# © ${ }^{\text {T doubtnut }}$ 

India's Number 1 Education App

## CHEMISTRY

## BOOKS - MTG CHEMISTRY (BENGALI

## ENGLISH)

## QUESTION PAPER 2015

## Chemistry Category I

1. For the reaction $A+2 B \rightarrow C$, the reaction
rate is doubled if the concentration of $A$ is
doubled. The rate is increased by four times
when concentrations of both $A$ and $B$ are increased by four times. The order of the reaction is
A. 3
B. 0
C. 1
D. 2

## Answer:

2. At a certain temperature, the value of the slope of the plot of osmotic pressure
against concentration $\left(\mathrm{C}\right.$ in $\left.\operatorname{mol} L^{-1}\right)$ of a
certain polymer solution is 291R. The
temperature at which osmotic pressure is measured is ( $R$ is gas constant)
A. $271^{0} C$
B. $18^{0} C$
C. 564 K
D. 18 k

## Answer:

## D Watch Video Solution

3. The rms velocity of Co gas molecules at $27^{0} C$
is approximately $1000 \mathrm{~m} / \mathrm{s}$. For N , molecules at 600 K the rms velocity is approximately
A. $2000 \mathrm{~m} / \mathrm{s}$
B. $1414 \mathrm{~m} / \mathrm{s}$
C. $1000 \mathrm{~m} / \mathrm{s}$
D. $1500 \mathrm{~m} / \mathrm{s}$

## Answer:

## D Watch Video Solution

4. A gas can be liquefied at temperature $T$ and
pressure P provided
A. $T=T_{c}$ and $P<P_{c}$
B. $T<T_{c}$ and $P>P_{c}$
C. $T>T_{c}$ and $P>P_{c}$
D. $T>T_{c}$ and $P<P_{c}$

## Answer:

## D Watch Video Solution

5. Sulphuryl chloride ( $\mathrm{SO}, \mathrm{C} 1$, ) reacts with white phosphorus (P4) to give
A. $\mathrm{PCI}, S O_{2}$
B. $O P C I)(3), S O C I_{2}$
C. $P C I_{s}, S O_{2}, S_{2} C I_{2}$
D. $O P C I_{3}, S O_{2}, S_{2} C I_{2}$

## Answer:

## D Watch Video Solution

6. The number of lone pair of electrons on the central atoms of $\mathrm{H} 2 \mathrm{O}, \mathrm{SCl}, \mathrm{PCI}$, and XeF 2 respectively, are
A. 2,1,1,3
B. 2,2,1,3
C. 3,1,1,2
D. 2,1,2,3

## Answer:

## - Watch Video Solution

7. Consider the following salts:
$\mathrm{NaCl}, \mathrm{HgCl}_{2}, \mathrm{Hg}_{2} \mathrm{CI}_{2}, \mathrm{CuCl}_{2}, \mathrm{CuCl}$ and

AgCl . Identify the correct set of insoluble salts in water.
A. $H g_{2} C I_{2}, C u C I, A g C I$
B. $\mathrm{HgCI} I_{2}, \mathrm{CuCI}, \mathrm{AgCI}$
C. $\mathrm{Hg}_{2} \mathrm{CI}_{2}, \mathrm{CuCI} I_{2}, \mathrm{AgCI}$

## D. $\mathrm{Hg}_{2} \mathrm{CI}_{2}, \mathrm{CuCI}, \mathrm{NaCI}$

## Answer:

## - Watch Video Solution

8. In the following compound, the number of
'sp' hybridized carbon
$\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}-\underset{C N}{\mathrm{C}} \mathrm{H}-\mathrm{C} \equiv \mathrm{CH}$
A. 2
B. 3
C. 4
D. 5

## Answer:

## D Watch Video Solution

9. The dispersed phase and dispersion medium of fog respectively are
A. solid, liquid
B. liquid, liquid

## C. liquid, gas

D. gas, liquid

Answer:

## D Watch Video Solution

10. The decreasing order of basic character of $\mathrm{K}_{2} \mathrm{O}$, Bao, Cao and MgO is
A. $\mathrm{K}_{2} \mathrm{O}>\mathrm{BaO}>\mathrm{CaO}>\mathrm{MgO}$
B. $\mathrm{K}_{2} \mathrm{O}>\mathrm{CaO}>\mathrm{BaO}>\mathrm{MgO}$
C. $\mathrm{MgO}>\mathrm{BaO}>\mathrm{CaO}>\mathrm{K}_{2} \mathrm{O}$

$$
\text { D. } \mathrm{MgO}>\mathrm{CaO}>\mathrm{BaO}>\mathrm{K}_{2} \mathrm{O}
$$

Answer:

## D Watch Video Solution

11. in aqueous alkaline solution, two electron reduction of $\mathrm{HO}_{2}^{-}$gives
A. $\mathrm{HO}_{-}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. $O_{2}$

## D. $\mathrm{O}_{2}^{-}$

## Answer:

## D Watch Video Solution

12. Cold ferrous sulphate solution on absorption of NO develops brown colour due to the formation of
A. paramagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) s(\mathrm{NO})\right) \mathrm{SO}_{4}$
B. diamagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) s\left(\mathrm{~N}_{3}\right) \mathrm{SO}_{4}\right.$
C. paramagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) s\left(\mathrm{NO}_{3}\right)\right)\left(\mathrm{SO}_{4}\right)_{2}$
D. diamagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) 4\left(\mathrm{SO}_{4}\right) \mathrm{NO}_{3}\right.$

Answer:

## D Watch Video Solution

13. Amongst $B e, B M$ and $A l$ the second ionization potential is maximum for
A. B
B. Be
C. Mg
D. Al

## Answer:

## D Watch Video Solution

14. In a mixture, two enantiomers are found to
be present in $85 \%$ and $15 \%$ respectively. The enantiomeric excess (e, e) is

## A. 0.85

B. 0.15
C. 0.7
D. 0.6

## Answer:

15. 1,4-dimethylbenzene on heating with anhydrous AlCl 3 and HCl produces
A. 1,2-dimethylbenzene

## B. 1,3-dimethylbenzene

C. 1,2,3-trimethylbenzene
D. Ethylbenzene

## Answer:

## D Watch Video Solution

16. The product of the above reaction is (Unique set of options is provided for both English and

Bengali versions)


A.


B.

C.


## - Watch Video Solution

17. The major product of the above reaction is


B.

C.
D.

## (D) Watch Video Solution

18. The product of the above reaction is (Unique set of options is provided for both English and Bengali versions)
 $\mathrm{NH}_{3}$

EtOH

A.

B.

C.


## Answer:

D Watch Video Solution
19. The reaction of methyltrichloroacetate
$\left(\mathrm{CI}_{3} \mathrm{CCO}_{2} \mathrm{Me}\right)$ with sodium methoxide
(NaOme) generates
A. Carbocation
B. Carbene
C. Carbanion
D. Carbon radical

## Answer:

## D Watch Video Solution

20. Best reagent for nuclear iodination of aromatic compounds is
A. $\mathrm{KI} / \mathrm{CH}_{3} \mathrm{COCH}_{3}$
B. $\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{CN}$
C. $\mathrm{KI} / \mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{I}_{2} / \mathrm{HNO}_{3}$

Answer:

D Watch Video Solution
21. In the Lassaigne's test for the detection of nitrogen in an organic compound, the appearance of blue coloured compound is due to
A. ferric ferricyanide
B. ferrous ferricyanide
C. ferric ferrocyanide
D. ferrous ferrocyanide

## Answer:

22. In the following reaciton
$\mathrm{RMgBr}+\mathrm{HC}(\mathrm{OEt})_{3} \xrightarrow{\text { ether }} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} p$
The product ' p ' is
A. RCHO
B. $R_{2} \mathrm{CHOET}$
C. $\mathrm{R}_{3} \mathrm{CH}$
D. $\mathrm{RCH}(\mathrm{OET})_{2}$

Answer:
23. Match the flame colours of the alkaline earth metal salts in the Bunsen burner.
(a)Calcium (p) brick red
(b)Strontium (q) apple green
$(c)$ Barium $\quad(r)$ crimson
A. a-p,b-r,c-q
B. $a-r, b-p, c-q$
C. a-q,b-r,c-p
D. $a-p, b-q, c-r$

