© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

RELATIONS AND FUNCTIONS-2

Jee Main 5 Years At A Glance

1. Let R be a relation on N defined by $R=\{(x, y): 2 x+y=10\}$, then domain of R is
A. Both R_{1} and R_{2} are transitive relations
B. Both R_{1} and R_{2} are symmetric relations
C. Range of R_{2} is $\{1,2,3,4\}$
D. Range of R_{1} is $\{2,4,8\}$
2. The function $f: R \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x)=\frac{x}{1+x^{2}}$ is
A. neither injective nor surjective
B. invertible
C. injective but not surjective
D. surjective but not injective

Answer: D

- Watch Video Solution

3. The function $f: N \rightarrow N$ defined by $f(x)=x-5\left[\frac{x}{5}\right]$ where N is a set of natural numbers, then
A. one-one and onto.
B. one-one but not onto.
C. onto but not one-one
D. neither one-one nor onto.

Answer: D

- Watch Video Solution

4. let $f(x)=2^{10} x+1$ and $g(x)=3^{10} x+1$. If $f o g(x)=x$, then x is equal to
A. $\frac{3^{10}-1}{3^{10}-2^{10}}$
B. $\frac{2^{10}-1}{2^{10}-3^{10}}$
C. $\frac{1-3^{10}}{2^{10}-3^{10}}$
D. $\frac{1-2^{10}}{3^{10}-2^{10}}$

Answer: D

D Watch Video Solution

$f_{0}(x)=\frac{1}{1-x}$ and $f_{n+1}(x)=f_{0}\left(f_{n}(x)\right), n=0,1,2 \ldots$. Then the value of
$f_{100}+f_{1}\left(\frac{2}{3}\right)+f_{2}\left(\frac{3}{2}\right)$ is equal to
A. $\frac{8}{3}$
B. $\frac{4}{3}$
C. $\frac{5}{3}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

6. Let $A=\left\{x_{1}, x_{2}, x_{3} \ldots, x_{7}\right\}, B=\left\{y_{1} y_{2} y_{3}\right\}$. The total number of functions $f: A \rightarrow B$ that are onto and ther are exactly three elements x in A such that $f(x)=y_{2}$, is equal to
B. $16^{7} C_{3}$
C. $14^{7} C_{2}$
D. $12^{7} C_{2}$

Answer: A

- Watch Video Solution

7. If g is the inverse of a function f and $f^{\prime}(x)=\frac{1}{1+x^{5}}$, then $\mathrm{g}^{\prime}(\mathrm{x})$ is equal to
A. $\frac{1}{1+\{g(x)\}^{5}}$
B. $1+\{g(x)\}^{5}$
C. $1+x^{5}$
D. $5 x^{4}$

Answer: B

8. Let P be the relation defined on the set of all real numbers such that $P=\left\{(a, b): \sec ^{2} a-\tan ^{2} b=1\right\}$. Then P is
A. reflexive and symmetric but not transitive.
B. reflexive and transitive but not symmetric.
C. symmetric and transitive but not reflexive
D. an equivalence relation.

Answer: D

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 Types Of Relations Inverse Of A Relation

1. Prove that a relation R on a set A is symmetric iff $R=R^{-1}$.
A. Reflexive
B. Symmetric
C. Transitive
D. None of these

Answer: B

- Watch Video Solution

2. If R is an equivalence relation on a set A, then R^{-1} is A. reflexive only B. symmetric but not transitive C. equivalence D. None of these
A. Reflexive only
B. Symmetric but not transitive
C. Equivalence
D. None of these

Answer: C

3. R is a relation from $\{11,12,13\}$ to $\{8,10,12\}$ defined by $y=x-3$. Then, R^{-1} is (a) $\{(8,11),(10,13)\}$ (b) $\{(11,8),(13,10)\}$ (c) $\{(10,13),(8,11),(8,10)\}$ (d) none of these
A. $\{(11,8),(13,10)\}$
B. $\{(8,11),(10,13)\}$
C. $\{8,11),(9,12),(10,13)\}$
D. None of these

Answer: B

- Watch Video Solution

4. The relation R is defined on the set of natural numbers as $\{(a, b): a=2 b\}$, the R^{-1} is given by
A. $\{(2,1),(4,2),(6,3) . . .$.
B. $\{(1,2),(2,4),(3,6) \ldots . . .$.
C. R^{-1} is not defined
D. None of these

Answer: B

- Watch Video Solution

5. Let $R=\left\{(x, y): x^{2}+y^{2}=1, x, y \in R\right\}$ be a relation in R. Then the relation R is
A. Reflexive
B. Symmetric
C. Transitive
D. Anti-symmetric

