India's Number 1 Education App

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

IPU QUESTION PAPER 2016

Mathematics

1.
$$\int \frac{x^2-2}{x^3\sqrt{x^2-1}}dx$$
 equal to

A.
$$\dfrac{x^2}{\sqrt{x^2-1}}+C$$

B.
$$-\frac{x^2}{\sqrt{x^2-1}} + C$$

$$\mathsf{C.}\,\frac{\sqrt{x^2-1}}{x^2}+C$$

$$\mathsf{D.} - \frac{\sqrt{x^2-1}}{x^2} + C$$

View Text Solution

- 2. $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ is equal to
 - A. 0
 - B. 1
 - C. -1
 - $D. \infty$

Answer: B

View Text Solution

3. In how many ways can the four walls of a room be painted with three colours such that no two adjacent walls have the same colour?

- A. 2
- B. 9
- C. 18
- D. 24

- **4.** A die is thrown twice and the sum of the numbers appearing is 6. Then, the conditional probability that the number 4 has appeared at least once is
 - A. $\frac{1}{5}$
 - 3. $\frac{4}{5}$
 - C. $\frac{2}{5}$
 - D. $\frac{2}{36}$

Answer: C

View Text Solution

- **5.** There are 3 true coins and 1 false coin with 'head' on both sides. A coin is chosen at random and tossed 4 times. If 'head' occurs all the 4 times, then the probability that the false coin has been chosen and used is
 - A. $\frac{15}{19}$
 - B. $\frac{14}{19}$
 - c. $\frac{13}{19}$
 - D. $\frac{16}{19}$

Answer: D

D.
$$\frac{1+x}{x}$$

A. $2^{40}+rac{40!}{\left(20!
ight)^2}$

 $\mathsf{C.}\ 2^{39} + {}^{40}C_{20}$

D. none of these

View Text Solution

7. If $x=e^{y+e^{y+}-x}, x>0$ then $\dfrac{dy}{dx}$ is

Answer: D

A. $\frac{1}{x}$

B. $\frac{x}{1+x}$

 $\mathsf{C.}\,\frac{1-x}{x}$

 $\texttt{B.}\ 2^{39} - \frac{1}{2} \times \frac{40!}{\left(20!\right)^2}$

8. The period of the function

$$f(x) = |\sin x| - |\cos x|$$
 is

A.
$$\pi/2$$

B.
$$\pi$$

$$\mathsf{C.}\ 2\pi$$

D.
$$\frac{3\pi}{2}$$

Answer: B

9.
$$\int_{-\pi/2}^{\pi/2} |\sin x| dx$$
 equals to

C. -1

D. 2

Answer: D

View Text Solution

10. If P(x) is a polynomial such that $\left(x^2+1\right)=\left\{p(x)
ight\}^2+1$ then P'(0) is equal to

A. 1

B. 0

C. -1

D. none of these

Answer: A

11. If $y^{rac{1}{m}}+x^{rac{1}{m}}=2x$ then

A.
$$\left(x^2+1\right)rac{d^2y}{dx^2}+xrac{dy}{dx}-m^2y=0$$
B. $\left(x^2-1
ight)rac{d^2y}{dx^2}+xrac{dy}{dx}+m^2y=0$
C. $\left(x^2-1
ight)rac{d^2y}{dx^2}+xrac{dy}{dx}-m^2y=0$

D.
$$\left(x^2+1
ight)rac{d^2y}{dx^2}-xrac{dy}{dx}+m^2y=0$$

Answer: C

12. Tangents are drawn from the origin to the curve y=sin x then ,the point of contact lie on the curve is

A.
$$y^2=rac{x^2}{1-x^2}$$
B. $y^2=rac{x^2}{1+y}$

$$\mathsf{C.}\,x^2=\frac{y^2}{1+y^2}$$

D.
$$y^2=rac{x^2}{1+x^2}$$

View Text Solution

13. What is the value of $\tan\left(\frac{\pi}{12}\right)$?

A.
$$1-\sqrt{3}$$

B.
$$\sqrt{3}-1$$

$$\mathsf{C.}\,2-\sqrt{3}$$

D.
$$\sqrt{3} - 2$$

Answer: C

View Text Solution

14. $\int \frac{x^2}{\left(x\sin x + \cos x\right)^2} dx$ is equal to

A.
$$\frac{x\sin x - \cos x}{x\sin x + \cos x} + C$$

$$\mathsf{B.} \; \frac{\cos x - x \sin x}{x \sin x + \cos x} + C$$

$$\mathsf{C.}\ \frac{x\cos x - \sin x}{x\sin x + \cos x} + C$$

$$\text{D.}\ \frac{\sin x - x\cos x}{x\sin x + \cos x} + C$$

View Text Solution

15. $\int_0^1 xe^{2x}dx$ is equal to

A.
$$e^2-1$$

B.
$$\frac{1}{4}(e^2-1)$$

C.
$$2e^2+1$$

D.
$$\frac{1}{4}(e^2+1)$$

Answer: D

16. A real solution of the equation $\cosh x - 5 \sinh x - 5 = 0$ is

- A. In 2
- B. In 2
- C. In 5
- D. none of these

Answer: A

- 17. $\int_{-1}^{1} \frac{x \sin^2 x}{\sqrt{1-x^2}} dx$ is equal to
 - A. 1
 - B. 0
 - C. 4
 - D. 2

View Text Solution

18. On the ellipse , $9x^2+25y^2=225$ the point, the distance from which to the focus F_2 is four times the distance to the focus F_1

A.
$$\left(\frac{-15}{4}, \frac{\sqrt{63}}{4}\right)$$

$$\mathsf{B.}\left(\frac{-15}{4},\frac{-\sqrt{63}}{4}\right)$$

C.
$$\left(\frac{-1}{15}, \frac{-\sqrt{63}}{4}\right)$$
 and $\left(\frac{-1}{15}, \frac{\sqrt{63}}{4}\right)$

D.
$$\left(\frac{-1}{15}, \frac{-\sqrt{63}}{4}\right)$$
 and $\left(\frac{1}{15}, \frac{\sqrt{63}}{4}\right)$

Answer: B

19. If the expansion of $\left(x^2 + \frac{2}{x}\right)^n$ for positive integer n has a term independent of x, then n is

B. 18

C. 16

D. 13

Answer: B

View Text Solution

20. Find the points of intersection of the given surface
$$\frac{x^2}{81} + \frac{y^2}{36} + \frac{z^2}{9} = 1$$
 and the straight line $\frac{x-3}{3} = \frac{y-4}{-6} = \frac{z+2}{4}$

C. (3,4,-2) and (6,-2,2)

Answer: C

View Text Solution

- - 21. Let $a-\cos heta_1+i\sin heta_1b=\cos heta_2+i\sin heta_2c=\cos heta_3+i\sin heta_3$ and a+b+c=
- then
 - A. 1
 - B.-1
 - $\mathsf{C.}\,\sqrt{2}$

D. 0

- **Answer: D**
 - View Text Solution

22. For any two vectors u and v , if |u+v| = |u-v| then the angle between

them is equal to

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{2}$$

D.
$$\pi$$

Answer: C

- **23.** Find the derivative of $y^{n+m}\sqrt{\left(1-x
 ight)^m\left(1+x
 ight)^n}$ at x = 0 , where n,m>0
 - A. 0
 - B. 1
 - C. $\frac{n-m}{n+m}$

D.
$$rac{m}{n^{n+m}}+m^{rac{n}{m+n}}$$

Answer: C

View Text Solution

- **24.** Angles A, B and C of a ΔABC are in AP and , $b=c=\sqrt{3}$: $\sqrt{2}$ then the $\angle A$ is given by
 - A. $45^{\,\circ}$
 - B. 60°
 - C. 75°
 - D. 90°

Answer: C

25. The straight line and the plane are
$$r=(i-j+k)+\lambda(2i+j-k)$$
 and the plane $r.$ $(2i+j-k)=4$ are

C. inclined at an angle 60°

D. inclined at an angle 45°

Answer: A

B. parallel

to the straight line
$$4x - 3y + 2 = 0$$
?

26. At what point of the curve $y^2=2x^3$ is the tangent line perpendicular

$$A.\left(\frac{1}{8}, \frac{-1}{16}\right)$$

$$\mathsf{B.}\left(\frac{1}{4},\frac{-1}{8}\right)$$

$$\mathsf{C.}\left(\frac{-1}{16},\frac{1}{8}\right)$$

D. none of these

Answer: A

View Text Solution

27. Find the real solution of the system of equations.

$$x^4 + y^4 - x^2 y^2 = 13$$

And
$$x^2 - y^2 + 2xy = 1$$

Satisfying the condition $xy \geq 0$

A.
$$(x = 1, y = -2), (x = -1, y = 2)$$

B.
$$(x = 2, y = 1), (x = -2, y = -1)$$

C.
$$(x = 1, y = 2), (x = -1, y = -2)$$

D.
$$(x = 1, y = -2), (x = -1, y = -2)$$

Answer: C

28. For x > 1, how many roots/solutions of the following equation exist.

$$\log_{2x}\!\left(rac{2}{x}
ight)\!\log_2^2x+\log_2^4x=1$$

A. None

B. One

C. Two

D. Infinitely many

Answer: B

View Text Solution

29. Solve for x(x>0)

$$\log_{3x}\!\left(rac{3}{x}
ight) + \log_3^2 x = 1$$

A. x = 1 and there are infinitely more solutions.

B. x = 1 ,
$$x_2=rac{1}{3}$$
 only two solutions

C. x = 1, $x_2 = 3$ only two solutions

D. x = 1 ,
$$x_2=3, x_3=rac{1}{3}$$
 only three solutions

Answer: C

View Text Solution

30.
$$\int_0^1 x^5 \sqrt{1-x^3} dx$$
 is equal to

A.
$$1/15$$

$$\mathsf{B.}\,2\,/\,45$$

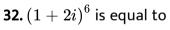
$$\mathsf{C.}\,2\,/\,15$$

 $\mathsf{D.}\,4/45$

Answer: D

View Text Solution

31. $\dfrac{1}{2{\sin 10}^{\circ}} - 2{\sin 70}^{\circ}$ is equal to


C.
$$\frac{1}{\sqrt{2}}$$
D. 1

Answer: D

View Text Solution

A. 0

 $\operatorname{B.}\frac{1}{2}$

A. None of these

 $\mathsf{B.}-177+44j$

D. 177-44j

 $\mathsf{C.}\,177 + 44j$

Answer: A

33. What is the number of ordered pairs of real numbers (a,b) such that

$$(a+bi)^{2002} = a-bi$$
 ?

- A. 1001
- B. 1002
- C. 2004
- D. 2002

Answer: C

34. Which of the following complex numbers is conjugate to its square?

A.
$$1 - i\sqrt{3}$$

B.
$$-1-i\sqrt{3}$$

C.
$$rac{1}{2}-rac{i\sqrt{3}}{2}$$

$$\mathsf{D.} - \frac{1}{2} + \frac{i\sqrt{3}}{2}$$

View Text Solution

35. Given
$$arepsilon_k = \cos\left(rac{2\pi k}{n}
ight) + i\sin\left(rac{2\pi k}{n}
ight)$$
 find

the

A.
$$2(1-\cos n heta)$$

B.
$$2(1+\cos n\theta)$$

 $\Pi_{k=0}^{n-1} \left(\varepsilon_k^2 - 2\varepsilon_k \cos \theta + 1 \right)$

C.
$$(1-\cos n heta)^n$$

D.
$$1+\cos^2 n heta$$

Answer: A

36.
$$\lim_{x o \pi/4} \frac{\left(1-\cos x\right)^2}{\tan^2 x - \sin^2 x}$$
 is equal to

B.
$$\left(\sqrt{2-1}\right)^2$$

C. 1

 $D. \infty$

Answer: B

View Text Solution

37. $\lim_{n \to \infty} \left[\frac{1}{5} - \frac{1}{25} + \dots + (-1)^{n-1} \frac{1}{5^n} \right]$

A.
$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\mathsf{B.}\;\frac{1}{4}$$

c.
$$\frac{1}{6}$$

D.
$$\frac{1}{8}$$

Answer: B

View Text Solution

- **38.** $\lim_{x\to 0} \frac{a^x-1}{x}$ is equal to
 - A. a
 - B. log a
 - C. 0
 - $D. \infty$