## D Watch Video Solution

24. Extraction of gold (Au) involves the formation of complex ions ' X ' and ' $Y$ ' Goldore $\underset{C N^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}}{\text { Roasting }} H O^{-}+^{\prime} X^{\prime} \xrightarrow{\mathrm{Zn}}{ }^{\prime} Y^{\prime}+A u$ ' X ' and ' Y ' are respectively

$$
\text { A. } A u(C N)(2)^{-} \text {and } Z n(C N)_{4}^{2}
$$

B. $\mathrm{Au}(\mathrm{CN})_{4}^{3-}$ and $\mathrm{Zn}(\mathrm{CN})_{4}^{2-}$
C. $A u(C N)_{3}^{-}$and $Z n(C N)_{6}^{4-}$
D. $A u(C N)_{4}^{-}$and $\mathrm{Zn}(C N)_{3}^{-}$

## Answer:

## D Watch Video Solution

25. The atomic number of cerium (Ce) is 58 . The correct electronic configuration of $C e^{3+}$ ion is
A. $[X e] 4 t^{2}$
B. $[k r] 4 f^{1}$
C. $[X e] 4 f^{3}$
D. $[k r] 4 d^{2} 3$

## Answer:

## - Watch Video Solution

26. Suppose the mass of a single Ag atom is 'm'.

Ag metal crystallizes in fcc lattice with unit cell
of length 'a'. The density of Ag metal in terms of
'a' and ' $m$ ' is
A. $\frac{4 m}{a^{3}}$
B. $\frac{2 m}{a^{3}}$
C. $\frac{m}{a^{3}}$

$$
\text { D. } \frac{m}{4 a^{3}}
$$

## Answer:

## - Watch Video Solution

27. 

For
the
reaction
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Rightarrow 2 \mathrm{SO}_{3}(g)$ at 300 k , the value of $\Delta G^{0}$ is $-690.9 R$. The equilibrium constant value for the reaction at that temperature is ( R is gas constant)
A. $10 \mathrm{~atm}^{-1}$

## B. 10 atm

C. 10
D. 1

## Answer:

## D Watch Video Solution

28. At a particular temperature the ratio of equivalent conductance to specific conductance of a $0.01(\mathrm{~N}) \mathrm{NaCl}$ solution is
A. $10^{5} \mathrm{~cm}^{3}$
B. $10^{3} \mathrm{~cm}^{3}$
C. $10 \mathrm{~cm}^{3}$
D. $10^{5} \mathrm{~cm}^{3}$

## Answer:

## D Watch Video Solution

29. The units of surface tension and viscosity of
liquids are respectively

$$
\begin{aligned}
& \text { A. } k g m^{-1} s^{-1}, N m^{-1} \\
& \text { B. } k g s^{-2}, k g m^{-1} s^{-1} \\
& \text { C. } N m^{-1}, \mathrm{kgm}^{-1} s^{-2} \\
& \text { D. } k g s^{-1}, \mathrm{kgm}^{-2} s^{-1}
\end{aligned}
$$

## Answer:

## - Watch Video Solution

30. The ratio of volumes of $\mathrm{CH}, \mathrm{COOH} 0.1(\mathrm{~N})$ to

CH.COONa $0.1(\mathrm{~N})$ required to prepare a buffer
solution of pH 5.74 is (given: pka of $\mathrm{CH}, \mathrm{COOH}$ is 4.74)
A. 10: 1
B. 5:1
C. 1:5
D. 1:0

Answer:

D Watch Video Solution

Chemistry Category li

1. For the reaction $X_{2} Y_{4}(I) \rightarrow 2 X Y_{2}(g)$ at 300

K the values of $\Delta U$ and $\Delta S$ are 2 kCal and 20 CalK $^{-1}$ respectively. The value of AG for the reaction is
A. $-3400 C a l$
B. 3400 Cal

$$
\text { C. }-2800 C a l
$$

D. 2000 Cal

## Answer:

2. t temperature of 298 K the emf of the following electrochemical cell
$A g(S) A g^{+}(0.1 M)| | Z n^{2}(0.1 M) \mid Z n(s) \quad$ will
be $\left(\right.$ given $\left.E_{\text {cell }}^{0}=-1.526 \mathrm{~V}\right)$
A. -1.523 V
B. -1.503 V
C. 1.532 V
D. -3.06 V