Answer: B

6. Let S be the set of all real numbers. Then the relation $R=$
$\{(a, b): 1+a b>0\}$ on S is
A. Reflexive and symmetric but not transitive
B. Reflexive and transitive but not symmetric
C. Symmetric, transitive but not reflexive
D. Reflexive, transitive and symmetric

Answer: A

- Watch Video Solution

7. Let R be a relation on the set N be defined by $\{(x, y) \mid x, y \varepsilon N, 2 x+y=41\}$. Then prove that the R is neither reflexive nor symmetric and nor transitive.
A. Reflexive
B. Symmetric
C. Transitive
D. None of these

Answer: D

- Watch Video Solution

8. Let R and S be two non-void relations on a set A. Which of the following statements is false?
A. R and S transitive $\Rightarrow R \cup S$ is transitive
B. R and S transitive $\Rightarrow R \cap S$ is transitive
C. R and S symmetric $\Rightarrow R \cup S$ symmetric
D. R and S reflexive $\Rightarrow R \cup S$ reflexive

Answer: A

9. Determine whether Relation R on the set Z of all integer defined as
$R=\{(x, y): y$ is divisible by $x\}$
A. Reflexive
B. Symmetric
C. Transitive
D. an equivalence relation

Answer: D

- Watch Video Solution

10. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b)$: $|a b|$ is divisible by 2$\}$ is an equivalence relation. Write all the quivalence classes of R.
A. 5
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

11. On the set N of all natural numbers define the rational R by $a R b$ iff the G.C.D. of a and b is 2 . Then R is
A. reflexive, but not symmetric
B. symmetric only
C. reflexive and transitive
D. not reflexive, not symmetric, not transitive

Answer: B

12. Let $A=\{1,2,3\}$ Then number of relations containing $(1,2) \operatorname{and}(1,3)$ which are reflexive and symmetric but not transitive is (A) 1 (B) 2 (C) 3 (D)

4
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

13. Let R be a relation over the set $N \times N$ and it is defined by $(a, b) R(c, d) \Rightarrow a+d=b+c$. Then R is
A. Reflexive only
B. Symmetric only
C. Transitive only
D. An equivalence relation

Answer: D

- Watch Video Solution

14. Which of one of the following relations on R is equivalence relation
A. $a R_{1} b \Leftrightarrow|a|=|b|$
B. $a R_{2} b \Leftrightarrow a \geq b$
C. $a R_{3} b \Leftrightarrow a$ divides b
D. $a R_{4} b \Leftrightarrow a<b$

Answer: A

Exercise 1 Concept Builder Topicwise Topic 2 Mappings Mapping Of Functions Kinds Of Mapping Of Functions

1. Let $f: R, \vec{R}$ where $f(x)=\frac{x^{2}+4 x+7}{x^{2}+x+1}$. Is $f(x)$ oneone?
A. one-one
B. many-one
C. one-manu
D. None of these

Answer: B

- Watch Video Solution

2. The set of parameter 'a' for which the functions $f: R \rightarrow R$ defined by $f(x)=a x+\sin x$ is bijective, is
A. $[-2 \infty]$
B. $(-\infty-1] \cup[1, \infty)$
C. $(-\infty,-2) \cup[2 / 3,8)$
D. $[-2,2 / 3]$

Answer: B

- Watch Video Solution

3. If $A=\{1,3,5,7\}$ and $B=\{1,2,3,4,5,6,7,8\}$, then the number of one-to-one functions from A into B is
A. 1340
B. 1680
C. 1430
D. 1880

Answer: B

4. Which of the following is one-one function ?
A. e^{x}
B. $e^{x^{2}}$
C. $\sin x$
D. None of these

Answer: A

5. $f: X \rightarrow Y$ is onto, if and only if
6. range of $f=Y$
7. range of $f \neq Y$
8. range of $f<Y$
9. range of $f \geq Y$
A. range of $f=Y$
B. range of $f \neq Y$
C. range of $f<Y$
D. range of $f \geq Y$

Answer: A

- View Text Solution

6. Let $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$. Then number of subjections from A into B is nP2 (b) $2^{n}-2$ (c) $2^{n}-1$ (d) nC2
A. $a p_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. None of these

Answer: B

7. Let $f: R \rightarrow R$ be function defined by $f(x)=\sin (2 x-3)$, then f is
A. injective
B. surjective
C. bijective
D. None of these

Answer: D

Watch Video Solution

8. On the set of integers Z , define $\mathrm{f}: Z \rightarrow Z$ as
$f(n)= \begin{cases}\frac{n}{2}, & \mathrm{n} \text { is even. } \\ 0, & \mathrm{n} \text { is odd. }\end{cases}$
Then, f is
A. injective but not surjective
B. neither injective nor surjectives
C. surjective but not injective
D. bijective

Answer: C

- Watch Video Solution

9. If the function $f: R \vec{A}$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is surjection, then find A.
A. $[0,1)$
B. $(0,1)$
C. $(0,1]$
D. $[0,1]$

Answer: A

10. If $f: R \rightarrow R$ be a function such that
$f(x)=\{x|x|-4 ; x \in Q, x|x|-\sqrt{3} ; x \notin Q$ then $\mathrm{f}(\mathrm{x})$ is
A. one to one and onto
B. many to one and onto
C. one to one and into
D. many to one and into

Answer: D

- Watch Video Solution

11. Consider functions f and g such that composite gof is defined and is one-one.Are f and g both necessarily one-one.
A. neither fnor g is one-one
B. f and g both are necessarily one-one
C. g must be one-one
D. None of the above

Answer: D

- Watch Video Solution

12. If $f(x)=|x-2|$, where x is a real number, then, which one of the followin is correct?
A. f is Periodic
B. $f(x+y)=f(x)+f(y)$
C. f is an odd function
D. f is not a one- one function
13. Let $\mathrm{f}: \mathrm{R}-\{\mathrm{n}\} \rightarrow \mathrm{R}$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then,
A. f is one-one onto
B. f is one-one into
C. f is many-one onto
D. f is many one into

Answer: B

- Watch Video Solution

14. The function $f: R \rightarrow R$ is defined by $f(x)=(x-1)(x-2)(x-3)$ is
A. one-one but not onto
B. onto but not one-one
C. both one-one and onto
D. neither one-one nor onto

Answer: B

- Watch Video Solution

15.

$A=\{1,2,3)$ and $B=\{a, b, c\}$, and $f=\{(1, a),(2, b),(P, c)\}$ be a function from A to B. For the function f to be one-one and onto the value of $P=$
A. 1
B. 2
C. 3
D. 4

Answer: C

16. A function $f: X \rightarrow Y$ is said to be onto, if for every $y \in Y$ there exists an element x in X such that
A. $f(x)=y$
B. $f(y)=0$
C. $f(x)+y=0$
D. $f(y)+x=0$

Answer: A

- View Text Solution

17. Let f be a one-one function with domain $\{x, y, z\}$ and range $\{1,2,3\}$. It is given that exactly one of the following statements is true and the remaining two are false $f(X)=1, f(y) \neq 1 f(z) \neq 2$ determine $f^{-1}(1)$
A. $f(x)>f(y)>f(z)$
B. $f(x)<f(y)<f(z)$
C. $f(y)<f(x)<f(z)$
D. $f(y)<f(z)<f(x)$

Answer: C

- Watch Video Solution

18. The mapping $\mathrm{f}: N \rightarrow N$ given by $f(n)=1+n^{2}, n \in N$, where N is the set of natural numbers, is
A. one-one and onto
B. onto but not one-one
C. one-one but not onto
D. neither one-one nor onto

Answer: C

19. The function $f: R \rightarrow R$ given by $f(x)=x^{2}+x$ is
A. one-one
B. onto
C. many-one
D. None of the above

Answer: C

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 3 Composite Function And Relation Inverse Of A Function Binary Operations

1. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ then $\operatorname{fofof}(x)$
A. $\frac{3 x}{\sqrt{1+x^{2}}}$
B. $\frac{x}{\sqrt{1+3 x^{2}}}$
C. $\frac{3 x}{\sqrt{1-x^{2}}}$
D. None of these

Answer: B

- Watch Video Solution

2. If $f(x)=|x|$ and $g(x)=[x]$ then value of fog
$\left(-\frac{1}{4}\right)+g o f\left(-\frac{1}{4}\right)$ is
A. 0
B. 1
C. -1
D. $1 / 4$

Answer: B

3. The inverse of the function $\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is
A. $\frac{1}{3} \log _{10} \frac{1+x}{1-x}$
B. $\frac{1}{2} \log _{10} \frac{2+3 x}{2-3 x}$
C. $\frac{1}{3} \log _{10} \frac{2+3 x}{2-3 x}$
D. $\frac{1}{6} \log _{10} \frac{2-3 x}{2+3 x}$

Answer: B

- Watch Video Solution

4. Let $f:[4, \infty) \rightarrow[4, \infty)$ be defined by $f(x)=5^{x^{(x-4)}}$.Then $f^{-1}(x)$ is
A. $2-\sqrt{4+\log _{5} x}$
B. $2+\sqrt{3+\log _{5} x}$
C. $\left(\frac{1}{5}\right)^{x(x-4)}$
D. None of these

Answer: B

- Watch Video Solution

5. If the binary operation * on the set of integers Z, is defined by $a \cdot b=a+3 b^{2}$, then find the value of $2 \cdot 4$
A. 32
B. 40
C. 36
D. 35

Answer: D

D Watch Video Solution

6. If $R \subset A \times B$ and $S \subset B \times C$ be two relations, then $(S o R)^{-1}=$
A. $S^{-1} o R^{-1}$
B. RoS
C. $R^{-1} o S^{-1}$
D. None of these

Answer: C

- Watch Video Solution

7. The binary operation * defined on N by $a \cdot b=a+b+a b$ for all $a, b \in N$ is (a) commutative only (b) associative only (c) commutative and associative both (d) none of these
A. commutative only
B. associative only
C. both commutative and associative
D. None of these

Answer: C

- Watch Video Solution

8. If $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R \quad$ is such that
$f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log x$ then the value of $[h o(g \circ f)] x$, if $x=\frac{\sqrt{\pi}}{2}$ will be
A. 0
B. 1
C. -1
D. 10

Answer: A
9. Let $f:\left[-\frac{\pi}{3}, \frac{2 \pi}{3}\right] \overrightarrow{0,4}$ be a function defined as $f(x)=\sqrt{3} \sin x-\cos x+2$. Then $f^{-1}(x)$ is given by $\sin ^{-1}\left(\frac{x-2}{2}\right)-\frac{\pi}{6} \sin ^{-1}\left(\frac{x-2}{2}\right)+\frac{\pi}{6} \frac{2 \pi}{3}+\cos ^{-1}\left(\frac{x-2}{2}\right)$
none of these
A. $\sin \left(\frac{x-2}{2}\right)-\frac{\pi}{6}$
B. $\sin \left(\frac{x-2}{2}\right)+\frac{\pi}{6}$
c. $\frac{2 \pi}{3}+\cos ^{-1}\left(\frac{x-2}{2}\right)$
D. None of these

Answer: B

- Watch Video Solution

10. If $f(x)=1+x+x^{2}+x^{3}+\ldots . \infty$ for $|x|<1$ then $f^{-1}(x)=$
A. $\frac{x}{1+x}$
B. $\frac{x}{1-x}$
C. $\frac{1-x}{x}$
D. $\frac{1}{x}$

Answer: B

- Watch Video Solution

11. Let f be a function with domain X and range Y. Let $A, B \subseteq X$ and $C, D \subseteq Y$ Which of the following is not true?
A. $f(A \cup B)=f(A) \cup f(B)$
B. $f(A \cap B)=f(A) \cap f(B)$
C. $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$
D. $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$

Answer: B

D View Text Solution

12. If a binary operation * is defined by $a \cdot b=a^{2}+b^{2}+a b+1$, then $(2 \cdot 3) \cdot 2$ is equal to (a) 20 (b) 40 (c) 400 (d) 445
A. 20
B. 40
C. 400
D. 445

Answer: D

- Watch Video Solution

13. A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined as: $a \cdot b=\{a+b a+b-6 \backslash \backslash \backslash \backslash$ if $\backslash a+b<6 \backslash \backslash \backslash$ if $a+b \geq 6 \quad$ Show that zero is the identity for this operation and each element a of the set is invertible with 6a, being the inverse of a.
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

14. Let * be a binary operation on N given by $a \cdot b=H C F(a, b), a, b \in N$. Write the value of $22 \cdot 4$.
A. 1
B. 2
C. 3
D. 4

Answer: B

15. Show that the total number of binary operation from set A to A is $n^{n^{2}}$.
A. $n^{n^{2}}$
B. n^{n}
C. $2^{n^{2}}$
D. n^{2}

Answer: A

16. If $f Q \rightarrow Q f(x)=2 x, g, Q \rightarrow Q, g(x)=x+2$ then value of $(f o g)^{-1}(20)$ is
A. 5
B. -8
C. 4
D. 8

Answer: D

- Watch Video Solution

17. If $g(x)=x-2$ is the inverse of the function $f(x)=x+2$, then graph of $g(x)$ is the image of graph of $f(x)$ about the line $y=k x$. Here $k=$
A. 1
B. 2
C. 3
D. 4

Answer: A

18. Which of the following is not a binary operation on the indicated set?
A. On $Z^{+}, *$ defined by $a * b=a-b$
B. On $Z^{+}, *$ defined by $a * b=a b$
C. On $R, *$ defined by $a * b=a b^{2}$
D. None of above

Answer: A

- Watch Video Solution

19.