Answer: B

- **39.** $\lim_{x o 0} \frac{ an^{-1}\left(rac{x}{\sqrt{1-x^2}}
 ight)}{\ln(1-x)}$ is equal to
 - A. 0

$$C. - 1$$

D.
$$\infty$$

Answer: C

View Text Solution

40. Find the angles formed by the unit vectors e_1 and e_2 if it is known that the vectors $a=e_1+2e_e$ and $b=5e_1-4e_2$ are mutually perpendicular.

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D.
$$\pi$$

Answer: B

41. Find the component of the vector a (-1,2,0) perpendicular to the plane of the vectors $e_1[1,0,1)$ and $e_2(1,1,1)$

A.
$$\left(-\frac{1}{2},\frac{1}{2},0\right)$$

$$\mathsf{B.}\left(0,\ -\frac{1}{2},\frac{1}{2}\right)$$

 $\mathsf{C.}\left(-\frac{1}{2},0,\frac{1}{2}\right)$

D.
$$\left(\frac{1}{2}, 0, \frac{-1}{2}\right)$$

Answer: C

42.
$$\overrightarrow{I}=\sqrt{-1}$$
 then $\lim_{n\to\infty} \frac{(n+2i)(3+7\mathrm{in})}{(2-i)(6n^2+1)}$ is equal to

A.
$$-7/5$$

B.
$$\frac{14}{5} - \frac{7}{5}i$$

c.
$$\frac{7}{5} - \frac{14}{5}i$$

D.
$$\frac{-7}{30}+rac{7}{5}i$$

View Text Solution

43. What is the shape of the figure given by the following equations?

i.
$$16x^2 - 9y^2 - 64x - 54y - 161 = 0$$

ii $9x^2 - 16y^2 + 90x - 32y - 367 = 0$

iii.
$$16x^2 - 9y^2 - 64x - 18y + 199 = 0$$

A. Line

B. Ellipse

C. Hyperbola

D. Parabola

Answer: A

O.

44. What is the equation of the curve in which point M performs its motion, if the sum of the distances from this point to the points A(-1, -1) and B (1, 1) remains constant is equal to $2\sqrt{3}$?

A.
$$2x^2 - 2xy + 2y^3 - 3 = 0$$

$$\mathsf{B.}\, 2x^2 + 2xy - 2y^3 - 3 = 0$$

C.
$$2x^2 - 2xy - 2y^3 + 3 = 0$$

D.
$$2x^2 + 2xy + 2y^3 - 3 = 0$$

Answer: A

View Text Solution

45. Find the component of the vector a (-1,2,0) perpendicular to the plane of the vectors $e_1(1,0,1) \ {
m and} \ e_2(1,1,1)$

A.
$$(1/2, 0, 1/2)$$

D. (-1/2, 0, -1/2)

B. (-1/2, 0, 1/2)

C. (1/2, 0, -1/2)

Answer: B

View Text Solution

46. On the sphere $(x-1)^2 + (y+2)^2 + (z-3)^2 = 25$ compute the distance from the point M_0 to the plane 3x-4z+19

A. 1

B. 2

C. 3

D. 4

Answer: A

47. If $y=\sec(an^{-1}x)$, then y at x = 1 is equal to term is the sum of two preceding terms. Then, the common ratio of the G.P. is

A.
$$\frac{1}{\sqrt{2}}$$
 B. $\frac{1}{2}$

$$\mathsf{B.}\;\frac{1}{2}$$

D.
$$\sqrt{2}$$

Answer: A

View Text Solution

48. $\lim_{x \to \infty} \frac{\ln x}{x^m}$ is equal to point

A. 0

B. 1

 $C. - \frac{1}{2}$

Answer: A

View Text Solution

49. Every term of G.P. is positive and also every term is the sum of two preceding terms. Then, the common ratio of the G.P. is

A.
$$\frac{1-\sqrt{5}}{2}$$

$$\text{B.}\,\frac{\sqrt{5}+1}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{5}-1}{2}$$

D. 1

Answer: B

