©゙"doubtnut

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

STRAIGHT LINES AND PAIR OF STRAIGHT LINES

Jee Main 5 Years At A Glance

1. Let the orthocentre and centroid of a triangle be
$(-3,5)$ and $B(3,3)$ respectively. If C is the circumcentre of the triangle then the radrus of the circle having line segment

AC as diameter, is
A. $2 \sqrt{10}$
B. $3 \sqrt{\frac{5}{2}}$
C. $\frac{3 \sqrt{5}}{2}$
D. $\sqrt{10}$

Answer: B

(D) Watch Video Solution

2. The straight line through a fixed point $(2,3)$ intersects the coordinate axes at distinct point P and Q. If O is the origin and the rectangle OPRQ is completed then the locus of R is
A. $2 x+3 y=x y$
B. $3 x+2 y=x y$
C. $3 x+2 y=6 x y$
D. $3 x+2 y=6$

Answer: B

- Watch Video Solution

3. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
(1) $(-3,-9)$
(2) $(-3,-8)$
(3) $\left(\frac{1}{3},-\frac{8}{3}\right)$
$\left(-\frac{10}{3},-\frac{7}{3}\right)$
A. $\left(\frac{1}{3}, \frac{8}{3}\right)$
B. $\left(-\frac{10}{3},-\frac{7}{3}\right)$
C. $(-3,-9)$
D. $(-3,-8)$

(D) Watch Video Solution

4. If a variable line drawn through the intersection of the lines $\frac{x}{3}+\frac{y}{4}=1$ and $\frac{x}{4}+\frac{y}{3}=1$ meets the coordinate axes at A and $B,(A \neq B)$, then the locus of the midpoint of $A B$ is (A)

$$
\begin{equation*}
6 x y=7(x+y) \quad \text { (В) } \quad 4(x+y)^{2}-28(x+y)+49=0 \tag{C}
\end{equation*}
$$

$7 x y=6(x+y)$ (D) $14(x+y)^{2}-97(x+y)+168=0$
A. $7 x y=6(x+y)$
B. $4(x+y)^{2}-28(x+y)+49=0$
C. $6 x y=7(x+y)$
D. $14(x+y)^{2}-97(x+y)+168=0$

- Watch Video Solution

5. The point $(2,1)$ is translated parallel to the line $L: x-y=4$ by $2 \sqrt{3}$ units. If the new point Q lies in the third quadrant, then the equation of the line passing through Q and perpendicular to L is
A. $x+y=2-\sqrt{6}$
B. $2 x+2 y=1-\sqrt{6}$
C. $x+y=3-3 \sqrt{6}$
D. $x+y=3-2 \sqrt{6}$

Answer: D

6. Let L be the line passing through the point $P(1,2)$ such that its intercepted segment between the co-ordinate axes is bisected at P. If L_{1} is the line perpendicular to L and psssing through the point ($-2,1$), then the point of intersection of L and L_{1} is
A. $\left(\frac{4}{5}, \frac{12}{5}\right)$
B. $\left(\frac{3}{5}, \frac{23}{10}\right)$
C. $\left(\frac{11}{20}\right),\left(\frac{29}{10}\right)$
D. $\left(\frac{3}{10}, \frac{17}{5}\right)$

Answer: A

D Watch Video Solution

7. The points $\left(0, \frac{8}{3}\right),(1,3)$ and $(82,30)$ are vertices of
A. form an acute angled triangle.
B. form a right angled triangle
C. lie oin a straight line.
D. form an obtuse angled triangle

Answer: C

- Watch Video Solution

8. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then
A. $3 b c-2 a d=0$
B. $3 b c+2 a d=0$
C. $2 b c-3 a d=0$
D. $2 b c+3 a d=0$

Answer: A

- Watch Video Solution

9. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$ Then equation of the line passing through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0 \quad 2 x-9 y-11=0 \quad 2 x+9 y-11=0$
$2 x+9 y+7=0$
A. $4 x+7 y+3=0$
B. $2 x-9 y-11=0$
C. $4 x-7 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

- Watch Video Solution

10. Given three points P, Q, R with $P(5,3)$ and R lies on the x-axis.

If equation of RQ is $x-2 y=2$ and PQ is parallel to the x -axis, then the centroid of $\triangle P Q R$ lies on the line:
A. $2 x+y-9=0$
B. $x-2 y+1=0$
C. $5 x-2 y=0$
D. $2 x-5 y=0$

(Watch Video Solution

Exercise 1 Concept Builder

1. Let $A\left(\alpha, \frac{1}{\alpha}\right), B\left(\beta, \frac{1}{\beta}\right), C\left(\gamma, \frac{1}{\gamma}\right)$ be the vertices of a
$\Delta A B C$ where α, β are the roots of the equation
$x^{2}-6 p_{1} x+2=0, \beta, \gamma$ are the roots of the equation
$x^{2}-6 p_{2} x+3=0$ and γ, α are the roots of the equation
$x^{2}-6 p_{3} x+6=0, p_{1}, p_{2}, p_{3}$ being positive. Then the coordinates of the cenroid of $\triangle A B C$ is
A. $\left(1, \frac{11}{18}\right)$
B. $\left(0, \frac{11}{8}\right)$
C. $\left(2, \frac{11}{18}\right)$
D. None of these

- Watch Video Solution

2. Locus of centroid of the triangle whose vertices are ($a \cos t$, $a \sin t),(b \sin t,-b \cos t)$ and $(1,0)$, where is a
A. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
C. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$

Answer: C

3. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$. The coordinates of vertex A can be
A. $(1,6)$
B. $(-1 / 2,5)$
C. $(5 / 6,6)$
D. None of these

Answer: C

D Watch Video Solution

A. are collinear
B. form a triangle whose area is independent of a
C. form a triangle whose area is independent of b
D. form a triangle whose area is independent of a, b

Answer: B

- Watch Video Solution

5. The locus of the moving point whose coordinates are given
by $\left(e^{t}+e^{-t}, e^{t}-e^{-t}\right)$ where t is a parameter, is $x y=1$ (b)
$x+y=2 x^{2}-y^{2}=4$ (d) $x^{2}-y^{2}=2$
A. $x y=1$
B. $x+y=2$
C. $x^{2}-y^{2}=4$
D. $x^{2}-y^{2}=2$

Answer: C

- Watch Video Solution

6. The coordinates of the point AandB are $(a, 0)$ and $(-a, 0)$, respectively. If a point P moves so that $P A^{2}-P B^{2}=2 k^{2}$, when k is constant, then find the equation to the locus of the point P.
A. $2 a x-k^{2}=0$
B. $2 a x+k^{2}=0$
C. $2 a y-k^{2}=0$
D. $2 a y+k^{2}=0$

- Watch Video Solution

7. A point A divides the join of $P(-5,1)$ and $Q(3,5)$ in the ratio $k: 1$. Then the integral value of k for which the area of $A B C$, where B is $(1,5)$ and C is $(7,-2)$, is equal to 2 units in magnitude is
A. $7, \frac{30}{9}$
B. $7, \frac{31}{9}$
C. $4, \frac{31}{9}$
D. $7, \frac{31}{3}$

Answer: B
8. The coordinates of A, B, C are $(6,3),(-3,5)$ and $(4,-2)$ respectively and P is any point (x, y). Show that the ratio of the areas of triangles $P B C$ and $A B C$ is $\left|\frac{x+y-2}{7}\right|$.
A. $\left|\frac{x+y-2}{7}\right|$
B. $\left|\frac{x-y+2}{2}\right|$
C. $\left|\frac{x-y-2}{7}\right|$
D. None of these

Answer: A
(D) Watch Video Solution
9. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is

1 , then the set of values which k can take is given by (1) $\{1,3\}$
(2) $\{0,2\}(3)\{-1,3\}(4)\{-3,-2\}$
A. $\{-1,3\}$
B. $\{-3,-2\}$
C. $\{1,3\}$
D. $\{0,2\}$

Answer: A
10. All points lying inside the triangle formed by the points (1.
3). (5, 0) and (-1, 2) satisfy (A) $3 x+2 y \geq 0$ (B) $2 x+y-13 \geq 0$
(C) $2 x-3 y-12 \leq 0$ (D) $-2 x+y \geq 0$
A. $3 x+2 \geq 0$
B. $2 x+y-13 \leq 0$
C. $2 x-3 y-12 \geq 0$
D. All the above

Answer: D

(D) Watch Video Solution

11. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line
$35 x-22 y+1=0$ passes through the point (a, b) (b) (b, a) $(-a,-b)(d)$ none of these
A. (a, b)
B. (b, a)
C. (a,-b)
D. $(-a, b)$

Answer: A

- Watch Video Solution

12. Let $A(2,-3) \operatorname{and} B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line $2 x+3 y=9$ $2 x-3 y=73 x+2 y=53 x-2 y=3$
A. $3 x-2 y=3$
B. $2 x-3 y=7$
C. $3 x+2 y=5$
D. $2 x+3 y=9$

Answer: D

- Watch Video Solution

13. A rectangle
$A B C D$,
where
$A \equiv(0,0), B \equiv(4,0), C \equiv(4,2) D \equiv(0,2)$, undergoes the following transformations successively: $f_{1}(x, y) \overrightarrow{y, x}$ $\left.f_{2}(x, y) \overrightarrow{x+3 y, y} f_{3}(x, y) \overrightarrow{(x-y) / 2},(x+y) / 2\right)$ The final figure will be square (b) a rhombus a rectangle (d) a parallelogram
A. a square
B. a rhombus
C. a rectangle
D. a parallelogram

Answer: D

(D) Watch Video Solution

14. The ends of the base of an isosceles triangle are at
$(2 a, 0)$ and $(0, a)$. The equation of one side is $x=2 a$. The equation of the other side, is
A. $x+2 y-a=0$
B. $x+2 y-2 a$
C. $3 x+4 y-4 a=0$
D. $3 x-4 y+4 a=0$

Answer: D

- Watch Video Solution

15. The point (x, y) lies on the line with slope m and passes through the fixed point $\left(x_{0}, y_{0}\right)$ if and only if its coordinates satisfy the equation $y-y_{0}$ is equal to
A. $m\left(x-x_{0}\right)$
B. $m\left(y-x_{0}\right)$
C. $m(y-x)$
D. $m\left(x-y_{0}\right)$

D Watch Video Solution

16. The two lines $a x+b y=c$ and $a^{\prime} x+b^{\prime} y=c^{\prime}$ are perpendicular if
A. $a a^{\prime}-\boldsymbol{\prime}=0$
B. $a a^{\prime}+\prime=0$
C. $a b+a^{\prime} b^{\prime}=0$
D. $a b-a^{\prime} b^{\prime}=0$

Answer: B

17. The slopes of the lines which make an angle 45° with the line $3 x-y=-5$ is
A. $1,-1$
B. $\frac{1}{2},-1$
C. $1, \frac{1}{2}$
D. $-2, \frac{1}{2}$

Answer: D

- Watch Video Solution

18.

The
lines
$x+2 y-5=0,2 x-3 y+4=0,6 x+4 y-13=0$
A. are concurrent
B. form a right angled triangle
C. form an isosceles triangle
D. form an equilateral triangle.

Answer: B

- Watch Video Solution

19. Two points $P(a, 0)$ and $Q(-a, 0)$ are given, R is a variable on one side of the line PQ such that $\angle R P Q-\angle R Q P$ is a positive constant 2α. FInd the locus of point R.
A. $x^{2}-y^{2}+2 x y \cot 2 \alpha-a^{2}=0$
B. $x^{2}+y^{2}+2 x y \cot 2 \alpha-a^{2}=0$
C. $x^{2}+y^{2}+2 x y \cot 2 \alpha+a^{2}=0$

D. None of the above

Answer: A

- Watch Video Solution

20. Consider the equation $\sqrt{3} x+y-8=0$
I. Normal form of the given equation is
$\cos 30^{\circ} x+\sin 30^{\circ} y=4$
II. Values of p and w are 4 and 30° respectively.

Choose the correct option.
A. Only I is true
B. Only II is true
C. Both are true
D. Both are false

- Watch Video Solution

21. The diagonals of the parallelogram whose sides are $l x+m y+n=0, l x+m y+n^{\prime},=0, \quad m x+l y+n=0$, $m x+l y+n^{\prime}=0$ include an angle
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
D. $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$

Answer: B
22. The equation of a straight line which cuts off an intercept of 5 units on negative direction of y-axis and makes an angle of 120° with the positive direction ofx-axis is
A. $\sqrt{3} x+y+5=0$
B. $\sqrt{3} x+y-5=0$
C. $\sqrt{3} x-y-5=0$
D. $\sqrt{3} x-y+5=0$

Answer: A

- Watch Video Solution

23. A ray of light passsing through a point $(1,2)$ is reflected on the x-axis at point Q and passes through the point $(5,8)$. Then
the abscissa of the point Q is
A. -3
B. $9 / 5$
C. $13 / 5$
D. None of these

Answer: B

- Watch Video Solution

24. The inclination of the line $x-y+3=0$ with the positive direction of x-axis is
A. 45°
B. 135°
C. -45°
D. -135°

Answer: A

- Watch Video Solution

25. The line parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 y-3 a=0$, where $(a, b) \neq(0,0)$, is above the x -axis at a distance of $3 / 2$ units from it above the x-axis at a distance of $2 / 3$ units from it below the x-axis at a distance of $3 / 2$ units from it below the x-axis at a distance of $2 / 3$ units from it
A. Above the x-axis at a distance of $\frac{3}{2}$ from it
B. Above the x-axis at a distance of $\frac{2}{3}$ from it
C. Below the x-axis at a distance of $\frac{3}{2}$ from it
D. Below the x-axis at a distance of $\frac{2}{3}$ from it

Answer: C

- Watch Video Solution

26. A straight line I with negative slope passes through $(8,2)$ and cuts the coordinate axes at P and Q . Find absolute minimum value of "OP+OQ where O is the origin-
A. 28
B. 15
C. 18
D. 10

Answer: C

- Watch Video Solution

27. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-$ $y+8$ - 0 . Find the equation of other diagonal
A. $x+3 y=21$
B. $2 x-3 y=7$
C. $x+7 y=31$
D. $2 x+3 y=21$

Answer: C

28. What is the equation of the line mid way between the lines $3 x-45 y+12=0$ and $3 x-4 y=6$?
A. $3 x-4 y-9=0$
B. $3 x-4 y+9=0$
C. $3 x-4 y-3=0$
D. $3 x-4 y+3=0$

Answer: D

D Watch Video Solution

29. What is the equation of the line through $(1,2)$ so that the
segment of the line intercepted between the axes is bisected at this point ?
A. $2 x-y=4$
B. $2 x-y+4=0$
C. $2 x+y=4$
D. $2 x+y+4=0$

Answer: C

- Watch Video Solution

30. The point $\left(t^{2}+2 t+5,2 t^{2}+t-2\right)$ lies on the line $x+y=2$ for
A. All real values of t
B. Some real values of t
C. $t=\frac{-3 \pm \sqrt{3}}{6}$
D. None of these

Answer: D

- Watch Video Solution

31. Find the value of x for which the points
$(x-1),(2,1)$ and $(4,5)$ are collinear.
A. 1
B. 2
C. 3
D. 4
32. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines
$y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to the interval
A. $\left(0, \frac{1}{2}\right)$
B. $(3, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

33. The perpendicular distance between the straight lines $6 x+8 y+15=0$ and $3 x+4 y+9=0$ is
A. $\frac{3}{2}$ units
B. $\frac{3}{10}$ unit
C. $\frac{3}{4}$ unit
D. $\frac{2}{7}$ unit

Answer: B

- Watch Video Solution

34. The locus of a point that is equidistant from the lines
$x+y-2 \sqrt{2}=0 \quad$ and $\quad x+y-\sqrt{2}=0 \quad$ is
$x+y-5 \sqrt{2}=0$
(b) $\quad x+y-3 \sqrt{2}=0$

$$
\begin{equation*}
2 x+2 y-3 \sqrt{2}=0 \text { (d) } 2 x+2 y-5 \sqrt{5}=0 \tag{c}
\end{equation*}
$$

A. $x+y-5 \sqrt{2}=0$
B. $x+y-3 \sqrt{2}=0$
C. $2 x+2 y-3 \sqrt{2}=0$
D. $2 x+2 y-5 \sqrt{2}=0$

Answer: C

D Watch Video Solution

35. If the line segment joining the points $A(a, b)$ and $B(c, d)$ subtends an angle θ at the origin, then $\cos \theta$ is equal to
A. $\frac{a c+b d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}$
B. $\frac{a b+c d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}$
C. $\frac{a d+b c}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}$
D. None of these

Answer: A

- Watch Video Solution

36. The angle between $y=x+6$ and $y=\sqrt{3} x+y$ is
A. 15°
B. 12°
C. 13°
D. 14°

(D) Watch Video Solution

37. If p be the length of the perpendicular from the origin on the straight line $x+2 b y=2 p$.then what is the value of b ?
A. $\frac{1}{p}$
B. p
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: D

38. The medians $A D$ and $B E$ of the triangle with vertices $A(0, b)$, $B(0,0)$ and $C(a, 0)$ are mutually perpendicular if
A. $b=\sqrt{2} a$
B. $a=\sqrt{2} b$
C. $b=-\sqrt{2} a$
D. $a=2 b$

Answer: B

(D) Watch Video Solution

39. Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle. If $p=(\cos \theta, \sin \theta)$ and $Q(\cos (\alpha-\theta))$, then Q is obtained from P by
A. clockwise rotation around the orign through an angle α
B. anticlockwise rotation around the origin through an angle α
C. reflection in the line through the origin with slope $\tan \alpha$
D. reflection in the line through the origin with slope $\tan (\alpha / 2)$

Answer: D

- Watch Video Solution

40. If $2 p$ is the length of perpendicular from the origin to the
lines $\frac{x}{a}+\frac{y}{b}=1$, then $a^{2}, 8 p^{2}, b^{2}$ are in
A. A.p.
B. G.P.
C. H.P.
D. None of these

Answer: C

(D) Watch Video Solution

41. Angle made with the x-axis by a straight line drawn through
(1,2) so that it intersects $x+y=4$ at a distance $\frac{\sqrt{6}}{3}$ from (1,
2) is 105^{0} (b) 75^{0} (c) 60^{0} (d) 15^{0}
A. 105°
B. 75°
C. 60°
D. 15°

Answer: B

- Watch Video Solution

42. The distance of the point $(1,2,3)$ form the coordinate axes are A, B and C respectively. $A^{2}=B^{2}+C^{2}, B^{2}=2 C^{2}$, $2 A^{2} C^{2}=13 B^{2}$ which of these hold (s) true? (A) 1 only (B) 1 and 3 (C) 1 and 2 (D) 2 and 3
A. Only I
B. I and III
C. I and II
D. II and III

(D) Watch Video Solution

43. Find the tangent of the angel between the lines whose intercepts n the axes are respectively $a,-b a d n b,-a$.
A. $\tan ^{-1} \frac{a^{2}-b^{2}}{a b}$
B. $\tan ^{-1} \frac{b^{2}-a^{2}}{2}$
C. $\tan ^{-1} \frac{b^{2}-a^{2}}{2 a b}$
D. None of these

Answer: C

44. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x axis then the equation of L is
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x=2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: B

- Watch Video Solution

45. Number of lines that can be drawn through the point
$(4,-5)$ so that its distance from $(-2,3)$ will be equal to 12 is equal to
A. 2
B. 1
C. 4
D. None of these

Answer: D

- Watch Video Solution

46. The straight line $a x+b y+c=0$, where $a b c \neq 0$, will pass through the first quadrant if $a c>0, b c>0$ $c>0 a n d b c<0 \quad b c>0$ and/or $a c>0$ (d) $a c<0$ and/or $b c<0$
A. $a c>0, b c>0$
B. $c>0$ and $b c<0$
C. $b c>0$ and/or $a c>0$
D. $a c<0$ and/or $b c<0$

Answer: D

- Watch Video Solution

47. If p_{1} and p_{2} are the lengths of the perpendicular form the orgin to the line
$x \sec \theta+y \cos e c \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$
respectively then prove that $4 p_{1}^{2}+p_{2}^{2}=a^{2}$
A. $m=1, n=1$
B. $m=1, n=4$
C. $m=4, n=1$
D. $m=1, n=1$

- Watch Video Solution

48. A point moves so that the distance between the feet ofperpendiculars drawn from it to the lines $a x^{2}+2 h x y+b y^{2}=0$ is a constant 2 k . The equation of its locus is
A. $\left(x^{2}+y^{2}\right)\left(h^{2}+a b\right)=\lambda^{2}\left[(a+b)^{2}-4 h^{2}\right]$
B. $\left(x^{2}+y^{2}\right)\left(h^{2}-a b\right)=\lambda^{2}\left[(a-b)^{2}+4 h^{2}\right]$
C. $\left(x^{2}-y^{2}\right)\left(h^{2}-a b\right)=\lambda^{2}\left[(a-b)^{2}-4 h^{2}\right]$
D. None of the above

Answer: B
49. The range of value of α such that $(0, \alpha)$ lies on or inside the triangle formed by the lines $y+3 x+2=0,3 y-2 x-5=0,4 y$
$+x-14=0$ is
A. $5<\alpha \leq 7$
B. $\frac{1}{2} \leq \alpha \leq 1$
C. $\frac{5}{3} \leq \alpha \leq \frac{7}{2}$
D. None of these

Answer: C

(D) Watch Video Solution
50. If P is a point (x, y) on the line $y=-3 x$ such that P and the point $(3,4)$ are on the opposite sides of the line $3 x-4 y=8, \quad$ then $\quad x>\frac{8}{15} \quad$ (b) $x>\frac{8}{5} \quad y<-\frac{8}{5}$
$y<-\frac{8}{15}$
A. $x>\frac{8}{15}, y \leq \frac{8}{5}$
B. $x>\frac{8}{5}, y<-\frac{8}{15}$
C. $x=\frac{8}{15}, y=-\frac{8}{5}$
D. $x<\frac{8}{5}, y>-\frac{8}{15}$

Answer: A

51. If the line $y l=\sqrt{3} x$ cuts the curve $x^{2}=y^{2}+3 x y+5 x^{2}+3 y^{2}+4 x+5 y-1=0$ at the point A, B, C, then $O A \dot{O} B \dot{O} C$ is equal to $\left(\frac{k}{13}\right)(3 \sqrt{3}-1)$. The value of k is
A. $\frac{4}{13}(3 \sqrt{3}-1)$
B. $3 \sqrt{3}+1$
C. $\frac{2}{\sqrt{3}}+7$
D. None of these

Answer: A

52. The equation of a straight line, which passes through the point $(a, 0)$ and whose perpendicular distance from the point (2a,2a)is a,is
A. $3 x-4 y-3 a=0$
B. $x-a=0$
C. both a and b
D. Neither of a and b

Answer: C

D Watch Video Solution

53. $\mathrm{P}(\mathrm{m}, \mathrm{n})$ (where m, n are natural numbers) is any point in the interior of the quadrilateral formed by the pair of lines $x y=0$
and the lines $2 x+y-2=0$ and $4 x+5 y=20$. The possible number of positions of the point P is.
A. six
B. five
C. four
D. eleven

Answer: A

D Watch Video Solution

54. Find the distance between the parallel lines $3 x 4 y+7=0$ and $3 x 4 y+5=0$.
A. 2
B. 5
C. 7
D. 3

Answer: C

(D) Watch Video Solution

55. The value of h for which the equation $3 x^{2}+2 h x y-3 y^{2}-40 x+30 y-75=0$ represents a pair of straight lines, are
A. 4,4
B. 4,6
C. $4,-4$
D. 0,4

Answer: A

- Watch Video Solution

56. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other, then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$
A. 0.04
B. 0.06
C. 0.08
D. None of these

D Watch Video Solution

57. The slopes of lines represented by $x^{2}+2 h x y+2 y^{2}=0$ are in the ratio $1: 2$, then h equals .
A. $\pm \frac{1}{2}$
B. $\pm \frac{3}{2}$
C. ± 1
D. ± 3

Answer: B

58. Two pairs of straight lines have the equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$. One line will be common among them if. $a+8 h-16 b=0$

$$
\begin{equation*}
a-8 h+16 b=0 a-6 h+9 b=0 \text { (d) } a+6 h+9 b=0 \tag{b}
\end{equation*}
$$

A. $a=-3(2 h+3 b)$
B. $a=8(h-2 b)$
C. $a=2(b+h)$
D. Both a and b

Answer: D

59. If the pair of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then
A. 1
B. -1
C. 0
D. $-1 / 2$

Answer: B

- Watch Video Solution

60. The equation $8 x^{2}+8 x y+2 y^{2}+26 x+13 y+15=0$ represents a pair of straight lines. The distance between them
A. $7 / \sqrt{5}$
B. $7 / 2 \sqrt{5}$
C. $\sqrt{7} / 5$
D. None of these

Answer: B

- Watch Video Solution

Exercise 2 Concept Applicator

1. If the point $P(x, y)$ be equidistant from the points $A(a+b, b-$
a) and $\mathrm{B}(\mathrm{a}-\mathrm{b}, \mathrm{a}+\mathrm{b})$, then prove that $b x=a y$
A. $a x=b y$
B. $b x=q a y$ and P can (a,b)
C. $x^{2}-y^{2}=2(a x+b y)$
D. None of the above

Answer: B

- Watch Video Solution

2. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle
$O P Q$. The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are $\left(\frac{4}{3}, 3\right)$ (b) $\left(3, \frac{2}{3}\right)\left(3, \frac{4}{3}\right)$ $\left(\frac{4}{3}, \frac{2}{3}\right)$
A. $(4 / 3,3)$
B. $(3,2 / 3)$
C. $(3,4 / 3)$
D. $(4 / 3,2 / 3)$

Answer: C

(D) Watch Video Solution

3. The co-ordinates of the orthocentre of the triangle bounded by the lines, $4 x-7 y+10=0 ; x+y=5$ and $7 x+4 y=15$
is
A. $(1,2)$
B. $(1,-2)$
C. $(-1,-2)$
D. $(-1,2)$

Answer: A

- Watch Video Solution

4. The equations of the sided of a triangle are $x+y-5=0, x-y+1=0, \quad$ and $\quad x+y-\sqrt{2}=0 \quad$ is $\left(-\infty,-\frac{4}{3}\right) \cup\left(\frac{4}{3},+\infty\right)\left(-\frac{4}{3}, \frac{4}{3}\right)$ (c) $\left(-\frac{3}{4}, \frac{4}{3}\right)$ none of these
A. $\left(-\frac{4}{3}, \frac{4}{3}\right)$
B. $\left(-\infty,-\frac{4}{3}\right) \cup\left(\frac{4}{3}, \infty\right)$
C. $\left(\frac{-3}{4}, \frac{3}{4}\right)$
D. None of these

- Watch Video Solution

5. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line

$$
\begin{array}{lrrr}
5 x-12 y=10 . & \text { Then, } & a=\frac{64}{115}, b=\frac{112}{15} \\
a=\frac{14}{15}, b=-\frac{8}{115} & & a=\frac{64}{115}, b=-\frac{8}{115} \\
a=\frac{64}{15}, b=\frac{14}{15} & &
\end{array}
$$

A. $a=67 / 115, b=112 / 15$
B. $a=14 / 15, b=8 / 115$
C. $a=64 / 115, b=-8 / 115$
D. $a=64 / 15, b=14 / 15$

- Watch Video Solution

6. A line $A B$ makes zero intercepts on X-axis and Y-axis and it is perpendicular to another line $C D, 3 x+4 y+6=0$. The equation of line $A B$ is
A. $y=4$
B. $4 x-3 y+8=0$
C. $4 x-3 y=0$
D. $4 x-3 y+6=0$

Answer: C

7. A light ray emerging from the point source placed at $P(2,3)$ is reflected at a point Q on the y-axis. It then passes through the point $R(5,10)$. The coordinates of Q are $(0,3)$ (b) $(0,2)$
$(0,5)$ (d) none of these
A. $(0,3)$
B. $(0,2)$
C. $(0,5)$
D. None of these

Answer: C

- Watch Video Solution

8. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-$ $y+8$ - 0 . Find the equation of other diagonal
A. $x+3 y=21$
B. $2 x-3 y=7$
C. $x+7 y=31$
D. $2 x+3 y+21$

Answer: C

- Watch Video Solution

9. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4,\left(\frac{1}{2}<m<3\right)$ then find the values
A. $\frac{1}{7}(1 \pm 5 \sqrt{3})$
B. $\frac{1}{7}(1 \pm 5 \sqrt{5})$
C. $\frac{1}{7}(1 \pm 5 \sqrt{2})$
D. $\frac{1}{7}(1 \pm 2 \sqrt{5})$

Answer: C

- Watch Video Solution

10. For which value of ' $p^{\prime}, y^{2}+x y+p x^{2}-x-2 y=0$ represents a pair of straight lines
A. 2
B. $\frac{2}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

11. Let $P Q R$ be a right-angled isosceles triangle, right angled at $P(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is

$$
3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0
$$

$$
3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0
$$

$$
3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0
$$

$$
3 x^{2}-3 y^{2}-8 x y-15 y-20=0
$$

A. $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
B. $3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
C. $3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
D. $3 x^{2}-3 y^{2}-8 x y-15 y-20=0$

Answer: B

- Watch Video Solution

12. The number of lines that are parallel to $2 x+6 y-7=0$ and have an intercept 10 between the coordinate axes is
A. 1
B. 2
C. 4
D. Infinitely many

Answer: B

- Watch Video Solution

13. A vertex of an equileteral triangle is $(2 ; 3)$ and the equation of the opposite sides is $x+y=2$. Find the equation of the other sides of triangle .
A. $y-3=(2 \pm \sqrt{3}(x-2)$
B. $y+3=(2 \pm \sqrt{3})(x+2)$
C. $y=3=((3 \pm \sqrt{2})(x+2)$
D. $y-3=(3 \pm \sqrt{2})(x-2)$

Answer: A

14. The value of λ for which the lines joining the point of intersection of curves C_{1} and C_{2} to the origin are equally inclined to the axis of x .

$$
C_{1}: \lambda x^{2}+3 y^{2}-2 \lambda x y+9 x=0, C_{2}: 3 x^{2}-4 y^{2}+8 x y-3 x=0
$$

A. $\lambda=\frac{4}{3}$
B. $\lambda=12$
C. $\lambda=1$
D. $\lambda=\frac{5}{6}$

Answer: B

15. For $a>b>c>0$ if the distance between (1,1) and the point of intersection of the lines $a x+b y+c=0$ and $b x+a y+c=0$ is less than $2 \sqrt{2}$ then
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

- Watch Video Solution

16. Point $P(p, 0), Q(q, 0), R(0, p), S(0, q)$ from parallelogram rhombus cyclic quadrilateral (d) none of these
A. parallelogram
B. rhombus
C. cyclic quadrilateral
D. None of these

Answer: C

- Watch Video Solution

17. Find the image of the point $(4,-13)$ in the line $5 x+y+6=0$.
A. $(-1,-14)$
B. $(3,4)$
C. $(1,2)$
D. $(-4,13)$

Answer: A

- Watch Video Solution

18. If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2 x+3 y=6$, then area of the triangle so formed is $36 / 13$ (b) $12 / 17$ (c) $13 / 5$
(d) $17 / 14$
A. $36 / 13$
B. 44182
C. $13 / 5$
D. $17 / 13$

- Watch Video Solution

19. The equation of straight line passing through $(-a, 0)$ and making a triangle with the axes of area T is
$2 T x+a^{2} y+2 a T=0$ $2 T x-a^{2} y+2 a T=0$
$2 T x-a^{2} y-2 a T=0$ none of these
A. $2 T x+a^{2} y+2 a T=0$
B. $2 T x-a^{2} y+2 a T=0$
C. $2 T x-a^{2}-2 a T=0$
D. None of these

Answer: B
20. Given a family of lines $a(2 x+y+4)+b(x-2 y-3)=0$. The number of lines belonging to the family at a distance of $\sqrt{10}$ from point $(2,-3)$ is
A. 0
B. 1
C. 2
D. 4

Answer: B

- Watch Video Solution

21. If $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$, represents a pair of straight lines, then the value of λ is
A. 1
B. 2
C. 5
D. 4

Answer: B

- Watch Video Solution

22. The image of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ by the line mirror $y=0$ is

$$
\text { A. } a x^{2}-2 h x y-b y^{2}=0
$$

B. $b x^{2}-2 h x y+a y^{2}=0$
C. $b x^{2}+2 h x y+a y^{2}=0$
D. $a x^{2}-2 h x y+b y^{2}=0$

Answer: D

- Watch Video Solution

23. Find the combined equation of the pair of lines through the point $(1,0)$ and parallel to the lines represented by $2 x^{2}-x y-y^{2}=0$
A. $2 x^{2}-x y-y^{2}-4 x-y=0$
B. $2 x^{2}-x y-y^{2}-4 x+y+2=0$
C. $2 x^{2}+x y+y^{2}-2 x y+y=0$
D. None of these

Answer: B

- Watch Video Solution

24. A ray of light coming fromthe point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point $(5,3)$.

The coordinates of the point A is:
A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. None of these

(b) Watch Video Solution

25. Vertices of a variable triangle are $(3,4),(5 \cos \theta, 5 \sin \theta)$ and $(5 \sin \theta,-5 \cos \theta)$, where $\theta \in R$. Locus of its orthocentre is
A. $(x+y-1)^{2}+(x-y-7)^{2}=100$
B. $(x+y-7)^{2}+(x-y-1)^{2}=100$
C. $(x+y-7)^{2}+(x+y-1)^{2}=100$
D. $(x+y-7)^{2}+(x-y+1)^{2}=100$

Answer: D

- Watch Video Solution

26. If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1}(m)$, then m is equal to
A. $\frac{1}{5}$
B. 1
C. $\frac{7}{5}$
D. 7

Answer: A

D Watch Video Solution

27. A line L intersects three sides $B C, C A$ and $A B$ of a triangle in $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ respectively, show that $\frac{B P}{P C} \cdot \frac{C Q}{Q A} \cdot \frac{A R}{R B}=-1$
A. 1
B. 0
C. -1
D. None of these

Answer: C

- Watch Video Solution

28. The distance of the line $2 x+y=3$ from the point $(-1,3)$ in the direction whose slope is 1 is
A. $\frac{2}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{2 \sqrt{5}}{3}$

Answer: C

(D) Watch Video Solution

29. If the circumcenter of an acute-angled triangle lies at the origin and the centroid is the middle point of the line joining the points $\left(a^{2}+1, a^{2}+1\right)$ and $(2 a,-2 a)$, then find the orthocentre.
A. $y-2 a x=0$
B. $y-\left(a^{2}+1\right) x=0$
C. $y+x=0$
D. $(a-1)^{2} x-(a+1)^{2} y=0$

- Watch Video Solution

30. Given vertices $A(1,1), B(4,-2) \& C(5,5)$ of a triangle, find the equation of the perpendicular dropped from C to the interior bisector of the angle A.
A. $y-5=0$
B. $x-5=0$
C. $2 x+3 y-7=0$
D. None of these

Answer: B

