© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DISHA PUBLICATION MATHS (HINGLISH)

VECTOR ALGEBRA

Jee Main 5 Years At A Glance

1. Let \vec{u} be a vector coplanar with the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$. If \vec{u} is perpendicular to its equal to \vec{a} and $\vec{u} \cdot \vec{b}=24$, then $|\vec{u}|^{2}$ is equal to
A. 315
B. 256
C. 84
D. 336

- Watch Video Solution

2. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}$ and a vector \vec{b} be such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$. Then $|\vec{b}|$ equals:
A. $\sqrt{\frac{11}{3}}$
B. $\frac{\sqrt{11}}{3}$
C. $\frac{11}{\sqrt{3}}$
D. $\frac{11}{3}$

Answer: A

- Watch Video Solution

3. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. Let \vec{c} be vector such that $|\vec{c}-\vec{a}|=3,|(\vec{a} \times \vec{b}) \times \vec{c}|=3 \quad$ and \quad the angle between
\vec{c} and $\vec{a} \times \vec{b}$ be 30° Then, $\vec{a} \cdot V e$ is equal to
A. $\frac{1}{8}$
B. $\frac{25}{8}$
C. 2
D. 5

Answer: C

- Watch Video Solution

4. The area (in sq units) of the parallelogram whose diagonals are along the vectors $8 \hat{i}-6 \hat{j}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$ is:
A. 26
B. 65
C. 20
D. 52

- Watch Video Solution

5. let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{c}, then the angle between \vec{a} and \vec{b} is:
A. $\frac{2 \pi}{3}$
B. $\frac{5 \pi}{6}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{2}$

Answer: B

6. In a triangle $A B C$, right angled at the vertex A, if the position vectors of A, B and C are respectively $3 \hat{i}+\hat{j}-\hat{k},-\hat{i}+3 \hat{j}+p \hat{k}$ and $5 \hat{i}+q \hat{j}-4 \hat{k}$, then the point (p, q) lies on a line
A. making an obtuse angle with the positive direction of x-axis
B. parallel to x-axis
C. parallel to y-axis
D. making an acute angle with the positive direction of x-axis

Answer: D

- Watch Video Solution

7. Let $A B C$ be a triangle whose circumcentre is at P. If the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are $\vec{a}, \vec{b}, \vec{c}$ and $\frac{\vec{a}+\vec{b}+\vec{c}}{4}$ respectively, then the position vector of the orthocentre of this triangle is

$$
\text { A. }-\left(\frac{\vec{a}+\vec{b}+\vec{c}}{2}\right)
$$

B. $\vec{a}+\vec{b}+\vec{c}$
C. $\left(\frac{\vec{a}+\vec{b}+\vec{c}}{2}\right)$
D. $\overrightarrow{0}$

Answer: C

- Watch Video Solution

8. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c}, then the value of $\sin \theta$ is:
A. $\frac{2}{3}$
B. $\frac{-2 \sqrt{3}}{3}$
C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{-\sqrt{2}}{3}$

Answer: C

(D) Watch Video Solution

9. Let \vec{a} and \vec{b} be two unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$ if $\vec{c}=\vec{a}+2 \vec{b}+3(\vec{a} X \vec{b})$ then $2|\vec{c}|$ is equal to
A. $\sqrt{55}$
B. $\sqrt{37}$
C. $\sqrt{51}$
D. $\sqrt{43}$

Answer: A

- Watch Video Solution

10. If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$ then λ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

11. If $|\vec{a}|=2,|\vec{b}|=3$ and $|2 \vec{a}-\vec{b}|=5$, then $|2 \vec{a}+\vec{b}|$ equals: (A)

17 (B) 7 (C) 5 (D) 1
A. 17
B. 7
C. 5
D. 1

Answer: C

1. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b} 4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then (A) $\alpha=1, \beta=-1$ $\alpha=1, \beta= \pm 1$ (C) $\alpha-1, \beta= \pm 1$ (D) $\alpha= \pm 1, \beta=1$
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. $\alpha=-1, \beta= \pm 1$
D. $\alpha= \pm 1, \beta=1$

Answer: D

- Watch Video Solution

2. In a triangle $A B C$ three forces of magnitudes $3 \overrightarrow{A B}, 2 \overrightarrow{A C}$ and $6 \overrightarrow{C B}$ are acting along the sides AB, AC and CB respectively. If the resultant meets $A C$ at D, then the ratio $D C$: $A D$ will be equal to
A. $1: 1$
B. 1:2
C. $1: 3$
D. 1: 4

Answer: B

- View Text Solution

3. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then the vectors \vec{a} and \vec{b} are adjacent sides of
A. a rectangle
B. a square
C. a rhombus
D. none of these
4. If the position vectors of the vertices A, B and C of a $\triangle A B C$ are $7 \hat{j}+10 \hat{k},-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}, \quad$ respectively, the triangle is
A. equilateral
B. isosceles
C. scalene
D. right angled and isosceles also

Answer: D

- Watch Video Solution

5. If $\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$ then $|3 \vec{a}-2 \vec{b}+4 \vec{c}|$ is equal to
A. $\sqrt{298}$
B. $\sqrt{198}$
C. $\sqrt{398}$
D. $\sqrt{498}$

Answer: C

- Watch Video Solution

6. The vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is $(A) \sqrt{72}$ (B) $\sqrt{33}$ (C) $\sqrt{2880}$ (D) $\sqrt{18}$
A. $\sqrt{13}$ units
B. $2 \sqrt{5}$ units
C. 5 units
D. 10 units

Answer: C

- Watch Video Solution

7. If two vertices of a triangle are $i-j$ and $j+k$, then the third vertex can be
A. i+k
B. $i-2 j-k$ and $-2 i-j$
C. i-k
D. all the above

Answer: D

- View Text Solution

8. The figure formed by the four points $\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}, 5 \hat{j}-2 \hat{k}$ and
$\hat{k}-\hat{j}$ is
A. trapezium
B. rectangle
C. parallelogram
D. none of these

Answer: D

- View Text Solution

9. If the vector $8 \hat{i}+a \hat{j}$ of magnitude 10 is the directionn of the vector $4 \hat{i}-3 \hat{j}$, then the value of a is equal to (A) 6 (B) 3 (C) -3 (D) -6
A. 6
B. 3
C. -3
D. -6
10. If A, B, C are vertices of a triangle whose position vectors are \vec{a}, \vec{b} and \vec{c} respectively and G is the centroid of $\triangle A B C$, then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$, is
A. $\overrightarrow{0}$
B. $\vec{a}+\vec{b}+\vec{c}$
C. $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
D. $\frac{\vec{a}-\vec{b}-\vec{c}}{3}$

Answer: A

- Watch Video Solution

11. Which of the following is an example of two different vectors with same magnitude?
A. $(2 \hat{i}+3 \hat{j}+\hat{k})$ and $(2 \hat{i}+3 \hat{j}-\hat{k})$
B. $(3 \hat{i}+5 \hat{j}+\hat{k})$ and $(3 \hat{i}+4 \hat{j}+\hat{k})$
c. $(\hat{j}+\hat{k})$ and $(2 \hat{j}+3 \hat{k})$
D. none of these

Answer: A

- Watch Video Solution

12. $\vec{a}=3 \hat{i}-5 \hat{j}$ and $\vec{b}=6 \hat{i}+3 \hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c}=\vec{a} \times \vec{b}$ then $|\vec{a}|:|\vec{b}|:|\vec{c}|$
A. $\sqrt{34}: \sqrt{45}: \sqrt{39}$
B. $\sqrt{34}: \sqrt{45}: 39$
C. $34: 39: 45$
D. $39: 35: 34$
13. If \vec{p}, \vec{q} and \vec{r} are perpendicular to $\vec{q}+\vec{r}, \vec{r}+\vec{p}$ and $\vec{p}+\vec{q}$ respectively and if $|\vec{p}+\vec{q}|=6,|\vec{q}+\vec{r}|=4 \sqrt{3}$ and $|\vec{r}+\vec{p}|=4$ then $|\vec{p}+\vec{q}+\vec{r}|$ is
A. $5 \sqrt{2}$
B. 10
C. 15
D. 5

Answer: A

Watch Video Solution

14. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}$ are coplanar vector, then the value of α is :
A. $-\frac{4}{3}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. 2

Answer: C

- Watch Video Solution

15. If $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{i}+\hat{k}$ are the position vectors of the vertices of a
$\triangle A B C$ taken in order, then $\angle A$ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{5}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$
16. If \vec{a} and \vec{b} are non colinear vectors, then the value of α for which the vectors $\vec{u}=(\alpha-2) \vec{a}+\vec{b}$ and $\vec{v}=(2+3 \alpha) \vec{a}-3 \vec{b}$ are collinear is (A) $\frac{3}{2}$ (B) $\frac{2}{3}$ (C) $\frac{-3}{2}$ (D) $\frac{-2}{3}$
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $-\frac{3}{2}$
D. $-\frac{2}{3}$

Answer: B

Watch Video Solution

17. If angle between $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ is θ then the value of $\sin \theta$ is
A. $\frac{3}{2 \sqrt{7}}$
B. $\frac{-2}{\sqrt{7}}$
C. $\frac{4}{3 \sqrt{7}}$
D. $\frac{5}{2 \sqrt{7}}$

Answer: D

- Watch Video Solution

18. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and λ is a real number then then vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+4 \vec{c}$ and $(2 \lambda-1) \vec{c}$ are noncoplanar for
A. no value of λ
B. all except one value of λ
C. all except two values of λ
D. all values of λ

- Watch Video Solution

19. Find the unit vector parallel to the resultant vector of $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$.
A. $\frac{3 \hat{i}+6 \hat{j}+2 \hat{k}}{5}$
B. $\frac{-3 \hat{i}+6 \hat{j}-2 \hat{k}}{7}$
C. $\frac{3 \hat{i}+6 \hat{j}-2 \hat{k}}{7}$
D. none of these

Answer: C

- Watch Video Solution

20. If the middle points of sides $B C, C A$ and $A B$ of triangle $A B C$ are respectively D,E ,F then position vector of centre of triangle DEF, when
position vector of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are respectively $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ is
A. $\frac{1}{3}(\hat{i}+\hat{j}+\hat{k})$
B. $(\hat{i}+\hat{j}+\hat{k})$
C. $2(\hat{i}+\hat{j}+\hat{k})$
D. $\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})$

Answer: D

- Watch Video Solution

21. Find the length diagonal $A C$ of a prallelogram $A B C D$ whose two adjacent sides $A B$ and $A D$ are represented respectively by $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$
A. 5
B. 6
C. 7
D. 9

Answer: C

- Watch Video Solution

22. If f is the centre of a circle inscribed in a triangle $A B C$, then $|\overrightarrow{B C}| \overrightarrow{I A}+|\overrightarrow{C A}| \overrightarrow{I B}+|\overrightarrow{A B}| \overrightarrow{I C}$ is
A. zero
B. $\frac{\vec{I} A+\vec{I} B+\vec{I} C}{3}$
C. $3(\vec{I} A+\vec{I} B+\vec{I} C)$
D. none of these

Answer: A

- Watch Video Solution

23. Let \vec{a}, \vec{b} and \vec{c} are vectors of magnitude $3,4,5$ respectively. If \vec{a} is perpendicular to $\vec{b}+\vec{c}, \vec{b}$ is perpendicular to $\vec{c}+\vec{a}$ and \vec{c} is perpendicular to $\vec{a}+\vec{b}$ then find the magnitude of $\vec{a}+\vec{b}+\vec{c}$
A. $4 \sqrt{2}$
B. $3 \sqrt{2}$
C. $5 \sqrt{2}$
D. $3 \sqrt{3}$

Answer: C

- Watch Video Solution

24. If $\vec{a}, \vec{b}, \vec{c}$ are any three coplanar unit vectors, then :
A. $\vec{a} \cdot(\vec{b} \times \vec{c})=1$
B. $\vec{a} \cdot(\vec{b} \times \vec{c})=3$
c. $(\vec{a} \times \vec{b}) \cdot \vec{c}=0$
D. $(\vec{c} \times \vec{a}) \cdot \vec{b}=1$

Answer: C

- Watch Video Solution

25. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values 0α and β ? (A) alpha=2, beta=1 (B) alpha=1, beta=1 (C) alpha=2, beta=1 (D) alpha=1, beta=2
A. $\alpha=2, \beta=2$
B. $\alpha=1, \beta=2$
C. $\alpha=2, \beta=1$
D. $\alpha=1, \beta=1$

Answer: D

26. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0$ then find the value of $|\vec{w} \cdot \widehat{n}|$
A. 3
B. 0
C. 1
D. 2

Answer: A

- Watch Video Solution

27. If vectors $a=4 \hat{i}-3 \hat{j}+6 \hat{k}$ and vector $b=-2 \hat{i}+2 \hat{j}-\hat{k}$, then (projection of vector a on vectors)/(projection of vector b on a vector) is equal to
A. $\frac{3}{7}$
B. $\frac{7}{3}$
C. 3
D. 7

Answer: B

- Watch Video Solution

28. A vector of magnitude 14 lies in the xy-plane and makes an angle of 60° with x -axis. The components of the vector in the direction of x -axis and y-axis are
A. $7,7 \sqrt{3}$
B. $7 \sqrt{3}, 7$
C. $14 \sqrt{3}, 14 / \sqrt{3}$
D. $14 / \sqrt{3}, 14 \sqrt{3}$

Answer: A

29. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
A. -3
B. -2
C. $-\frac{3}{2}$
D. 0

Answer: C

- Watch Video Solution

30. The two variable vectors $3 x \hat{i}+y \hat{j}-3 \hat{k}$ and $x \hat{i}-4 y \hat{j}+4 \hat{k}$ are orthogonal to each other, then the locus of (x, y) is
A. hyperbola
B. circle
C. straight line
D. ellipse

Answer: A

- Watch Video Solution

31. Angle between the vectors $\sqrt{3}(\vec{a} \times \vec{b})$ and $\vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}$ is
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: A

32. If the vector $\vec{a}=\left(2, \log _{3} x, a\right)$ and $\vec{b}=\left(-3, a \log _{3} x, \log _{3} x\right)$ are inclined at an acute angle then
A. $a=0$
B. $a<0$
C. $a>0$
D. none of these

Answer: B and C

- Watch Video Solution

33. If $\vec{a}, \vec{b}, \vec{c}$ are the 3 vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5,|\vec{a}+\vec{b}+\vec{c}|=0$ then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is :
A. -20
B. -25
C. 25
D. 50

Answer: B

- Watch Video Solution

34. The vectors $(2 \hat{i}-m \hat{j}+3 m k)$ and $\{(1+m) \hat{i}-2 m \hat{j}+\hat{k}\}$ include and acute angle for
A. all values of m
B. $m<-2$ or $m>-1 / 2$
C. $m=-1 / 2$
D. $m \in\left[-2,-\frac{1}{2}\right]$

Answer: B

- Watch Video Solution

35. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $|\vec{a}+\vec{b}+\vec{c}|=1$ and $\vec{a} \perp \vec{b}$, if $\vec{c} \quad$ makes angles $\delta \beta$ with \vec{a}, \vec{b} respectively, then $\cos \delta+\cos \beta$ is equal to
A. $\frac{3}{2}$
B. 1
C. -1
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

36. If \vec{a}, \vec{b} and \vec{c} are three vectors of which every pair is non collinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with the vector \vec{c} and \vec{a} respectively then which one of the following is correct? (A) $\vec{a}+\vec{b}+\vec{c}$ is a nut $\operatorname{vector}(B)$ veca+vecb+veccisaunit $\longrightarrow r(C)$
veca+vecb+veccisa \longrightarrow rofmagnitude 2 units (D) veca+vecb+vecc' isd a vector of magnitude 3 units
A. a unit vector
B. the unit vector
C. equally inclined to $\vec{a}, \vec{b}, \vec{c}$
D. none of these

Answer: B

- Watch Video Solution

37. The two vectors $\left(x^{2}-1\right) \hat{i}+(x+2) \hat{j}+x^{2} \hat{k}$ and $2 \hat{i}-x \hat{j}+3 \hat{k}$ are orthogonal
A. for no real value of x
B. for $x=-1$
C. for $\mathrm{x}=1 / 2$
D. for $x=-1 / 2$ and $x=1$

Answer: D

- Watch Video Solution

38. The value of 'a' for which the points A, B, C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a right angled triangle with $C=\pi / 2$, are
A. 2 and 1
B. -2 and -1
C. -2 and 1
D. 2 and -1

Answer: A

- Watch Video Solution

39. For any vector \vec{a} the value of $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}$ is equal to (A) $4 \vec{a}^{2}$ (B) $2 \vec{a}^{2}$ (C) \vec{a}^{2} (D) $3 \vec{a}^{2}$
A. $3 \vec{a}^{2}$
B. \vec{a}^{2}
C. $2 \vec{a}^{2}$
D. $4 \vec{a}^{2}$

Answer: C

- Watch Video Solution

40. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, where \vec{a}, \vec{b} and \vec{c} are any three vectors such that $\vec{a} \cdot \vec{b} \neq 0, \vec{b} \cdot \vec{c} \neq 0$, then \vec{a} and \vec{c} are:
A. inclined at an angle of $\frac{\pi}{3}$ between them
B. inclined at an angled of $\frac{\pi}{6}$ between them
C. perpendicular
D. parallel

Answer: D

- Watch Video Solution

41. $\vec{a}=3 \hat{i}-5 \hat{j}$ and $\vec{b}=6 \hat{i}+3 \hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c}=\vec{a} \times \vec{b}$ then $|\vec{a}|:|\vec{b}|:|\vec{c}|$
A. $\sqrt{34}: \sqrt{45}: \sqrt{39}$
B. $\sqrt{34}: \sqrt{45}: 39$
C. $34: 39: 45$
D. $39: 35: 34$

Answer: B

- Watch Video Solution

42. Vectors \vec{a} and \vec{b} are inclined at an angle $\theta=120^{\circ}$. If $|\vec{a}|=|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}+\vec{b})]^{2}$ is equal to
A. 190
B. 275
C. 300
D. 768

Answer: D

- Watch Video Solution

43. For any vector \vec{p}, the value of

$$
\frac{3}{2}\left\{|\vec{p} \times \hat{i}|^{2}+|\vec{p} \times \hat{j}|^{2}+|\vec{p} \times \hat{k}|^{2}\right\} \text { is }
$$

A. \vec{p}^{2}
B. $2 \vec{p}^{2}$
C. $3 \vec{p}^{2}$
D. $4 \vec{p}^{2}$

Answer: C

- Watch Video Solution

44. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=676$ and $|\vec{b}|=2$, then $|\vec{a}|$ is equal to
A. 13
B. 26
C. 39
D. none of these

Answer: A

45. What is the interior acute angle of the parallelogram whose sides are represented by the vectors $\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\hat{k}$ and $\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}+\hat{k}$?
A. 60°
B. 45°
C. 30°
D. 15°

Answer: A

- Watch Video Solution

46. Area of rectangle having vertices A, B, C and D with position vector

$$
\begin{aligned}
& \left(-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right),\left(\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right),\left(\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right) \\
& \left(-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right) \text { is }
\end{aligned}
$$

A. $1 / 2$ sq. units
B. 1sq. Units
C. 2sq. Units
D. 4sq. Units

Answer: C

- Watch Video Solution

47. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and
$(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$
If θ is the acute angle between the vectors \vec{b} and \vec{c} then $\sin \theta$ equals
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$
48. Let $\vec{a}, \vec{b}, \vec{c}$ such that $|\vec{a}|=1,|\vec{b}|=1$ and $|\vec{c}|=2$ and if $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=0$ then find acute angle between \vec{a} and \vec{c}
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: A

Watch Video Solution
49. $|(a \times b) \cdot c|=|a||b||c|$, if
A. $a \cdot b=b . c=0$
B. $b . c=c . a=0$
C. $c . a=a . b=0$
D. $a \cdot b=b . c=c \cdot a=0$

Answer: D

- Watch Video Solution

50.

$\vec{a}=\hat{i}+\hat{j}, \vec{b}=2 \hat{j}-\hat{k}$ and $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}$
, then what is the value of $\frac{\vec{r}}{|\vec{r}|}$
A. $\frac{(\hat{i}+3 \hat{j}-\hat{k})}{\sqrt{11}}$
B. $\frac{(\hat{i}-3 \hat{j}+\hat{k})}{\sqrt{11}}$
C. $\frac{(\hat{i}+3 \hat{j}+\hat{k})}{\sqrt{11}}$
D. $\frac{(\hat{i}-3 \hat{j}-\hat{k})}{\sqrt{11}}$

Watch Video Solution

51.

$$
\begin{aligned}
& \text { 51. Let } \vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k} \\
& \vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k} \text {, then }[\vec{a} \vec{b} \vec{c}] \text { depends on }
\end{aligned}
$$

and
A. only y
B. only x
C. both x and y
D. neither x nor y

Answer: D

- Watch Video Solution

52. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors, then the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{a} \times \vec{c})}{\vec{c} \cdot(\vec{a} \times \vec{b})}$ is
A. 0
B. 2
C. 1
D. none of these

Answer: A

- Watch Video Solution

53. Let $\vec{A}=2 \hat{i}+\hat{k}, \vec{B}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{C}=4 \hat{i}-3 \hat{j}+7 \hat{k}$. Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$
A. $-2 \hat{i}+\hat{k}$
B. $-\hat{i}-8 \hat{j}+2 \hat{k}$
C. $\frac{1}{\sqrt{6}}(\hat{i}-\hat{j}+2 \hat{k})$
D. none of these
54. A particle is acted upon by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ which displace it from a point $\hat{i}+2 \hat{j}+3 \hat{k}$ to the point $5 \hat{i}+4 \hat{j}+\hat{k}$. The work done in standard units by the forces is given by:
A. 50 units
B. 20 units
C. 30 units
D. 40 units

Answer: D

- Watch Video Solution

55. Force $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $-\hat{i}-\hat{j}+\hat{k}$ are acting at the point $P(0,1,2)$. The moment of these forces about the point $A(1,-2,0)$ is
A. $2 \hat{i}-6 \hat{j}+10 \hat{k}$
B. $-2 \hat{i}+6 \hat{j}-10 \hat{k}$
C. $2 \hat{i}+6 \hat{j}-10 \hat{k}$
D. none of these

Answer: B

- Watch Video Solution

56. The resultant moment of three forces $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $-\hat{i}-\hat{j}+\hat{k}$ acting on particle at a point $\mathrm{P}(0,1,2)$ about the point $\mathrm{A}(1,2,0)$ is
A. $6 \sqrt{2}$
B. $\sqrt{140}$
C. $\sqrt{21}$
D. none

- Watch Video Solution

57. If $((\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})) \cdot(\vec{a} \times \vec{d})=0$, then which of the following is alaways true?
A. $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are necessarily coplanar
B. either \vec{a} or \vec{d} must lie in the plane of \vec{b} and \vec{c}
C. either \vec{b} or \vec{c} must lie in the pane of \vec{a} and \vec{d}
D. either \vec{a} or \vec{b} must lie in the plane of \vec{c} and \vec{d}

Answer: C

- Watch Video Solution

58. A force $\vec{F}=(\hat{i}-8 \hat{j}-7 \hat{k})$ is resolved along the mutually perpendicular directions, one of which is in the direction of
$\vec{a}=2 \hat{i}+2 \hat{j}+\hat{k}$. Then the component of \vec{F} in the direction of \vec{a} is
A. $-14 \hat{i}-14 \hat{j}-7 \hat{k}$
B. $-\frac{7}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$
C. $\frac{-2 \hat{i}-2 \hat{j}-\hat{k}}{3}$
D. $\frac{7}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$

Answer: B

- Watch Video Solution

59. Find the moment about the point $\hat{i}+2 \hat{j}+3 \hat{k}$ of a force represented by $\hat{i}+\hat{j}+\hat{k}$ acting through the point $2 \hat{i}+3 \hat{j}+\hat{k}$.
A. $3 \hat{i}+3 \hat{j}$
B. $3 \hat{i}+\hat{j}$
C. $-i \hat{i}+\hat{j}$
D. $3 \hat{i}-3 \hat{j}$

Answer: D

D Watch Video Solution

60. Two forces whose magnitudes are 2 N and 3 N act on a particle in the direction of the vectros $2 \hat{i}+4 \hat{j}+4 \hat{k}$ and $4 \hat{i}-4 \hat{j} j+2 \hat{k}$ respectively. If the particle is displaced from the origin O to the point $(1,2,2)$. Find the work done.
A. $6 \mathrm{gm}-\mathrm{cm}$
B. $4 \mathrm{gm}-\mathrm{cm}$
C. $5 \mathrm{gm}-\mathrm{cm}$
D. none of these

Answer: A

1. The points D, E, F divide $B C, C A$ and $A B$ of the triangle ABC in the ratio $1: 4,3: 2$ and $3: 7$ respectively and the point divides $A B$ in the ratio 1:3, then $(\overline{A D}+\overline{B E}+\overline{C F}): \overline{C K}$ is equal to
A. 1:1
B. 2: 5
C. 5: 2
D. none of these

Answer: B

- Watch Video Solution

2. OABCDE is a regular hexagon of side 2 units in the $X Y$-plane in the first quadrant. O being the origin and $O A$ taken along the x-axis. A point P is
taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.
A. $-\hat{i}+3 \hat{j}+\sqrt{5} \hat{k}$
B. $\hat{i}-\sqrt{3} \hat{j}+5 \hat{k}$
C. $-\hat{i}+\sqrt{3} \hat{j}+5 \hat{k}$
D. $\hat{i}+\sqrt{3} \hat{j}+\sqrt{5} \hat{k}$

Answer: C

- Watch Video Solution

3. The vectors $\bar{a}(x)=\cos x \bar{i}+\sin x \bar{j}, \bar{b}(x)=x \bar{i}+\sin x \bar{j}$ are collinear for:
A. unique value of $\mathrm{x}, 0<x<\frac{\pi}{6}$
B. unique value of $\frac{\pi}{6}<x<\frac{\pi}{3}$
C. no value of x
D. infinitely many values of $x, 0$ It x It pi/2

Answer: B

- Watch Video Solution

4. The position vectors of the point A, B, C and D are $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k}$ and $4 \hat{i}+5 \hat{j}+\lambda \hat{k}$, respectively. If the points A, B, C and D lie on a plane, find the value of λ.
A. $-\frac{146}{17}$
B. $-\frac{137}{17}$
C. $-\frac{154}{17}$
D. $-\frac{162}{17}$

Answer: A

- Watch Video Solution

5. Let $x^{2}+3 y^{2}=3$ be the equation of an ellipse in the $x-y$ plane. AandB are two points whose position vectors are $-\sqrt{3} \hat{i}$ and $-\sqrt{3} \hat{i}+2 \hat{k}$. Then the position vector of a point P on the ellipse such that $\angle A P B=\pi / 4$ is a. $\pm \hat{j} \mathrm{~b} . \pm(\hat{i}+\hat{j})$ c. $\pm \hat{i}$ d. none of these
A. $\pm \hat{j}$
B. $\pm(\hat{i}+\hat{j})$
C. $\pm \hat{i}$
D. none of these

Answer: A

- Watch Video Solution

$$
\begin{aligned}
& \text { 6. Let } \triangle P Q R \text { be a triangle. Let } \\
& \vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{R P} \text { and } \vec{c}=\overrightarrow{P Q} \text {. if }|\vec{a}|=12,|\vec{b}|=4 \sqrt{3} \text { and } \vec{b}, \vec{c}
\end{aligned}
$$

, then which of the following is (are) true ?
A. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
B. $\frac{|\vec{c}|^{2}}{2}+|\vec{a}|=30$
C. $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. $\vec{a} \cdot \vec{b}=-72$

Answer: B

- Watch Video Solution

7. If \vec{x} and \vec{y} are two non-collinear vectors and ABC is a triangle with side lengths a, b and c satisfying (20a-15b) $\vec{x}+(15 \mathrm{~b}-12 \mathrm{c}) \vec{y}+(12 \mathrm{c}-20 \mathrm{a})$ $\vec{x} \times \vec{y}$ is:
A. an acute angled triangle
B. an obtuse -angled triangle
C. a right - angled triangle
D. an isosceles triangle

Answer: C

- Watch Video Solution

8. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p, q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for (1) exactly one value of (p,q) (2) exactly two values of (p,q) (3) more than two but not all values of $(p, q)(4)$ all values of (p, q)
A. exactly two values of (p, q)
B. more than two but not all values of (p, q)
C. all values of (p, q)
D. exactly on e value of (p, q)

Answer: D

- Watch Video Solution

9. Lelt two non collinear unit vectors \widehat{a} and \hat{b} form and acute angle. A point P moves so that at any time t the position vector $\overrightarrow{O P}$ (where O is the origin) is given by $\widehat{a} \cos t+\hat{b} \sin t$. When P is farthest from origin O , let M be the length of $\overrightarrow{O P}$ and \widehat{u} be the unit vector along $\overrightarrow{O P}$ Then (A)
$\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
$\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
$\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+2 \widehat{a} . \hat{b})^{\frac{1}{2}}$
$\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+2 \widehat{a} . \hat{b})^{\frac{1}{2}}$
A. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{1 / 2}$
B. $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+\widehat{a} . \hat{b})^{1 / 2}$
c. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} . \hat{b})^{1 / 2}$
D. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+2 \widehat{a} \cdot \hat{b})^{1 / 2}$

Answer: A

10. A non-zero vecto \vec{a} is such the its projections along vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal , then unit vector along \vec{a} us
A. $\frac{\sqrt{2} \hat{j}-\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$
C. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

Answer: C

- Watch Video Solution

11. $\vec{a}, \vec{b}, \vec{c}$ are three vectors with magnitude $|\vec{a}|=4,|\vec{b}|=4,|\vec{c}|=2$ and such that \vec{a} is perpendicular to $(\vec{b}+\vec{c}), \vec{b}$ is perpendicular to $(\vec{c}+\vec{a})$ and \vec{c} is perpendicualr to $(\vec{a}+\vec{b})$. It follows that $|\vec{a}+\vec{b}+\vec{c}|$ is equal to:
A. 9
B. 6
C. 5
D. 4

Answer: B

D Watch Video Solution

12. If the two adjacent sides of two rectangles are represented by vectors $\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b}$ and $\vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b}$ respectively, then the angel between the vector $\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s}) a n d \vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ b. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ c. $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ d. cannot be evaluate
A. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. cannot be evaluated

Answer: B

- Watch Video Solution

13. $O A, O B, O C$ are the sides of a rectangular parallelopiped whose diagonals are $\mathrm{OO}^{\prime}, \mathrm{AA}^{\prime}, \mathrm{BB}$ and CC^{\prime}. D is the centre of the rectangle $A C ' O$ ' B^{\prime} and D^{\prime} is the centre of the rectangle $O^{\prime} A^{\prime} C B^{\prime}$. If the sides $O A, O B$, OC are in the ratio 1:2:3, the angle $\angle D O D^{\prime}$ is equal to
A. $\frac{\cos ^{-1}(24)}{\sqrt{697}}$
B. $\frac{\cos ^{-1}(22)}{\sqrt{619}}$
C. $\frac{\sin ^{-1}(24)}{\sqrt{697}}$
D. $\frac{\sin ^{-1}(22)}{\sqrt{619}}$

Answer: A

14. If the positive numbers a, b and c are the $p t h, q t h$ and rth terms of GP, then the vectors loga.
$\hat{i}+\operatorname{lob} . \hat{j}+\log c . \hat{k}$ and $(q-r) \hat{i}+(r-p) \hat{j}+(p-q) \hat{k}$ are
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

15. A vector $\vec{a}=(x, y, z)$ makes an obtuse angle with F -axis, and make equal angles with $\vec{b}=(y,-2 z, 3 x)$ and $\vec{c}=(2 z, 3 x,-y)$ and \vec{a} is perpendicular to $\vec{d}=(1,-1,2)$ if $|\vec{a}|=2 \sqrt{3}$ then vector \vec{a} is:
A. $(-2,2,2)$
B. $(1,1, \sqrt{10})$
C. $(2,-2,-2)$
D. none of these

Answer: C

- Watch Video Solution

16. Let $\overrightarrow{O B} B=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{O} A=4 \hat{i}+2 \hat{j}+2 \hat{k}$. The distance of the point B from the straight line passing through A and parallel to the vector $2 \hat{i}+3 \hat{j}+6 \hat{k}$ is
A. $\frac{7 \sqrt{5}}{9}$
B. $\frac{5 \sqrt{7}}{9}$
C. $\frac{3 \sqrt{5}}{7}$
D. $\frac{9 \sqrt{5}}{7}$

- Watch Video Solution

17. If a_{1}, a_{2} and a_{3} are three numbers satisfying $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$, then the maximum value of
$\left(4 a_{1}-3 a_{2}\right)^{2}+\left(5 a_{2}-4 a_{3}\right)^{2}+\left(3 a_{3}-5 a_{1}\right)^{2}$ is k, then $\left[\frac{k}{14}\right]$ is equal to (where [.] denotes the greatest integer function)
A. 1
B. 2
C. 3
D. 4

Answer: C

18. Let \vec{a}, \vec{b} and \vec{c} be non coplanar unit vectors equally inclined to one another at an acute angle θ. Then $|[\vec{a} \vec{b} \vec{c}]|$ in terms of θ is equal to
A. $(1+\cos \theta) \sqrt{\cos 2 \theta}$
B. $(1+\cos \theta) \sqrt{1-2 \cos 2 \theta}$
C. $(1-\cos \theta) \sqrt{1+2 \cos \theta}$
D. none of these

Answer: C

- Watch Video Solution

19. Let $\vec{a}, \vec{b}, \vec{c}$ be three non coplanar vectors, and let \vec{p}, \vec{q} and \vec{r} be the vectors defined by the relation

$$
\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]} \text { and } \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}
$$

Then the value of the expension

$$
(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot q+(\vec{c}+\vec{a}) \cdot \vec{r} \text { is equal to }
$$

A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

20. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30° then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to :
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

- Watch Video Solution

21. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four non zero vectors such that $\vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$. Then [abc] is equal to
A. $|a||b||c|$
B. ${ }^{`}-|a||b||c|$
C. 0
D. none of these

Answer: C

22. Let $\vec{r}=(\vec{a} \times \vec{b}) \sin x+(\vec{b}+\vec{c}) \cos y+2(\vec{c} \times \vec{a})$ where $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors. If \vec{r} is perpendicular to $\vec{a}+\vec{b}+\vec{c}$, the minimum value of $x^{2}+y^{2}$ is
A. π^{2}
B. $\frac{\pi^{2}}{4}$
C. $\frac{5 \pi^{2}}{4}$
D. none of these

Answer: C

- View Text Solution

23. A girl walks 4 km towards west, then she walks 3 km in a direction 30 o east of north and stops. Determine the girls displacement from her initial point of departure.
A. $-\frac{3}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
B. $-\frac{5}{2} \hat{i}+\frac{3}{2} \hat{j}$
C. $-\frac{5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
D. none of these

Answer: C

- Watch Video Solution

$\begin{array}{llll}\text { 24. } & \text { If } & \vec{a}+\vec{b}+\vec{c}=0, & \text { prove } \\ (\vec{a} \times \vec{b})=(\vec{b} \times \vec{c})=(\vec{c} \times \vec{a}) & \end{array}$
A. a vector perpendicualr to the plane of $\vec{a}, \vec{b}, \vec{c}$ and vec $c^{\text {. }}$
B. a scalar quantity
C. $\overrightarrow{0}$
D. none of these

Answer: C

25. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then which one of the following is correct ?
A. $\vec{a}=\lambda \vec{b}$ for some scalar λ
B. \vec{a} is parallel to \vec{b}
C. \vec{a} is perpendicualr to \vec{b}
D. $\vec{a}=\vec{b}=\overrightarrow{0}$

Answer: C

- Watch Video Solution

26. The resultant of forces \vec{P} and \vec{Q} is \vec{R}. If \vec{Q} is doubled the \vec{R} is doubled. If the direction of \vec{Q} is reversed, then \vec{R} is again doubled, then $P^{2}: Q^{2}: R^{2}$ is
A. $2: 3: 1$
B. $3: 1: 1$
C. 2:3:2
D. 1:2:3

Answer: C

- View Text Solution

27. If \vec{b} is a vector whose initial point divides thejoin of $5 \hat{i} a n d 5 \hat{j}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, thenk lies in the interval a. $[-6,-1 / 6]$ b. $(-\infty,-6] \cup[-1 / 6, \infty)$ C. $[0,6]$ d. none of these
A. $\left[-6,-\frac{1}{6}\right]$
B. $(-\infty,-6) \cup\left[-\frac{1}{6}, \infty\right]$
C. $[0,6]$
D. $\left[-\frac{1}{6}, 6\right]$

Answer: A

28. A body travels a distance s in t seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration f and in the second part with constant retardation r. the value of t is given by
A. $\sqrt{8 s\left(\frac{1}{f}+\frac{1}{r}\right)}$
B. $2 s\left(\frac{1}{f}+\frac{1}{r}\right)$
C. $\frac{2 s}{\frac{1}{f}+\frac{1}{r}}$
D. $\sqrt{2 s(f+r)}$

Answer: A

- Watch Video Solution

29. Two particles start simultaneously from the same point and move along two straight lines. One with uniform velocity v and other with a
uniform acceleration a. if α is the angle between the lines of motion of two particles then the least value of relative velocity will be at time given by
A. $\frac{u \cos \alpha}{f}$
B. $\frac{u \sin \alpha}{f}$
C. $\frac{f \cos \alpha}{u}$
D. $u \sin \alpha$

Answer: A

- Watch Video Solution

30. \vec{p}, \vec{q}, and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p})$ is given by $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$ b. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C.
$\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$ d. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$
A. $\frac{1}{2}(\vec{p}+\vec{q}-\overrightarrow{2} r)$
B. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer: B

- Watch Video Solution

