India's Number 1 Education App

MATHS

BOOKS - MTG MATHS (BENGALI ENGLISH)

QUESTION PAPER 2009

Multiple Choice Questions

1. The general solution of the differential equation

$$\frac{dy}{dx} = e^{y+x} + e^{y-x} \text{ is}$$

$$A. e^y = e^x - e^{-x} + c$$

B.
$$e^{-y} = e^{-x} - e^x + c$$

C.
$$e^{-y} = e^x + e^{-x} + c$$

D.
$$e^{-y} = e^x + e^{-x} + c$$

Watch Video Solution

2. Product of any r consecutive natural numbers is always divisible by

A. r!

B. (r+4)!

C.(r+1)!

D. (r + 2)!

Answer:

Watch Video Solution

3. The integrating factor of the differential equation $x\log x\frac{dy}{dx}+y=2\log x \text{ is given by }$

A. e^x

 $B.\log x$

 $\mathsf{C}.\log(\log x)$

D. x

Answer:

Watch Video Solution

4. If
$$x^2-y^2=1$$
 then

A.
$$yy' - (2y)^2 + 1 = 0$$

$$\mathsf{B.}\left(yy'\right)^2-\left(y\right)^2=1$$

$$\mathsf{C.}\, yy' - (y')^2 - 1 = 0$$

$$\mathsf{D}.\, yy\,'\,+2(y)^2+1=0$$

Answer:

5. If $c_0, c_1, c_2......c_n$ denote the co-efficients in the expansion of $(1+x)^n$ then the value of $c_1+2c_2+3c_3+.....+nc_n$ is

A.
$$n.2^{n-1}$$

B.
$$(n+1)2^{n-1}$$

C.
$$(n+1)2^n$$

D.
$$(n+1)2^{n-1}$$

Answer:

6. A polygon has 44 diagonals. The number of its sides is

A. 10

Watch Video Solution

7. If lpha,eta be the roots of $x^2-a(x-1)+b=0$ then the value of

$$rac{1}{lpha^2-alpha}+rac{1}{eta^2-aeta}+rac{2}{a+b}$$
 is

A.
$$\frac{4}{a+b}$$

B.
$$\frac{1}{a+b}$$

$$a \mid o$$

$$\mathsf{D.}-1$$

Answer:

8. The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is 90° . The eccentricity of the ellipse is

A.
$$\frac{1}{8}$$

$$\mathsf{B.}\,\frac{1}{\sqrt{3}}$$

$$\mathsf{C.}\;\sqrt{\frac{2}{3}}$$

D.
$$\sqrt{\frac{1}{2}}$$

Answer:

Watch Video Solution

9. The order of the differential equation $\dfrac{d^2y}{dx^2}=\sqrt{1+\left(\dfrac{\overline{dy}}{dx}\right)^2}$ is

A. 3 B. 2 C. 1 D. 4 **Answer:** Watch Video Solution **10.** The sum of all real of the equation $\left|x-2\right|^2+\left|x-2\right|-2=0$ is A. 7 B. 4 C. 1 D. 5 **Answer:**

11. If
$$\int_{-1}^4 f(x)dx=4$$
 and $\int_2^4 \{3-f(x)\}dx=7$ then the value of $\int_{-1}^2 f(x)dx$ is

$$A.-2$$

B. 3

C. 4

D. 5

Answer:

Watch Video Solution

12. For each $n \in N, 2^{3n}-1$ is divisible by

A. 7

B. 8

C. 6

D. 16

Answer:

Watch Video Solution

13. The Rolle's theorem is applicable in the interval $-1 \leq x \leq 1$ for the function

A. f(x)=x

 $\mathtt{B.}\,f(x)=x^2$

 $\mathsf{C.}\, f(x) = 2x^2 + 3$

D. f(x) = |x|

Answer:

14. The distance covered by a particle in t seconds is given by

 $x=3+8t-4t^2$. After 1 second its velocity will be

B. 3 unit/second

C. 4 unit/second

D. 7 unit/second

Answer:

Watch Video Solution

15. If a>0 and coefficients of x^5 and x^{15} in the expansion of $\left(x^2+rac{a}{x^3}
ight)^{10}$ are equal then a=

B.
$$\frac{7}{3}$$

c.
$$\frac{7}{9}$$

D.
$$\frac{9}{7}$$

Watch Video Solution

16. The value of $\left(rac{1}{\log_3 12} + rac{1}{\log_4 12} ight)$ is

- A. 0
- $\mathsf{B.}\,\frac{1}{2}$
- C. 1
- D. 2

Answer:

17. If
$$x=\log_a bc, y=\log_b ca, z=\log_c ab,$$
 then the value of $rac{1}{1+x}+rac{1}{1+y}+rac{1}{1+z}$ will be

B. 1

 $\mathsf{C}.\,ab+bc+ca$

D. abc

Answer:

Watch Video Solution

18. Find the approximate value of $\sin 62^\circ$, correct to 3 places of decimale (given, $1^\circ=0.017$).

A. 0.999

- B. 0.998
- C. 0.997
- D. 0.995

- 19. The rate of increase of a side of a square is 1 cm/sec. The rate of increase of area of the square, when length of a side of the square is 2 cm, is
 - A. 10π
 - B. 20π
 - C. 200π
 - D. 400π

Watch Video Solution

20. The quadratic equation whose roots are three times the roots of

$$3ax^2 + 3bx + c = 0$$
 is

A.
$$ax^2 + 3bx + 3c = 0$$

$$B. ax^2 + 3bx + c = 0$$

$$\mathsf{C.}\,9ax^2+9bx+c=0$$

D.
$$ax^2 + bx + 3c = 0$$

Answer:

21. Smaller area enclosed by the circle $x^2+y^2=4$ and the line x + y =

2 is

A.
$$2\tan^{-1}\left(\frac{3}{4}\right)$$

$$\mathsf{B.}\tan^{-1}\!\left(\frac{4}{3}\right)$$

C.
$$\frac{\pi}{2}$$
D. $\frac{\pi}{4}$

Answer:

Watch Video Solution

22. In triangle ABC, a=2, b=3 and $\sin A = \frac{2}{3}$, then B is equal to

A. 30°

B. 60°

C. 90°

D.
$$120^{\circ}$$

Watch Video Solution

23. Let [x] denote the greatest integer less than or equal to x, then the value of the integral $\int_{-1}^1 (|x|-2[x])dx$ is equal to-

A.
$$\frac{e^{1000}-1}{e-1}$$

$${\rm B.} \; \frac{e^{1000}-1}{1000}$$

c.
$$\frac{e-1}{1000}$$

Answer:

24. Let , m be the the smallest positive interger such that the coefficient of x^2 in the expansion of

coefficient of
$$x^2$$
 in the expansion of $(1+x)^2+(1+x)^3+....+(1+x)^{49}+(1+mx)^{50}$ is $(3n+1)^{51}C_3$

25. The circles $x^2+y^2-10x+16=0$ and $x^2+y^2=a^2$ intersect at

for some positive integer n . Then the value of n is ,

B. $\frac{n+1}{2}$

Answer:

A. a < 2

two distinct points if

B.2 < a < 8

C. a > 8

D. a=2

Answer:

Watch Video Solution

26.
$$\int \frac{2\sin^{-1} x}{\sqrt{1-x^2}} dx = 0$$

A.
$$\log(\sin^{-1}x) + c$$

$$\mathsf{B.}\,\frac{1}{2}\big(\sin^{-1}x\big)^2+c$$

$$\mathsf{C.log}\!\left(\sqrt{1-x^2}
ight) + c$$

$$\mathsf{D.}\sin\!\left(\cos^{-1}x\right)+c$$

Answer:

27. The number of points on the line x+y=4 which are unit distance apart from the line 2x+2y=5 is

- A. 0
- B. 1
- C. 2
- D. infinity

Answer:

Watch Video Solution

28. The value of $\sqrt{2+\sqrt{2+\sqrt{2\ldots\infty}}}$ is

- A. $\sec \frac{x}{2}$
- $\operatorname{\mathsf{B.sec}} x$

 $\mathsf{C}.\cos ecx$

D. 1

Answer:

Watch Video Solution

29. If $f(x) = an^{-1} igg(rac{\cos x - \sin x}{\cos x + \sin x} igg)$ then the value of $rac{d}{dx} f(x)$ is-

A. $-\frac{1}{2}$

 $\mathsf{B.}\,\frac{1}{2}$

C. 1

D. -1

Answer:

30. If $ab=2a+3b, a>0, b>0, ext{ then the minimum value of ab is-$

A.
$$2^{3/2}$$

B.
$$2^{2/3}$$

$$\mathsf{C.}\,2^{1\,/\,3}$$

D.
$$2^{5/3}$$

Answer:

Watch Video Solution

31. If $2\cos3\theta=1$, then the value of θ is

A.
$$\frac{\pi}{3} \pm \pi$$

B.
$$\frac{\pi}{3}$$
, $\cos^{-1}(3/5)$

C.
$$\cos^{-1}(3/5) \pm \pi$$

D.
$$\frac{\pi}{3}, \pi - \cos^{-1}(3/5)$$

Watch Video Solution

- **32.** For any complex number z, the minimum value of |z| + |z 1| is
 - A. 0
 - B. 1
 - C. 2
 - D. -1