## - Watch Video Solution

3. Addition of sodium thiosulphate solution to
a solution of silver nitrate gives ' $X$ ' as white precipitate, insoluble in water but soluble in excess thiosulphate solution to give ' Y '. On boiling in water, ' $Y$ ' gives 'Z'. 'X', ' $Y$ ' and 'Z' respectively, are

$$
\begin{aligned}
& \text { A. } A g_{2} S_{2} O_{3}, N a\left[A g\left(S_{2} O_{3}\right)_{2}\right], A g_{2} S \\
& \text { B. } A g_{2} S O_{4}, N a\left[A g\left(S_{2} O_{3}\right)_{2}\right], A g_{2} S_{2} \\
& \text { C. } A g_{2} S_{2} O_{3}, N a_{s}\left[A g\left(S_{2} O_{3}\right)_{3}\right], A g S
\end{aligned}
$$

$$
\text { D. } A g_{2} S O_{3}, N a_{3}\left[A g\left(S_{2} O_{3}\right)_{2}\right], A g_{2} O
$$

## Answer:

## - Watch Video Solution

4. Roasted copper pyrite on smelting with sand produces
A. $\mathrm{Fe} \mathrm{SiO}_{3}$ as fusible slag and $\mathrm{Cu} u_{2} S$ as matter
B. $\mathrm{CaSiO}_{3}$ infusible slag and $\mathrm{Cu}_{2} \mathrm{O}$ as matter
C. $C a_{3}\left(P O_{4}\right)_{2}$ as fusible slag and $C u_{2} S$ as
mattee
D. $F e_{3}\left(P O_{4}\right)_{2}$, as infusible slag and $C u_{2} S$
as matter

## Answer:

D Watch Video Solution

## 5. The total number of aromatic species

## generated in the following reaction is

(i)




A. zero
B. 2
C. 3
D. 4

## Chemistry Category lii

1. The increase in rate constant of a chemical reaction with increasing temperature is(are) due to the fact(s) that
A. the number of collisions among the reactant molecules increases with increasing temperature.
B. the activation energy of the reaction decreases with increasing temperature.
C. the concentration of the reactant
molecules increases with increasing
temperature.
D. the number of reactant molecules acquiring the activation energy increases
with increasing temperature.

Answer:
2. Optical isomerism is exhibited by (ox = oxalate anion, en-ethylenediamine)
A. cis $-\left[C r C I_{2}(o x)_{2}\right]^{3-}$
B. $\left[C o(e n)_{3}\right]^{3+}$
C. trans $-\left[\mathrm{CrCI}_{2}(o x)_{2}\right]^{3-}$
D. $\left[\cos (o x)(e n)_{2}\right]^{+}$

## Answer:

- Watch Video Solution

3. Ionization potential values of noble gases decrease down the group with increase in atomic size. Xenon forms binary fluorides by the direct reaction of elements. Identify the correct statements) from below.
A. Only the heavier noble gases form such compounds.
B. It happens because the noble gases have higher ionization energies.
C. it happens because the compounds are formed with electronegative ligands.

D. Octet of electrons provide the stable arrangements.

## Answer:

## - Watch Video Solution

4. Identify the correct method for the synthesis
of the compound shown above from the following alternatives (Unique set of options is
provided for both English and Bengali versions)






## Answer:

5. Within the list shown below, the correct pair of structures of alanine in pH ranges 2-4 and 911 is

$$
\begin{aligned}
& \text { A. } \mathrm{H}_{3} \mathrm{~N}^{-}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H} \\
& \text { B. } \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2}^{-} \\
& \text {C. } \mathrm{H}_{3} \mathrm{~N}^{-} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2}^{-} \\
& \text {D. } \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}
\end{aligned}
$$

## Answer:

