

MATHS

BOOKS - IPUCET PREVIOUS YEAR PAPERS MATHS (HINGLISH)

IPU QUESTIONS PAPER 2017

Mathematics

1. Consider line segments of lengths 1, 2, 3, ...10, what is the number of triangles that can be formed from them?

- A. 20
- B. 30
- C. 40
- D. 50

Answer: d

View Text Solution

2. Choose the most appropriate options.

The value of $\lim_{x\to 0} \frac{\int_0^x \sec^2 t dt}{x \sin x}$ is

A. 0

- B. 3
- C. 2
- D. 1

Answer: d

3. How many paths are there from the point A to the point B in figure below, if no point in a path is to be traversed more than once

A.
$$2^{3}$$

 $\mathsf{B.}\ 2^6$

C. $^{12}C_2$

D. 7

Answer: d

4. Choose the most appropriate options.

The number of real roots of $(6-x)^4+(8-x)^4=16$

A. 0

B. 2

C. 4

D. 6

Answer: d

5.
$$\begin{vmatrix} a^2 & b^2 & c^2 \ (a+1)^2 & (b+1)^2 & (c+1)^2 \ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix}$$
 is equal to

$$\mathsf{A.} - 4(a-b)(b-c)(c-a)$$

$$\mathsf{B.}\,4(a-b)(b-c)(c-a)$$

$$\mathsf{C.}\, 2(a-b)(b-c)(c-a)$$

D. 0

Answer: a

View Text Solution

6. Choose the most appropriate options.

The function $f\!:[0,3] o[1,29)$ defined by

$$f(x) = 2x^3 - 15x^2 + 36x + 1$$
 is

A. one-one and onto

B. onto but not one one

C. one-one but not onto

D. neither one-one nor onto

Answer: b

View Text Solution

7. Choose the most appropriate options.

For all $n \in N, 7^{2n} - 48n - 1$ is divisible by

A. 25

B. 26

C. 1234

D. 2304

Answer: d

Car Tast Calution

8.
$$\sum_{k=0}^{5} {5 \choose k}^2$$
 is equal to

A.
$$^{25}C_5$$

B.
$$^{15}C_5$$

C.
$$^{10}C_5$$

D. 1

Answer: c

If
$$f(x)=\left\{egin{array}{ll} rac{1-\sin x}{\left(\pi-2x
ight)^2} & \cdot rac{\log \sin x}{\log \left(1+\pi^2-4\pi x+x^2
ight)} \ k,x=rac{\pi}{2} \end{array}
ight.$$

is continuous at $x=rac{\pi}{2}$ then k is equal to

A.
$$-\frac{1}{16}$$

B.
$$-\frac{1}{32}$$

$$C. - \frac{1}{64}$$

D.
$$-\frac{1}{28}$$

Answer: c

10. The length of the axes of the conic

$$9x^2 + 4y^2 - 6x + 4y + 1 = 0$$
 are

- A. $\frac{1}{2}$, 9
- B. 3, $\frac{2}{5}$
- C. $1, \frac{2}{3}$
- D. 3, 2

Answer: d

Admission aglasem A differentiable function f(x) has a relative minimum at x =0, then the function y=f(x)+ax+b has a relative minimum at x=0 for

- A. all a and All b
- B. all b, if a=0
- C. all b>0
- D. all a>0

Answer: b

12. The maximum number of points into which 4 circles and 4 straight lines intersect, is

- A. 26
- B. 50
- C. 56
- D. 72

Answer: b

View Text Solution

13. Choose the most appropriate options.

The solution of the differential equation

$$\left(x^2-yx^2
ight)rac{dy}{dx}+y^2+xy^2=0$$
 is

A.
$$\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + C$$

$$\mathsf{B.}\log\Bigl(\frac{y}{x}\Bigr) = \frac{1}{x} + \frac{1}{y} + C$$

 $\mathsf{C.}\log(xy) = \frac{1}{x} + \frac{1}{u} + C$

 $\mathsf{D}.\log(xy) + \frac{1}{x} = \frac{1}{y} = C$

14. Given that
$$lpha_1,lpha_2,lpha_3$$
 are the roots of $3x^3-x^2-10x+8=0$ then the value of $lpha_1^2+lpha_2^2+lpha_3^2$