Answer:

Watch Video Solution

33. The number of common tangent to two circle $x^2+y^2=4$ and $x^2+y^2-8x+12=0$ is-

- A. one pair of common tangents
- B. only one common tanget
- C. three common tangents
- D. no common tangent

Watch Video Solution

34. If C is a point on the line segment joining A (-3, 4) and B (2, 1) such that AC=2BC, then the coordinate of C is

A.
$$\left(\frac{1}{3}, 2\right)$$

$$\mathsf{B.}\left(2,\frac{1}{3}\right)$$

Watch Video Solution

35. If a, b, c are real, then both the roots of the equation (x-b)(x-c) + (x-c)(x-a) + (x-a)(x-b) = 0 are always

A. positive

B. negative

C. real

D. imaginary

Answer:

36. Find the sum of the following geometric series:

$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots$$
 to 10 terms

A. e

B. e^2

 $\mathsf{C}.\sqrt{e}$

D.1/e

Answer:

Watch Video Solution

37. A(-2,7), B(7,15), C(-1,-5) and D(h,k) are the vertices of a parallelogram and BC is one of its diagonals . Find (h,k) and the angle between its diagonals.

38. The domain of definition of the function

$$f(x) = \sqrt{1 + \log_e(1-x)}$$
 is

A.
$$-\infty < x \leq 0$$

$$\mathtt{B.} - \infty < x \leq \frac{e-1}{e}$$

$$\mathsf{C}.-\infty < x \leq 1$$

D.
$$x \geq 1 - e$$

Answer:

Watch Video Solution

39. The value of $\left[\tan^{-1}\frac{m}{n}-\tan^{-1}\left(\frac{m-n}{m+n}\right)\right]$ is -

D.	None	
$\boldsymbol{\nu}$.	11011	

Watch Video Solution

- **40.** $\lim_{x \to 2} \frac{\sin(e^{x-2}-1)}{\log(x-1)}$
 - A. 0

B. e

 $\mathsf{C}.\,\frac{1}{e}$

D. 1

Answer:

41. Let
$$f(x)=rac{\sqrt{x+3}}{x+1}$$
 then the value of $Lt_{x
ightarrow -3-0}f(x)$ is

B. does not exist

c.
$$\frac{1}{2}$$

D.
$$-\frac{1}{2}$$

Answer:

42. f(x) = x + |x| is continuous for

A.
$$x \in (-\infty, \infty)$$

$$\infty, \infty$$

B.
$$x\in (\,-\infty,\infty)-\{0\}$$

C. only
$$x > 0$$

D. no value of x

Watch Video Solution

43.

that

$$\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right) = \frac{2b}{a}.$$

Watch Video Solution

44. If $i=\sqrt{-1}$ and n is a positive integer, then $i^n+i^{n+1}+i^{n+3}$ is equal to

A. 1

B. i

 $\mathsf{C}.\,i^n$

D. 0

Watch Video Solution

45. $\int \frac{dx}{x(x+1)}$ equals

A.
$$\ln \left| \frac{x+1}{x} \right| + c$$

$$\left| \operatorname{B.ln} \right| \frac{x}{x+1} + c$$

$$\left| \operatorname{C.} \ln \left| \frac{x-1}{x} \right| + c \right|$$

D.
$$\ln \left| \frac{x-1}{x+1} \right| + c$$

Answer:

Watch Video Solution

46. If x is a positive real number different from 1 such that $\log_a^x, \log_b^x, \log_c^x$ are in A.P., then

- A. G.P
- B. A.P.
- C. H.P.
- D. G.P. but not in H.P.

Watch Video Solution

47. A line through the point A (2,0) which makes an angle of 30° with the positive direction of x-axis is rotated about A in clockwise direction through an angle 15° . Then the equation of the straight line in the new position is

A.
$$(2-\sqrt{3})x+y-4+2\sqrt{3}=0$$

B.
$$\left(2-\sqrt{3}\right)x-y-4+2\sqrt{3}=0$$

C.
$$\left(2-\sqrt{3}\right)x-y+4+2\sqrt{3}=0$$

D.
$$(2-\sqrt{3})x+y+4+2\sqrt{3}=0$$

Watch Video Solution

- **48.** The equation $\sqrt{3}\sin x + \cos x = 4$ has
 - A. only one solution
 - B. two solutions
 - C. infinitely many solutions
 - D. no solution

Answer:

49. The slope at any point of a curve y=f(x) is given by $\frac{dy}{dx}=3x^2$ and it passes through (-1,1). The equation of the curve is

A.
$$y=x^3+2$$

$$\mathtt{B.}\,y=\,-\,x^2-2$$

$$\mathsf{C.}\, y = 3x^3 + 4$$

$$\mathsf{D}.\,y=\,-\,x^3+2$$

Answer:

50. The modulus of
$$\dfrac{1-i}{3+i}+\dfrac{4i}{5}$$
 is

A.
$$\sqrt{5}$$
 unit

B.
$$\frac{\sqrt{11}}{5}$$
 unit

C.
$$\frac{\sqrt{5}}{5}$$
 unit

D. $\frac{\sqrt{12}}{5}$ unit

Answer:

Watch Video Solution

- 51. The equation of the tangent to the conic $x^2 - y^2 - 8x + 2y + 11 = 0$ at (2,1) is
 - A. x+2=0
 - B. 2x+1=0
 - C. x+y+1=0
 - D. x-2=0

Answer:

52. A and B are two independent events such that $P(A \cup B') = 0.8$, and P(A) = 0.3 .Then P(B) is

A.
$$\frac{2}{7}$$

B.
$$\frac{2}{3}$$

D.
$$\frac{1}{8}$$

Answer:

Watch Video Solution

53. The total number of tangents through the point (3,5) that can be drawn to the ellipses $3x^2+5y^2=32$ and $25x^2+9y^2=450$ is

A. 0

B. 2

C. 3

D. 4

Answer:

Watch Video Solution

54. The value of $\lim_{n \to \infty} \left[\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2} \right]$

is

A. $\frac{\pi}{4}$

 $B. \log 2$

C. 0

D. 1

Answer:

55. A particle is moving in a straight line. At time, the distance between the particle from its starting point is given by $x=t-6t^2+t^3.$ Its acceleration will be zero at

A. t=1 unit time

B.t = 2 unit time

C.t = 3 unit time

D.t = 4 unit time

Answer:

Watch Video Solution

56. convert into A+iB form, $\dfrac{1-i}{3+i}+\dfrac{4i}{5}$

A. $\frac{1}{190}$

B. $\frac{1}{120}$

$$\frac{3}{190}$$

D. $\frac{5}{190}$

Answer:

Watch Video Solution

57. The co-ordinates of the foot of the perpendicular from (0, 0) upon the line x+y=2 are

Watch Video Solution

58. If A is a square matrix then,

A. $A + A^T$ is symmetric

B. AA^T is skew - symmetric

 $\mathsf{C}.\,A^T+A$ is skew-symmetric

D. A^TA is skew-symmetric

Answer:

Watch Video Solution

59. Center of the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ is -

Watch Video Solution

60. If $A^2-A+I=0$ then the inverse of the matrix A is

A. A-I

C. A+I

B. I-A

D. A

Answer:

61. If C is the reflection of A (2, 4) in x-axis and B is the reflection of C in y-axis, then |AB| is

B. $2\sqrt{5}$

C. $4\sqrt{5}$

D. 4

Answer:

Watch Video Solution

62. The value of $\cos 15^{\circ}$ $\cos 7\frac{1^{\circ}}{2}\sin 7\frac{1^{\circ}}{2}$ is

A. $\frac{1}{2}$

B.
$$\frac{1}{8}$$

c.
$$\frac{1}{4}$$

D.
$$\frac{1}{16}$$

Watch Video Solution

63. The value of integral
$$\int_{-1}^{1} \frac{|x+2|}{x+2} dx$$
 is

- A. 1
- B. 2
- C. 0
- D. -1

Answer:

64. The line $y=2t^2$ intersects the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ in real points if

A.
$$|t| < 1$$

B.
$$|t| < 1$$

C.
$$|t| > 1$$

D.
$$|t| \geq 1$$

Answer:

65. General solutio of
$$\sin x + \cos x = \min_{a \in R} \left\{ 1, a^2 - 4a + 6 \right\}$$
 is

A.
$$\frac{n\pi}{2}+(-1)^n\frac{\pi}{4}$$

B.
$$2n\pi + (-1)^n \frac{\pi}{4}$$

$$\mathsf{C.}\, n\pi + (\,-1)^{n+1}\frac{\pi}{4}$$

D.
$$n\pi+(\,-1)^nrac{\pi}{4}-rac{\pi}{4}$$

Watch Video Solution

66. If A and B ar square matrices of the same order and AB=3I,

=then A^{-1} is equal to

A. 3B

B. $\frac{1}{3}B$

 $C.3B^{-1}$

D. $\frac{1}{3}B^{-1}$

Answer:

67. The co-ordinates of the focus of the parabola described paraetrically by $x=5t^2+2,\,y=10t+4$ are

- A. (7,4)
- B. (3,4)
- C. (3,-4)
- D. (-7,4)

Answer:

- **68.** For any two sets A and B, A-(A-B) equals
 - A.B
 - B. A-B
 - $\mathsf{C.}\,A\cap B$

D. $A^n\cap B^c$

Answer:

Watch Video Solution

69. If $a=2\sqrt{2}, b=6, A=45^{\circ}$ then

A. no triangle is possible

B. one triangle is possible

C. two triangles are possible

D. either no triangle or two triangles are possible

Answer:

70. A Mapping from IN to N is defined as follows:

$$f\!:\!lN o lN$$

$$f(n)=(n+5)^2, n\in lN$$

(IN is the set of natural numbers). Then

- A. fis not one-to-one
- B. f is onto
- C. fis both one-to-one and onto
- D.f' is one-to-one but not onto

Answer:

Watch Video Solution

71. If in a triangle ABC, $\sin^2 A + \sin^2 B + \sin^2 C = 2$ then the triangle is always

- A. equilateral
- B. isosceles
- C. right angled
- D. obtuse angled

Watch Video Solution

72.
$$\int \frac{dx}{\sin x + \sqrt{3}\cos x}$$

A.
$$\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}-\frac{x}{6}\right)\right|+c$$

B.
$$\frac{1}{2}\ln\left|\tan\left(\frac{x}{4}-\frac{x}{6}\right)\right|+c$$

$$\mathsf{C.} \, \frac{1}{2} \mathrm{ln} \Big| \mathrm{tan} \Big(\frac{x}{2} + \frac{x}{6} \Big) \Big| + c$$

D.
$$\frac{1}{2}\ln\Bigl| an\Bigl(\frac{x}{4}+\frac{x}{3}\Bigr)\Bigr|+c$$

Answer:

73. The value of

 $(1+\cos\pi/6)(1+\cos\pi/3)(1+\cos2\pi/3)(1+\cos7\pi/6)$ is

A.
$$\frac{3}{16}$$

B.
$$\frac{3}{8}$$

D.
$$\frac{1}{2}$$

Answer:

74. If
$$P=rac{1}{2}{
m sin}^2\, heta+rac{1}{3}{
m cos}^2\, heta$$
 then

A.
$$rac{1}{3} \leq P \leq rac{1}{2}$$

$$\mathrm{B.}\,P>\frac{1}{2}$$

 $\mathsf{C.}\, 2 \leq P \leq 3$

$$\operatorname{D.}-\frac{\sqrt{13}}{6} \leq P \leq \frac{\sqrt{13}}{6}$$

Answer:

Watch Video Solution

75.
$$\int \frac{dx}{\sin x + \cos x}$$
 equals

A.
$$\pi/4$$

B.
$$\pi/5$$

 $C. \pi/3$

D.
$$\pi/6$$

Answer:

76. If f(x)=f(a-x) then $\int_0^a x f(x) dx$ is equal to

A.
$$\int_0^u f(x)dx$$

B.
$$\frac{a^2}{2}\int_0^a f(x)dx$$

C.
$$\frac{a}{2} \int_0^a f(x) dx$$

D.
$$-\frac{a}{2}\int_0^a f(x)dx$$

Answer:

Watch Video Solution

77. The value of $\int_0^\infty \frac{dx}{(x^2+4)(x^2+9)}$ is

A.
$$\frac{\pi}{60}$$

B.
$$\frac{\pi}{20}$$

$$\mathsf{C.}\ \frac{\pi}{40}$$

D.
$$\frac{\pi}{80}$$

Watch Video Solution

78. If
$$I_1 \int_0^{\pi/4} \sin^2 x dx$$
 and $I_2 = \int_0^{\pi/4} \cos^2 x dx$, then,

A.
$$I_1=I_2$$

B.
$$I_1 < I_2$$

C.
$$I_1 > I_2$$

D.
$$I_1=I_2+\pi/4$$

Answer:

79. The second order derivative of a sin't with respect to a $\cos^3 t$ at

$$t=rac{\pi}{4}$$
 is

- A. 2
- $\operatorname{B.}\frac{1}{12a}$
- C. $\frac{4\sqrt{2}}{3a}$
- D. $\frac{3a}{4\sqrt{2}}$

Answer:

Watch Video Solution

80. The smallest value of $\cos heta + 12$ is

A. 5

B. 12

C. 7

D. 17

Answer:

