

MATHS

BOOKS - MTG MATHS (BENGALI ENGLISH)

QUESTION PAPER 2019

Multiple Choice Questions

1. Let A and B be two square matrices of order 3 and $AB=O_3$, where O_3 denotes the null matrix of order 3. Then

A. must be $A=O_3, B=O_3$

B. if $A
eq O_3$, must be $B
eq O_3$

C. if $A=O_3$, must be $B
eq O_3$

D. may be $A
eq O_3, B
eq O_3$

Answer:

2. Let P and T be the subsets of X-Y defined by

$$P=ig\{(x,y)\!:\!x>0,y>0 \;\; ext{and}\;\; x^2+y^2=1ig\}$$

Then $P\cap T$ is

A. the void set Φ

B. P

С. Т

 $\mathsf{D}.\, P - T^C$

Answer:

Watch Video Solution

3. Let $f\colon R o \mathbb{R}$ be defined by $f(x)=x^2-rac{x^2}{1+x^2}$ for all $x\in \mathbb{R}.$ Then

A. f is one-one but not onto mapping

- B. f is not onto but not one-one mapping
- C. f is both one-one and onto
- D. f is neither one-one nor onto

Watch Video Solution

4. Let the relation ho be defined on R as a
ho b iff 1+ab>0. Then

A. ρ is reflexive only

B. ρ is the reflexive relation

C. ρ is reflexive and transitive but not symmetric

D. ρ is reflexive and symmetric but not transitive

Answer:

5. A problem in mathematics is given to 4 students whose chances of solving individually are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$. The probability that the problem will be solved at least be one student is

A.
$$\frac{2}{3}$$

B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{3}{4}$

Answer:

6. If X is a random variable such that $\sigma(X)=2.6$, then $\sigma(1-4X)$ is equal to,

A. 7.8

B. - 10.4

C. 13

 $D.\,10.4$

Answer:

8. The angles of a triangles are in the ratio 2:3:7 and the radius of the circumscribed circle is 10 cm. The length of the smallest side is

A. 2 cm

B. 5 cm

C. 7 cm

D. 10 cm

Answer:

Watch Video Solution

9. A variable line passes through a fixed point (x_1, v_1) & meets the axes at A and B. If the rectangle OAPB be completed, the locus of P is, (O being the origin of the system of axes)

A.
$$(y-y_1)^2 = 4(x-x_1)$$

$$\mathsf{B}.\frac{x_1}{x} + \frac{y_1}{y} = 1$$

C.
$$x^2 + y^2 = x_1^2 + y_1^2$$

D. $rac{x^2}{2x_1^2} + rac{y^2}{y_1^2} = 1$

Watch Video Solution

10. A straight line through the point (3, -2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$. If it intersects the X-axis, then its equation will be

A.
$$y + x\sqrt{3} + 2 + 3\sqrt{3} = 0$$

B. $y - x\sqrt{3} + 2 + 3\sqrt{3} = 0$
C. $y - x\sqrt{3} - 2 - 2\sqrt{3} = 0$

D.
$$x - x\sqrt{3} + 2 - 3\sqrt{3} = 0$$

Answer:

11. A variable line passes through the fixed point (α, β) . The locus of the foot of the perpendicular from the origin on the line is,

A.
$$x^2 + y^2 - lpha x - eta y = 0$$

B. $x^2 - y^2 + 2lpha x + 2eta y = 0$
C. $lpha x + eta y \pm \sqrt{(lpha^2 + eta^2)} = 0$
D. $rac{x^2}{lpha^2} + rac{y^2}{eta^2} = 1$

Answer:

12. If the point of intersection of the lines 2ax + 4ay + c = 0 and 7bx + 3by - d = 0 lies in the 4^{th} quadrant and is equidistant from the two axes, where a, b, c and d are non-zero numbers, then ad : be equals to

A. 2:3

B.2:1

C. 1:1

 $\mathsf{D}.\,3\!:\!2$

Answer:

Watch Video Solution

13. A variable circle passes through the fixed point A(p, q) and touches x-axis. The locus the other end of the diameter through A is

A.
$$(x-p)^2=4gy$$

B. $(x-q)^2=4py$

$$\mathsf{C.}\left(y-p\right)^2 = 4qx$$

$$\mathsf{D}.\left(y-q\right)^2=4px$$

Answer:

14. If P(0, 0), Q(1, 0) and $R\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ are three given points, then the

centre of the circle for which the lines PQ, OR and RP are the tangents is

A.
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$

B. $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2\sqrt{3}}\right)$
D. $\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)$

Answer:

Watch Video Solution

15. For the hyperbola
$$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$$
, which of the following remains fixed when α varies ?
A. directrix

B. vertices

C. foci

D. eccentricity

Answer:

Watch Video Solution

16. S and T are the foci of an ellipse and B is the end point of the minor axis. If STB is equilateral triangle, the eccentricity of the ellipse is

A.
$$\frac{1}{4}$$

B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer:

17. The equation of the directrices of the hyperbola $3x^2-3y^2-18x+12y+2=0$ is

A.
$$x=3\pm\sqrt{rac{13}{6}}$$

B. $x=3\pm\sqrt{rac{6}{13}}$
C. $x=6\pm\sqrt{rac{13}{3}}$
D. $x=6\pm\sqrt{rac{3}{13}}$

Answer:

18. P is the extremity of the latusrectum of ellipse $3x^2 + 4y^2 = 48$ in the first quadrant. The eccentric angle of P is

A.
$$\frac{\pi}{8}$$

B. $\frac{3\pi}{4}$
C. $\frac{\pi}{3}$

D.
$$\frac{2\pi}{3}$$

Watch Video Solution

19. The direction ratios of the normal to the plane passing through the points (1, 2, -3), (-1, -2, 1) and parallel to $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}$ is

A. (2, 3, 4)

B. (14, -8, -1)

C. (-2, 0, -3)

D. (1, -2, -3)

Answer:

20. The equation of the plane, which bisects the line joining the points (1,

2, 3) and (3, 4, 5) at right angles is,

A. x + y + z = 0

- B. x + y z = 0
- C. x + y + z = 9

D.
$$x + y - z + 9 = 0$$

Answer:

Watch Video Solution

21. The limit of the interior angle of a regular polygon of n sides as $n o \infty$ is

A. π

B.
$$\frac{\pi}{3}$$

C. $\frac{3\pi}{2}$

D.
$$\frac{2\pi}{3}$$

Watch Video Solution

22. Let f(x) > 0 for all x and f(x) exists for all x. If f is the inverse function of h and $h'(x) = rac{1}{1+\log x}$. Then f'(x) will be A. $1 + \log(f(x))$

- B.1 + f(x)
- $\mathsf{C.1} \log(f(x))$
- $\mathsf{D}.\log f(x)$

Answer:

23. Consider the function $f(x) = \cos x^2$. Then

A. f is of period 2π

B. f is of period $\sqrt{2\pi}$

C. f is not periodic

D. f is of period π

Answer:

Watch Video Solution

24.
$$\lim_{x \to 0} (e^x + x)^{1/x}$$

A. Does not exist finitely

B. is 1

 ${\rm C.} ~{\rm is}~ e^2$

D. is 2

25. Let f(x) be a derivable function , $f^{\,\prime}(x) > f(x)$ and f(0) = 0. Then

A. f(x) > 0 for all x > 0

B. f(x) < 0 for all x > 0

C. no sign of f(x) can be ascertained

D. f(x) is a constant function

Answer:

Watch Video Solution

26. Let $f\colon [1,3] o \mathbb{R}$ be a continuous function that if differentiable in (1, 3) an $f'(x)=|f(x)|^2+4$ for all $x\in(1,3).$ Then,

A. f(3)-f(1)=5 is ture

- B. f(3) f(1) = 5 is false
- C. f(3) f(1) = 7 is false
- D. f(3) f(1) < 0 only at one point of (1, 3)

Answer:

Watch Video Solution

27.
$$\lim_{x \to 0} (x^n \ln x), n > 0$$

A. does not exist

B. exists and is zero

C. exists and is 1

D. exists and is e^{-1}

Answer:

28. If $\int \cos x \log \left(\tan \frac{x}{2} \right) dx = \sin x \log \left(\tan \frac{x}{2} \right) + f(x)$ then f(x) is equal to, (assuming c is a arbitrary real constant)

A. c B. c-x C. c+x

D. 2x+c

Answer:

Watch Video Solution

29.
$$y = \int \!\! \cos \left\{ 2 \tan^{-1} \sqrt{rac{1-x}{1+x}}
ight\} \! dx$$
 is an equation of a family of

A. straight lines

B. circles

C. ellipses

D. parabolas

Answer:

Watch Video Solution

30. The value of the integration
$$\int_{-\pi/4}^{\pi/4}igg(\lambda|{\sin x}|+rac{\mu\sin x}{1+\cos x}+\gammaigg)dx$$

A. is independent of λ only

B. is independent of μ only

C. is independent of γ only

D. depends on λ, μ and γ

Answer:

31. The value of
$$\lim_{x o 0} rac{1}{x} \left[\int_y^a e^{\sin^2 t} dt - \int_{x+y}^a e^{\sin^2 t} dt
ight]$$
 is equal to

A.
$$e^{\sin^2 y}$$

B. $e^{2\sin y}$

C. $e^{|\sin y|}$

D. $e^{\operatorname{cosec}^2 y}$

Answer:

Watch Video Solution

32. If
$$\int 2^{2^x} \cdot 2^x dx = A \cdot 2^{2^x} + c$$
, then A =
A. $\frac{1}{\log 2}$
B. log 2
C. $(\log 2)^2$
D. $\frac{1}{(\log 2)^2}$

Answer:

33. The value of the integral
$$\int_{-1}^1 \left\{ rac{x^{2015}}{e^{|x|}(x^2+\cos x)} + rac{1}{e^{|x|}}
ight\}$$
 dx is

equal to

A. 0

B. $1 - e^{-1}$

C. $2e^{-1}$

D. $2ig(1-e^{-1}ig)$

Answer:

Watch Video Solution

$$\lim_{n \to \infty} \frac{3}{n} \Biggl\{ 1 + \sqrt{\frac{n}{n+3}} + \sqrt{\frac{n}{n+6}} + \sqrt{\frac{n}{n+9}} + ... + \sqrt{\frac{n}{n+3(n-1)}} \Biggr\}$$

A. does not exist

B. is 1

C. is 2

D. is 3

Answer:

Watch Video Solution

35. The general solution of the differential equation
$$\left(1+e^{\frac{x}{y}}\right)dx + \left(1-\frac{x}{y}\right)e^{\frac{x}{y}}dy = 0 \text{ is (c is an arbitrary constant)}$$
A. $x - ye^{\frac{x}{y}} = c$
B. $y - xe^{\frac{x}{y}} = c$
C. $x + ye^{\frac{x}{y}} = c$
D. $y + xe^{\frac{x}{y}} = c$

Answer:

36. General solution of $(x+y)^2 \frac{dy}{dx} = a^2, a \neq 0$ is (c is an arbitrary constant)

A. $\frac{x}{a} = an rac{y}{a} + c$ B. an xy = c

C.
$$\tan(x+y) = c$$

D. $\tan\frac{y+c}{a} = \frac{x+y}{a}$

Answer:

Watch Video Solution

37. Let P (4, 3) be a point on the hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2} = 1.$ If the normal at

P intersects the X-axis at (16, 0), then the eccentricity of the hyperbola is

A.
$$\frac{\sqrt{5}}{2}$$

B. 2

C. $\sqrt{2}$

D. $\sqrt{3}$

Answer:

Watch Video Solution

38. If the radius of a spherical balloon increases by 0.1%, then its volume

increases approximately by

A. 0.2~%

 $\mathrm{B.}\,0.3\,\%$

 $\mathsf{C.}\,0.4\,\%$

D. 0.05~%

Answer:

39. The three sides of a right-angled triangle are in G.P (geometric progression). If the two acute angles be α and β , then $\tan \alpha$ and $\tan \beta$ are

A.
$$\frac{\sqrt{5}+1}{2}$$
 and $\frac{\sqrt{5}-1}{2}$
B. $\sqrt{\frac{\sqrt{5}+1}{2}}$ and $\sqrt{\frac{\sqrt{5}-1}{2}}$
C. $\sqrt{5}$ and $\frac{1}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{2}$ and $\frac{2}{\sqrt{5}}$

Answer:

40. If
$$\log_2 6 + \frac{1}{2x} = \log_2 \left(2^{\frac{1}{x}} + 8 \right)$$
, then the values of x are
A. $\frac{1}{4}, \frac{1}{3}$
B. $\frac{1}{4}, \frac{1}{2}$
C. $-\frac{1}{4}, \frac{1}{2}$

D.
$$\frac{1}{3}, -\frac{1}{2}$$

41. Let z be a complex number such that the principal value of argument,

arg z > 0. Then arg z - arg (-z) is

C. π

 $\mathsf{D.}-\pi$

Answer:

42. The general value of the real angle θ , which satisfies the equation, $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta)...(\cos n\theta + i \sin n\theta) = 1$ is given by, (assuming k is an integer)

A.
$$\frac{2k\pi}{n+2}$$
B.
$$\frac{4k\pi}{n(n+1)}$$
C.
$$\frac{4k\pi}{n+1}$$
D.
$$\frac{6k\pi}{n(n+1)}$$

Answer:

Watch Video Solution

43. Let a, b, c be real numbers such that a + b + c < 0 and the quadratic equation $ax^2 + bx + c = 0$ has imaginary roots. Then

A. a > 0, c > 0

B. a > 0, c < 0

 ${\sf C}.\,a < 0, c > 0$

D. a < 0, c < 0

Answer:

Watch Video Solution

44. A candidate is required to answer 6 out of 12 questions which are divided into two parts A and B, each containing 6 questions and he /she is not permitted to attempt more than 4 questions from any part. In how many different ways can he/she make up his/her choice of 6 questions?

A. 850

B. 800

C. 750

D. 700

Answer:

45. There are 7 greetings cards, each of a different colour and 7 envelopes of same 7 colours as that of the cards. The number of ways in which the cards can be put in envelopes, so that exactly 4 of the cards go into envelops of respective colour is,

A. 7C_3

B. 2. ${}^{7}C_{3}$

C. $3!^4C_4$

D. $3!^7 C_3{}^4 C_3$

Answer:

Watch Video Solution

46. $7^{2n}+16n-1(n\in N)$ is divisible by

B. 6	53
------	----

C. 61

D. 64

Answer:

Watch Video Solution

47. The number of irrational terms in the expansion of $\left(3^{rac{1}{8}}+5^{rac{1}{4}}
ight)^{84}$ is

A. 73

B.74

C. 75

D. 76

Answer:

48. Let A be a square matrix of order 3 whose all entries are 1 and let I_3 be the identity matrix of order 3. Then the matrix $A-3I_3$ is

A. invertible

B. orthogonal

C. non-invertible

D. real Skew Symmetric matrix

Answer:

49. If
$$A = \begin{pmatrix} 5 & 5x & x \\ 0 & x & 5x \\ 0 & 0 & 5 \end{pmatrix}$$
 and $|A^2| = 25$, then |x| is equal to
A. $\frac{1}{5}$
B. 5
C. 5^2

50. The system of equations

 $\lambda x + y + 3z = 0$

 $3x + \mu y - z = 0$

5x + 7y + z = 0

has infinitely many solutions in $\mathbb R.$ Then,

A.
$$\lambda=2, \mu=3$$

B.
$$\lambda=1, \mu=2$$

C.
$$\lambda = 1, \mu = 3$$

D.
$$\lambda=3, \mu=1$$

Answer:

51. Let $f: X \to Y$ and A, B are non-void subsets of Y, then (where the symbols have their usual interpretation)

A.
$$f^{-1}(A) - f^{-1}(B) \supset f^{-1}(A-B)$$
 but the opposite does not hold.

B. $f^{-1}(A) - f^{-1}(B) \subset f^{-1}(A-B)$ but the opposite does not hold.

C.
$$f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B)$$

D. $f^{-1}(A - B) = f^{-1}(A) \cup f^{-1}(B)$

Answer:

52. Let S, T, U be three non-void sets and $f\colon S o T, g\colon T o U$ be so that

g o f : S
ightarrow U is surjective. Then

A. g and f are both surjective

B. g is surjective, f may not be so

C. f is surjective, g may not be so

D. f and g both may not be surjective

Answer:

Watch Video Solution

53. The polar coordinate of a point P is $\left(2, \frac{\pi}{4}\right)$. The polar coordinate of the point Q. Which is such that the line joining PQ is bisected perpendicular by the initial line, is

A. $\left(2, \frac{\pi}{4}\right)$ B. $\left(2, \frac{\pi}{6}\right)$ C. $\left(-2, \frac{\pi}{4}\right)$ D. $\left(-2, \frac{\pi}{6}\right)$

54. The length of conjugate axis of a hyperbola is greater than the length of transverse axis. Then the eccentricity e is,

A.
$$=\sqrt{2}$$

B. $>\sqrt{2}$
C. $<\sqrt{2}$
D. $<rac{1}{\sqrt{2}}$

Answer:

55. Let
$$f(x) = x^4 - 4x^3 + 4x^2 + c, c \in R$$
. Then

A. f(x) has infinitely many zeros in (1, 2) for all c

B. f(x) has exactly one zero in (1, 2) if $1-\ < c < 0$

C. f(x) has double zeros in (1, 2) if -1 < c < 0

D. whatever be the value of c, f(x) has no zero in (1, 2)

Answer:

Watch Video Solution

56. The graphs of the polynomial $x^2 - 1$ and cos x intersect

A. at exactly two points

B. at exactly 3 points

C. at least 4 but at finitely many points

D. at infinitely many points

Answer:

57. A point is in motion along a hyperbola $y = \frac{10}{x}$ so that its abscissa x increases uniformly at a rate of 1 unit per second. Then, the rate of change of its ordinate, when the point passes through (5, 2)

A. increases at the rate of
$$\frac{1}{2}$$
 unit per second
B. decreases at the rate of $\frac{1}{2}$ unit per second
C. decreases at the rate of $\frac{2}{5}$ unit per second
D. increases at the rate of $\frac{2}{5}$ unit per second

Answer:

Watch Video Solution

58. Let a = min $\{x^2+2x+3:x\in R\}$ and $b=\lim_{ heta o 0}rac{1-\cos heta}{ heta^2}$. Then $\sum_{r=0}^n a^r b^{n-r}$ is A. $rac{2^{n+1}-1}{3\cdot 2^n}$

B.
$$\frac{2^{n+1}+1}{3.2^n}$$

C. $\frac{4^{n+1}-1}{3.2^n}$
D. $\frac{1}{2}(2^n-1)$

Watch Video Solution

59. Let a>b>0 and $I(n)=a^{1/n}-b^{1/n},$ $J(n)=\left(a-b
ight)^{1/n}$ for all

 $n\geq 2$, Then

A. I(n) < J(n)

 $\mathsf{B}.\,I(n)>J(n)$

 $\mathsf{C}.\,I(n)=J(n)$

$$\mathsf{D}.\,I(n)+J(n)=0$$

Answer:

60. Let $\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma}$ be three unit vectors such that $\widehat{\alpha} \times (\widehat{\beta} \times \widehat{\gamma}) = \frac{1}{2} (\widehat{\beta} + \widehat{\gamma})$ where $\widehat{\alpha} \times (\widehat{\beta} \times \widehat{\gamma}) = (\widehat{\alpha}, \widehat{\gamma})\widehat{\beta} - (\widehat{\alpha}, \widehat{\beta})\widehat{\gamma}$. If $\widehat{\beta}$ is not parallel to $\widehat{\gamma}$, then the angle between $\widehat{\alpha}$ and $\widehat{\beta}$ is

A.
$$\frac{5\pi}{6}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{2\pi}{3}$

Answer:

Watch Video Solution

61. The position vectors of the points A, B, C and D are $3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} - 3\hat{j} + 2\hat{k}, 5\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + \lambda\hat{k}$ respectively. If the points A, B, C and D lie on a plane, the value of λ is A. 0

B. 1

C. 2

D.-4

Answer:

Watch Video Solution

62. A particle starts at the origin and moves 1 unit horizontally to the right and reaches P_1 , then it moves $\frac{1}{2}$ unit vertically up and reaches P_2 , then it moves $\frac{1}{4}$ unit horizontally to right and reaches P_3 , then it moves $\frac{1}{8}$ unit vertically down and reaches P_4 , then it moves $\frac{1}{16}$ unit horizontally to right and reaches P_5 and so on. Let $P_n = (x_n, y_n)$ and $\lim_{n \to \infty} x_n = \alpha$ and $\lim_{n \to \infty} y_n = \beta$. Then (α, β) is