A.
$$9/61$$

$$\mathsf{B.}\,61/9$$

D.
$$9/16$$

Answer: b

View Text Solution

15. Choose the most appropriate options.

The area bounded by the curves y =cos x and y = sin x between the ordinates x=0 and $x=\frac{3\pi}{2}$ is

A.
$$4\sqrt{2} - 1$$

B.
$$4\sqrt{2} + 1$$

$$\mathsf{C.}\,4\sqrt{2}-2$$

D.
$$4\sqrt{2}+2$$

Answer: c

View Text Solution

16. Choose the most appropriate option.

$$\int_0^{rac{\pi}{2}} rac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 is equal to

A. 1

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{\pi}{3}$$

Answer: c

View Text Solution

17. Choose the most appropriate options.

The value of the integral $\int_0^{0.9} [x-2[x]] dx$ where [.] denotes the greatest integer function,

- A. 0.9
- B. 0
- C. 1.8

$$D. - 0.9$$

Answer: b

View Text Solution

18. Choose the most appropriate option.

The value of $\int_0^{rac{\pi}{2}} \sin^7 heta \cos^4 heta d heta$ is

A.
$$\frac{16}{1155}$$

B.
$$\frac{10}{385}$$

$$\mathsf{C.}\ \frac{16\pi}{385}$$

D.
$$\frac{6\pi}{1155}$$

Answer: a

View Text Solution

19. Choose the most appropriate options.

The number of solutions of the equation

 $3\sin^2 x - 7\sin x + 2 = 0$ in the interval $[0,5\pi]$ is

A. 0

B. 5

C. 6

D. 10

The inverse of matrix $\begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ is

A.
$$\begin{bmatrix} 4 & 1 & -1 \\ 3 & -1 & 3 \\ 4 & -3 & -3 \end{bmatrix}$$

B.
$$\begin{bmatrix} 3 & 1 & 1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$

C.
$$\begin{bmatrix} 3 & -4 & 4 \\ 4 & 1 & -3 \end{bmatrix}$$

A.
$$\begin{bmatrix} 4 & 1 & -1 \\ 3 & -1 & 3 \\ 4 & -3 & -3 \end{bmatrix}$$
B.
$$\begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$
C.
$$\begin{bmatrix} 0 & -1 & 1 \\ 3 & -4 & 4 \\ 4 & 1 & -3 \end{bmatrix}$$
D.
$$\begin{bmatrix} 0 & 1 & 1 \\ -4 & 3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$

Answer: b

 $a=\hat{i}+\hat{j}, b=2\hat{j}-\hat{k} \, ext{ and } \, r imes a=b imes ar imes b=a imes b$

then a unit vector in the direction of r is

A.
$$rac{1}{\sqrt{11}} \Big(\hat{i} + 3 \hat{j} - \hat{k} \Big)$$

B.
$$rac{1}{\sqrt{11}}\Big(\hat{i}-3\hat{j}+\hat{k}\Big)$$

C.
$$\frac{1}{\sqrt{3}} \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

D. None

The solution of the differential equation

$$rac{d^2y}{dx^2}+3y={}-2x$$
 is

A.
$$c_1\cos\sqrt{3}x+c_2\sin\sqrt{3}x-rac{2}{3}x$$

B.
$$c_1cso\sqrt{3}x+c_2\sin\sqrt{3}x-rac{4}{5}$$

C.
$$c_1\cos\sqrt{3}x+c_2\sqrt{3}x-2x^2+rac{4}{9}$$

D.
$$c_1 \cos \sqrt{3} x + c_2 \sin \sqrt{3} x - \frac{2}{3} x^2 + \frac{4}{9}$$

Answer: a

From the bottom of a pole of height h, the angle of elevation of the top of a tower is α The pole subtends an angle β at the top of tower. The height of the tower is

A.
$$\frac{h\sin\alpha\sin(\alpha-\beta)}{\sin\beta}$$

B.
$$\frac{h\sin\alpha\cos(\alpha+\beta)}{\cos\beta}$$

C.
$$\frac{h\sin\alpha\cos(\alpha-\beta)}{\sin\beta}$$

D.
$$\frac{h\sin\alpha\sin(\alpha+\beta)}{\cos\beta}$$

Answer: c

If the numbers a_1, a_2, \ldots, a_n are different from zero and form an arithmetic progression, then

$$rac{1}{a_1a_2}+rac{1}{a_2a_3}+rac{1}{a_3a_4}+\ldots \ +rac{1}{a_{n-1}a_n}$$
 is equal to

A.
$$\frac{1}{a_1 a_n}$$

B.
$$\frac{n}{a_1 a_n}$$

C.
$$\frac{n+1}{a_1a_n}$$

D.
$$\frac{n-1}{a_1a_n}$$

Answer: d

The equation of a straight line passing through the point of intersection of

and

perpendicular to one of them, is

x - y + 1 = 0 and 3x + y - 5 = 0

A.
$$x + y + 3 = 0$$

$$\mathsf{B.}\,x-y-3=0$$

C.
$$x - 3y - 5 = 0$$

D.
$$x - 3y + 5 = 0$$

Answer: d

The number of integral values of λ for which the equation

$$x^2 + y^2 - 2\lambda x + 2\lambda y + 14 = 0$$

represent a circle whose radius cannot exceed 6 is

A. 10

B. 11

C. 12

D. 9

Answer: b

Let x_1 and x_2 be the roots of the equation

$$ax^2 + bx + c = 0 (ac \neq 0)$$

Find the value of $\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}$

A.
$$\dfrac{\sqrt{b^2-2ac}}{c}$$

$$\text{B.}\ \frac{c}{\sqrt{b^2-2ac}}$$

C.
$$\frac{b^2-2ac}{c^2}$$

D.
$$\dfrac{c^2}{b^2-2ac}$$

Answer: c

A line makes the same angle θ with each of the X and Z-axis. If the angle β which it makes with Y-axis is such that $\sin^2\beta=3\sin^2\theta$, then $\cos^2\theta$ equals

- A. 2/5
- B. 1/5
- C.3/5
- D.2/3

Answer: c

The mid-point of the chord 2x+y-4-0 of the parabola $y^2=4x$ is

A.
$$(5/2, -1)$$

B.
$$(-1, 5/2)$$

C.
$$(3/2, -1)$$

D. None of these

Answer: a

Gas is being pumped into a spherical balloon Then, the rate at of $30ft^3$ / min which the radius increases when it reaches the value 15ft, is

- A. $\frac{1}{30\pi}$ ft/min
- B. $\frac{1}{15\pi}$ ft/min
- C. $\frac{1}{20}$ ft/min
- D. $\frac{1}{25}$ ft/min

Answer: a

If n is an integer, compute the value of the fraction

$$\frac{\left(1+i\right)^n}{\left(1-i\right)^{n-2}}$$

- A. 2i
- B. $(2i)^n$
- $\mathsf{C.}\,2i^{n-1}$
- D. $2i^{n-2}$

Answer: a

If the tangent at (1,1) on $y^2=x(2-x)^2$ meets the curve again at P, then P is

- A.(4,4)
- B. (-1, 2)
- C.(9/4,3/8)
- D. None of these

Answer: c

If $|a| < 1 \,\, {
m and} \,\, |b| < 1$ then the sum of series

$$a(a+b) + a^2 (a^2 + b^2) + a^3 (a^3 + b^3) + \ldots$$
 is

A.
$$\frac{a}{1-a}+\frac{ab}{1-ab}$$

$$\mathsf{B.}\,\frac{a^2}{1-a^2}+\frac{ab}{1-ab}$$

$$\mathsf{C.}\,\frac{b}{1-b}+\frac{a}{1-a}$$

D.
$$\dfrac{b^2}{1-b^2}+\dfrac{ab}{1-ab}$$

Answer: b

34. Three points are chosen randomly and independently on a circle. What is the probability that all three pairwise distances between the points are less than the radius of the circle?

