D. $\frac{\sqrt{5}-1}{\sqrt{5}+1}$

Answer: B

- Watch Video Solution

2. If the standard deviation of the numbers $-1,0,1, k$ is
$\sqrt{5}$ where $k>0$ is equal to
A. $2 \sqrt{6}$
B. $2 \sqrt{\frac{10}{3}}$
C. $4 \sqrt{\frac{5}{3}}$
D. $\sqrt{6}$

Answer: A

- Watch Video Solution

3. If $f(x)$ is a non-zero polynomial of degree four, having loca extreme points at $x=-1,0,1$ then the set $S=\{x \in R: f(x)=f(0)\}$ contains exactly
A. four irrational numbers.
B. four rational numbers.
C. two irrational and two rational numbers.
D. two irrational and one rational number.

Answer: D

D Watch Video Solution

4. The integral $\int \sec ^{2 / 3} x \operatorname{cosec}^{4 / 3} x d x$ is equal to (here

C is a constant of integration)

$$
\text { A. }-3 \tan ^{-1 / 3} x+C
$$

B. $-\frac{3}{4} \tan ^{-4 / 3} x+C$
C. $-3 \cot ^{-1 / 3} x+C$
D. $3 \tan ^{-1 / 3} x+C$
(Here C is a constant of integration)

- Watch Video Solution

5. Four persons can hit a target correctly with probabilities $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{8}$ respectively. If all hit at the target would be hit, is
A. $\frac{25}{192}$
B. $\frac{7}{32}$
C. $\frac{1}{192}$
D. $\frac{25}{32}$

Answer: D
6. If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$ meets the plane, $x+2 y+3 z=15$ at a point P , then the distance of P from the origin is
A. $\sqrt{5} / 2$
B. $2 \sqrt{5}$
C. $9 / 2$
D. $7 / 2$

Answer: C
7. If the tangent to the curve, $y=x^{3}+a x-b$ at the point $(1,-5)$ is perpendicular to the line, $-x+y+4=0$, then which one of the following points lies on the curve?
A. $(-2,1)$
B. $(-2,2)$
C. $(2,-1)$
D. $(2,-2)$

Answer: D

D Watch Video Solution

8. The value of $\int_{0}^{n / 2} \frac{\sin ^{3} x}{\sin x+\cos x} \mathrm{dx}$ is
А. $\frac{\pi-2}{8}$
B. $\frac{\pi-1}{4}$
C. $\frac{\pi-2}{4}$
D. $\frac{\pi-1}{2}$

Answer: B

D Watch Video Solution

9. The value of $\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^{2} 50^{\circ}$ is
A. $\frac{3}{4}+\cos 20^{\circ}$
B. $3 / 4$
C. $\frac{3}{2}\left(1+\cos 20^{\circ}\right)$
D. $3 / 2$

Answer: B

(D) Watch Video Solution

10. If the line $y=m x+7 \sqrt{3}$ is normal to the hyperbola $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1$, then a value of m is :
A. $\frac{\sqrt{5}}{2}$
B. $\frac{\sqrt{15}}{2}$
C. $\frac{2}{\sqrt{5}}$
D. $\frac{3}{\sqrt{5}}$

Answer: C

D Watch Video Solution

11. The solution of the differential equation

$$
x \frac{d y}{d x}+2 y=x^{2}(X \neq 0) \text { with } y(1)=1, \text { is : }
$$

A. $y=\frac{4}{5} x^{3}+\frac{1}{5 x^{2}}$
B. $y=\frac{x^{3}}{5}+\frac{1}{5 x^{2}}$
C. $y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$
D. $y=\frac{3}{4} x^{2}+\frac{1}{4 x^{2}}$

- Watch Video Solution

12. For any two statements p and q, the negation of the expression $p \vee(\sim p \wedge q)$ is
A. $\sim p \Lambda \sim q$
B. $p \Lambda q$
C. $p \Leftrightarrow q$
D. $\sim p \nu \sim q$

Answer: A
13. All the points in the set
$S=\left\{\frac{\alpha+i}{\alpha-i}: \alpha \in R\right\}(i=\sqrt{-1})$ lie on a
A. straight line whose slope is 1
B. circle whose radius is 1 .
C. circle whose radius is 2 .
D. straight line whose slope is -1 .

Answer: B
14. If the fourth term in the binomial expansin of $\left(\frac{2}{x}+x^{\log _{6} x}\right)^{6}(x>0)$ is 20×8^{7}, then the value of x is
A. 8^{3}
B. 8^{2}
C. 8
D. 8^{-2}

Answer: B

- Watch Video Solution

15. If the function f defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by $\left\{\begin{array}{cl}\frac{\sqrt{2} \cos x-1}{\cot x-1} \quad, & x \neq \frac{\pi}{4} \\ \mathrm{k}, & x=\frac{\pi}{4}\end{array}\right.$
then k is equal to
A. 2
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{\sqrt{2}}$

Answer: B
16. If the function $f: R-\{1,-1\} \rightarrow A$ definded by $f(x)=\frac{x^{2}}{1-x^{2}}$, is surjective, then A is equal to
A. $R\{-1\}$
B. $[0, \infty)$
C. $\mathrm{R}-[-1,0)$
D. $\mathrm{R}-(-1,0)$

Answer: C

- Watch Video Solution

17. A plane passing through the points $(0,-1,0)$ and $(0,0$,
1) and making an angle $\frac{\pi}{4}$ with the plane $y-z+5=0$
, also passes through the point
A. $(-\sqrt{2}, 1,-4)$
B. $(\sqrt{2},-1,4)$
C. $(-\sqrt{2},-1,-4)$
D. $(\sqrt{2}, 1,4)$