A. (2, 3)

 $\mathsf{B}.\left(\frac{4}{3},\frac{2}{5}\right)$

$$C.\left(\frac{2}{5},1\right)$$

$$D.\left(\frac{4}{3},3\right)$$

63. For any non-zero complex number z, the minimum value of |z|+|z-1| is

A. 1

- $\mathsf{B}.\,\frac{1}{2}$
- C. 0

D.
$$\frac{3}{2}$$

Answer:

64. Let $A = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3 \end{pmatrix}$. Then the roots of the equation det $(A - \lambda I_3) = 0$ (where I_3 is the identify matrix of order 3) are A. 3, 0, 3 B. 0, 3, 6 C. 1, 0, -6

D. 3, 3, 6

Answer:

Watch Video Solution

65. If A and B are (-2, -2) and (2, -4) respectively, find the coordinates of P on AB such that AP $=\frac{3}{7}$ AB.

66. Equation of a tangent to the hyperbola $5x^{2} - y^{2} = 5$ and which passes through an external point (2, 8) is a) 3x-y+2=0 b) 3x+y-14=0 c)23x-3y-22=0 d) 3x-23y+178=0

A. 3x - y + 2 = 0

B. 3x + y - 14 = 0

C.23x - 3y - 22 = 0

 $\mathsf{D}.\, 3x - 23y + 178 = 0$

Answer:

Watch Video Solution

67. Let f and g be differentiable on the interval I and let a, $b \in I, a < b$.

Then

A. If f(a) = 0 - f(b), the equation f'(x) + f(x)g'(x) = 0 is solvable in (a, b)

B. If f(a) = 0 = f(b), the equation f'(x) + f(x)g'(x) = 0 may not be solvable

in (a, b)

C. If g(a) = 0 = g(b), the equation g'(x) + kg(x) = 0 is solvable in (a, b),

 $k \in R$

D. If g(a) = 0 = g(b), the equation g'(x) = kg(x) = 0 may not be solvable in

(a, b), $k \in R$

Answer:

Watch Video Solution

68. Consider the function
$$f(x) = rac{x^3}{4} - \sin \pi x + 3$$

A. f(x) does not attain value of within the interval [-2, 2]

- B. f(x) takes on the value $2\frac{1}{3}$ in the interval [-2, 2] C. f(x) takes on the value $3\frac{1}{4}$ in the interval [-2, 2]
- D. f(x) takes no value p, 1 in the interval [-2, 2]

69. Let
$$I_n=\int_0^1 x^n an^{-1} x dx$$
. If $a_n I_{n+2}+b_n I_n=c_n$ for all $n\geq 1$, then

A. a_1, a_2, a_3 are in G.P.

B. b_1, b_2, b_3 are in A.P

C. c_1, c_2, c_3 are in H.P

D. a_1, a_2, a_3 are in A.P

Answer:

70. Two particles A and B move from rest along a straight line with constant accelerations f and h respectively. If A takes m seconds more

than B and describes n units more than that of B acquiring the same speed, then

A.
$$(f+h)m^2 = fhn$$

B. $(f-fh)m^2 = fhn$
C. $(h-f)n = \frac{1}{2}fhm^2$
D. $\frac{1}{2}(f+h)n = fhm^2$

Answer:

Watch Video Solution

71. The area bounded by y = x + 1 and y = cos x and the x-axis, is

A. 1 sq. unit
B.
$$\frac{3}{2}$$
 sq. unit
C. $\frac{1}{4}$ sq. unit
D. $\frac{1}{8}$ sq. unit

72. Let x_1, x_2 be the roots of $x^2-3x+a=0$ and x_3, x_4 be the roots of $x^2-12x+b=0$. If $x_1< x_2< x_3< x_4$ and x_1, x_2, x_3, x_4 are in G.P then ab equals

A. $\frac{24}{5}$ B. 64 C. 16

D. 8

Answer:

73. If $heta\in\mathbb{R}$ and $rac{1+i\cos heta}{1-2i\cos heta}$ is real number, then heta will be (when I : Set of

integers)

A.
$$(2n+1)rac{\pi}{2}, n\in I$$

B. $rac{3n\pi}{2}, n\in I$

C. $n\pi, n\in I$

D. $2n\pi, n\in I$

Answer: