

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

TRIGONOMETRIC FUNCTIONS

Jee Main 5 Years At A Glance

1. If the sum of all the solutions of the equation

$$8\cos x.\left(\cos\Bigl(rac{\pi}{6}+x\Bigr)\cos\Bigl(rac{\pi}{6}-x\Bigr)-rac{1}{2}
ight)=1$$
 in $[0,\pi]$ is $k\pi$ then k

is equal to

- A. $\frac{13}{9}$
- B. $\frac{8}{9}$
- c. $\frac{20}{9}$

Answer: A

Watch Video Solution

- **2.** PQR is a triangular park with PQ = PR = 200m. A.T.V. tower stands at the mid-point of QR. If the angles of elevation of the top of the tower at P, Q and R are respectively 45° , 30° and 30° then the height of the tower (in m) is
 - A. 50
 - B. $100\sqrt{3}$
 - C. $50\sqrt{2}$
 - D. 100

Answer: D

3. A man on the top of a vertical tower observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to change from $30^0 \to 45^0$, how soon after this will the car reach the tower? Give your answer to the nearest second.

A.
$$9 \left(1 + \sqrt{3}\right)$$

$$\text{B.}\ \frac{9}{2}\big(\sqrt{3}-1\big)$$

c.
$$18(1+\sqrt{3})$$

D.
$$19(\sqrt{3}-1)$$

Answer: A

Watch Video Solution

4. $5 (an^2 x - \cos^2 x) = 2 \cos 2x + 9$, then the value of cos4x is:

A.
$$-\frac{7}{9}$$

$$\mathsf{B.}-\frac{3}{5}$$

C.
$$\frac{1}{3}$$
D. $\frac{2}{9}$

Answer: A

Watch Video Solution

the mid-point of AB and P be a point on the ground such that AP = 2AB. If
$$\sqrt{BPC}=\beta$$
, then tan β is equal to

5. Let a vertical tower AB have its end A on the level ground. Let C be

A.
$$\frac{4}{9}$$

$$\mathsf{B.}\;\frac{6}{7}$$

c.
$$\frac{1}{4}$$

D.
$$\frac{2}{9}$$

Answer: D

Watch Video Solution

6. If $0 \le x \le 2\pi$, then the number of real values of x, which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$, is

A. 7

B. 9

C. 3

D. 5

Answer: A

7. A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is 30° . After walking for 10 minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 60° . Then the time taken (in minutes) by him, from B to reach the pillar, is : (1) 6 (2) 10 (3) 20 (4) 5

A. 20

B. 5

C. 6

D. 10

Answer: B

8. If m and M are the minimum and the maximum values of

$$4+rac{1}{2}{
m sin}^2\,2x-2\cos^4x, x\in R$$
 then

A.
$$\frac{9}{4}$$

$$\mathsf{B.}\;\frac{15}{4}$$

C.
$$\frac{7}{4}$$
D. $\frac{1}{4}$

Answer: B

Watch Video Solution

9. The number of $x\in[0,2\pi]$ for which $\left|\sqrt{2{\sin}^4x+18{\cos}^2x}-\sqrt{2{\cos}^4x+18{\sin}^2x}\right|$ = 1, is

C. 4

D. 8

Answer: D

Watch Video Solution

- **10.** If the angles of elevation of the top of tower from three collinear points A, B and C, on a line leading to the foot of the tower, are 30° ,
- 45° and 60° respectively, then the ratio , $AB\!:\!BC$ is

A. 1:
$$\sqrt{3}$$

B. 2:3

C. $\sqrt{3}:1$

D. $\sqrt{3}$: $\sqrt{2}$

Answer: C

Match Mides Colution

watch video Solution

11. In a
$$\Delta ABC \frac{a}{b} = 2 + \sqrt{2}$$
 and $\angle C = 60^\circ$ Then the ordered pair $(\angle A, \angle B)$ is equal to :

A.
$$(45^\circ,75^\circ)$$

B.
$$(105^\circ, 15^\circ)$$

C.
$$(15^\circ, 105^\circ)$$

D.
$$(75^\circ, 45^\circ)$$

Answer: B

12. Let
$$f_k=rac{1}{k}\Big(\sin^kx+\cos^kx\Big),$$
 where $x\in\mathbb{R}$ and $k>1$ then $f_4(x)-f_6(x)$ equals -

$$\frac{1}{4}$$

$$\mathsf{B.}\;\frac{1}{12}$$

c.
$$\frac{1}{6}$$

D.
$$\frac{1}{3}$$

Answer: B

Watch Video Solution

13. A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is $45\,^\circ$. It flies off horizontally

straight away from the point O. After one second, the elevation of the

bird from O is reduced to 30° . Then the speed (in $m\,/\,s$) of the bird is

A.
$$20\sqrt{2}$$

B.
$$20(\sqrt{3}-1)$$

C.
$$40(\sqrt{2}-1)$$

D.
$$40(\sqrt{3}-\sqrt{2})$$

Answer: B

Watch Video Solution

14. If $\cos ec\theta=rac{p+q}{p-q}\;(pq>0,p
eq q)$, then $\left|\cot\left(rac{\pi}{4}+rac{\theta}{2}
ight)
ight|$ is equal to