Answer: D

D Watch Video Solution

18. Let the sum of the first n terms of a non-constant
A.P., $a_{1}, a_{2}, a_{3}, \ldots$ be $50 n+\frac{n(n-7)}{2} A$, where A is a
constant. If d is the common difference of this A.P., then the ordered pair $\left(d, a_{50}\right)$ is equal to
A. $(50,50+46 A)$
B. $(50,50+45 \mathrm{~A})$
C. $(\mathrm{A}, 50+45 \mathrm{~A})$
D. $(\mathrm{A}, 50+46 \mathrm{~A})$

Answer: D

- Watch Video Solution

19. Let $S=\left\{\theta \in[-2 \pi, 2 \pi]: 2 \cos ^{2} \theta+3 \sin \theta=0\right\}$, then the sum of the equations elements of S is .
A. $\frac{13 \pi}{6}$
B. $\frac{5 \pi}{3}$
C. 2π
D. π

Answer: C

D Watch Video Solution

20. If one root of the quadratic equation
$X^{2}+p x+q=0$ is 2-sqrt(3): where $P, Q \subset Q$.Then which of the following is true ?

$$
\text { A. } p^{2}-4 q+12=0
$$

B. $q^{2}-4 p-16=0$
C. $q^{2}+4 p+14=0$
D. $p^{2}-4 q-12=0$

Answer: D

- Watch Video Solution

21. Let $f(x)=15-|x-10|, x \in R$. Then, the set of all values of x , at which the function, $g(x)=f(f(x))$ is not differentiable, is
A. $\{5,10,15\}$
B. $\{10,15\}$
C. $\{5,10,15,20\}$
D. $\{10\}$

Answer: A

D Watch Video Solution

22. Let S be the set of all values of x for which the tangent to the curve $y=f(x)=x^{3}-x^{2}-2 x$ at
(x, y) is parallel to the line segment joining the points
$(1, f(1))$ and $(-1, f(-1))$, then S is equal to

$$
\begin{aligned}
& \text { А. }\left\{\frac{1}{3}, 1\right\} \\
& \text { в. }\left\{-\frac{1}{3},-1\right\}
\end{aligned}
$$

c. $\left\{\frac{1}{3},-1\right\}$
D. $\left\{-\frac{1}{3}, 1\right\}$

Answer: D

D Watch Video Solution

23. If a tangent to the circle $x^{2}+y^{2}=1$ intersects the coordinate axes at distinct points P and Q , then the locus of the mid-point of PQ is :
A. $x^{2}+y^{2}-4 x^{2} y^{2}=0$
B. $x^{2}+y^{2}-2 x y=0$
C. $x^{2}+y^{2}-16 x^{2} y^{2}=0$
D. $x^{2}+y^{2}-2 x^{2} y^{2}=0$

Answer: A

D Watch Video Solution

24. Let $\vec{\alpha}=3 \hat{i}+\hat{j} \quad$ and $\beta=2 \hat{i}-\hat{j}+3 \hat{k}$. If $\vec{\beta}=\vec{\beta}_{1}-\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$, then $\vec{\beta}_{1} \times \vec{\beta}_{2}$ is equal to:
A. $-3 \hat{i}+9 \hat{j}+5 \hat{k}$
B. $3 \hat{i}-9 \hat{j}-5 \hat{k}$
C. $\frac{1}{2}(-3 \hat{i}+9 \hat{j}+5 \hat{k})$
D. $\frac{1}{2}(3 \hat{i}-9 \hat{j}+5 \hat{k})$

- Watch Video Solution

25. The area (in sq units) of the region

$$
A=\left\{(x, y): x^{2} \leq y \leq x+2\right\} \text { is }
$$

A. $\frac{10}{3}$
B. $\frac{9}{2}$
C. $\frac{31}{6}$
D. $\frac{13}{6}$

Answer: B
26.
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots \cdot\left[\begin{array}{ll}1 & n-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 78 \\ 0 & 1\end{array}\right]$, then the inverse of $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ is
A. $\left[\begin{array}{cc}1 & 0 \\ 12 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & -12 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 0 \\ 13 & 1\end{array}\right]$

Answer: B

D Watch Video Solution

27. Let $\sum_{k=1}^{10} f(a+k)=16\left(2^{10}-1\right)$, where the
function f satisfies $f(x+y)=f(x) f(y)$ for all natural numbers x, y and $f(1)=2$. Then, the natural number 'a' is
A. 2
B. 16
C. 4
D. 3

Answer: D

- Watch Video Solution

28. A committee of 11 members is to be formed from 8 males and $5 \mathrm{~m}=$ females. If m is the number of ways the committee is formed with at least 6 males and n is the number of ways the committee is formed with atleast 3
females, then
A. $\mathrm{m}+\mathrm{n}=68$
B. $\mathrm{m}=\mathrm{n}=78$
C. $n=m-8$
D. $m=n=68$

Answer: B
29. Let α and β be the roots of the equation $x^{2}+x+1=0$.

Then, for $y \neq 0$ in R.

$$
\left[\begin{array}{lll}
y+1 & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha
\end{array}\right] \text { is }
$$

A. $y\left(y^{2}-1\right)$
B. $y\left(y^{2}-3\right)$
C. y^{3}
D. $y^{3}-1$

Answer: C
30. One extremity of a focal chord of $y^{2}=16 x$ is
$A(1,4)$. Then the length of the focal chord at A is
A. 20
B. 22
C. 24
D. 20

Answer: A

- Watch Video Solution

