

# India's Number 1 Education App

# **MATHS**

# **BOOKS - DISHA PUBLICATION MATHS (HINGLISH)**

# PRINCIPLE OF MATHEMATICAL INDUCTION

Jee Main 5 Years At A Glance

**1.** Let  $S(k)=1+3+5+...+(2k-1)=3+k^2$ . Then which of the following is true ? (A) S(1) is correct (B) S(k)=S(k+1) (C)  $S(k)\neq S(k+1)$  (D) Principal of mathematical induction can be used to prove the formula

A. Principle of mathematical induction can be used to prove the formula

$$B. S(K) \Rightarrow S(K+1)$$

C.  $S(K) \gg S(K+1)$ 

D. S(1) is correct

## **Answer: B**



**Watch Video Solution** 

# **2.** If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7} + \ldots}}$ having n radical signs then by

methods of mathematical induction which is true

A. 
$$a_n > 7 \, orall n \geq 1$$

B. 
$$a_n < 7 \, orall \, n \geq 1$$

C. 
$$a_n < 4 \, orall \, n \geq 1$$

D. 
$$a_n < 3\,orall\, n \geq 1$$

#### **Answer: B**



# **Exercise 1 Concept Builder**

- **1.** Let T(k) be the statement 1+3+5+...+(2k-1)= $k^2+10$  Which of the following is correct ?
  - A. T(1) is true
  - B. T(k) is true  $\Rightarrow T(k+1)$  is true
  - C. T(n) is true for all  $n \in N$
  - D. All above are correct

#### **Answer: B**



- 2. A student was asked to prove a statement by induction. He proved
- (i) P(5) is true and (ii) truth of P(n) => truth of P(n+1),  $n \in N$ . On the

basis of this, he could conclude that P(n) is true

A. for all  $n \in N$ 

B. for all n>5

C. for all  $n \geq 5$ 

D. for all  $n < 5\,$ 

# Answer: C



# **3.** For a positive integer n , let $a(n)=1+rac{1}{2}+rac{1}{3}+\ldots+rac{1}{2^n-1}$ :

Then

A. 
$$a(100) \leq 100$$

B. 
$$a(100) > 100$$

$$\mathsf{C.}\,a(200) \leq 100$$

D. 
$$a(200) < 100$$

#### **Answer: A**



Watch Video Solution

- **4.** The statement P(n) 1 x 1! + 2 x 2! + 3 x 3! + ...+ n x n! = (n+1)! -1 is True
- for all n > 1
  - A. True for all n > 1
  - B. Not true for any n
  - C. True for all  $n \in N$
  - D. None of these

#### **Answer: C**



integer for which  $P\left(n\right)$  is true is 1 b. 2 c. 3 d. 4

**5.** Let P(n) :  $2^n < (1 imes 2 imes 3 imes imes n)$  . Then the smallest positive

**6.** Let P(n):  $n^2 + n + 1$  is an even integer. If P(k) is assumed

B. 2

C. 3

D. 4

# Answer: D



- $true \Rightarrow P(k+1)$  is true. Therefore P(n) is true:
  - A. for n>1
  - B. for all  $n \in N$
  - C. for n>2

D. None of these

#### **Answer: D**



**Watch Video Solution** 

- 7. Principle of mathematical induction is used
  - A. to prove any statement
  - B. to prove results which are true for all real numbers
  - C. to prove that statements which are formulated in terms of n,

where n is positive integer

D. None of these

#### Answer: C



**8.** For each  $n \in N$ , the correct statement is

A. 
$$2^n < n$$

$$\mathrm{B.}\,n^2<2n$$

C. 
$$n^4 < 10^n$$

D. 
$$2^{3n}>7n+1$$

### **Answer: C**



# **Watch Video Solution**

**9.** If n is a natural number then  $\left(\frac{n+1}{2}\right)^n \geq n!$  is true when

A. 
$$n > 1$$

B. 
$$n \geq 1$$

$$\operatorname{C.} n > 2$$

D. 
$$n \geq 2$$

# **Answer: B**



Watch Video Solution

**10.** For natural number n ,  $2^n(n-1)! < n^n$  , if

A. n < 2

B. n>2

C.  $n \geq 2$ 

 $\mathrm{D.}\, n > 3$ 

#### **Answer: B**



Watch Video Solution

**11.** If P(n) :  $2n < n!, n \in N$  then P(n) is true for all  $\leq \ldots$ 

A. all n

B. all n > 2

C. all n>3

D. None of these

# **Answer: C**



# Watch Video Solution

**12.** If 
$$\dfrac{4^n}{n+1}<\dfrac{(2n)\,!}{{(n\,!)}^2}$$
, then P(n) is true for

A.  $n \geq 1$ 

B. n > 0

C. n < 0

 $\operatorname{D.} n \geq 2$ 

**Answer: D** 

**13.** For every positive integral value of  $n,\,3^n>n^3$  when

A. 
$$n>2$$

B. 
$$n \geq 3$$

$$\mathsf{C.}\, n \geq 4$$

D. 
$$n < 4$$

# Answer: C



**14.** If x>-1 , then the statement  $\left(1+x\right)^n>1+nx$  is true for

A. all 
$$n \in N$$

$$B.\,all\,\,n\,\,>\,\,2$$

C. all n>1 provided x 
eq 0

D. None of these

#### **Answer: C**



Watch Video Solution

# **15.** For all positive integral values of n, $3^{2n}-2n+1$ is divisible by

A. 2

B. 4

C. 8

D. 12

# Answer: A



**16.** For every natural number n,  $n(n^2-1)$  is divisible by

A. 4

B. 6

C. 10

D. None of these

## **Answer: B**



- 17. Prove the following by the principle of mathematical induction:
- $2.\ 7^n+3.\ 5^n-5$  is divisible 25 for all  $n\in N$

A. 
$$24,\ orall\,n\in N$$

B. 
$$21,\ \forall n\in N$$

C. 
$$35,\ orall\,n\in N$$

D. 
$$50, \ \forall n \in N$$

Answer: A



Watch Video Solution

- **18.** The remainder when  $5^{4n}$  is divided by 13, is
  - A. 1
  - B. 8
  - C. 9
  - D. 10

Answer: A



**19.** 
$$10^n+3ig(4^{n+2}ig)+5$$
 is divisible by  $(n\in N)$ 

- **A.** 7
- B. 5
- C. 9
- D. 17

# Answer: C



- **20.** If P(n) is the statement  $n^3+n$  is divisible 3 is the statement
- P(3) true ? Is the statement P(4) true?
  - A. Natural number greater than 1
  - B. Irrational number
  - C. Complex number

D. Odd number

Answer: A



Watch Video Solution

**21.** For all  $n \in N, 3.5^{2n+1} + 2^{3n+1}$  is divisble by-

A. 19

B. 17

C. 23

D. 25

# Answer: B



**22.** Prove the following by using the principle of mathematical induction for all  $n \in N$ : $10^{2n-1} + 1$ is divisible by 11.

23. The greatest positive integer, which divides (n+1)(n+2)(n+3)...(n+r)

A. 11

B. 12

C. 13

D. 9

# Answer: A



Watch Video Solution

for all  $n \in W$ , is

A. r

B. r!

C. n+r

D. (r+1)!

# **Answer: B**



View Text Solution

**24.** Prove the following by using the Principle of mathematical induction  $\forall m \in N$ 

induction  $\forall n \in N$ 

 $3^{2n}$  when divided by 8 leaves the remainder 1.

A. 2

B. 3

C. 7

D. 1

**Answer: D** 



Match Mides Calution

**25.** For every positive integer n, prove that 
$$7^n-3^n$$
 is divisible by 4.

B. 3

C. 4

D. 5

# **Answer: C**



# **Exercise 2 Concept Applicator**

1. For all 
$$n\geq 1$$
, prove  $rac{1}{1.\ 2}+rac{1}{2.\ 3}+rac{1}{3.\ 4}+rac{1}{n(n+1)}=rac{n}{n+1}$ 

that

A. 
$$\frac{n}{n+1}$$

$$\mathsf{B.}\,\frac{1}{n+1}$$

$$\mathsf{C.}\,\frac{1}{n(n+1)}$$

D. None of these

# **Answer: A**



# **Watch Video Solution**

2. Prove the following by using the principle of mathematical induction for all  $n \in N$ :

$$igg(1+rac{3}{1}igg)igg(1+rac{5}{4}igg)igg(1+rac{7}{9}igg)1+rac{(2n+1)}{n^2}=(n+1)^2$$

A. 
$$(n+1)^2$$

B. 
$$(n-1)^2$$

C. 
$$n(n+1)$$

D. None of these

Answer: A



**Watch Video Solution** 

- **3.** If  $n \in N$  , then the number  $\left(2 + \sqrt{3}\right)^n + \left(2 \sqrt{3}\right)^n$  is
  - A. an integer for all values of n
  - B. an integer if n is even
  - C. an integer if n is odd
  - D. always an irrational number

**Answer: A** 



**4.** Prove the following by using the principle of mathematical

induction for all  $n \in N$ :

$$1.\ 3+2.\ 3^2+3.\ 3^3+\stackrel{.}{+} n.3^n=rac{(2n-1)3^{n+1}+3}{4}$$

A. 
$$\frac{(2n+1)3^{n+1}+3}{4}$$

$$\mathsf{B.} \, \frac{(2n-1)3^{n+1} + 3}{4}$$

C. 
$$\frac{(2n+1)3^n+3}{4}$$
D.  $\frac{(2n-1)3^n+1}{4}$ 

# Answer: B



**5.** Show by the Principle of Mathematical induction that the sum  $S_n$ , of the nterms of the series

 $1^2+2 imes 2^2+3^2+2 imes 4^2+5^2+2 imes 6^2+7^2+\ldots$  is given by  $S_n=igg\{rac{n(n+1)^2}{2}$  , if n is even , then  $rac{n^2(n+1)}{2}$  , if n is odd

$$= \left\{ \frac{----}{2}, \text{ if n is even , then } \frac{-----}{2}, \text{ if n is odd} \right\}$$

A. 
$$S_n = rac{n{(n+1)}^2}{2}$$
 , If n is even

B. 
$$S_n=rac{n^2(n+1)}{2}$$
 , if n is odd

C. Both (a) and (b) are true

D. Both (a) and (b) are false

# Answer: C



**6.** If  $P(n0\colon 49^n+16^n+\lambda$  is divisible by 64 for nN is true, then the

least negative integral value of 
$$\lambda$$
 is  $-3$  b.  $-2$  c.  $-1$  d.  $-4$ 

A. 
$$-1$$

C. 2

D.-2

# **Answer: A**



**Watch Video Solution** 

**7.** Prove the rule of exponents  $(ab)^n=a^nb^n$  by using principle of mathematical induction for every natural number.

A.  $a^n b^n$ 

B.  $a^n b$ 

 $\mathsf{C}.\,ab^n$ 

D. 1

#### **Answer: A**



**8.**  $11^{n+2} + 12^{2n+1}$  is divisible by 133.

A. 113

B. 123

C. 133

D. None of these

#### **Answer: C**



- **9.** Prove the following by using the principle of mathematical induction for all  $n \in N$ : $10^{2n-1} + 1$ is divisible by 11.
  - A. 11
  - B. 12
  - C. 13

D. 9

**Answer: A** 



Watch Video Solution

- **10.**  $41^n 14^n$  is a multiple of 27
  - A. 26
  - B. 27
  - C. 25
  - D. None of these

**Answer: B** 



11. Using the principle of mathematical induction prove that

$$rac{1}{1.\ 2.\ 3} + rac{1}{2.\ 3.\ 4} + rac{1}{3.\ 4.\ 5} + \ + \ rac{1}{n(n+1)(n+2)} = rac{n(n+3)}{4(n+1)(n+2)}$$

for all  $n \in N$ 

$$\amalg n \in N$$

A. 
$$\dfrac{n(n+1)}{4(n+2)(n+3)}$$

$$\mathsf{B.}\,\frac{n(n+3)}{4(n+1)(n+2)}$$

C. 
$$\frac{n(n+2)}{4(n+1)(n+3)}$$

# Answer: B



# Watch Video Solution

**12.**  $x^{2n-1} + y^{2n-1}$  is divisible by x + y

A. x+y

B. x-y

$$\mathsf{C.}\,x^2+y^2$$

D. 
$$x^2 + xy$$

#### **Answer: A**



Watch Video Solution

**13.** When  $2^{301}$  is divided by 5, the least positive remainder is

A. 4

B. 8

C. 2

D. 6

# **Answer: C**



**14.** If n is a positive integer, then  $2.4^{2n+1}+3^{3n+1}$  is divisible by :

- A. 2
- B. 7
- C. 11
- D. 27

# **Answer: C**



- **15.**  $5^{2n+2} 24n + 25$  is divisible by 576
  - A. 574
  - B. 575
  - C. 674
  - D. 576

## **Answer: D**



Watch Video Solution

16. Prove the following by the principle of mathematical induction:

$$x^{2n-1}+y^{2n-1}$$
 is divisible by  $x+y$  for all  $n\in N$ 

A. x

B. x+1

C.  $x^2 + x + 1$ 

D.  $x^2-x+1$ 

### **Answer: C**



**17.** If  $P(n0:49^n+16^n+\lambda$  is divisible by 64 for nN is true, then the least negative integral value of  $\lambda$  is -3 b. -2 c. -1 d. -4

- $\mathsf{A.}-2$
- B.-1
- $\mathsf{C.}-3$
- D.-4

#### **Answer: B**



**18.** If n is any odd number greater than 1, then  $n\left(n^2-1\right)$  is divisible by 24 always (b) divisible by 48 always (c) divisible by 96 always (d)

None of these

A. 24

- B. 16
- C. 32
- D. 8

# **Answer: A**



# **Watch Video Solution**

- 19.

- $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + + \frac{1}{2n-1} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + + \frac{1}{2n-1}$

- B. for even values of n
- C. for odd values of n
- D. not true for any n

A. all  $n \in N$ 

- Answer: A

# **20.** Show using mathematical induciton that $n! < \left(\frac{n+1}{2}\right)^n$ . Where

$$n \in N \text{ and } n > 1.$$

A. 
$$n! > \left(rac{n+1}{2}
ight)^n$$

B. 
$$n! \geq \left(rac{n+1}{2}
ight)^n$$

C. 
$$n! < \left(rac{n+1}{2}
ight)^n$$

D. None of these

### Answer: C