A.
$$\sqrt{rac{p}{q}}$$

B.
$$\sqrt{\frac{q}{p}}$$

C.
$$\sqrt{pq}$$

D. pq

Answer: B

15. The number of values of
$$lpha$$
 in $[0,2\pi]$ for which $2\sin^3 lpha - 7\sin^2 lpha + 7\sin lpha = 2$, is:

B. 4

C. 3

D. 1

Answer: C

Exercise 1

1. The range of the function
$$f(x) = \frac{1}{2-\sin 3x}$$
 is

A. (
$$-2 \propto$$
 ,)

B.
$$[-2, 3]$$

$$\mathsf{C.}\left(\frac{1}{3},1\right)$$

D.
$$\left(\frac{1}{2},1\right)$$

Answer: B

Watch Video Solution

2. Radian measure of $40^{\circ}\,20^{\prime}$ is equal to

A.
$$\frac{120\pi}{504}$$
 radian

B.
$$\frac{121\pi}{540}$$
 radian

C.
$$\frac{121\pi}{3}$$
 radian

D. None of these

Answer: B

3. Show that the equation $\sec^2 \theta = \frac{4xy}{\left(x+y\right)^2}$ is only possible when

х=у

$$A. x = y$$

$$\mathsf{C}.\,x < y$$

D. None of these

Answer: A

Watch Video Solution

4. if $\sin^2 \theta = \frac{x^2 + y^2 + 1}{2x}$ then x must be

$$A. - 3$$

$$\mathsf{B.}-2$$

D. None of these

Answer: D

Watch Video Solution

5. Find the angle in radian through which a pendulum swings if its length is 75cm and the tip describes an arc of length: 21cm

- A. $\frac{7}{25}$
- $\mathsf{B.}\;\frac{6}{25}$
- c. $\frac{8}{25}$
- D. $\frac{3}{25}$

Answer: A

- **6.** Which among the following is/are true?
- I. The values of cosec x repeat after an interval of 2π .
- II. The values of sec x repeat after an interval of 2π .
- III. The values of cot x repeat after an interval of π .
 - A. I is true
 - B. II is true
 - C. III is true
 - D. All are true

Answer: D

View Text Solution

7. The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes? (Use $\pi=3.14$).

A. 2.68cm

B. 2.28cm

 $\mathsf{C.}\ 6.82cm$

D. 7.42cm

Answer: B

Watch Video Solution

8. if $0 \leq x \leq \pi$ and $81^{\sin^2 x} + 81^{\cos^2 x} = 30$ then x =

A.
$$\pi/6$$

B. $\pi/2$

C. $\pi/4$

D. $3\pi/4$

Answer: A

9. The range of the function
$$f(x) = rac{1}{2-\sin 3x}$$
 is

$$A.\left(\frac{1}{3},2\right)$$

$$\mathsf{B.}\left(\frac{1}{3},1\right)$$

C.
$$\left(\frac{1}{2}, 1\right)$$

Answer: B

Watch Video Solution

10. The range of $f(x)\cos\frac{\pi[x]}{2}$ is

A.
$$\{0, 1\}$$

$$\text{B.}\left\{\,-\,1,\,1\right\}$$

$$\mathsf{C.}\,\{\,-\,1,\,0,\,1\}$$

D.
$$[-1, 1]$$

Answer: C

Watch Video Solution

If $\frac{\cos A}{3} = \frac{\cos B}{3} = \frac{1}{5}$, $-\frac{\pi}{2} < A < 0$ and $-\frac{\pi}{2} < B < 0$

then the value of $2\sin A + 4\sin B$ is

B. 2

C. 3

D. 0

Answer: A

12. If $\tan \theta + \sec \theta = p$, then what is the value of $\sec \theta$?

A.
$$rac{p^2+1}{p^2}$$

B.
$$\frac{p^2+1}{\sqrt{p}}$$

B.
$$\dfrac{p^2+1}{\sqrt{p}}$$
C. $\dfrac{p^2+1}{2p}$

D.
$$\frac{p+1}{2p}$$

Answer: C

Watch Video Solution

13. If $\sin q + \cos ecq = 2$, then the vlaue of $\sin^6 q + \cos ec^6 q$ is equal

to

A. 0

B. 1

C. 2

Answer: C

Watch Video Solution

- **14.** Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm (use $\pi=\frac{22}{7}$)
 - A. 37.5cm
 - B. 32.8cm
 - C. 35.7cm
 - D. 34.5cm`

Answer: C

 $\sec \theta - \tan \theta$ $\cos ec\theta + \cot \theta$

A. 2

B. 4

C. 5

D. 6

16. The range of
$$f(x) = \cos x - \sin x$$
 is

16. The range of
$$f(x) = \cos x - \sin x$$
 is

If $\cos heta = -rac{3}{5}$ and $\pi < heta < 3rac{\pi}{2}$, find the value

A.
$$\{\,-\,1,\,1\}$$
B. $[\,-\,1,\,01]$

C.
$$igl[-\sqrt{2},\sqrt{2}igr]$$

D.
$$[-2, -2]$$

Answer: C

Watch Video Solution

17. If $\sin x + \cos x = \frac{1}{5}$, then tan 2x is

A.
$$\frac{25}{17}$$

$$\operatorname{B.}\frac{7}{25}$$

$$\operatorname{C.}\frac{25}{7}$$

D.
$$\frac{24}{7}$$

Answer: D

18. The least values of $\left(\sin^2 \theta + \cos e c^2 \theta
ight)$ is

- A. 1
- B. 2
- C. 3
- D. 4

Answer: B

Watch Video Solution

19. The maximum value of $\left[\sin\left(x+\frac{\pi}{6}\right)+\cos\left(x+\frac{\pi}{6}\right)\right]$ in the interval $\left[0,\frac{\pi}{2}\right]$ is attained at x=

A.
$$\frac{\pi}{6}$$

$$\text{B.}\ \frac{\pi}{121}$$

C. $\frac{\pi}{3}$

D.
$$\frac{\pi}{4}$$

Answer: B

Watch Video Solution

20. The expression

$$\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x}$$

A. $\cos 2x$

B. $2\cos x$

 $\mathsf{C.}\cos^2 x$

 $D.1 + \cos x.$

Answer: B

21. Which of the following functions has period 2π ?

A.
$$y=\sin\Bigl(2\pi t+rac{\pi}{3}\Bigr)+2\sin\Bigl(3\pi t+rac{\pi}{4}\Bigr)+\sin 5\pi t$$

B.
$$y=\sinrac{\pi}{3}t+\sinrac{\pi}{4}t$$

C.
$$y = \sin t + \cos 2t$$

D. None of these

Answer: C

- **22.** The value of $\cot 5^{\circ}$. $\cot 10^{\circ}$. $\cot 15^{\circ}$ $\cot 85^{\circ}$ is
 - A. 0
 - B. 1
 - C. 1
 - D. 2

Answer: C

Watch Video Solution

- **23.** Write the value of $\tan\left(\frac{19\pi}{3}\right)$
 - **A.** 1
 - B. 2
 - C. 3
 - D. 5

Answer: C

Watch Video Solution

24. $\frac{1 + \sin A - \cos A}{1 + \sin A + \cos A} =$

B.
$$\cos \frac{A}{2}$$
C. $\tan \frac{A}{2}$

D.
$$\cot \frac{A}{2}$$

A. $\sin \frac{A}{2}$

Answer: C

Watch Video Solution

25. Prove that: $tanA + anig(60^0 + Aig) - tanig(60^0 - Aig) = 3tan3A$

A. $\tan 3A$

B. $2 \tan 3A$

C. $3 \tan 3A$

D. None of these

Answer: C

26. If
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$$
, then $\frac{\tan x}{\tan y}$ is equal to

A.
$$\frac{b}{a}$$

B.
$$\frac{a}{b}$$

$$\mathsf{C}.\,ab$$

D. None of these

Answer: B

Watch Video Solution

27. If $an A = rac{1}{2}$ and $an B = rac{1}{3}$, then: A+B=

$$\operatorname{B.}\frac{\pi}{6}$$

Α. π

C.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{4}$$

Answer: D

Watch Video Solution

28. Find the value of $\sin\left(\frac{31\pi}{3}\right)$.

$$\text{A.}\ \frac{\sqrt{3}}{2}$$

$$\mathrm{B.}-\frac{\sqrt{3}}{2}$$

$$\mathsf{C.} - \frac{1}{\sqrt{2}}$$

D.
$$\frac{1}{\sqrt{2}}$$

Answer: A

29.
$$\frac{1}{4} \left[\sqrt{3} \cos 23^{\circ} - \sin 23^{\circ} \right] =$$

A. $\cos 43^{\circ}$

B. $\cos 7^{\circ}$

C. $\cos 53^\circ$

D. None of these

Answer: D

Watch Video Solution

30.
$$If an^2 heta = 1 - e^2, heta = 1 + an^3 heta \cos ec heta = 1 + an^3 heta$$

A.
$$\left(1-e^2
ight)^{3/2}$$

B.
$$\left(2-e^2
ight)^{1/2}$$

C.
$$\left(2-e^2
ight)^{3/2}$$

D. None of these

Answer: C

Watch Video Solution

- **31.** The value of $\sin 765^{\circ} \, is \frac{1}{\sqrt{n}}$. Value of n is
 - A. 2
 - B. 3
 - C. 4
 - D. 0

Answer: A

A.
$$\frac{-1}{\sqrt{3}}$$

B. 1

C.
$$\sqrt{3}$$

D. $-\sqrt{3}$

Answer: B

- **33.** The ratio of the greatest value of $2-\cos x+s\in^2 x$ to its least value is $\frac{7}{4}$ (2) $\frac{9}{4}$ (3) $\frac{13}{4}$ (4) $\frac{5}{4}$
 - A. $\frac{5}{4}$
 - B. $\frac{9}{4}$
 - c. $\frac{13}{4}$
 - D. 2

Answer: C

Watch Video Solution

- **34.** If $\sec \theta = x + \frac{1}{4x}$, then $\tan \theta + \sec \theta$ is equal to
 - A. $\frac{1}{3}$
 - $\mathsf{B.}\;\frac{3}{4}$
 - c. $\frac{1}{4}$
 - D. $\frac{5}{4}$

Answer: A

Watch Video Solution

35. If heta is an angle given by $\cos heta = rac{\cos^2 lpha + \cos^2 eta + \cos^2 \gamma}{\sin^2 lpha + \sin^2 eta + \sin^2 \gamma}$ where

 $lpha, eta, \gamma$ are the equal angles made by line with the positive directions

of the axes, then the measure of θ is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{6}$$

C.
$$\frac{\pi}{2}$$
D. $\frac{\pi}{4}$

36.

Watch Video Solution

$$0 \text{ and } \frac{\pi}{2} \text{ and } \text{ if } \cos(\alpha+\beta) = \frac{12}{13} \text{ and } \sin\left(\alpha-\beta=\frac{3}{5}, \text{ then } \right)$$

A. $\frac{55}{56}$

B. $\frac{13}{58}$

 $\sin 2 \alpha$ is equal to

$$\alpha \,\, {
m and} \,\, eta$$

be

between

D.
$$\frac{56}{65}$$

Answer: D

Watch Video Solution

37. The value of

$$\Big(1+\cos\Big(rac{\pi}{6}\Big)\Big)\Big(1+\cos\Big(rac{\pi}{3}\Big)\Big)\Big(1+\cos\Big(rac{2\pi}{3}\Big)\Big)\Big(1+\cos\Big(rac{7\pi}{6}\Big)\Big)=$$

- A. 1
- B. 2
- C. 3
- D. 8

Answer: C

38. Period of $\dfrac{\sin \theta + \sin 2 \theta}{\cos \theta + \cos 2 \theta}$ is

A.
$$2\pi$$

B.
$$\pi$$

c.
$$\frac{2\pi}{3}$$

D.
$$\frac{\pi}{3}$$

Answer: C

39. Prove $: 2 \left(\sin^6 \theta + \cos^6 \theta \right) - 3 \left(\sin^4 \theta + \cos^4 \theta \right) + 1 = 0.$

- A. 2
- В. О
- C. 4
- D. 6

Answer: B

Watch Video Solution

40. The value of tan 3 A - tan A is equal to

A. $\tan 3A \tan 2A \tan A$

 $B. - \tan 3A \tan 2A \tan A$

C. $\tan A \tan 2A - \tan 2A \tan 3A - \tan 3A \tan A$

D. None of these

Answer: A

Watch Video Solution

41. Value of $\sin 47^\circ + \sin 61^\circ - \sin 11^\circ - \sin 25^\circ$ is

A. $\cos 7^{\circ}$

B. $\sin 7^{\circ}$

C. $\sin 61^{\circ}$

D. $-\sin 25^{\circ}$

Answer: A

Watch Video Solution

A. an even function

B. an odd function

42. $f(x)=\left(\sin x^7\right)e^{x^5}.$ $Sgn\left(x^9\right)$ is:

C. neither even nor odd

D. None of these

Answer: B

43. The value of
$$\frac{\cot 54^\circ}{\tan 36^\circ} + \frac{\tan 20^\circ}{\cot 70^\circ}$$
 is

B. 3

C. 1

D. 0

Answer: A

44. If
$$n=rac{\pi}{4lpha}, \ an 2lpha an 2lpha an 3lpha..... \ an(2n-1)lpha$$
 is equal to

B. -1

 $\mathsf{C}.\,\infty$

D. None of these

Answer: A

Watch Video Solution

- **45.** Value of $2\sin^2\frac{\pi}{6}+\cos ec^2\frac{7\pi}{6}.\cos^2\frac{\pi}{3}is\frac{m}{m-1}.$ The value of 'm' is
 - A. 3
 - B. 2

 - C. 4
 - D. None of these

Answer: A

46. If $\cos 7\theta = \cos \theta - \sin 4\theta$, then the general value of θ is

A.
$$\frac{n\pi}{4}, \frac{n\pi}{3} + \frac{\pi}{18}$$

B.
$$\frac{n\pi}{3}, \, \frac{n\pi}{3} + (\,-1)^n \frac{\pi}{18}$$

C.
$$\displaystyle \frac{n\pi}{4}, \displaystyle \frac{n\pi}{3} + (\,-1)^n \displaystyle \frac{\pi}{18}$$

D.
$$\frac{n\pi}{6}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$$

Answer: C

Watch Video Solution

47. General solution of $an 5\theta$ =

A.
$$heta=rac{n\pi}{7}+rac{\pi}{14}$$

B.
$$heta=rac{n\pi}{7}+rac{\pi}{5}$$

C.
$$heta=rac{n\pi}{7}+rac{\pi}{2}$$

D.
$$heta=rac{n\pi}{7}+rac{\pi}{3}$$

Answer: A

Watch Video Solution

48. If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$

then the general value of θ is

A.
$$heta=2m\pi\pm2\pi/3$$

B.
$$heta=2m\pi\pm\pi/4$$

$$\mathsf{C.}\,\theta = m\pi + (\,-1)^n 2\pi/3$$

D.
$$heta=m\pi+(\,-\,1)^n\pi/3$$

Answer: A

49. Domain of the function $f(x) = \sqrt{rac{1}{\sin x} - 1}$ is

A.
$$\cup_{n \,\in\, I} \left(2n\pi,\, 2n\pi + rac{\pi}{2}
ight)$$

B. $\cup_{n\in I} (2n\pi, (2n+1)\pi)$

C.
$$\cup_{n\in I} [(12n-1)\pi,2n\pi]$$

D. None of these

Answer: B

50. The solution of $an^2 9x = \cos 2x - 1$ is

A.
$$rac{n\pi}{3}, n \in I$$

B.
$$rac{n\pi}{6}, n \in I$$

C.
$$n\pi, n \in I$$

D. None of these

Answer: D

View Text Solution

51. The number of points of intersection of the two curves $y=2\sin x$ and $y=5x^2+2x+3$ is

A. 0

B. 1

C. 2

 $D. \infty$

Answer: B

52. If $\sqrt{3}\tan2\theta+\sqrt{3}\tan3\theta+\tan2\theta\tan3\theta=1$ then the general value of θ is

A.
$$n\pi+rac{\pi}{5}$$
B. $\left(n+rac{1}{6}
ight)rac{\pi}{5}$
C. $\left(2n\pmrac{1}{6}
ight)rac{\pi}{5}$

D.
$$\left(n+rac{1}{3}
ight)rac{\pi}{5}$$

Answer: B

53. If
$$\sin(\pi\cos\theta)=\cos(\pi\sin\theta)$$
, then of the value $\cos\left(\theta\pm\frac{\pi}{4}\right)$ is

A.
$$\frac{1}{\sqrt{2}}$$

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}\;\frac{1}{2\sqrt{2}}$$

D. None of these

Answer: C

Watch Video Solution

54. The number of solutions of the equation

$$\sin\!\left(\frac{\pi x}{2\sqrt{3}}\right) = x^2 - 2\sqrt{3}x + 4$$

A. forms an empty set

B. is only one

C. is only two

D. is more than 2

Answer: B

55. If $\sin 5x + \sin 3x + \sin x = 0$, where $0 < x \le \frac{\pi}{2}$, then : x = 0

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{6}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{4}$$

Answer: C

56. the general solution of $\sin^2 \theta \sec \theta + \sqrt{3} \tan \theta = 0$ is

A.
$$heta=n\pi+(\,-1)^{n+1}rac{\pi}{3}, heta=n\pi P$$
 : $n\in I$

B.
$$heta=n\pi, n\in I$$

C.
$$heta=rac{n\pi}{2}, n\in I$$

D.
$$heta=n\pi+(1-)^{n+1}rac{\pi}{2}, heta=n\pi, n\in I$$

Answer: B

Watch Video Solution

57. The solution set of the system of equations $x+y=rac{2\pi}{3}, \cos x+\cos y=rac{3}{2},$ where xandy are real, is _____

A.
$$x=rac{\pi}{3}n\pi,y=n\pi$$

B. ϕ

C.
$$x=n\pi,y=rac{\pi}{3}-n\pi$$

D. None of these

Answer: B

58. The number of points of intersection of the curves

$$2y = 1$$
 and $y = \sin x$, $-2\pi \le x \le 2\pi$, is

- A. 2
- B. 3
 - C. 4
- D. 1

Answer: C

59. If
$$p_n = \cos^n heta + \sin^n heta$$
 then $p_n - p_{n-2} = k p_{n-4}$ where k

- A. k=1
- $B. k = -\sin^2\theta \cos^2\theta$
- $C. k = \sin^2 \theta$

D.
$$k=\cos^2 \theta$$

Answer: B

Watch Video Solution

- **60.** In the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ the equation $\log_{\sin\theta}(\cos2\theta)=2$ has
 - A. no solution
 - B. a unique solution
 - C. two solution
 - D. in finitely many solutions

Answer: B

61. In a triangle an A + an B + an C = 6 and an A an B = 2,

then the values of $\tan A, \tan B$ and $\tan C$ are

A. 1, 2, 3

B. 3, 2, /3, 7/3

 $\mathsf{C.}\,4,1/2,3/2$

D. None of these

Answer: A

Watch Video Solution

62. In triangle ABC, $\angle C=90^\circ$ then $\frac{a^2-b^2}{a^2+b^2}=$

A.
$$\sin(A+B)$$

B.
$$\sin(A-B)$$

$$\mathsf{C.}\cos(A+B)$$

$$\operatorname{D.sin}\left(rac{A-B}{2}
ight)$$

Answer: B

Watch Video Solution

- **63.** In a triangle ABC, let $2a^2+4b^2+c^2=2a(2b+c)$, then which of the following holds good?
 - A. 0
 - B. $\frac{1}{8}$

 - D. $\frac{7}{8}$

Answer: D

64. The value of
$$\dfrac{1}{r_1^2} + \dfrac{1}{r_2^2} + \dfrac{1}{r_2^3} + \dfrac{1}{r^2}$$
, is

B.
$$\dfrac{a^2+b^2+c^2}{\Delta^2}$$
C. $\dfrac{\Delta^2}{a^2+b^2+c^2}$
D. $\dfrac{a^2+b^2+c^2}{\Delta}$

Answer: B

Watch Video Solution

65. In two triangle ABC and DEF, AB= DE, BC=DF and AC =Ef then

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{2}$$
C. $\frac{2\pi}{3}$

D.
$$\frac{5\pi}{6}$$

$$\frac{6}{6}$$

Answer: C

Watch Video Solution

66. An observer in a boat finds that the angle of elevation of a tower standing on the top of a cliff is 60° and that of the top of cliff is 30° . If the height of the tower be 60 meters, then the height of the cliff is

- A. 30 m
- B. $60\sqrt{3}m$
- C. $20\sqrt{3}m$
- D. None of these

Answer: A

67. The angular elevation of a tower OP at a point A due south of it is 60° and at a point B due west of A, the elevation is 30° . If AB=3m, the height of the tower is

- A. $2\sqrt{3}km$
- $\mathrm{B.}\ 2\sqrt{6}km,$
- C. $\frac{3\sqrt{3}}{2}km$
- D. $\frac{3\sqrt{6}}{4}km$

Answer: D

Watch Video Solution

68. An aeroplane flying horizontally , 1km above the ground , is observed at an elevation of 60° ,after 10 seconds , its elevation is observed to be 30° . Find the speed of the aeroplane in km/hr.

A.
$$60\sqrt{3}$$

B. 240

C. $240\sqrt{3}$

D.480

Answer: C

Watch Video Solution

69. A man whose eye leave is 1.5 meters above the ground observes the angle of elevation of the tower to be 60° . If the distance of the man from the tower be 10 meters, the height of the tower is

A.
$$\left(1.5+10\sqrt{3}\right)$$

B.
$$10\sqrt{3}m$$

C.
$$\left(1.5 + \frac{10}{\sqrt{3}}\right)m$$

D. None of these

Answer: A

Watch Video Solution

70. A and B are two points in the horizontal plane through O, the foot of pillar OP of height h such that $\angle AOB = \theta$. If the elevation of the top of the pillar from A and B are also equal to θ , then AB is equal to

- A. $h \cot \theta$
- B. $h\cos\theta\sec\frac{\theta}{2}$
- C. $h \cot \theta \sin \frac{\theta}{2}$
- D. $h \cos thea \cos ec \frac{\pi}{2}$

Answer: B

View Text Solution

The

expression

$$rac{1+\sin 2lpha}{\cos (2lpha-2\pi) an\Bigl(lpha-rac{3\pi}{4}\Bigr)} -rac{1}{4}\sin 2lpha\Bigl[\cotrac{lpha}{2}+rac{lpha}{2}\Bigr)\Biggr]$$

when

simplified reduces to

B. 0

 $\mathsf{C.}\sin^2(a/2)$

D.
$$rac{1}{2}+rac{1}{2}{
m sin}^2(lpha)$$

Answer: D

Watch Video Solution

2. Solve the inequality, $\cos x \leq -\frac{1}{2}$.

A.
$$x \in \left[2n\pi + rac{\pi}{6}, 2n\pi + rac{\pi}{3}
ight], n \in Z$$

B.
$$x \in \left[2n\pi + rac{2\pi}{3}, 2n\pi + rac{4\pi}{3}
ight], n \in Z$$

C.
$$x \in \left[2n\pi - rac{2\pi}{3}, 2n\pi + rac{2\pi}{3}
ight], n \in Z$$

D. None of these

Answer: B

Watch Video Solution

3. Two men are on the opposite sides of a tower. They measure the angles of elevation of the top of the tower as 45° and 30° respectively. If the height of the tower is 40 m, then the distance between the men is

A. 40m

B. $40\sqrt{3}m$

 $\mathsf{C.}\ 68.280m$

D. 109.28m

Answer: D

Watch Video Solution

- **4.** The range of values of the expression $5\cos\theta+3\cos\left(\theta+\frac{\pi}{3}\right)+1$ is
 - A. [-7, 7]
 - $\mathrm{B.}\,[\,-6,8]$
 - C.[-8,6]
 - D. $[-3, \sqrt{3}, 13]$

Answer: B

Watch Video Solution

5. The value of $\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}$ is

 $\mathrm{B.}\;\sqrt{3}$

$$\mathsf{C.}\ \frac{\sqrt{3}}{2}$$

D. 2

Answer: C

Watch Video Solution

6. Which pairs of function is identical?

A.
$$f(x) = \sqrt{x^2}, g(x) = x$$

B. $f(x) = \sin^2 x + \cos^2 x$, g(x) = 1

$$\mathsf{C}.\, f(x) = \frac{x}{x}, g(x) = 1$$

D. None of these

Answer: B

7. If
$$y=(\sin x+\cos ecx)^2+(\cos x+\sec x)^2$$
 , then the minimum value of $y,\ orall x\in R,\$ 7 (b) 3 (c) 9 (d) 0

Answer: C

Watch Video Solution

8. If $\tan\Bigl(\frac{\pi}{4}+\theta\Bigr)+\tan\Bigl(\frac{\pi}{4}-\theta\Bigr)=p\sec2\theta\Bigr)$ then the vlaue of p is equal to :

- A. 2
- B. 3
 - C. 1

D. 4

Answer: A

Watch Video Solution

- **9.** Period of $\sin \theta \sqrt{2} \cos \theta$ is
 - A. $\frac{\pi}{4}$
 - B. $\frac{\pi}{2}$
 - C. π
 - D. 2π

Answer: D

10.
$$an^6 20^\circ - 33 an^2 20^\circ + 27 an^2 20^\circ + 4 =$$

A. 2

B. 3

C. 4

D. 5

Answer: B

Watch Video Solution

11. Which of the following is correct?

A. $\sin 1^{\circ} \sin 1$

 $\mathrm{B.}\sin1^\circ<\sin1$

$$\mathsf{C}.\sin 1^\circ = \sin 1$$

$$D.\sin 1^\circ = \frac{\pi}{18}\sin 1$$

Answer: B

Watch Video Solution

12. if:
$$f(x)=rac{\sin x}{\sqrt{1+ an^2 x}}-rac{\cos x}{\sqrt{1+\cot^2 x}},$$
 then find the range of $f(x)$

A.
$$[-1, 0]$$

B.
$$[0, 1]$$

$$\mathsf{C.}\,[\,-1,1]$$

D. None of these

Answer: C

13. If
$$\sin x + \sin^2 x = 1$$
, then the value of $\cos^{12} x + 3\cos^{10} x + 3\cos^8 x + \cos^6 x - 2$ is equal to

- **A.** 1
- $\mathsf{B.}\cos^3x\sin^3x$
- C. 0
- D. ∞

Answer: A

- **14.** The value of $\sin\frac{\pi}{16}\sin\frac{3\pi}{16}\sin\frac{5\pi}{16}\sin\frac{7\pi}{16}$ is
 - A. $\frac{\sqrt{2}}{16}$
 - B. $\frac{1}{8}$

C.
$$\frac{1}{16}$$
D. $\frac{\sqrt{2}}{32}$

Answer: A

Watch Video Solution

15. General solution of the equation

$$2\cot^2 heta+2\sqrt{3}\cot heta+4\cos ec heta+8=0$$
 is

A.
$$heta=n\pi\pmrac{\pi}{6}, n\in I$$

B.
$$n\pi+rac{\pi}{6}, n\in I$$

C.
$$2n\pi+rac{\pi}{6}, nInI$$

D.
$$2n\pi+rac{11\pi}{6}, n\in I$$

Answer: A

16. A man observe that was he has climbed up $\frac{1}{3}$ of the length of an inclined ladder ,placed against a wall the angular depression of an object on the floor is α and that after he reached the top of the ledder , the angular depression β If the inclintaion of the ladder to the is θ then prove that $\cot\theta=\frac{3\cot\beta-\cot\alpha}{2}$

A.
$$\frac{3\cot\beta-\cot\alpha}{2}$$

B.
$$\frac{3\cot\alpha - \cot\beta}{2}$$

C.
$$\frac{\cot \beta - \cot \alpha}{2}$$

D.
$$\frac{\cot \alpha + \cot \beta}{2}$$

Answer: A

Watch Video Solution

17. The number of solutions of $an x + \sec x = 2\cos x$ in $(0,2\pi)$ is

B. 3

C. 0

D. 1

Answer: B

Watch Video Solution

18. If $\sin A = \frac{3}{5}$, $0 < A < \frac{\pi}{2}$ and $\cos B = -\frac{12}{13}$, $\pi < B < \frac{3\pi}{2}$,

then find the values of the following:
$$(\mathsf{i}) \sin(A-B)$$

$$\mathsf{A.}-\frac{13}{82}$$

B.
$$-\frac{15}{65}$$

$$C. - \frac{13}{75}$$

$$\mathsf{D.} - \frac{16}{65}$$

Answer: D

Watch Video Solution

19. The domain of $f(x) = \sqrt{\cos(\sin x)} + \sqrt{\log_x\{x\}}$ where {x} denotes fractional part of x.

A.
$$[1, \pi)$$

B.
$$(0, 2\pi) - [1, \pi)$$

C.
$$\left(0, \frac{\pi}{2}\right) - \{1\}$$

Answer: D

A.
$$[-1, 1]$$

- B. [-1, -1]
- c. $\left[-\sqrt{2},\sqrt{2}\right]$
- D. [-2, -2]

Answer: C

Watch Video Solution

21. If
$$P$$
 is a point on the altitude AD of the triangle ABC such the

$$\angle CBP = rac{B}{3}, ext{ then AP is equal to } 2arac{\sin C}{3} ext{ (b) } 2brac{\sin C}{3} ext{ } 2crac{\sin B}{3} ext{ (d)}$$

A.
$$2a\sin{rac{C}{3}}$$

 $2c\frac{\sin C}{3}$

B.
$$2b\sin\frac{C}{3}$$

C.
$$2c\sin\frac{B}{3}$$
 D. $\frac{C}{3}$

Answer: C

Watch Video Solution

- **22.** From the top of a cliff 50 m high, the angles of depression of the top and bottom of a tower are observed to be 30° and 45° . The height of tower is
 - A. 50m
 - B. $50\sqrt{3}m$
 - C. $50(\sqrt{3}-1)m$
 - D. $50 \left(1 \frac{\sqrt{3}}{3}\right) m$

Answer: D

23. The value of
$$\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}}$$
 is equal to

- A. 0
- B. 1
- C. 2
- D. 4

Answer: D

24. What is the value of
$$\sin\left(\frac{5\pi}{12}\right)$$
?

- A. $\dfrac{\sqrt{3}+1}{2}$
 - B. $\frac{\sqrt{6}+\sqrt{2}}{4}$
 - C. $\frac{\sqrt{3}+\sqrt{2}}{4}$

D.
$$\frac{\sqrt{6}+1}{2}$$

Answer: B

Watch Video Solution

25. General solution of the equation an heta an 2 heta = 1 is given by

A.
$$(2n+1)rac{\pi}{4}, ln \in I$$

B.
$$n\pi+rac{\pi}{6}, n\in I$$

C.
$$n\pi-rac{\pi}{6}, n\in I$$

D.
$$n\pi\pmrac{\pi}{6}, n\in I$$

Answer: D

26. The minimum value of the function
$$f(x)=\frac{\sin x}{\sqrt{1-\cos^2 x}}+\frac{\cos x}{\sqrt{1-\sin^2 x}}+\frac{\tan x}{\sqrt{\sec^2 x-1}}+\frac{\cot x}{\sqrt{\csc^2 x-1}}$$
 whenever it is defined is

$$\mathsf{B.}-2$$

D. 2

Answer: B

Watch Video Solution

27. The value of $\cos ec430^{\circ} + \sqrt{3}\mathrm{sec}\,470^{\circ}$ is :

A. 1

B. 1

 $\mathsf{C.}-4$

D. 4

Answer: C

Watch Video Solution

28. In a triangle ABC , if $\cos A = \frac{\sin B}{2\sin C}$, show that the triangle is isosceles.

A.
$$a = b = c$$

B. c=a

 $\mathsf{C}.\,a=b$

 $\mathsf{D}.\,b=c$

Answer: B

29. If
$$\tan \theta = -\frac{4}{3}$$
, then $\sin \theta$ is

A.
$$\frac{-4}{5}$$
 but not $\frac{4}{5}$

B.
$$\frac{-4}{5}$$
 or $\frac{4}{5}$

C.
$$\frac{4}{5}$$
 but not $-\frac{4}{5}$

D. None of these

Answer: B

Watch Video Solution

to: a) 4y b) 2y c) y d) none of these

30. Given that $ig(1+\sqrt{1+y}ig) an y=1+\sqrt{1-y}$ Then $\sin 4y$ is equal

A.
$$4x$$

$$\mathsf{B.}\ 2x$$

$$\mathsf{C}.\ x$$

D. None of these

Answer: C