- A. 1/36
- B. 1/24
- C.1/18
- D.1/12

Answer: d

If A is a square matrix such that

$$A^2 = A$$
 and $B = I - A$ then,

 $AB + BA + I - (I - A)^2$ is equal

A. A

B. 2A

 $\mathsf{C}.-A$

D. I-A

Answer: a

Calculate
$$egin{array}{c|ccc} x & y & x+y \ y & x+y & x \ x+y & x & y \ \end{array}$$

A.
$$x^3 + y^3$$

$$\mathsf{B.}\, x^3 + y^3 + 3x^2y + 3xy^2 + 1$$

C.
$$-2ig(x^3+y^3ig)$$

D.
$$2(x^3 + y^3)$$

Answer: c

Let $f(x)=\left(x^3+2\right)^{30}$. If $f^n(x)$ is a polynomial of degree 20 where $f^n(x)$ denotes the n+h order derivative of f(x) with respect to x then the value of n is

- A. 60
- B. 40
- C. 70
- D. 50

Answer: c

The set of values of x satisfying the system of in equations 5x+2 < 3x+8 and $\dfrac{x+2}{x-1} < 4$ is

A.
$$(-\infty,1)$$

C.
$$(-\infty, 3)$$

D.
$$(-\infty, 1) \cup (2, 3)$$

Answer: d

$$\lim_{x o a} rac{\log_a x - 1}{x - a}$$
 is equal to

- A. $\frac{1}{a}$
- B. a
- $\operatorname{C.log}_a e$
- D. $\frac{1}{a}\log_a e$

Answer: d

If $\left|z^2-1\right|=\left|z^2\right|+1$, then z lies on a

- A. circle
- B. parabola
- C. ellipse
- D. None of these

Answer: d

If $f(x) = [x \sin \pi x]$, then which of the following is incorrect?

- A. f(x) is continuous at x = 0
- B. f(x) is continuous in (-1,0)
- C. f(x) is differentiable at x = 1
- D. f(x) is differentiable in (-1, 1)

Answer: c

Find the distance from the point A (2, 3, - 1) to the given straight line.

$$x = 3t + 5$$

$$y = 2t$$

$$z = -2t - 25$$

- A. 15
- B. 17
- C. 19
- D. 21

Answer: d

verin Tara Californi

The degree of the differential equation

$$x=1+rac{dy}{dx}+rac{1}{2!}igg(rac{dy}{dx}igg)^2+rac{1}{3!}igg(rac{dy}{dx}igg)^3+\ldots$$

- A. 3
- B. 1
- C. not dened
- D. None of these

Answer: b

On the sphere $(x-1)^2 + (y+2)^2 + (z-3)^2 = 25$

find the point M_0 to the plane 3x-4z+19

- A. (7, -2, -2)
- B. (2, -2, 7)
- C. (-2, -2, 7)
- D. (-2, 7, -2)

Answer: c

$$\lim_{x o 0} rac{(1-\cos 2x)(3+\cos x)}{x an 4x}$$
 is equal to

- A. 4
- B. 3
- C. 2
- D. 1/2

Answer: c

If A(2,3) and B(-2, 1) are two vertices of a triangle and third vertex moves on the line 2x+3y=9, then the locus of the centroid of the new set of observations will be the triangle is

A.
$$2x + 3y = 1$$

B.
$$2x + y = 3$$

$$C. 2x - 3y = 1$$

D.
$$x - y = 1$$

Answer: a

$$\lim_{x o 0} \ rac{\ln \cos 2x}{\sin 2x}$$
 is equal to

- A. 0
- B. 1
- $\mathsf{C.}\,\frac{1}{2}$
- $D. \infty$

Answer: a

Let $f(x)=ax^3+5x^2-bx+1$. If f(x) when divided by 2x+1 leaves 5 as remainder, and f'(x) is divisible by 3x-1, then

A.
$$a = 26, b = 10$$

B.
$$a = 24, b = 12$$

C.
$$a = 26, b = 12$$

D. None of these

Answer: c

If the SD of a set of observations is 8 and each observation is divided by -2, then the SD of new set of observation will be

- A. 4
- B. 8
- C. 8
- D. 4

Answer: d

 $\lim_{x o 1} \sin(x-1) an rac{\pi x}{x}$ is equal to

A. 0

$$B. - \frac{1}{\pi}$$

C.
$$-rac{2}{\pi}$$

D.
$$-\frac{3}{\pi}$$

Answer: a