$f(x)=-1+|x-1|,-1 \leq x \leq 3$ and $g(x)=2-|x+1|,-2 \leq x$ then find $f \circ g(x)$ and $g \circ f(x)$.
A. $\begin{cases}x+1 & -2 \leq x \leq 0 \\ x-1 & 0<x \leq 2\end{cases}$
B. $\begin{cases}x-1 & -2 \leq x \leq 0 \\ x+1 & 0<x \leq 2\end{cases}$
C. $\begin{cases}-x-1 & -2 \leq x \leq 0 \\ x-1 & 0<x \leq 2\end{cases}$
D. None of these

Answer: D

- Watch Video Solution

20. Let $f(x)=\frac{a x+b}{c x+d}$. Then the fof $(\mathrm{x})=\mathrm{x}$ provided that
A. $d=-a$
B. $d=a$
C. $a=b=c=d=1$
D. $a=b=1$

Answer: A

- Watch Video Solution

21. Let $A=\{1,2,3,4,5\}$ and functions $f: A \rightarrow$ and $g: A \rightarrow A$ to defined by $f(1)=3, f(2)=5, f(3)=3, f(4)=1, f(5)=2, g(1)=4$
A. $f o g=\{(1,1),(2,3),(3,2),(4,5)\}$
B. $\mathrm{fog}=\{(1,1),(2,3),(3,3),(4,5),(5,3)\}$
C. $g \circ f=\{(1,1),(2,3),(3,3),(4,4),(5,5)\}$
D. gof= $\{(2,2),(2,3),(3,1),(4,1),(5,1)\}$

Answer: B

- View Text Solution

22. Suppose that f is an even function, g is an odd function and both f and g are defined on the entire real line R. Which of the following wherever defined are odd function?
A. an even function
B. an odd function
C. neither even nor odd
D. a periodic function

Answer: A

- Watch Video Solution

23. If $f(x)=e^{x}$ and $g(x)=\log _{e} x$, hen which of the following is true?
A. $f\{g(x)\}=\{f(x)\}$
B. $f\{g(x)\}=g\{f(x)\}$
C. $f\{g(x)\}+g(\{f(x)\}=0$
D. $f\{g(x)\}-g\{f(x)\}=1$

Answer: B

- Watch Video Solution

24. The inverse of the function $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+2$ is given by
A. $\log _{e}\left(\frac{x-3}{x-1}\right)^{1 / 2}$
B. $\log _{e}\left(\frac{x-1}{3-1}\right)^{1 / 2}$
C. $\log _{e}\left(\frac{x+2}{x-3}\right)^{1 / 2}$
D. $\log _{e}\left(\frac{x+1}{x-2}\right)^{1 / 2}$

Answer: B

(Watch Video Solution

25. Show that if $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\} \quad$ is defined by $f(x)=\frac{3 x+4}{5 x-7} \quad$ and $\quad g: R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\} \quad$ is define by $g(x)=\frac{7 x+4}{5 x-3} \quad$, then $\quad f \circ g=I_{A} \quad$ and $\quad g \circ f=I_{B} \quad$, where $A=R-\left\{\frac{3}{5}\right\}, B=R-\left\{\frac{7}{5}\right\} ; I_{A}(x)=x, \forall x \in A, I_{B}(x)=x, \forall x \in 1$ are called ide

$$
\text { A. } f o g=I_{A} \text { and } g o f=I_{A}
$$

B. $f o g=I_{A}$ and $g o f=I_{B}$
C. $f o g=I_{B}$ and $g o f=I_{B}$
D. $f o g=I_{B}$ and $g \circ f I_{A}$

Answer: B

- Watch Video Solution

26. Let $f: R \rightarrow$ be defined by $f(x)=3 x^{2}-5$ and $g: R \rightarrow R$ by $g(x)=\frac{x}{x^{2}}+1$ then gof is
A. $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
B. $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
C. $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
D. $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

Answer: A

27. Let $f(x)=\left\{\begin{array}{ll}x^{3}-1, & x<2 \\ x^{2}+3, & x \geq 2\end{array}\right.$ Then
A. $f^{-1}(x)= \begin{cases}(x+1)^{1 / 3}, & x<2 \\ (x-3)^{1 / 2}+, & x \geq 2\end{cases}$
B. $f^{-1}(x)= \begin{cases}(x+1)^{1 / 3}, & x<7 \\ (x-3)^{1 / 2}+, & x \geq 7\end{cases}$
C. $f^{-1}(x)= \begin{cases}(x+1)^{1 / 3}, & x<1 \\ (x-3)^{1 / 2}+, & x \geq 7\end{cases}$
D. $f^{-1}(x)$ does not exist

Answer: B

- Watch Video Solution

Exercise 2 Concept Applicator

1. If R be a relation from $A=\{1,2,3,4\}$ to $B=\{1,3,5\}$ i.e., $(a, b) \in R \Leftrightarrow a<b$, then Ro R^{-1} is
B. $\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
C. $\{(3,3),(3,5),(5,3),(5,5)\}$
D. $\{(3,3),(3,4),(4,5)\}$

Answer: C

- Watch Video Solution

2. Let r be relation from R (set of real numbers) to R defined by $r=\{(a, b) \mid a, b \in R$ and $a-b+\sqrt{3}$ isan irrational number $\}$. The relation r is
A. an equivalence relation
B. reflexive only
C. symmetric only
D. transitive only

Answer: B

3. Let R be a relation on the set of all real numbers defined by $x R y \Leftrightarrow|x-y| \leq \frac{1}{2}$ Then R is
A. reflexive and symmetric but not transitive
B. symmetric and transitive but not reflexive
C. transitive but neither reflexive nor symmetric
D. None of these

Answer: A

- Watch Video Solution

4. Let $f: R \rightarrow R$ be a function defined $\mathrm{by}, f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$ then
A. f is both one-one and onto
B. f is one-one but not onto
C. f is onto but not one-one
D. f is neither one-one nor onto

Answer: D

- Watch Video Solution

5. If X and Y are two non-empty sets where $f: X \rightarrow Y$, is function is defined such that $f(c)=\{f(x): x \in C\}$ for $C \subseteq X$ and $f^{-1}(D)=\{x: f(x) \in D\} \quad$ for $\quad D \subseteq Y$,for \quad any $A \subseteq Y$ and $B \subseteq Y$, then
A. $\left.f\left(f^{-1} B\right)\right)=B$
B. $f\left(f^{-1}(B)\right) \subset B$
C. $f^{-1}(f(A))=A$
D. $f^{-1}(f(A)) \subset A$
6. Let $f(x)=\sin z$ and $g(z)=\cos z$. If denotes a composition of functions, then $(f+i g) \cdot(f-i g)$ (where $i=\sqrt{-1})$ is
A. $i e^{-e^{-i z}}$
B. $i e^{-e^{i z}}$
C. $-i e^{-e^{-i z}}$
D. None of these

Answer: B

- Watch Video Solution

7. If $f: R \rightarrow R, g, R \rightarrow R$ be two funcitons, and $h(x)=2 \min \{f(x)-g(x), 0\}$ then $h(x)=$
A. $f(x)+g(x)-1|g(x)-f(x)|$
B. $f(x)+g(x)+|g(x)-f(x)|$
C. $f(x)-g(x)+|g(x)-f(x)|$
D. $f(x)-g(x)-|g(x)-f(x)|$

Answer: B

- Watch Video Solution

8. The relation R defined in $A=\{1,2,3\}$ by $a R b$ if $\left|a^{2}-b^{2}\right| \leq 5$. Which of the following is faise
A. $R=\{(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)\}$
B. $R^{-1}=R$
C. Domain of $\mathrm{R}=\{1,2,3\}$
D. Range of $R=\{5\}$

Answer: D

9. Let $R=\left\{(x, y): x, y \in N\right.$ and $\left.x^{2}-4 x y+3 y^{2}=0\right\}$, where N is the set of all natural numbers. Then the relation R is
A. reflexive but neither symmetric nor transitive
B. symmetric and transitive.
C. reflexive and symmetric
D. reflexive and transitive

Answer: D

- Watch Video Solution

10. If $f(x)=\sin x+\cos x$ and $g(x)=x^{2}-1$, then $g(f(x))$ is invertible in the domain .
A. $\left[0, \frac{\pi}{2}\right]$
B. $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
D. $[0, \pi]$

Answer: B

- Watch Video Solution

11. If $f(x)=\frac{x}{x-1}$, then $($ fofof $\odot \ldots . . o f)(x)$ is equal to
A. $\frac{x}{x-1}$
B. $\left(\frac{x}{x-1}\right)^{19}$
C. $\frac{19 x}{x-1}$
D. x

Answer: A
12. Statement-1: If $f: R \rightarrow R$ and $g: R \rightarrow R$ be two functions such that $f(x)=x^{2}$ and $g(x)=x^{3}$, then fog $(\mathrm{x})=g \circ f(\mathrm{x})$.

Statement-2: The composition of functions is commulative.
A. $f(x)=x^{3}, g(x)=x+1$
B. $f(x)=\sqrt{x}, g(x)=\cos x$
C. $f(x)=x^{m}, g(x), m \neq n, m, n \in I$ (I is the st of all integers)
D. $f(x)=x-1, g(x)=x^{2}+1$

Answer: C

- Watch Video Solution

13. Which of the following functions is NOT one-one ?
14. $f: R \rightarrow R$ defined by $f(x)=6 x-1$
15. $f: R \rightarrow R$ defined by $f(x)=x^{2}+7$
16. $f: R \rightarrow R$ defined by $f(x)=x^{3}$
17. $f: R-\{7\} \rightarrow R$ defined by $f(x)=\frac{2 x+1}{x-7}$
A. $f: R \rightarrow R$ defined by $f(x)=6 x-1$
B. $f: R \rightarrow R$ defined by $f(x)=x^{2}+7$
C. $f: R \rightarrow R$ defined by $f(x)=x^{3}$
D. $f: R-\{7\} \rightarrow R$ defined by $f(x)=\frac{2 x+1}{x-7}$

Answer: B

- View Text Solution

14. If $f(x)=2 x+|x|, g(x)=\frac{1}{3}(2 x-|x|)$ and $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$, domain of $\underbrace{\sin ^{-1}(h(h(h(h \ldots h(x) \ldots))))}_{\mathrm{n} \text { times }}$ is
A. $[-1,1]$
B. $\left[-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]$
C. $\left[-1,-\frac{1}{2}\right]$
D. $\left[\frac{1}{2}, 1\right]$

(D) Watch Video Solution

15. If $f(x)=\sqrt{3|x|-x-2}$ and $g(x)=\sin x$, then domain of $(f o g)(x)$ is
A. $\left\{2 n \pi+\frac{\pi}{2}\right\}, n \in I$
B. $\underset{n \in I}{\cup}\left(2 n \pi+\frac{7 \pi}{7}, 2 n \pi+\frac{11 \pi}{6}\right)$
C. $\left\{2 n \pi+\frac{7 \pi}{6}\right\}, n \in I$
D. $\left\{(14 m+)+\frac{\pi}{2}: m \in I\right\} \underset{n \in I}{\cup}\left[2 n \pi+\frac{7 \pi}{7}, 2 n \pi+\frac{11 \pi}{6}\right]$

Answer: D

- Watch Video Solution

16. Letf: $A \rightarrow B$ be a function then show that f is a bijection if and only if there exists a function $g: B \rightarrow A$ such that fog $=I_{B} \& g o f=I_{A} \&$ in this case $g=f^{-1}$
A. one-one
B. onto
C. one-one and onto
D. None of these

Answer: C

- Watch Video Solution

17. Let $A=N \times N$ and $*$ be the binary opertation on A defined by $(a, b) *(c, d)=(a+c, b+d)$. Show that $*$ is commutative and associative.
A. commutative
B. associative
C. Both (a) and (b)
D. None of these

D Watch Video Solution

18. If the binary operation \odot is defined on the set Q^{+}of all positive rational numbers by $a \odot b=\frac{a b}{4}$. Then, $3 \odot\left(\frac{1}{5} \odot \frac{1}{2}\right)$ is equal to $\frac{3}{160}$
(b) $\frac{5}{160}$ (c) $\frac{3}{10}$ (d) $\frac{3}{40}$
A. $\frac{3}{160}$
B. $\frac{5}{160}$
C. $\frac{3}{10}$
D. $\frac{3}{40}$

Answer: A

- Watch Video Solution

19. Find the inverse of the function:
$f:(-\infty, 1] \frac{1}{2}, \infty$, where $f(x)=2^{x(x-2)}$
A. $1-\sqrt{1+\log _{2} x}$
B. $\sqrt{\log _{2} x}$
C. $\sqrt{\log _{2} x+1}$
D. $\log _{2} x^{2}$

Answer: A

20. Let $f: N \rightarrow R$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow Q$ be another function defined by $g(x)=x+2$ then $(g \circ f)\left(\frac{3}{2}\right)$ is
A. 1
B. 0
C. $\frac{7}{2}$
D. 3

Answer: D

- Watch Video Solution

21. Let $f(x)=(x+1)^{2}-1, x \geq-1$. Then the set
$\left\{x: f(x)=f^{-1}(x)\right\}$ is $\left\{0,1, \frac{-3+i \sqrt{3}}{2}, \frac{-3-i \sqrt{3}}{2}\right\}$ (b) $\{0,1,-1$
$\{0,1,1\}$ (d) empty
A. $\left\{0,-1, \frac{-3+I \sqrt{3}}{2}, \frac{-3-i \sqrt{3}}{2}\right\}$
B. $\{0,1-1\}$
C. $\{0,-1\}$
D. empty

Answer: C

22. Let $f(x)= \begin{cases}2 x+a, & x \geq-1 \\ b x^{2}+3, & x<-1\end{cases}$
and $g(x)= \begin{cases}x+4, & 0 \leq x \leq 4 \\ -3 x-2, & -2<x<0\end{cases}$
If $a=2$ and $b=3$, then the range of $g(f(x))$ is
A. $a=0, b>5$
B. $a=2, b>7$
C. $a=2, b>10$
D. $a=0, b \in R$

Answer: A

- Watch Video Solution

23. Let $f:(4,6) \cup(6,8)$ be a function defined by $f(x)=x+\left[\frac{x}{2}\right]$ where [.] denotes the greatest integer function, then $f^{-1}(x)$ is equal to
A. $x-\left[\frac{x}{2}\right]$
B. $-x-2$
C. $x-2$
D. $\frac{1}{x+\left[\frac{x}{2}\right]}$

Answer: C

24. Let [x$]$ denot the greatest integer $\leq x$. If $f(x)=[x]$ and $g(x)=|x|$ then the value of $f\left(g\left(\frac{8}{5}\right)\right)-g\left(f\left(-\frac{8}{5}\right)\right)$ is
A. 2
B. -2
C. 1
D. -1

Answer: D
25. Let $f(x)=a x+\operatorname{bandg}(x)=c x+d, a \neq 0$. Assume $a=1, b=2$. If $(f \circ g)(x)=(g \circ f)(x)$ for all x, what can you say about candd?
A. cand d both arbitary
B. $c=1, d$ arbitrary
C. c arbitrary, $\mathrm{d}=1$
D. $c=1, d=1$

Answer: B

- Watch Video Solution

26. Let $f(x)=x^{2}+3 x-3, x \geq 0$ if in points $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ are so chosed on the x-axis such that
(i) $\frac{1}{n} \sum_{i=1}^{n} f^{-1}\left(x_{i}\right)=f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)$
(ii) $\sum_{i=1}^{n} f^{-1}\left(x_{i}\right)=\sum_{i=1}^{n} x_{i}$ wehre f^{-1} denots the inverser of f. then mean of $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ is:
A. 1
B. 2
C. 3
D. 4

Answer: A

- View Text Solution

27. If $f: R \rightarrow R, g: R$ and $h: R \rightarrow R$ be three functions are given by $f(x)=x^{2}-1, g(x)=\sqrt{x^{2}+1}$ and $h(x)= \begin{cases}0 & x \leq 0 \\ x & x>0\end{cases}$ Then the composite functions (ho fog) (x)) is given by
A. x^{2}
B. 0
C. x
D. None of these

Answer: A

- Watch Video Solution

28. Let $g(x)=1+x-[x]$ and $f(x)=\left\{\begin{array}{ll}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{array}\right.$ then for all x,
$f[g(x)]$ is equal to
A. x
B. 1
C. $f(x)$
D. $g(x)$

Answer: C

29. Which of the following functions is the inverse of itself? $f(x)=\frac{1-x}{1+x}$ (b) $f(x)=5^{\log x} f(x)=2^{x(x-1)}$ (d) None of these
A. $f(x)=\frac{1-x}{1+x}$
B. $f(x)=3^{\log x}$
C. $f(x)=3^{x(x+1)}$
D. None of these

Answer: A

- Watch Video Solution

30. Let $f(x)=\sin \operatorname{xandg}(x)=(\log)_{e}|x|$. If the ranges of the composition functions fogandgofare R_{1} and R_{2}, respectively, then ${ }^{\text {}} \mathrm{R}_{-} 1\{$ u :-1lt=u<1\},R_2=\{v :-oo
A. $R_{1}=\{u:-1 \leq u<1\}, R_{2}=\{v:-\infty<v<0\}$
B. $R_{1}=\{u:-\infty<u<0\}, R_{2}=\{v:-\infty<v<0\}$

$$
\begin{aligned}
& \text { C. } R_{1}=\{u:-1<u<1\}, R_{2}=\{v:-\infty<v<0\} \\
& \text { D. } R_{1}=\{u:-1 \leq u \leq 1\}, R_{2}=\{v:-\infty<v \leq 0\}
\end{aligned}
$$

