©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

CHAPTERWISE NUMERIC /INTEGER

ANSWER QUESTIONS

Chapter 1 Physical World Units And Measurements

1. The density of a material in SI units is 128 kg m^{-3}. In certain units in which the unit of length is 25 cm and the unit of mass is 50 g , the numerical value of density of the material is :

D Watch Video Solution

2. the least count of the main scale of a screw gauge is 1 m . the minimum number of divisions on its circular scale required to measure $5 \mu m$ diameter of a wire is :
3. In the densilty measurement of a cube, the mass and edge length are measured as
$(10.00 \pm 0.10) \quad \mathrm{kg} \quad$ and $\quad(0.10 \pm 0.01) \quad \mathrm{m}$, respectively. The error in the measurement of density is.

D Watch Video Solution

4. The area of a square is $5.29 \mathrm{~cm}^{2}$ The area of 7
such squares taking into account the significant
figures is:

- Watch Video Solution

5. A student has measured the length of a wire equal to 0.04580 m . this value of length has the number of significant figures equal to

- Watch Video Solution

6. The period of revolution(T) of a planet moving
round the sun in a circular orbit depends upon
the radius (r) of the orbit, mass (M) of the sun
and the gravitation constant (G). Then T is proportioni of r^{a}. The value of a is

D Watch Video Solution

7. Error in the measurement of radius of a sphre is 1%. Then maximum percentage error in the measurement of volume is

- Watch Video Solution

8. Position of a body with acceletation a is given box $x=k a^{m} t^{n}$, where t is time and k is numeric constant. Find the value of m.

D Watch Video Solution

9. The displacement of a particle moving along x-axis with respect to time t is $x=a t+b t^{2}-c t^{3}$. The dimensions of c is $L T^{-x}$. The value of x is
10. Subtract 0.2 J from 7.26 and express the result with correct number of significant figures

D Watch Video Solution

11. Multiply 107.88 by 0.610 and express the result with correct number of significant figures.

- Watch Video Solution

12. The velocity of water waves (v) may depend
on their wavelength λ, the density of water ρ
and the acceleration due to gravity g . The method of dimensions gives the relation between these quantities as $v^{2}=k g^{x} \lambda^{x} \rho^{y}$. The value of x is (Here k is a constant).

D Watch Video Solution

13. To determine the young's modulus of a wire,
the formula is $Y=\frac{F}{A} \cdot \frac{L}{\Delta l}$, where $L=l$ ength,
$A=$ area of cross - section of the wire , $\Delta L=$
change in the length of the wire when streched with a force F. Find the conversion factor to change it from CGS t o MKS system.

- Watch Video Solution

14. Let Q denote the charge on the plate of a capacitor of capacitance c. The dimensional formula for $\frac{Q^{2}}{C}$ is $\left[M L^{x} T^{-x}\right]$. Find the value of x.

- Watch Video Solution

15. If the error in the measurement of the
volume oif sphere is 6% then the error (in
percent) in the measurement of its surface area

will be:

D Watch Video Solution

Chapter 2 Motion In A Straight Line

1. A particle starts from the origin at time $t=0$
and moves along the positive x-axis. The graph of velocity with respect to time is shown in figure. What is the position (in metre) of the particle at time $t=5 s$?

- View Text Solution

2. A car travels half the distance with a constant
velocity of $40 \mathrm{~m} / \mathrm{s}$ and the remaining half with a constant velocity of $60 \mathrm{~m} / \mathrm{s}$. The average velocity of the car in m / s is

D Watch Video Solution

3. The position of an object moving along x-axis
is given by $a+b t^{2}$, where $\mathrm{a}=8.5 \mathrm{~m}$ and $\mathrm{b}=$
$2.5 \mathrm{~m} / \mathrm{s}^{2}$ and t is measured in seconds. The
average velocity (in m / s) of the object between $t=2 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$ is

- Watch Video Solution

4. A car moves a distance of 200 m . It covers the first-half of the distance at speed $40 \mathrm{~km} / \mathrm{h}$ and the second-half of distance at speed $v k m / h$.

The average speed is $48 \mathrm{~km} / \mathrm{h}$. Find the value of v.

- Watch Video Solution

5. A bus travelling the first one third distance at a speed of $10 \mathrm{~km} / \mathrm{h}$, the next one third at 20 km / h and the last one third at $60 \mathrm{~km} / \mathrm{h}$. The average speed (in km /h) of the bus is

D Watch Video Solution

6. The v-t graph for a particles is as shown below. The distance (in metre) travelled in the first four second is
7. The v-t pot of a moving object is shown in the figure. The average velocity of the object during the first 10 seconds is

D View Text Solution

8. A motor car moving with a uniform speed of
$20 \mathrm{~m} / \mathrm{sec}$ comes to stop on the application of brakes after travelling a distance of 10 m , its deceleration is
9. A body moves from rest with a constant acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. Its instantaneous speed (in m / s) at the end of 10 sec is

D Watch Video Solution

10. A bus starts moving with acceleration
$2 m / s^{2}$. A cyclist 96 m behind the bus starts moving simultaneously towards the bus a speed
of $20 \mathrm{~m} / \mathrm{s}$. After what minimum time will he be able to overtake the bus?

D Watch Video Solution

11. The displacement x of a particle at the instant when its velocity is v is given by $v=\sqrt{3 x+16}$. Its initial velociyt is
12. A body starts from rest, if the ration of the distance travelled by the body during the 4th and 3 rd second is $\frac{x}{5}$. Find the valud of x .

D Watch Video Solution

13. If a ball is thrown vertically upwards with a velocity of $40 \mathrm{~m} / \mathrm{s}$, then velocity of the ball after $2 s$ will be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
14. A stone falls from a ballon that id descending at a uniform rate of $12 \mathrm{~m} / \mathrm{s}$. The displacement of the stone from the point of release after 10 sec is

D Watch Video Solution

15. Water drops fall at regular intervals from a
tap 5 m above the ground. The third drop is
leaving the tap, the instant the first drop touches the ground. How far above the ground is the second drop at that instant.
$\left(g=10 m s^{-2}\right)$

(D) Watch Video Solution

Chapter 3 Motion In Plane

1. A body is project at $\mathrm{t}=0$ with a velocity $10 \mathrm{~ms}^{-1}$ at an angle of 60° with the horizontal
.The readius of curvature of its trajectory at $\mathrm{t}=1 \mathrm{~s}$
is R. Neglecting air resitance and taking acceleration due to gravity $g=10 \mathrm{~ms}^{-2}$, the value of R is :
2. A particle is moving along a circular path with
a constant speed $10 \mathrm{~ms}^{-1}$. What is the magnitude of the change in velocity of the particle, when it moves through an angle of 60° around the center of the circle?

D Watch Video Solution

3. A particle moves from the point
$(2.0 \hat{i}+4.0 \hat{j}) \mathrm{m}$ at $\mathrm{t}=0$, with an initial velocity ($5.0 \hat{i}+4.0 \hat{j}) m s^{-1}$. It is acted upon by constant acceleration $(4.0 \hat{i}+4.0 \hat{j}) m s^{-2}$. What is the
distance (im metre) of the particle from the origin at time 2 s ?

D Watch Video Solution

4. Ship A is sailing towards norht east with
velocity $\vec{v}=30 \hat{i}+50 \hat{j} \mathrm{~km} / \mathrm{hr}$ where \hat{i} points
east and \hat{j}, north Ship B is at a distance of 80 km east and 150 km north of Ship A and is sailing towards west at $10 \mathrm{~km} / \mathrm{hr}$. A will be at minimum distance from B in hours.
5. The position vector of a partcle
$\vec{r}(t)=15 t^{2} \hat{i}+\left(4-20 t^{2}\right) \hat{j}$. What is the magnitude of the acceleration (in m / s^{2}) at $\mathrm{t}=1$?

D Watch Video Solution

6. A palne is inclined at an angle $\alpha=30^{\circ}$ with respect to the horizontal. A particle is projected with a speed $u=2 m s^{-1}$ from the base of the plane, as shown in figure. The distance (in metre) from the base, at which the particle hits
the plane is close to: (Take $g=10 m s^{-2}$)

D View Text Solution
7. The angles between the two vectors
$\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{B}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ will
be

- Watch Video Solution

8. A vector is represented by $3 \hat{i}+\hat{j}+2 \hat{k}$. Projection of this vector in XY plane is

D Watch Video Solution

9. The resultant of two vectors \vec{A} and \vec{b} is perpendicular to the vector \vec{A} and its magnitude is equal to half the magnitude of vector \vec{B}. The angle between \vec{A} and \vec{B} is
10. A person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of $0.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ at an angle of 120° with the direction of flow of water. The speed of water in the stream is

D Watch Video Solution

11. The horizontal range of a projectile is $4 \sqrt{3}$
times its maximum height. Its angle of projection will be
12. An aircraft moving with a speed of $2.50 \mathrm{~m} / \mathrm{s}$ is
at a height of 6000 m., just overhead of an anti
aircraft gun. If the muzzle velcoity is $500 \mathrm{~m} / \mathrm{s}$,
the firing angle θ should be:

- View Text Solution

13. A body is thrown horizontally from the top of a tower of height 5 m . It touches the ground at a distance of 10 m from the foot of the tower. The
initial velcotiy (in m / s) of the body is $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

14. At the height 80 m , an aeroplane is moving with the speed of $150 \mathrm{~m} / \mathrm{s}$. A bomb is dropped from it so as to hit a target. At what distance (in metre) from the target shoud the bomb be dropped (given $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

- Watch Video Solution

15. Two bodies are thrown up at angles of 45° and 60° respectively, with the horizontal. If both
bodies attain same vertical height, then the ratio of velocity with which these are thrown is
$\sqrt{\frac{x}{2}}$. Find the value of x .

D Watch Video Solution

Chapter 4 Laws Of Motion

1. A block of mass 10 kg is kept on a rough inclined plane as shown in the figure. A force of

3 N is applied on the block. The coefficient of
static friction between the plane and the block
is 0.6 . What should be the minimum value of
force P (in newton), such that the block does not move downward? (Take $g=10 \mathrm{~ms}^{-2}$)

- View Text Solution

2. A mass of 10 kg is suspended vertically by a rope from the roof. When a horizontal force is applied on the rope at some point, the rope deviated at an angle of 45° at the roof point. If
the suspended mass is at equilibrium, the magnitude of the force applied is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$)

D Watch Video Solution

3. A bullet of mass 20 g is moving with initial speed of $1 \mathrm{~ms}^{-1}$ just before it starts penetrting a mud wall of thickness 20 cm . If the wall offers a mean resistance of $2.5 \times 10^{-2} N$, the speed
(in m / s) of the bullet after emerging from the other side of the wall is nearly equal to:
4. Two blocks A and B masses $m_{A}=1 \mathrm{~kg}$ and $m_{B}=3 \mathrm{~kg}$ are kept on the table A and B is 0.2 and between B and the surface of the table is
also 0.2. The maximum force F (in newton) that
can be applied on B horizontally so that the block A does not slide over the black B is: (Take $\left.g=10 m / s^{2}\right)$
5. A block of mass 5 kg is (i) pushed in case (A)
and (ii) pulled in case (B), by a force $\mathrm{F}=20 \mathrm{~N}$, making an angle of 30° will the horizontal as
shown in the figures. The coefficient of friction between the block and floor is $\mu=0.2$. The difference between the acceleration (in m / s^{2}) of the block in case (B) and case (A) will be: $\left(g=10 m s^{-2}\right)$

D View Text Solution
6. A body of mass 2 kg is moving with a velocity $8 \mathrm{~m} / \mathrm{s}$ on a smooth surface. If it is to be brought to rest in 4 seconds, then the magnitude of force (in newton) to be applied in opposite direction of motion is

D Watch Video Solution

7. A force of 100 dynes acts oin a mass of 5 gram for 10 sec . The velocity (in cm / s) of the mass will be
8. A body of mass 0.05 kg is observed to fall with an acceleration of $9.5 m s^{-2}$. The opposing force
(in newton) of air on the bod is ($g=9.8 m s^{-2}$)

D Watch Video Solution

9. A car having a mass of 1000 kg is moving at a speed of 30 metres $/$ sec. Brakes are applied to bring the car to rest. If the frictional force between the tyres and the road surface is 5000 newtons, the car will come to rest in

(D) Watch Video Solution

10. A ball of mass 150 g starts moving with an acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$. When hit by a force, which acts on it for 0.1 sec the impulsive force on the ball (in newton second) is

- Watch Video Solution

11. A body of mass 5 kg explodes at rest into
three fragments with masses in the ratio $1: 1: 3$.
The fragments with equal masses fly in mutually
perpendicular directions with speeds of $21 \mathrm{~m} / \mathrm{s}$.

The velocity of the heaviest fragment will be -

D Watch Video Solution

12. An elevator weighing 6000 kg is pulled upward by a cable with an acceleration of $5 m s^{-2}$. Taking g to be $10 m s^{-2}$, then the tension in the cable is
13. A block A of mass 7 kg is placed ona frictionless table. A thread tied to it passes over a frictionless pulley and carries a body B of mass 3 kg at the other end.

The acceleration (in m / s^{2}) of the system is (given $g=10 m s^{-2}$)

D View Text Solution

14. Three blocks of masses m_{1}, m_{2} and m_{3} are connected by massless strings as shown on a
frictionless table. They are pulled with a force $T_{3}=40 \mathrm{~N} . \quad$ If $\quad m_{1}=10 \mathrm{~kg}, m_{2}=6 \mathrm{~kg} \quad$ and $m_{3}=4 k g$, the tension T_{2} (in newton) will be

- View Text Solution

15. A light string passes over a frictionless pulley.

To one of its ends a mass of 6 kg is attached. To its other end a mass of 10 kg is attached. The tension (in newton) in the thread will be [Take

$$
\left.g=9.8 m / s^{2}\right]
$$

- View Text Solution

Chapter 5 Work Energy And Power

1. Thre block A, B and C are lying on a smooth
horizontal surface, as shwon in the figure. A and
B have equal masses m while C has mass M.
Block A is given an initial seed v towards B due
to which it collides with B perfectly inelastically.
The combined mass collides with C , also perfectly inelastically and $\frac{5}{6}$ th of the initial kinetic energy is lost whole process. If the value
of M / m is $\frac{4}{x}$. FInd the value of x.

- View Text Solution

2. A force acts on a 2 kg object so that its position is given as a function of time as $x=3 t^{2}+5$. What is the work done by this force in first 5 seconds ?
3. A piece of wood of mass 0.03 kg is dropped
from the top of a building 100 m high. At the same time, a bullet of mass 0.02 kg is fired vertically upward with a velocity of $100 \mathrm{~m} / \mathrm{s}$ from the ground the bullet gets embedded in the wooded piece after striking. find the height to which the combination rises above the building before it starts falling take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
4. A particle which is experiencing a force given by $\vec{F}=3 \vec{i}-12 \vec{j}$, undergoes a displacement of $\vec{d}=4 \vec{i}$. If the particle had a kinetic energy of 3 J at the beginning of the displacement, what is its kinetic energy (in joule) at the end of the displacement?

- Watch Video Solution

5. A body is of mass 1 kg falls freely from a height of 100 m . on a platform of mass 3 kg which is mounted on a spring having spring
constant $k=1.25 \times 10^{6} \mathrm{~N} / \mathrm{m}$. The body sticks
to the platform and the spring's maximum compression is found to be x. Given that $g=10 \mathrm{~ms}^{-2}$,the value of x will be calose to :

D Watch Video Solution

6. An alpha-particle of mass m suffers 1dimentinal eleastic collision with a nucleus at rest of unknown mass. It is scattered directly backwards losing 64% of its initial kinetic energy. The mass of the nucleus is :
7. A particle moves in one dimension from rest under the influence of a force that varies with the distance travelled by the particle as shown in the figure.The kinetic energy (in Joule) of the particle after it has travelled 3 m is:

D View Text Solution

8. A body of mass 2 kg makes an elastic collision
with a second body at rest and continues to
move in the original direction but with one fourth of its original speed. What is the mass (inkg) of the second body?

D Watch Video Solution

9. A body of mass 3 kg is under a constant force
which causes a displacement s metre in it, given
by the relation $s=\frac{1}{3} t^{2}$, where t is in seconds. Work done by the force in 2 seconds is

- Watch Video Solution

10. A ball is dropped from a height of 100 m . At the surface of the earth, 20% of its energy is lost. To what height the ball will rise?

D Watch Video Solution

11. A force of 5 N , making an angle θ with the horizontal, actig on an object displaces it by 0.4 m along the horizontal direction. If the object gains kinetic energy of 1 J . The horizontal component of the force is
12. A motor of 100 H.P. is moving with a constant velocity of $72 \mathrm{~km} / \mathrm{hour}$. The forward force exerted by the engine on the car is -

D Watch Video Solution

13. Four smooth steel balls of equal mass at rest are free to move along a straight line without
friction. The first ball is given a velocity of 0.4
m / s. It collides head on with the second
elastically, the second one similarly with the third and so on. The velocity of the last ball is

- Watch Video Solution

14. A shell of mass 20 kg at rest explodes into
two fragments whose masses are in the ratio
$2: 3$. The smaller fragment moves with a velocity
of $6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the larger fragment is
15. A ball drops from a celling of a room and after rebounding twice from the floor reaches a
height equal to half that of the ceiling. If th
coefficient of restitution is $\left(\frac{1}{2}\right)^{1 / x}$. Find the value of x.

D Watch Video Solution

Chapter 6 System Of Particles And Rotational

 Motion1. A string is wound around a hollow cylinder of mass 5 kg and radius 0.5 m . If the string is now pulled with a horizontal force of 40 N , and the cylinder is rolling without slipping on a horizontal surface (see figure) then the angular acceleration (in $\mathrm{rad} / \mathrm{s}^{2}$) of the cylinder will be (Neglect the mass and thickness of the string),
2. Let the moment of inertia of a hollow cylinder of length 30 cm (inner radius 10 cm and outer radius 20 cm), about its axis be l. the radius of a thin cylinder of the same about its axis is also I is :

D Watch Video Solution

3. A particle of mass 20 g is released with an initial velocity $5 \mathrm{~m} / \mathrm{s}$ alogn the curve from the point A, as shown in the figure. The point A is at height h from point B. The particle slides along
the frictionless surface. When the particle reaches point B, its angular momentum (in $\left.k g m^{2} / s\right)$) about O will be (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

- View Text Solution

4. Moment of inertia of a body about a given axis is $1.5 \mathrm{kgm}^{2}$. Initially the body is at rest. In order to produce a rotational kinetic energy of 1200 J , the angular acceleration of $20 \mathrm{rad} / \mathrm{s}^{2}$ must be applied about the axis for a duration of (in sec).

- Watch Video Solution

5. A solid sphere of mass M and radius R is divided into two unequal parts. The first parts has a mass of $\frac{7 M}{8}$ and is converted into a uniform disc of radius 2 R. The second part is converted into a uniform solid sphere. Let I_{1} be the moment of inertia of the uniform disc about its axis and I_{2} be the moment of inertia of the sphere made from remaining part about its axis. The ratio I_{1} / I_{2} is $\frac{140}{x}$. Find the value of x .
6. A metal coin of mass 5 g and radius 1 cm is fixed to a thin stick $A B$ of negligible massas
shown in the figure. The system in initially at rest. The constant torque (in Nm) that will make the system rotate about $A B$ at 25 rotations per second in 5 s , is close to:

D View Text Solution
7. If linear density of a rod of length $3 m$ varies as
$\lambda=2+x$, then the position of the centre of mass of the rod is $\frac{P}{7} m$. Find the value of P.

D Watch Video Solution

8. Two bodies of masses 2 kg and 4 kg are moving with velocities $2 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively along same direction. Then the velocity of their centre of mass will be
9. A wheel is rotating at 900 r.p.m about its axis.

When the power is cut off, it comes to rest in 1 minute. The angular retardatin in radian $/ s^{2}$ is $\frac{\pi}{x}$
. Find the value of x.

D Watch Video Solution

10. A wheel has a speed of 1200 revolution per minute and is made to slow down at a rate of 4 radian $/ s^{2}$. The number of revolutions it makes before coming to rest is
11. A particle of mass 10 gram is rotaing in a plane in circular path of radius 1 m . Its angular momentum is 1 J -sec. The centripetal force (in newton) acting on the particle is

D Watch Video Solution

12. A ring of mass 10 kg and diameter 0.4 m is rotated about its axis. If it makes 2100 revolutions per minute, then its angular momentum (in $\mathrm{kg} m^{2} / s$) will be

- Watch Video Solution

13. X and Y are two loops made from same wire.

The radii of X and Y are r_{1} and r_{2} and their M.I are I_{1} and I_{2}. If $I_{2} / I_{1}=4$ the value of $\frac{r_{2}}{r_{1}}$ is $(K)^{1 / 3}$. Find the value of K.

- Watch Video Solution

14. A particle of mass $m=5 k g$ is moving with a uniform speed $v=3 \sqrt{2}$ in the $X O Y$ plane along the line $Y=X+4$. The magnitude of
the angular momentum of the particle about the origin is

D Watch Video Solution

Chapter 7 Gravitation

1. The energy required to take a satelite to a height h above Earth surface (radius of Earth $\left.=6.4 \times 10^{3} \mathrm{~km}\right)$ is E_{1} and kinetic energy required for the satellite to be in a circular orbit at this height is E_{2}. The value of h (in km) for which E_{1} and E_{2} are equal is

- Watch Video Solution

2. Two stars of masses $3 \times 10^{31} \mathrm{~kg}$ each, and at distance $2 \times 10^{11} \mathrm{~m}$ rotate in a plane about their common centre of mass O . A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at

0 is : (Take Gravitational constant

$$
\left.G=6.67 \times 10^{-} 11 \mathrm{Nm}^{2} \mathrm{~kg}^{-} 2\right)
$$

3. Two satellites, A and B, have masses m and $2 m$ respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius $2 R$ around the earth. The ratio of their kinetic energies T_{A} / T_{B} is $\frac{1}{x}$. Find the value of x .

D Watch Video Solution

4. The value of acceleration due to gravity at Earth's surface is $9.8 m s^{-2}$. The altitude (in metre) above its surface at which the
acceleration due to gravity decreases to
$4.9 m s^{-2}$, is close to :(Radius of earth $\left.=6.4 \times 10^{6} \mathrm{~m}\right)$

D Watch Video Solution

5. A spaceship orbits around a planet at a height of 20 km from its surface. Assuming that only gravitational field of the planet acts on the spaceship, what will be the number of complete revolutiions made by the spaceship in 24 hours around the planet? [Given : Mass of Planet $=8 \times 10^{22} \mathrm{~kg}$, Radius of planet $=2 \times 10^{6} \mathrm{~m}$,

$$
\left.G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right]
$$

- Watch Video Solution

6. The eccentricity of the earth's orbit is 0.0167 .

The ratio of its maximum speed in its orbit to its minimum speed is

View Text Solution
7. A rocket is fired vertically from the surface of mars with a speed of $2 \mathrm{~km} / \mathrm{s}$. If 20% of its initial energy is lost due to martian atmosphere resistance how far (in km) will the rocket go
from the surface of mars before returning to it?
Mass of mars $=6.4 \times 10^{23} \mathrm{~kg}$, radius of mars
$=3395 \mathrm{~km}, G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.

- Watch Video Solution

8. Mass M is divided into two parts $\times M$ and (1-
$\mathrm{x}) \mathrm{M}$. For a given separation, the value of x for
which the gravitational attraction between the two pieces becomes maximum is

- Watch Video Solution

9. If the distance between the earth and the Sun
were half its present value, the number of days
in a year would have been

D Watch Video Solution
10. If the earth has no rotational motion, the weight of a person on the equation is W.

Detrmine the speed with which the earth would have to rotate about its axis so that the person at the equator will weight $\frac{3}{4} \mathrm{~W}$. Radius of the earth is 6400 km and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

D Watch Video Solution

11. Radius of moon is $1 / 4$ times that of earth and mass is $1 / 81$ times that of earth. The point at which gravitational field times that of earth. The
point at which gravitational field due to earth becomes equal and opposite to that of moon, is x R from centre of earth. Find the value of x, (Distance between centres of earth and moon is 60R, where R is radius of earth)

D Watch Video Solution

12. The height (in km) of the orbit above the
surface of the earth in which a satellite, if placed, will appear stationary is
13. An artificial satellite moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the earth's surface, will be at a height km.

D Watch Video Solution

14. The radius of the earth is reduced by 4%. The mass of the earth rermains unchanged. The escape veocity increases by $\mathrm{K} \%$. Find the value of K.
15. Two satellites of masses m and 2 m are revolving around a planet of mass M with different speeds in orbits of radii r and $2 r$ respectively. The ratio of minimum and maximum forces on the planet due to satellites is $\frac{1}{x}$ Find the valueof x .
16. A composite wire of uniform diameter 3.0 mm
consisting of a copper wire of length 2.2 m and a
steel wire of length 1.6 m stretches under a load
by 0.7 mm . Calculate the load, given that the
Young's modulus for copper is $1.1 \times 10^{11} \mathrm{~Pa}$ and for steel is $2.0 \times 10^{11} \mathrm{~Pa}$.

- Watch Video Solution

2. A steel wire having a radius of 2.0 mm ,
carrying a load of 4 kg , is hanging from a ceiling.
Given that $g=3.1 \pi m s^{-2}$, what will be the
tensile stress that would be developed the wire ?

D Watch Video Solution

3. A boy has a catapult made of a rubber cord of length 42 cm and diameter 6.0 mm . The boy stretches the cord by 20 cm to catapult a stone of mass 20 g . The stone flies off with a speed of $20 \mathrm{~ms}^{-1}$. Find Young's modulus for rubber. Ignore the change in the cross section of the cord in stretching.
4. Young's moduli of two wires A and B are in the ratio 7:4. Wire A is 2 m long and has radius R.

Wire B is 1.5 m long and has radius 2 mm . If the two wires stretch by the same length for a given load, then the value of R is close to:

D Watch Video Solution

5. In an environment, brass and steel wires of lengh 1 m each with areas of cross section $1 m m^{2}$ are used. The wires are connected in
series ankd one end of the combined wie is
connected toa rigid support and other endis subjected to elongation. The stress (in Nm^{-2}) requird to produce a net elongation of 0.2 mm is
[Given the Young's modulus for steel and brass are respectively $120 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \quad$ and $60 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$)

D Watch Video Solution

6. The elastic limit of brass is 379 MPa . What
should be the minimum diameter of a brass rod
if it is to support a 400 N load without exceeding its elastic limit?

- Watch Video Solution

7. A 2 m long rod of radius 1 cm which is fixed from one end is given a twist of 0.8 radians. The shear strain developed will be
8. The compressibility of water is 4×10^{-5} per unit atmospheric pressure. The decrease in volume of 100 cubic centimetre of water under a pressure of 100 atmosphere will be

D Watch Video Solution

9. A uniform cube is subjected to volume compression. If each side is decreased by 1% then bulk strain is
10. What is the bulk modulus (in Pa) of water for the given data: Initial volume $=100$ litre, pressure increase $=100$ atmosphere, final volume $=100.5$
litre $\left(1\right.$ atmosphere $\left.=1.013 \times 10^{5} \mathrm{~Pa}\right)$

D Watch Video Solution

11. The breaking stress of the material of a wire is $6 \times 10^{6} \mathrm{Nm}^{-2}$ Then density ρ of the material is $3 \times 10^{3} \mathrm{kgm}^{-3}$. If the wire is to break under its own weight, the length (in metre) of the wire
made of that material should be (take $\left.g=10 m s^{-2}\right)$

D Watch Video Solution

12. When a certain weight is suspended from a long uniform wire, its length increases by 1 cm . If the same weight is suspended from another wire of the same material and length but having a diameter half of the first one, the increases in length will be
13. A wire of length 50 cm and cross sectional area of $1 \mathrm{sq} . \mathrm{mm}$ is extended by 1 mm . The required work will be $\left(Y=2 \times 10^{10} \mathrm{Nm}^{-2}\right)$

D Watch Video Solution

14. A rigid bar of mass 15 kg is supported symmetrically by three wires each 2 m long.

Those at each end are of copper and middle one is of iron. Determine the ratio of their diameters if each is to have the same tension. Young's modulus of elasticity for copper and steel are
$110 \times 10^{9} \mathrm{Nm}^{-2} \quad$ and $\quad 190 \times 10^{9} \mathrm{Nm}^{-2}$
respectively.

- Watch Video Solution

15. The marina Trench is located in the pacific ocean, and at one place it is nearly eleven km beneath the surface of water. The water pressure at the bottom of the Trench is about $1.1 \times 10^{8} \mathrm{~Pa}$. A steel ball of initial volume $0.32 m^{3}$ is dropped into the ocean and falls to the bottom of the Trench. what is the change in the volume of the ball when it reaches to the
bottom? Bulk modulus for steel =

$$
1.6 \times 10^{11} \mathrm{Nm}^{-2}
$$

D Watch Video Solution

Chapter 9 Mechanical Properties Of Fluids

1. The top of a water tank is open to air and its
water lavel is maintained. It is giving out $0.74 \mathrm{~m}^{3}$
water per minute through a circular opening of
2 cm radius in its wall. The depth of the centre
of the opening from the level of water in the tank is close to :

- Watch Video Solution

2. Water flows into a large tank with flat bottom at the rate of $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Water is also leaking out of a hole of area $1 \mathrm{~cm}^{2}$ at its bottom. If the height of the water in the tank remains steady, then this height is :

- Watch Video Solution

3. A long cylinderical vessel is half filled with a
liquid. When the vessel is rotated about its own
vertical axis. The liquid rises up near the wall. If the radius of vessel is 5 cm and its rotational speed is 2 rotatins per second, then the difference in the heights between the centre and the sides, in cm . will be :

D Watch Video Solution

4. Water form a pipe is coming at a rate of 100
liters per minute. If the radius of the pipe is 5
cm , the Reynolds number for the floOw is :
(density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, coefficient of
viscosity of water $=1 \mathrm{mPas}$)

- Watch Video Solution

5. An incompressible liquid flows through a horizontal tube shown in the following fig. Then the velocity v (in m / s) of fluid is

D View Text Solution

6. A cubical block of side 0.5 m floats on water
with 30% of its volume under water. What is the maximum weight that can be put on the block
without fully submerging it under water?

[Take, density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$]

D Watch Video Solution

7. A submarine experiences a pressure of $5.05 \times 10^{6} \mathrm{~Pa}$ at a depth of d_{1} in a sea When it goes futher to a depth of d_{2}. It experiences a pressure of $8.08 \times 10^{6} \mathrm{~Pa}$. The $d_{2}-d_{1}$ is approximately (density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)
8. Water from a tap emerges vertically downwards an intial speed of $1 \mathrm{~m} / \mathrm{s}$. The crosssectional area of the tap is $10^{-4} \mathrm{~m}^{2}$. Assume that the pressure is contant throughout the stream of water and that the flow is steady. The cross-sectional area of the steam. 0.15 m below the tap is

(D) Watch Video Solution

9. A solid sphere, of radius R acquires a terminal
velocity v_{1} when falling (due to gravity) through
a viscous fluid having a coefficient of viscosity h.

The sphere is broken into 27 identical solid spheres. If each of these spheres acquires a terminal velocity, v_{2}, when falling through the same fluid, the ratio $\left(v_{1} / v_{2}\right)$ equal $\frac{9}{x}$. Find the value of x.

D Watch Video Solution

10. A wooden block floating in a bucket of water
has $4 / 5$ of its volume submerged. When certain amount of an oil is poured into the bucket, it is
found that the block is just under the oil surface
with half of its volume under water and half in oil. The density of oil relative to that of water is:

- Watch Video Solution

11. A long cylindrical drum is filled with water.

Two small holes are made on the side of the drum as shown in the figure. The depth (inm) of
the liquid in the drum if the ranges of water from the holes equal.
12. A glass U-tube is such that the diameter of one limb is 3.0 mm and that of the other is
6.0 mm . The tube is inverted vertically with the open ends below the surface of water in a beaker. What is the difference between the height to which water rises in the two limbs?

Surface tension of water is $0.07 \mathrm{Nm}^{-1}$. Assume that the angle of contact between water and glass is 0°.

- Watch Video Solution

13. Two pistons of hydraulic press have diameters of 30.0 cm and 2.5 cm . What is the
force (in kg-wt) exerted by larger piston, when
50.0 kg -wt is placed on the smaller piston?

D Watch Video Solution

14. A wooden plank of length 1 m and uniform
cross section is hinged at one end to the bottom of a tank as shown in Figure. The tank is
filled with water up to a height of 0.5 m . The specific gravity of the plank is 0.5 . Find the angle
(in degree) that the plank makes the vertical in the equilibrium position (Exclude the case $\theta=0$).

- View Text Solution

15. A cube of ice of edge 4 cm is placed in an empty cylindrical glass of inner diameter 6 cm .

Assume that the ice melts uniformly from each
side so that it always retains its cubical shape.
Remembering that ice is lighter than water, find the length (in cm) of the edge of the ice at the
instant it just leaves the contact with the bottom of the glass.

D Watch Video Solution

Chapter 10 Thermal Properties Of Matter

1. Temperature difference of $120^{\circ} \mathrm{C}$ is maintained between two ends of a uniform rod
$A B$ of length 2 L . Another bent rod PQ ,of same cross section as $A B$ and length $\frac{3 L}{2}$, is connected across AB. In steady state, temperature difference (in ${ }^{\circ} C$) between P and

Q will be close to:

- View Text Solution

2. A heat source at $\mathrm{T}=10^{3} \mathrm{~K}$ is connected to
another heat reservoir at $\mathrm{T}=10^{2} \mathrm{~K}$ by a copper
slab which is 1 m thick. Given that the thermal conductivity of copper is $0.1 W K^{-1} m^{-1}$, the energy flux through it in steady state is:

- Watch Video Solution

3. An unknown metal of mass 192 g heated to a temperature of $100^{\circ} C$ was immersed into a brass calorimeter of mass 128 g containing 240 g of water at a temperature of $8.4^{\circ} \mathrm{C}$. Calculate the specific heat of the unknown metal if water temperature stabilizes at $21.5^{\circ} \mathrm{C}$. (Specific heat of brass is $394 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$)

- Watch Video Solution

4. Two kg of a monoatomic gas is at a pressure of $4 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is
$8 \mathrm{~kg} / \mathrm{m}^{3}$. What is the order of energy of the gas due to its thermal motion?

D Watch Video Solution

5. Iceat $-20^{\circ} C$ is added to 50 g of water at $40^{2} C$ When the temperature of the mixture reaches $0^{\circ} \mathrm{C}$ it is found that 20 g of ice is still unmelted .The amount of ice added to (Specific heat of water $=4.2 j / g /{ }^{\circ} \mathrm{C}$

Specific heat of Ice $=2.1 \mathrm{~J} / \mathrm{g} /{ }^{\circ} C \mathrm{M}$ Heat of fusion of water of $0^{\circ} C=334 J / g$)
6. Two rods A and B of identical dimensions are at temperature $30^{\circ} \mathrm{C}$. If A is heated upto $180^{\circ} \mathrm{C}$ and $\mathrm{B} T^{\circ} C$, then new lengths are the same. If the ratio of the coefficients of linear expansion of A and B is 4:3,then the value of T is

- Watch Video Solution

7. A liquid A of mass 100 g at $100^{\circ} \mathrm{C}$ is added to

50 g of a liquid B at temperature $75^{\circ} \mathrm{C}$, the temperature of the mixture becomes $90^{\circ} \mathrm{C}$.

Now if 100 g of liquid A is $100^{\circ} \mathrm{C}$ is added to 50 g of liquid B at $50^{\circ} \mathrm{C}$, temperature of the

mixture will be

- Watch Video Solution

8. A thermometer graduated accoding linear
scale reads a value x_{0} when in contact with boiling water, and $X_{0} s / 3$ when in contact with ice . What is the temperature of an object in
.${ }^{\circ} C$, if this thermometer in the contact with
the object reads $x_{0} / 2$?
9. A thermally insulated vessel contains $150 g$ of water at $0^{\circ} C$. Then the air from the vessel is pumped out adiabatically. A fraction of water turms into ice and the rest evaporates at $0^{\circ} C$ itself. The mass of evaporated water will be closest to :
(Latent heat of vaporization of water $=2.10 \times 10^{6} \mathrm{jkg}^{-1}$ and Latent heat of Fusion of water $=3.36 \times 10^{5} \mathrm{jkg}^{-1}$)
10. A cylinder with fixed capacity of 67.2 lit contains helium gas at STP. The amount of heat
(in joule) needed to raise the temperature of the gas by $20^{\circ} C$ is
[Given that $R=8.31 \mathrm{Jmol}^{-1} K^{-1}$]

D Watch Video Solution

11. The coefficient of cubical expansion of mercury is $0.00018 /{ }^{\circ} C$ and that of brass $0.00006 /{ }^{\circ} C$. If a barometer having a brass scale were to read 74.5 cm at $30^{\circ} \mathrm{C}$ find the true
barometric height (in cm) at $0^{\circ} \mathrm{C}$. The scale is supposed tobe correct at $15^{\circ} \mathrm{C}$.

D Watch Video Solution

12. A bar with a crack at its centre buckles as a result of temperature rise of $32^{\circ} \mathrm{C}$. If the fixed distacne L_{0} is 3.77 m and the coefficient of linear expansion of the bar is $25 \times 10^{6} /{ }^{\circ} \mathrm{C}$ find the rise (in metre) of the centre.
13. In an experiement on the specific heat of a metal a 0.20 kg block of the metal at $150^{\circ} \mathrm{C}$ is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing $150 \mathrm{~cm}^{3}$ of water at $27^{\circ} \mathrm{C}$. The final temperature is $40^{\circ} \mathrm{C}$.

Compute the specific heat (in $\mathrm{Jkg}^{-10} \mathrm{C}^{-1}$) of the metal.

- Watch Video Solution

14. The temperature of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The
temperature when A and B are mixed is $16^{\circ} \mathrm{C}$ and when B and C are mixed it is $23^{\circ} \mathrm{C}$. What should be the temperature when A and C are mixed?

D Watch Video Solution

15. A bdoy initially at $80^{\circ} C$ ools to $64^{\circ} C$ in 5 minutes and to $52^{\circ} C$ in 10 minutes. What will be the temperature (in ${ }^{\circ} C$) after 15 minutes?

Chapter 11 Thermodynamics

1. A gas can be taken from A to B via two different process ACB and ADB.

R

When path ACB is used 60 J of heat flows into the system and 30 J of work is done by the system. If path ADB is used work done by the system is 10 J. The heat (in joule) flow into the system in path ADB is:

- View Text Solution

2. Two Camot engines A and B are operated in series. The first one, A , receives heat at $T_{1}(=600 K)$ and rejects to a reservoir at temperature T_{2}. The second engine B receives heat rejected by the first engine and, in turn, rejects to a heat reservoir at $T_{3}(=400 K)$.

Calculate the temperature T_{2} if the work outputs of the two engines are equal :

- Watch Video Solution

3. For the given cyclic process $C A B$ as shown for gas, the work done (in joule) is:

D View Text Solution

4. A sample of an ideal gas is taken through the
cyclic process abca as shown in the figure. The
change in the internal energy of the gas along
the path ca is -180 J , The gas absorbs 250 J of
heat along the path $a b$ and 60 J along the path
bc. The work done (in joule) by the gas along the
path abc is:

- View Text Solution

5. $1.0 m^{3}$ of water is converted into $1671 m^{3}$ of steam at atmospheric pressure and $100^{\circ} \mathrm{C}$ temperature. The latent heat of vaporisation of water is $2.3 \times 10^{6} \mathrm{Jkg}^{-1}$. If 2.0 kg of water be converted into steam at atmospheric pressure and $100^{\circ} \mathrm{C}$ temperature, then how much will be
the increases in its internal energy? Density of
water $1.0 \times 10^{3} \mathrm{kgm}^{-3}$, atmospheric pressure $=$ $1.01 \times 10^{5} \mathrm{Nm}^{-2}$.

- Watch Video Solution

6. Air is contained in a piston cylinder arrangement as shown in fig. with a cross sectional area of $4 \mathrm{~cm}^{2}$ and an initial volume of 20 cc . The air is initially at a pressure of 1 atm and temperature of $20^{\circ} \mathrm{C}$. The piston is connected tio a spring whose spring constant is $k=10^{4} \mathrm{~N} / \mathrm{m}$, and the spring is initially underformed. How much heat (in joule) must be
added to the air to increase the pressue to 3
atm. (For air $C_{V}=718 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$, molecular massof ari 28.97)

D View Text Solution

7. Consider the cyclic process $A B C A$, shown in fig.
performed on a sample of 2.0 mole of an ideal gas. A total of 1200 J of heat is withdrawn from the sample in the process. Find the work done (in joule) by the gas during the part $B C$.

- View Text Solution

8. A motor car tyre has a pressure of 2 atmosphere at room temperature of $27^{\circ} \mathrm{C}$. If the tyre suddenly bursts, find the resulting temperature (in kelvin).

- Watch Video Solution

9. A carnot engine whose heat sink is at $27^{\circ} \mathrm{C}$
has an efficiency of 40%. By how many degrees
should the temperature of source be changed
to increase the efficiency by 10% of the original efficiency?

D Watch Video Solution

10. Five moles of an ideal gas taken in a Carnot engine working between $100^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. The useful work done in one cycle is 420 joule. If the ratio of the volume of the gas at the end and beginning of the isothermal expansion is $\frac{115}{x}$. Find the value of x.
(Take $\mathrm{R}=8.4 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$)
11. How much energy in watt hour may be required to convert 2 kg of water into ice at $0^{\circ} \mathrm{C}$, assuming that the refrigerator is ideal? Take room temp. $=25^{\circ} C$, which is also the initial temp. of water and temp. of freezer is $-15^{\circ} C$.

D Watch Video Solution

12. Helium gas goes through a cycle $A B C D A$ (consisting of two isochoric and isobaric lines) as shown in figure. Find efficienty of this cycle.
(Assume the gas to be close to an ideal gas)

- View Text Solution

13. Find the amount of work done to increase the temperature of one mole jof an ideal gas by $30^{\circ} C$, if it is expanding under condition $V \infty T^{2 / 3}$.
14. A thin U-tube sealed at one end consist of three bends of length I=250 mm each, forming right angles. The vertical parts of the tube are filled with mercury to half the height.

All of mercury can be displaced from the tube by heating slowly the gas in the sealed end of the tube, which is separated from the atmospheric aire by mercury. Determine the work done (in joule) by the gas there by if the atmospheric pressure is $P_{0}=10^{5}$ Pa the densilty of mercury
is $\rho_{\text {mer }}=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, and the cross sectional area of the tube is $S=1 \mathrm{~cm}^{2}$

- View Text Solution

15. A carnot engine having a perfect gas aas the working substance is driven backwards and is
used for freezing water already at $0^{\circ} C$. If the engine is driven by 500 W electric motor with an efficiency of 60% how long will it take to freeze 15 kg of water? The working temps of the engine are $15^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. The system involves no
energy losses. Given latent heat of ice

$$
=333 \times 10^{3} \mathrm{Jkg}^{-1}
$$

- Watch Video Solution

Chapter 12 Kinetic Theory

1. A mixture of 2 moles of helium gas (
$(a \rightarrow$ micmass $)=4 a . m . u)$ and 1 mole of argon gas $((a \rightarrow$ micmass $)=40 a . m . u)$ is kept at 300 K in a container. The ratio of the rms
speeds $\left(\frac{v_{r m s}(\text { helium })}{\left(v_{r m s}(\text { argon })\right)}\right.$ is
2. A mass $M=15 \mathrm{~g}$ of nitrogen is enclosed in a vessel at temperature $\mathrm{T}=300 \mathrm{~K}$. What amount of heat has to be transferred to the gas to increase the root-mean-square velocity of molecules 2 times ?

D Watch Video Solution

3. Half mole of an ideal monoatomic gas is
heated at constant pressure of 1 atm from
$20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. Work done by gas is close to:
(Gas constant $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$)

D Watch Video Solution

4. An ideal gas occupies a volume of $2 m^{3}$ at a pressure of $3 \times 10^{6} \mathrm{p}$, a the energy of the gas is:

D Watch Video Solution

5. An ideal gas is enclosed in a cylinder at pressure of 2 atm and temperature, 300 K.The
men time between two successive collosions is
$6 \times 10^{-8} \mathrm{~s}$. If the pressure to $500 K$, the mean
time between two successive collisions will be close to :

D Watch Video Solution

6. 10^{22} particles each of mass $10^{-26} \mathrm{Kg}$ are striking perpendicular on a wall of area $1 \mathrm{~m}^{2}$
with speed $10^{4} \mathrm{~m} / \mathrm{s}$ in 1 sec . The pressure on the well if collision are perfectly elastic is : (A)
$2 N / m^{2}$
(B) $4 N / m^{2}$
(C) $6 \mathrm{~N} / \mathrm{m}^{2}$
(D) $8 N / m^{2}$
7. The temperature, at which the root mean square velocity of hydrogen molecules equals their escape velocity from the earth, is closest to:
[Boltzmann constant $k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Avogadro \quad Number $\quad N_{A}=6.02 \times 10^{26} / K g$ Radius of Earth :
$6.4 \times 10^{6} \mathrm{~m}$ Gravitational acceleration on Earth
$\left.=10 m s^{-2}\right]$
8. For a given gas at 1 atm pressure, rms speed of the molecules is $200 \mathrm{~m} / \mathrm{s}$ at $127^{\circ} \mathrm{C}$. At 2 atm pressure and at $227^{\circ} \mathrm{C}$, the rms speed of the molecules will be:

- Watch Video Solution

9. Two different masses m and $3 m$ of an ideal gas are heated separately in a vessel of constant volume, the pressure P and absolute temperature T, graph for these two cases are shown in the figure as A and B. The ratio of

slopes of curves B to A is

- View Text Solution

10. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface, which is at a temperature of $35^{\circ} \mathrm{C} . \quad$? Given
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$.
11. Two moles of helium gas is mixed with three moles of hydrogen molecules (taken to be rigid).

The molar specific heat of mixture at constant volume is
(in $\mathrm{J} / / \mathrm{mol} / / \mathrm{K}) ?(\mathrm{R}=8.3 \mathrm{~J} / / \mathrm{mol} \mathrm{K})$

D Watch Video Solution

12. A narrow uniform glass tube 80 cm long and open at both ends is half immersed in mercurry.

Then the top of the tube is closed and it is taken out of mercury. A column of mercury 22 cm long
then remains in the tube. What is the atmospheric pressure?

D Watch Video Solution

13. A vessel of volume , $V=5.0$ litre contains
$1.4 g$ of nitrogen at a temperature $T=1800 K$.

Find the pressure of the gas if 30% of its molecules are dissociated into atoms at this temperature.

D Watch Video Solution

14. A gaseous mixture enclosed in a vessel
consists of one gram mole of a gas A with
$\gamma=\left(\frac{5}{3}\right)$ and some amount of gas B with
$\gamma=\frac{7}{5}$ at a temperature T .
The gases A and B do not react with each other and are assumed to be ideal. Find the number of
gram moles of the gas B if γ for the gaseous mixture is $\left(\frac{19}{13}\right)$.

D Watch Video Solution

15. An oxygen cylinder of volume 30 litre has an initial gauge pressure of 15 atm and a temperature of $20^{\circ} \mathrm{C}$. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drop to $17^{\circ} \mathrm{C}$. Estimate the mass (inkg) of oxygen taken out of the cylinder,
$R=8.3 \mathrm{Jmol}^{-1} K^{-1}, \quad$ molecule weight of oxygen $=32$.

- Watch Video Solution

Chapter 13 Oscillations

1. A rod of mass ' M ' and length ' $2 L$ ' is suspended
at its middle by a wire. It exhibits torsional oscillations, if two masses each of ' m ' are attached at distance' $L / 2^{\prime}$ from its centre on both sides, it reduces the oscillation frequency by 20%. The value of ratio m / M is close to:

(D) Watch Video Solution

2. A simple pendulum of length 1 m is oscillating with an angular frequency $10 \mathrm{rad} / \mathrm{s}$. The suopport of the down with a small angular frequecy of $1 \mathrm{rad} / \mathrm{s}$ and an amplitude of $10^{-2} \mathrm{~m}$
. The relative changes in the angular frequency of the pendulum is best given by.
3. A damped harmonic oscillator has a frequency of 5 oscillations per second. The amplitude drops to half its value for every 10 oscillations.

The time it will take to drop to $\frac{1}{1000}$ of the original amplitude is close to:

D Watch Video Solution

4. Figure shows $v-x$ graph of a particle executing
simple harmonic oscillations. What is the velocity (in m / s) of the particle at $\mathrm{x}=3 \mathrm{~m}$?

- View Text Solution

5. Two simple pendulums of length 1 m and 1.21 m are started oscillating from some position.

Find the minimum time (in second) after which they again start from same position.

- Watch Video Solution

6. A spring balance has a scale that reads from 0
to 50 kg . The length of the scale is 20 cm . A body
suspended from this spring, when displaced and
released, oscillates with period of 0.60 s . What is the weight of the body?

D Watch Video Solution

7. A pendulum is executing simple harmonic motion and its maximum kinetic energy is K_{1}. If the length of the pendulum is doubled and it perfoms simple harmonuc motion with the same amplitude as in the first case, its maximum kinetic energy is K_{2} Then:
8. Equation of motion for a particle performing damped harmonic oscillation is given as
$x=e^{-1 t} \cos (10 \pi t+\phi)$. The time when amplitude will half of the initial is :

D Watch Video Solution

9. Two light springs of force constants k_{1} and k_{2}
and a block of mass m are in one line $A B$ on a
smooth horizontal table such that one end of
each spring is fixed on rigid support and the other end is free as shown in figure. The
distance CD between the free ends of springs is

60 cm . If the block moves along $A B$ with a velocity $120 \mathrm{~cm} / \mathrm{s}$ in between the springs,
calculate the period (in second) of oscillation of block.
$\left.k_{1}=1.8 N / m, k_{2}=3.2 N / m, m=200 g\right)$

D View Text Solution

10. Two particles execute simple harmonic motion of the same amplitude and frequency along close parallel lines. They pass each other
moving in opposite directions each time their displacement is half their amplitude. Their phase difference is

D Watch Video Solution

11. A cubical body (side 0.1 m and mass 0.002 kg)
floats in water. It is pressed and then released so that it executes SHM. Find the time period.

$$
\left(g=10 m / s^{2}\right)
$$

D Watch Video Solution

12. Two particles execute SHM with same frequency and amplitude along the same straight line. They cross each other, at a point midway between the mean and the extreme position. Find the Phase difference between them.

D Watch Video Solution

13. A block is kept on a horizontal table. The table is undergoing simple farmonic motion of frequency 3 Hz in a horizontal plane. The coefficient of static friction between the block
and the table surface is 0.72 . find the maximum amplitude of the table at which the block does not slip on the surface $g=10 \mathrm{~ms}^{-1}$

D Watch Video Solution

14. A mass (M) is suspended from a spring of negligible mass. The spring is pulled a little and then released so that the mass executes SHM of time period T. If the mass is increased by m, the time period becomes $\frac{5 T}{3}$. Then the ratio of $\frac{m}{M}$ is .
15. A pendulum has time period T in air when it
is made to oscillate in water it acquired a time period $T=\sqrt{2} T$ The density of the pendulum bob is equal to (density) of water $=1$)

D Watch Video Solution

Chapter 14 Waves

1. A musician using and open flute of length 50
cm produces second harmonic sound waves. A person runs towards the musician from another end of a hall at a speed of $10 \mathrm{~km} / \mathrm{h}$. If the wave speed is $330 \mathrm{~m} / \mathrm{s}$, the frequency heard by the running person shall be close to :

D Watch Video Solution

2. A closed organ pipe has fundamental
frequency of 1.5 kHz . The number of overtones
that can be distinctly heard by a person with
this organ pipe will be : (Assume that the highest frequency a person can hear is 20,000 Hz)

D Watch Video Solution

3. Equation of travelling wave on a stertched string of linear density $5 \mathrm{~g} / \mathrm{m}$ is $\mathrm{y}=00.3 \sin (450 \mathrm{t}$

- 9 x) where distance and time are measured in

SI units. The tension in the string is

D Watch Video Solution

4. A source of sound in moving along a circular orbit of radius 3 m with an angular velocity of 10 rad/s. A sound detector located far away from
the source is executing linear simple harmonic motion along the lin BD with an amplitude $B C=C D=6 m$. The frequency of oscillation of the detector $5 / \pi$ per second. The source is at the point A when the detector is at the pont B. If the source emits a continuous sound wave of frequency 340 Hz , find the minimum frequencies
(in Hz) recorded by the detector.
5. Two cars A and B are moving away from each other in opposite directions. Both the cars are moving with a speed of $20 \mathrm{~ms}^{-1}$ with respect to the ground. If an observer in car A detects a frequency 2000 Hz of the sound coming from car B, what is the natural frequency of the sound source in car B? (Speed of sound in air = $340 m s^{-1}$)

- Watch Video Solution

6. The amplitude of a wave disturbance propagating along positive X -axis is given by

$$
=\frac{1}{1+x^{2}} \text { at } \mathrm{t}=0 \text { and } y=\frac{1}{1+(x-2)^{2}} \text { at } \mathrm{t}=4
$$

s where x and y are in metre. The shape of wave diturbance does not change with time. The velocity of the wave is

D Watch Video Solution

7. A tuning fork of frequency 220 Hz produces sound waves of wavelength 1.5 m in air at NTP.

Calculate the increase in wavelength, when temperature of air in $27^{\circ} \mathrm{C}$.

D Watch Video Solution

8. A sample of oxygen at $N T P$ has volume V and a sample of hydrogen at $N T P$ has volume
$4 V$. Both the gases are mixed and the mixture is maintained at $N T P$ if the speed of sound in hydrogen at $N T P$ is $1270 \mathrm{~m} / \mathrm{s}$, that in the mixture will be
9. A glass tube of 1.0 m length is filled with water. The water can be drained out slowly at
the bottom of the tube. If a vibrating tuning
fork of frequency $500 c / s$ is brought at the upper end of the tube and the velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, then the total number of resonances obtained will be

- Watch Video Solution

10. Pipe A has length twice the pipe B. Pipe A has both ends open and pipe B has one end open.

Which harmonics of pipe A have a frequency that matches a resonance frequency of pipe B.

- Watch Video Solution

11. A string is clamped at both the ends and it is
vibrating in its $4^{\text {th }}$ harmonic. The equation of the stationary wave
$Y=0.3 \sin (0.157 x) \cos (200 \pi t)$. The length of the string is: (All quantities are in SI units.)

D Watch Video Solution

12. A road runs between two parallel rows of buildings.A motorist moving just in the middle
with a velocity of $30 \mathrm{~km} / \mathrm{h}$, sounds the horn. He
hears an echo one second after sounding the horn. Find the distance (in metre) between the two rows of the buildings. The velocity of sound $=330 \mathrm{~m} / \mathrm{s}$.

D View Text Solution

13. One metre long wire is fixed between two
rigid supports. The tension is the wire is 200 N and mass per unit length of the wire is $\mu=2 x$,
where x is the distance from one end of the
wire. Find the time (in second) the pulse takes to reach the other end of the wire.

- View Text Solution

14. A train approaching a railway crossing at a speed of $120 \mathrm{~km} / \mathrm{h}$ sounds a short whistle at frequency 640 Hz when it is 300 m away from the crossing. The speed of sound in air is 340 m / s. What will be the frequency (in Hz) heard by a person standing on a road perpendicular to
the track through the crossing at a distance of 400 m from the crossing?

- View Text Solution

15. A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of $160 \mathrm{Nm}^{-1}$ and is stretched by 1.0
cm . If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring ?

Watch Video Solution

Chapter 15 Electric Charges And Fields

1. Two semicircular wires of radius 20 cm and 10
cm have a common centre at the origin O as
shown in the figure. Assume that both the wires
are uniformly charged and have an equal charge
of 0.70 nC each. The magnitude of electric fied
(in $V m^{-1}$) at the common centre of curvature
O of the system is

D View Text Solution

2. Three point charges Q_{1}, Q_{2}, Q_{3} in the order are placed equally spaced along a straight line.
Q_{2} and Q_{3} are equal in magnitude but opposite in sign. If the net force on Q_{3} is zero. The value of Q_{1} is

- Watch Video Solution

3. A uniformly charged conducting sphere of 4.4
m diameter has a surface change density of
$60 \mu \mathrm{Cm}^{-2}$. The charge on the sphere is

D Watch Video Solution

4. When an electric dipole $\mathrm{P} \vec{v}$ is placed in a uniform electric field \vec{E} then at what angle between \vec{P} and \vec{E} the value of torque will be maxima

D Watch Video Solution

5. An uniform electric field E exists along positive x-axis. The work done in moving a charge 0.5 C through a distance 2 m along a direction making an angle 60° with x -axis is 10 J . Then the magnitude of electric field is

D Watch Video Solution

6. Two point charges $+3 \mu C$ and $+8 \mu C$ repel each other with a force of 40 N . If a charge of
$-5 \mu C$ is added to each of them, then the force

- Watch Video Solution

7. Two similarly and equally charged identical metal spheres A and B repel each other with a force of $2 \times 10^{-5} \mathrm{~N}$. A third identical uncharged sphere C is touched with A and then placed at the midpoint between A and B. Find the net electric force on C.
8. A sphere of radius R carries charge such that its volume charge density is proportional to the square of the distance from the centre. What is
the ratio of the magnitude of the electric field at a distance $2 R$ from the centre to the magnitude of the electric field at a distance of $R / 2$ from the centre?

D Watch Video Solution

9. A negatively charged oil drop is prevented
from falling under gravity by applying a vertical
electric field of $100 \mathrm{Vm}^{-1}$. If the mass of the drop is $1.6 \times 10^{3} g$ the number of electrons carried by the drop is $\left(g=10 m s^{-2}\right)$

D Watch Video Solution

10. An electric dipole is placed at an angle of 30° with an electric field intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$.

It experiences a torque equal to $4 N m$. The charge on the dipole, if the dipole is length is 2 cm , is
11. A point charge of charge q and mass m is placed at rest at point X at distance r from a short electric dipole. The initial acceleration of
charge $a=\frac{k . q \cdot p}{2 m r^{3}} n$, where $k=\frac{1}{4 \pi \varepsilon_{0}}$. Then n is

- View Text Solution

12. A solid sphere of radius R has a charge Q distributed in its volume with a charge density $\rho=k r^{a}$, where k and a are constants and r is
the distance from its centre. If the electric field at $r=\frac{R}{2}$ is $\frac{1}{8}$ times that $r=R$, find the value of a.

(D) Watch Video Solution

13. A charge of $10 \mu C$ is placed at the centre of a hemisphere of radius $\mathrm{R}=10 \mathrm{~cm}$ as shown.The electric flux through the hemisphere (in MKS units) is
14. A point charge causes an electric flux of
$-1.0 \times 10^{3} \mathrm{Nm}^{2} / C$ to pass through a spherical Gaussian surface of 10.0 cm radius centred on the charge. (a) If the radius of the

Gaussian surface were doubled, how much flux would pass through the surface ? (b) What is the is the value of the point charge?

(Watch Video Solution

15. An electric field of $1000 \mathrm{~V} / \mathrm{m}$ is applied to an
electric dipole at angle of 45°. The value of
electric dipole moment is $10^{-29} C . m$.What is the potential energy of the electric dipole ?

D Watch Video Solution

Chapter 16 Electrostatic Potential And Capacitance

1. A parallel plate capicitaor with plates of area
$1 m^{2}$ each, are at a separation of 0.1 m . If the electric field between the plates is $100 N / C$, the magnitude of charge on each plate is: (Take

$$
\left.\varepsilon=8.85 \times 10^{-12} \frac{C^{2}}{N-m^{2}}\right)
$$

2. Voltage rating of a parallel plate capacitor is 500V. Its dielectric can withstand a maximum electric field of $10^{6} \mathrm{~V} / \mathrm{m}$. The plate area is $10^{-4} m^{2}$. What is the dielectric constant if the capacitance is 15 pF ?
(given

$$
\left.\epsilon_{0}=8.86 \times 10^{-12} C^{2} / N m^{2}\right)
$$

D Watch Video Solution

3. A parallel plate capacitor of capacitance $1 \mu F$ has a charge of $+2 \mu C$ on one of the plates and a charge of $+4 \mu C$ on the other. The potential difference developed across the capacitor is

D Watch Video Solution

4. In Region of Electric field Given by
$\vec{E}=(A x-B) \hat{I}$. Where $A=20$ unit and
$B=10$ unit. If Electric potential at $x=1 m$ is
v_{2}. Then $v_{1}-v_{2}$ is equal to
5. A capacitor with capacitance $5 \mu F$ is charged to $5 \mu C$. If the plates are pulled apart to reduce the capacitance to $2 \mu F$, how much work is done?

D Watch Video Solution
6. The electric potential is $V=\left(x^{2}-2 x\right)$.

What is the electric field strength at $x=1$?
7. The 1000 small droplets of water each of radius r and charge Q, make a big drop of spherical shape. The potential of big drop is how many times the potential of one small droplet

D Watch Video Solution

8. A hollow metal sphere of radius 5 cm is
charged such that the potential on its surface is
10 V . The potential at a distance of 2 cm from
the centre of the sphere

- Watch Video Solution

9. From a point charge, thre is a fixed point A at some distance. At A , there is an electric field of $500 \mathrm{~V} / \mathrm{m}$ and potential differecne of 3000 V . Distance (in metre) between point charge and A will be

- Watch Video Solution

10. A $20 \mu F$ capacitor is connected to 45 V battery through a circuit whose resistance is
2000Ω. What is the final charge on the capacitor?

D Watch Video Solution

11. Calculate the area (in m^{2}) of the plates of a one farad parallel plate capacitor if separtion between plates is 1 mm and plates are in vacuum.

(D) Watch Video Solution

1. A copper wire is stretched to make it 0.5%
longer. The percentage change in its electrical resistance if its volume remains unchanged is :

- Watch Video Solution

2. A uniform metallic wire has a resistance of 18
Ω and is bent into an equiolateral triangle.
Then, the resistance between any two vertices of the triangle is :
3. A 2 W carbon resistor is color coded with green, black, red and brown respectively. The maximum current which can be passed through this resistor is :

D Watch Video Solution

4. The actual value of resistance R, shown in the
figure is 30Ω. This is measured in an experiment
as shown using the standard formula $R=\frac{V}{I}$, where V and I are the reading of the voltmeter
and ammeter, respectively. If the measured value of R is 5% less, then the internal resistance (in Ω
) of the voltmeter is :

D View Text Solution

5. A current of 2 mA was passed through an unknown resistor which dissipated a power of
4.4 W. Dissipated power when an ideal power supply of 11 V is connected across it is
6. The amount of charge Q passed in time t through a cross-section of a wire is
$Q=5 t^{2}+3 t+1$. The value of current at time $t=5 \mathrm{~s}$ is

Watch Video Solution

7. A current of 1 mA is flowing through a copper
wire. How many electrons will pass a given point in one second $\left[e=1.6 \times 10^{19}\right.$ Coulomb]
8. At what temperature will the resistance of a copper wire become three times its value at $0^{\circ} C$ (Temperature coefficient of resistance for copper $=4 \times 10^{3}$ per C)

D Watch Video Solution

9. In the circuit showin in fig the current in 4Ω resistance is 1.2 A. What is the potential difference (in volt) between B and C ?
10. A current of 30 A is registered when the terminals of a dry cell of emf 1.5 V are connected through an ammeter. (Neglect the ammeter resistance). The amount of heat produced (in joule) in the battery in 20s is

D Watch Video Solution

11. A 100 watt bulb working on 200 volt has resistance R and a 200 watt bulb working on 100
volt has resistance S.If the R / S is $\frac{8}{x}$. Find the value of x.

D Watch Video Solution

12. The total power dissipated in watts in the circuit shown here is

D View Text Solution
13. In a meter bridge the balancing length rom
the left end (standard resistance of 1Ω is in the
right gap) is found to be 20 cm . The value of the unkown resistance is

D Watch Video Solution

Chapter 18 Moving Charges And Magnetism

1. A current loop, having two circular arcs joined by two radial lines is shown in the figure. It carries a currentoif 10A. The magnetic field (in

Tesla) at point O will be

- View Text Solution

2. A particle having the same charge as of electron moves in a circular path of radius 0.5
cm under the influence of a magnetic field of 0.5
T. If an electric field of $100 \mathrm{~V} / \mathrm{m}$ makes it to move in a straight path, then the mass of the particle is (Given charge of electron $=1.6 \times 10^{-19} C$)
3. A galvanometer having a resistance of 20Ω
and 30 divisions on both sides has figure of merit. 0.005 ampere /division. The resistance that should be connected in series such that it can be used as a voltmeter unto 15 V , is :

- Watch Video Solution

4. The dipole moment of a circular loop carrying
a current I , is m and the magnetic field at the
centre of the loop is B_{1}. When the dipole moment is doubled by keeping the current
constant, the magnetic field at the centre of the loop is B_{2}. The ratio $\frac{B_{1}}{B_{2}}$ is:

D Watch Video Solution

5. In an experiment, electrons are accelerated, from rest, by applying a voltage of 500 V .

Calculate the radius of the path if a magnetic field 100 mT is then applied. [Charge of the electron $=1.6 \times 10^{-19} C$, Mass of the electron $=9.1 \times 10^{-31} \mathrm{Kg}$]
6. A galavanometer, whose resistance is 50 ohm
has 25 divisions in it. When a current of
4×10^{-4} A passes through it,its needle
(pointer) deflects by one division. To use this galvanometer as a volmeter of range 2.5 V , it is should be connected to a resistance of :

D Watch Video Solution

7. A rectangular coil (Dimension $5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$)
with 100 turns, carrying a current of A in the origin and in the $\mathrm{X}-\mathrm{Z}$ plane. A magnetic field of 1

T is applied along X -axis. If the coil is tilted through 45° about Z -axis, then the torque on the coil is :

D Watch Video Solution

8. A moving coil galvanometer has resistance 50Ω and it indicates full deflection at 4 mA current. A voltmeter is made using this galvanometer and a $5 k \Omega$ resistance. The maximum voltage, that can be measured using this voltmeter (in volts) will be \qquad .
9. An electron accelerated by a potential difference $V=1.0 \mathrm{kV}$ moves in a uniform magnetic field at an angle $\alpha=30^{\circ}$ to the vector B whose modulus is $B=29 m T$. Find the pitch of the helical trajectory of the electron.

D Watch Video Solution

10. A wire $A B C D$ is bent in the form shown here in the figure. Segments $A B$ and $C D$ are of length

1 m each while the semicircular loop of radius

1m. A current of 5 A flows from A towards the
end D and the whole wire is placed in a magnetic field is 0.5 T directed out of the page.The force (in newton) acting on the wire is

D View Text Solution

11. The resistance of a moving coil galvanometer is 50 ohm and the maximum current which can be passed through the galvanometer is 0.002 A . What resistance (in ohm) must be connected to
it order to convert in into an ammeter of range 0-0.5A?

D Watch Video Solution

12. Find the magnitude of the magnetic fieldat
the center of an equilateral triangular loop of side length 1 m which is carrying a current of 10A. (Take $\mu_{0}=4 \pi \times 10^{-7} N A^{-2}$)
13. A thin ring of 10 cm radius carries a uniformly distributed charge. The ring rotates at a constant angular speed of $40 \pi \mathrm{rad} \mathrm{s}^{-1}$ about its axis, perpendicular to its plane. If the magnetic field at its centre is $3.8 \times 10^{-9} T$, then the charge carried by the ring is close to $\left(\mu_{0}=4 \pi \times 10^{-7} N / A^{2}\right)$

D Watch Video Solution

14. Find the magnetic field (in Tesla) at point P due to a straight line segment $A B$ of length 6 cm

$$
\left(\mu_{0}=4 \pi \times 10^{-7} N-A^{-2}\right)
$$

D View Text Solution

15. A 200 turn solenoid having a length of 25 cm and a diameter of 10 cm carries a curret of 0.30
A. Calculate the magnetic of the magnetic field \vec{B} (in mT) inside the solenoid.

D Watch Video Solution

Chapter 19 Magnetism And Matter

1. A bar magnet is demagnetized by inserting it inside a solenoid of length $0.2 \mathrm{~m}, 100$ turns, and carrying a current of 5.2 A . The coercivity of the bar magnet is :

- Watch Video Solution

2. A magnet of total magnetic moment $10^{-2} \hat{i} \mathrm{~A}-\mathrm{m}^{2}$ is placed in a time varying magnetic field, $B \hat{i}(\cos \omega t)$ where $B=1$ Tesla and
$\omega=0.125 \mathrm{rad} / \mathrm{s}$. The work done for reversing the direction of the magnetic moment at $t=1$ second, is :

D Watch Video Solution

3. At some location on earth the horizontal
component of earth's magnetic field is
$18 \times 10^{-6} T$. At this location, magnetic needle of length 0.12 m and pole strength 1.8 Am is supended from its mid-point using a thread, it makes 45° angle with horizontal in equilibrium.

To keep this needle horizontal, th evertical force that should be applied at one of its ends is

D Watch Video Solution

4. A paramagnetic substance in the form of a cube with sides 1 cm has a magetic dipole moment of $20 \times 10^{-6} J / T$ was when a magnetic intensity of $60 \times 10^{3} \mathrm{~A} / \mathrm{m}$ is applied Its magnetic susceptibility is :

- Watch Video Solution

5. A paramagnetic material has
$10^{28} a \rightarrow m s / m^{3}$. Its magnetic susceptibility at temperature 350 K is 2.8×10^{-4}. Its susceptibility at $300 K$ is :

D Watch Video Solution

6. If the moment of a magnet is $0.4 A m^{-1}$ and
force seting on esch pote in a uniform magnetic field of induction
$3.2 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$ is $5.12 \times 10^{-5} N, \quad$ the dstance berween the poles of magnet is
7. The magnetic field of earth at the equator is approximately $4 \times 10^{-5} T$. The radius of earth is $6.4 \times 10^{6} \mathrm{~m}$. Then the dipole moment (in $A-m^{2}$) of the earth will be nearly of the order of

- Watch Video Solution

8. The angle of dip at a place is 37° and the vertical component of the earth's magnetic field
is $6 \times 10^{-5} T$. The earth's magnetic field at this
place is $\left(\tan 37^{\circ}=\frac{3}{4}\right)$

D Watch Video Solution

9. If relative permeability of iron is 2000,its absolute permeability is SI unit is

- Watch Video Solution

10. The susceptibility of annealed iron at saturation is 5500. Find the absolute
permeability (in SI unit) of annealed iron at saturation.

D Watch Video Solution

11. A magnetising field of $2 \times 10^{3} \mathrm{Am}^{-1}$ produces a magnetic flux density of $8 \pi T$ in an iron rod. The relative permeability of the rod will be
12. Two tangent galvanometers having coils of the same radius are connected in series. A
current flowing in them produces deflections of 60° and 45° respectively. The ratio of the number of turns in the coils is

D Watch Video Solution

13. Two short magnets with their axes horizontal and perpendicular to the magnetic maridian are palced with their centres 40 cm east and 50 cm west of magnetic needle.If the needle remains
undeflected, the ratio of their magnetic moments $M_{1}: M_{2}$ is

D Watch Video Solution

14. A certain amount of current when flowing in a properly set tangent galvanoment, produces a deflection of 45°. If the current be reduced by a factor of $\sqrt{3}$, the deflection would

D Watch Video Solution

Chapter 20 Electromagnetic Induction

1. Two concentric coplanar circular loops made of wire with resistance per unit length $10^{-4} \Omega / m$, have diameters 0.2 m and 2 m . A time varying potential difference $(4+2.5 t)$ volt is applied to the larger loop. Calculate the current in the smaller loop.

D Watch Video Solution

2. In figure a 120- turn coil of radius 1.8 cm and resistance 5.3Ω is placed outside a solenoid. The
current in the solenoid is 1.5 A and its reduces
to zero at a steady rate in 25 ms . What current
(inmA) appears in the coil? The number of turns per unit length of the solenoid is 220 turns/ cm and its diameter $\mathrm{D}=3.0 \mathrm{~cm}$.

- View Text Solution

3. The current in a coil of self inductance 2.0
henry is increasing according to $i=2 \sin t^{2}$ ampere. Find the amount of energy spent
during the period when the current changes
from 0 to 2 amp.

D Watch Video Solution

4. The current in an RL circuits drops from 1.0 A
to 10 mA in the 10 second following removal of the battery from the circuti. If L is 10 H , find the resistance R (in ohm) in the circuit.
5. An airplane with a 20 wingspread is flying at
$250 \mathrm{~m} / \mathrm{s}$ straight south parallel to the earth's
surface. The earths magnetic field has a horizontal component of $2 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$ and the dip angle is 60°. Calculate the induced e.m.f. between the plane tips.

D Watch Video Solution

6. The self induced emf of a coil is 25 volts. When
the current in it is changed at uniformed rate
from 10 A to 25 A in 1s, the change in the energy of the inductances is

- Watch Video Solution

7. A 10 m long horizontal wire extends from

North east ro South East. It is falling with a speed of $5.0 \mathrm{~ms}^{-1}$, at right angles to the horizontal component of the earth's magnetic field, of $0.3 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The value of the induced emf in wire is :
8. A uniform magnetic field B exists in a direction perpendicular to the plane of a square
frame made of copper wire. The wire has a diameter of 2 mm and a total length of 40 cm .

The magntic field changes with time at a steady rate $\frac{d B}{d t}=0.02 T s^{-1}$. Find the current induced in the frame. Resistivity of copper $=1.7 \times 10^{-8} W m$.
9. A conducintg circular loop having a redius of
5.0 cm , is placed perpendicular to a magnetic field of 0.50 T . It is removed from the field in 0.50
s. Find the average emf produced In the loop during this time.

D Watch Video Solution

10. A coil of inductance $1 H$ and resistance 10Ω
is connected to a resistanceless battery of emf 50 V at time $t=0$. Calculate the ratio of r the rate which magnetic energy is stored in the coil
to the rate at which energy is supplied by the battery at $t=0.1 s$.

D Watch Video Solution

11. A long solenoid having 200 turns per centimeter carries a current of $1.5 A$. At the center of the solenoid a coil is placed of 100 turns of cross-sectional area $3.14 \times 10^{-4} \mathrm{~m}^{2}$ having its axis parallel to the field produced by the solenoid. When the direction of current in the solenoid is reversed within 0.05 s , the induced emf in the coil is

- Watch Video Solution

12. A circular disc of radius $0.2 m$ is placed in a uniform magnetic fied of induction $\frac{1}{\pi}\left(\frac{W b}{m^{2}}\right)$ in such a way that its axis makes an angle of 60° with The magnetic flux linked with the disc is

- Watch Video Solution

13. A plane loop, shaped as two squares of sides
$a=1 \mathrm{~m}$ and $\mathrm{b}=0.4 \mathrm{~m}$ is introduced into a uniform magnetic field perpendicular to the pane of
loop. The manetic field varies as
$B=10^{-3} \sin (100) T$. The amplitude of the current (in A) induced in the loop is its resistance per unit length is $r=5 m \Omega m^{-1}$ is

D View Text Solution

14. A square metal loop of side 10 cm and resistance 1Ω is moved with a constant velocity partly inside a uniform magnetic field of
$2 \mathrm{Wbm}^{-2}$, directed into the paper, as shown in the figure.

The loop is connected to a network of five resistors each of value 3Ω. If a steady curret of 1 mA flows in the loop, then the speed (in cm^{-1}) of the loop is

D View Text Solution

15. If the rod is moving with a constant velocity of $12 \mathrm{~cm} / \mathrm{s}$ then the power (in watt) that must be
supplied by an external force in maintaining the speed will be
(Given $\mathrm{B}=0.5$ Tesla, $\mathrm{l}=15 \mathrm{~cm}, \mathrm{v}=12 \mathrm{~cm} / \mathrm{s}$, Resistance
of $\left.\operatorname{rod} R_{A b}=9.0 \mathrm{~m} \Omega\right)$

- View Text Solution

Chapter 21 Alternating Current

1. A series $A C$ circuit containing an inductor
$(20 m H)$, a capacitor $(120 \mu F)$ and a resistor (
60Ω) is driven by an Ac source of $24 \mathrm{~V} / 50 \mathrm{~Hz}$. The energy dissipated in the circuit in 60 s is :
2. A power transmission line feeds input power at 2300 V a step down transformer with its primary windings having 4000 turns. The output power is delivered at 230 V by the transformer. If the current in the primary of the transformer is 5A and its efficiency is 90%, the output current would be :
3. An alternating voltage $\mathrm{v}(\mathrm{t})=220 \sin 100 \mathrm{pt}$ volt is applied to a purely resistive load of 50Ω.

The time taken for the current to rise from half of the peak value to the peak value is :

- Watch Video Solution

4. An inductor of inductance 100 mH is
connected in series with a resistance, a variable
capacitance and an $A C$ source of frequency
2.0 kHz . What should be the value of the
capacitance so that maximum current may be drawn into the circuit?

- Watch Video Solution

5. A 60 Hz AC voltage of 160 V impressed across an LR-circuit results in a current of $2 A$. If the power dissipation is 200 W , calculate the maximum value of the back emf (in volt) arising in the inductance.

D Watch Video Solution
6. A 100 V AC source of frequency 500 Hz is
connected to LCR circuit with $\mathrm{L}=8.1 \mathrm{mH}$,
$C=12.5 \mu F$ and $R=100 \Omega$, all connected in
series. Find the potential (in volt) across the resistance.

D Watch Video Solution

7. A coil has a resistance of 10Ω and an inductance of 0.4 henry. It is connected to an AC source of $6.5 \mathrm{~V}, \frac{30}{\pi} \mathrm{~Hz}$. Find the average power consumed in the circuit.
8. A circuit has a resistance of 12 ohm and an impendance of 15 ohm. The power factor of the circuit will be

D Watch Video Solution

9. An AC generator of 220 V having internal resistance $r=10 \Omega$ and external resistance
$R=100 \Omega$. What is the power developed in the external circuit?
10. If $i_{1}=3 \sin \omega t, i_{2}=4 \cos \omega t$, and $i_{3}=i_{0} \sin \left(\omega t+53^{\circ}\right)$ find the value of i_{0}.

- View Text Solution

11.

Given
LCR
circuit
has
$L=5 H, C=80 \mu F, R=40 \Omega$ and variable
frequency source of 200V. The source frequency
(in Hz) which drives the circuit at resonance is

x.Find the value of π

- View Text Solution

12. An $L-C-R$ series circuit with 100Ω resistance is connected to an $A C$ source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°. When only the inductance is removed the current leads the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit

- Watch Video Solution

13. A current of $4 A$ flows in a coil when connected to a $12 V D C$ source. If the same coil is connected to a $12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{s} A C$ source, a current of $2.4 A$ flows in the circuit. Determine the inductance of the coil. Also, find the power developed in the circuit if a $2500 \mu F$ capacitor is connected in series with the coil.

D Watch Video Solution

14. A capacitor of capacitance $12.0 \mu F$ is joined to an AC source of frequency 200 Hz .The rms current in the circuit is 2.00 A . Find the rms voltage (in volt) across the capacitor.

D Watch Video Solution

15. An $L C R$ circuit has $L=10 m L, R=3 \Omega$,
and $C=1 \mu F$ connected in series to a source of
$15 \cos \omega t$ volt. The current amplitude at a
frequency that is 10% lower then the resonant
frequency is

(D) Watch Video Solution

Chapter 22 Electromagnetic Waves

1. A plane electromagnetic wave of frequency 50

MHz travels in free space along the positive x direction. At a particular point in space and time $\vec{E}=6.3 \hat{j} \mathrm{~V} / \mathrm{m}$. The corresponding magnetic field \vec{B}, at that point is $x \times 10^{-8} \hat{k} T$. Find the value of x.
2. If the magnetic field of a plane electromagnetic wave is given by (The speed of
light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
$B=100 \times 10^{-6} \sin \left[2 \pi \times 2 \times 10^{5}\left(t-\frac{x}{2}\right)\right]$
then the maximum electric field associated with it is :

D Watch Video Solution

3. A 27 mW laser beam has a cross-sectional maximum electric field in this electromagnetic wave is given by :
[Given permittivity of space $\epsilon_{0}=9 \times 10^{12}$ SI units, Speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]

- Watch Video Solution

4. The mean intensity of radiation on the
surface of the Sun is about $10^{s} \mathrm{~W} / \mathrm{m}^{2}$. The rms
value of the corresponding magnetic field is
closed to :

Watch Video Solution

5. The magnetic field of a plane electromagnetic wave is given by:
$\vec{B}=B_{0} \hat{i}-[\cos (k z-\omega t)]+B_{1} \hat{j} \cos (k z+\omega t)$
where $B_{0}=3 \times 10^{-5} T$ and $B_{1}=2 \times 10^{-6} T$.
The rms value of the force experienced by a stationary charge $Q=10^{-4} C$ at $z=0$ is close to:

D Watch Video Solution

6. A $50 \mathrm{~W} \mathrm{~m}^{-2}$ energy density of sunlight is
incident normally on the surface of a solar
panel. Some part of incident energy (25%) is reflected from the surface and the rest is absorbed. The force exerted on $1 m^{2}$ surface area will be close to
$\left(c=3 \times 10^{8} m s^{-1}\right)$

D Watch Video Solution

7. A light beam traveling in the x-direction is described by th electric field $E_{y}=300 \sin \omega\left(t-\frac{x}{c}\right) . \quad$ An electron is constarained to move along the y-direction with
a speed of $2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the maximum electric force (in newton) on the electron.

D Watch Video Solution

8. A laser beam has intensity $2.5 \times 10^{14} \frac{W}{m^{2}}$.

Find the amptitude of electric field (in V / m) in the beam.
9. Light is incident normally on a completely absorbing surface with an energy flux of $25 \mathrm{Wcm}^{-2}$ If the surface has an area of $25 \mathrm{~cm}^{2}$
the momentum transferred to the surface in 40 min time duration will be:

D Watch Video Solution

10. In a wave $E_{0}=100 \mathrm{Vm}^{-1}$. Find the magnitude of Poynting's vector is watt m^{-2}.
11. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT .

The peak value of electric field strength (in volt m^{-1}) is

D Watch Video Solution

12. A new system of unit is evolved in which the
values of μ_{0} and ε_{0} aer 2 and 8 respectively.
Then the speed of light in this system will be
13. A plane electromagnetic wave of intensity of $10 \mathrm{~W} / \mathrm{m}^{2}$ strikes a small mmirror of area $20 \mathrm{~cm}^{2}$, held perpendicular to the approcaching wave.

The radiation froce on the mirror will be:

D Watch Video Solution

14. Radiations of intensity $0.5 W / m^{2}$ are striking a metal plate. The pressure on the plate is
15. The electric field associated with an em wave in vacuum is given by
$\vec{E}=40 \cos \left(k z-6 \times 10^{8} t\right) \hat{i}$, where E, z and t
are in $\mathrm{V} . \mathrm{m}^{-1}$. meter and seconds respectively.
The value of wave vector k is

D Watch Video Solution

Chapter 23 Ray Optics And Optical Instruments

1. The eye can be regarded as a single refracting
surface is equal to that of cornea (7.8 mm). This
surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus.

D Watch Video Solution

2. A light wave is incident normally on a glass
slab of reflected and the amplitude of the
electrons field of the incident light is $30 \mathrm{~V} / \mathrm{m}$,
then the amplitude of the eletric field for the wave propogating in the glass medium will be :
3. In figure, the optical fiber is $\mathrm{I}=2 \mathrm{~m}$ long and has a diameter of $d=20 \mu \mathrm{~m}$. If a ray of light is incident on one end of the fiber at angle
$\theta_{1}=40^{\circ}$, the number of reflections it makes before emerging from the other end :
(refractive index of fiber is 1.31 and
$\left.\sin 40^{\circ}=0.64\right)$

- View Text Solution

4. A convex lens (of focal length 20 cm) and a concave mirror, having their principal axes align
the same lines, are kept 80 cm apart from each other. The concave mirror is to the right of the convex lens. When an object is kept at a distance of 30 cm to the left of the convex lens, its image remains at the same position even if the concave mirror is removed. The maximum distance (in cm) of the object for which this concave mirror, by itself would produce a virtual image would be:
5. A concave mirror used for face viewing has focal length of $0.4 m$. The distance at which you hold the mirror from your face in order to see your image upright with a magnification of 5 is (in m).

D Watch Video Solution

6. A concave mirror has radius of curvature of 40
cm . It is at the bottom of a glass that has water
filled up to 5 m . If a small particle is floating on
the surface of water, its image as seen, from directly above the glass, is at a distance d from the surface of water. The value of d (in cm) is:
(Refractive index of water $=1.33$)

D View Text Solution

7. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focussed on a distant object is such a way that parallel rays comes out from
the eye lens. If the object subtends an angle 2° at the objective, the angular width of the image.

D Watch Video Solution

8. A ray of light falls on a glass plate of refractive index $\mu=1.5$.

What is the angle of incidence of the ray if the angle between the reflected and refracted rays is 90° ?

- Watch Video Solution

9. A vessel having perfectly reflecting plane botton is filled with water $(\mu=4 / 3)$ to depth d. A point source of light is placed at a height h above the surface of water. Find the distance of
final image from water surface.

D Watch Video Solution

10. A light ray is incident at an angle of 45° with
the normal to a $\sqrt{2} \mathrm{~cm}$ thick plate $(\mu 2.0)$. Find the shift in the path of the light as it emerges out from the plate.
11. The monochromatic beam of light is incident at 60° on one face of an equilateral prism of refractive index n and emerges from the opposite face making an angle $\theta(n)$ with the normal. For $n=\sqrt{3}$ the value of θ is 60° and $\frac{d \theta}{d n}=m$. The value of m is

D View Text Solution

12. A prism $A B C$ of angle 30° has its face $A C$
silvered. A ray of light incident at an angle of
45° at the face AB retraces its path after refraction at face $A B$ and reflection at face $A C$.

The refractive index of the material of the prism is

D View Text Solution

13. A glass sphere of radius 5 cm has a small bubble at a distance 2 cm from its centre.The
bubble is viewed along a Diameter of the sphere
from the side on which it lies.How far from the
surface will it appear.Refractive index of glass is
1.5
2.5 cm behind the surface

D Watch Video Solution

14. A converging beam of rays in incident on a diverging lens. Having passed through the lens the rays intersect at a point 15 cm from the lens.

If the lens is removed the point where the rays meet will move 5 cm closer to the mounting
that hold the lens. Find focal length (in cm) of the lens.

- View Text Solution

15. The magnifying power of a microscope with
an objective of 5 mm focal length is 400 . The length of its tube is 20 cm . Then the focal length of the eye - piece is
16. In a Young's double slit experiment, the slits
are placed 0.320 mm apart. Light of wavelength
$\lambda=500 \mathrm{~nm}$ is incident on the slits. The total number of bright fringes that are observed in the angular range $-30^{\circ} \leq \theta \leq 30^{\circ}$ is :

D Watch Video Solution

2. In a Young's double slit experiment, the path difference at a certain point on the screen
,between two interfering waves is $\frac{1}{8}$ th of wavelenght .The reatio of the intensity at this point to that at the center of abright fringe is close to :

D Watch Video Solution

3. In a double-slit experiment, green light
(5303Å) falls on a double slit having a separation of $19.44 \mu \mathrm{~m}$ and a width of $4.05 \mu \mathrm{~m}$.

The number of bright fringes between the first and the second diffraction minima is:
4. In an interference experiment the ratio of amplitudes of coherent waves is $\frac{a_{1}}{a_{2}}=\frac{1}{3}$ The ratio of maximum and minimum intensities of fringes is

D Watch Video Solution

5. Calculate the limit of resolution of a telescope objective having a diameter of 200 cm , if it has detect light of wavelength 500 nm coming from a star.
6. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of the central bright fringe is

-
 Watch Video Solution

7. If aperture diameter of the lens of a telescope is 1.25 m and wavelength of light used is $5000 \AA$ its resolving power is

D Watch Video Solution

8. A system of three polarizers P_{1}, P_{2}, P_{3} is set up such that the pass axis of P_{3} is crossed with respect to that of P_{1}. The pass axis of P_{2} is incined at 60° to the pass axis of P_{3}. When a beam of unpolarized light of intensity I_{0} is incident on P_{1} the intensity of light transmitted
by the three polarizes is I.The ratio $\left(I_{0} / I\right)$ equals (nearly):

D Watch Video Solution

9. There are two sources kept at distance 2λ. A
large screen is perpendicular to line joining the sources. Number of maximas on the screen in
this case is ($\lambda=$ wavelength of light)

- View Text Solution

10. A Young's double slit interference arrangement with slits S_{1} and S_{2} is immersed in
water (refractive inded $=\frac{4}{3}$) as shown in the figure. The positions of maximum on the surface of water are given by $x^{2}=p^{2} m^{2} \lambda^{2}-d^{2}$, where
λ is the wavelength of light in air (refractive index $=1$), 2 d is the separation betwen the slits and m is an integer. The value of p is

D View Text Solution

11. Two waves of the same frequency have amplitudes 2 and 4. They interfare at a point where their phase difference is 60°. Find their resultant amplitude.

- Watch Video Solution

12. If an interfernce pattern,at a point we observe the $16^{\text {th }}$ order maximum for
$\lambda_{1}=6000 \AA$. what order will be visible here if the soruce is replaced by light of wavelength $\lambda_{2}=4800 \AA$

- Watch Video Solution

13. Diameter of the objective lens of a telescope is 250 cm . for light of wavelength 600 nm .

Coming from a distance object, the limit of resolution of the telescope is close to :

- Watch Video Solution

14. A young's doubel slit arrangement produces
interference fringes for sodium light
($\lambda=5890 \AA$) that are 0.20° apart. What is the
angular fringe separation(in degree) if the entire arrangement is is immersed in water? (refractive index of water is $4 / 3$).

D Watch Video Solution

15. A beam of plane polarised light falls normally
on a polariser (cross sectional area $3 \times 10^{-4} \mathrm{~m}^{2}$
) which rotates about the axis of the ray with an
angular velocity of $31.4 \mathrm{rad} / \mathrm{s}$. Find the energy
of light passing through polariser per revolution and the intensity of emergent beam, if flux of energy of the incident ray is $10^{-3} W$.

(D) Watch Video Solution

Chapter 25 Dual Nature Of Radiation And Matter

1. Surface of certain metal is first illuminated
with light of wavelength $\lambda_{1}=350 \mathrm{~nm}$ and then,
by light of wavelength $\lambda_{2}=540 \mathrm{~nm}$. It is found that the maximum speed of the photo electrons in the two cases differ by a factor of 2 . The work function of the metal (in eV) is close to :
(Energy of photon $=\frac{1240}{\lambda(\text { in nm })} E v$
2. The magnetic field associated with a light
wave is given, at the origin, by
$B=B_{0}\left[\sin \left(3.14 \times 10^{7}\right) c t+\sin \left(6.28 \times 10^{7}\right) c t\right]$.
If this light falls on a silver plate having a work
function fo 4.7 eV , what will be the maximum kinetic energy of the photo electrons?
$\left(c=3 \times 10^{8} m s^{-1}, h=6.6 \times 10^{-34} J-s\right)$
3. A metal plate of area $1 \times 10^{-4} \mathrm{~m}^{2}$ is
illuminated by a radiation of intensity
$16 m W / m^{2}$. The work function of the metal is
5 eV . The energy of the incident photons is 10 eV .

The energy of the incident photons is 10 eV and 10% of it produces photo electrons. The number of emitted photo electrons per second their maximum energy, respectively, will be :

$$
\left[1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right]
$$

4. The stopping potential V_{0} (in volt) as a function of frequeny (v) for a sodium emitter, is shown in the figure.

The work functio (in eV) of sodium, from the data plotted in the figure will be
(Given Plank's constant $(h)=6.63 \times 10^{-34} \mathrm{Js}$,
electron charge $e=1.6 \times 10^{-19} C$)

D View Text Solution
5. If the deBroglie wavelength of an electron is
equal to 10^{-3} times the wavelength of a photon of frequency $6 \times 10^{-14} \mathrm{~Hz}$ then the speed (in m / s) of electron is equal to:
(Speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} . s$
Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$)

D Watch Video Solution

6. In a photoelectric experiment, the wavelength of the light incident on a metal is changed from

300 nm to 400 nm . Choose the closest value of change in the stopping potential from given options $\left(\frac{h c}{e}=1240 \mathrm{~nm} . V\right)$

D Watch Video Solution

7. A particle A of mass ' m ' and charge ' q ' is accelerated by a potential difference of 50 V .

Another particle B of mass ' 4 m ' and charge ' q ' is accelerated by a potential difference of 2500 V .

The ratio of de-Broglie wavelengths $\frac{\lambda_{A}}{\lambda_{B}}$ is close to :
8. In a Frank-Hertz experiment,an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV . The minimum wavelength of photons emitted by mercury atoms is close to :

- Watch Video Solution

9. In the arrangement shown in figure $y=1.0 \mathrm{~nm}$,
$d=0.24 \mathrm{~mm}$ and $D=1.2 \mathrm{~m}$. The work function of the
material of the emitter is 2.2 eV . If stopping potential is $0.3 x$, then value of $x($ in $V)$ is

- View Text Solution

10. The electric field of light wave is given as

$$
\vec{E}=10^{-3} \cos \left(\frac{2 \pi x}{5 \times 10^{-7}}-2 \pi \times 6 \times 10^{14} t\right) \widehat{x} \frac{N}{C}
$$

. This light falls on a metal plate of work
function 2 eV . The stopping potential of the
photo-electrons is:
Given, $\mathrm{E}(\mathrm{in} \mathrm{eV})=\frac{12375}{\lambda(\operatorname{in} \AA)}$
11. In a photoelectric effect experiment the threshold wavelength of light is 380 nm . If the wavelength of incident light is 260 nm , the maximum kinetic energy of emitted electrons will be \qquad eV

Given $\mathrm{E}($ in eV$)=\frac{1237}{\lambda(\text { in } \mathrm{mm})}$

D Watch Video Solution

12. A 2 mW laser operates at a wavelength of

500 nm . The number of photons that will be emitted per second is: [Given Planck's constant $h=6.6 \times 10^{-34} J s, \quad$ speed of light
$\left.c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right]$

D Watch Video Solution

13. A monochromatic source of light operation at 200 W emits 4×10^{20} photons per second. Find the wavelength of the light (in10 ${ }^{-7} m$).
14. Light of wavelength $1800 \AA$ ejects photoelectrons from a plate of a metal whose
work functions is 2 eV . If a uniform magnetic field of 5×10^{-5} tesla is applied parallel to plate, what would be the radius of the path followed by electrons ejected normally from the plate with maximum energy.
15. A 100 W point source emits monochromatic
light of wavelength $6000 A$
Q. Calculate the total number of photons emitted by the source per second.

D Watch Video Solution

Chapter 26 Atoms

1. Taking the wavelength of first Balmer line in hydrogen spectrum ($n=3$ to $n=2$) as 660 nm ,
the wavelength of the $2^{n d}$ Balmer line ($n=4$ to $n=2$) will be:

D Watch Video Solution

2. If He^{+}ion is in its first excited state then its
ionization energy is

D Watch Video Solution
3. In $L i^{++}$, electron in first Bohr orbit is excited to a level by a radiation of wavelength λ When
the ion gets deexcited to the ground state in all possible ways (including intermediate emissions), a total of six spectral lines are observed. What is the value of λ (Given : $h=6.63 \times 10^{-34} J s, c=3 \times 10^{8} m s^{-1}$)

D Watch Video Solution

4. An excited He^{+}ion emits two photons in
succession, with wavelength 108.5 nm and 30.4
$n m$, in making a transition to ground state. The quantum number n , corresponding to its initial
excited state is (for photon of wavelength λ,
energy $E=\frac{1240 \mathrm{eV}}{\lambda(\mathrm{in} \mathrm{nm})}$

D Watch Video Solution

5. Consider an electron in a hydrogen atom, revolving in its second excited state (having radius $4.65 \AA$). The de-Broglie wavelength of the electron is

D Watch Video Solution

6. The largest wavelength in the ultraviolet region of the hydrogen spectrum is 122 nm . The smallest wavelength in the infrared region of the hydrogen spectrum (to the nearest integer) is

D Watch Video Solution

7. A hydrogen atom in its ground state is irradiated by light of wavelength $970 \AA$ Taking
$h c / e=1.237 \times 10^{-6} \mathrm{eV} \mathrm{m}$ and the ground state energy of hydrogen atom as -13.6 eV the
number of lines present in the emmission spectrum is

- Watch Video Solution

8. The energy of an excited H -atom is $-3.4 e V$.

Calculate angular momentum of e^{-}

D Watch Video Solution

9. An electron in hydrogen-like atom makes a transition from nth orbit or emits radiation
corresponding to Lyman series. If de Broglie
wavelength of electron in nth orbit is equal to
the wavelength of rediation emitted, find the value of n. The atomic number of atomis 11 .

D Watch Video Solution

10. Some energy levels of a molecule are shown
in the figure. The ratio of the wavelengths
$r=\lambda_{1} / \lambda_{2}$ is given by
11. Ratio of the wavelength of first line of Lyman series and first line of Balmer series is

- Watch Video Solution

12. As par Bohr model, the minimum energy (in $e V$) required to remove an electron from the ground state of doubly ionized $L i$ atom $(Z=3)$ is
13. The ionisation energy of hydrogen atom is
13.6 eV . Following Bohr's theory, the energy
corresponding to a transition between the 3rd and the 4 th orbit is

D Watch Video Solution

14. If the binding energy of the electron in a hydrogen atom is 13.6 eV , the energy required to remove the electron from the first excited state of $L i^{++}$is
15. When an electron jumps from a level $n=4$ ton $=1$, the momentum of the recoiled hydrogen atom will be

D Watch Video Solution

Chapter 27 Nuclei

1. Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At $t=0$ it was 1600 counts per second and $t=8$ seconds it was 100 counts per second.

The count rate observed, as counts per seconds, at $\mathrm{t}=6$, seconds is close to :

D Watch Video Solution

2. The ratio of mass densities of nuclei of ${ }^{40} \mathrm{Ca}$ and ${ }^{16} \mathrm{O}$ is close to :

- Watch Video Solution

3. The activity of a freshly prepared radioactive sample is 10^{10} disintergrations per second,
whose mean life is $10^{9} s$. The mass of an atom of this radioisotope is $10^{-25} \mathrm{~kg}$. The mass (in mg) of the radioactive samples is

D Watch Video Solution

4. A radioactive element decays by
β-emission. A detector records n beta particles in $2 s$ and in next $2 s$ it records $0.75 n$ beta particles. Find mean life correct to nearest
whole number. Given In $|2|=0.6931$, In
$|3|=1.0986$.
5. The half life of radon is 3.8 days. After how many days will only one twentieth of radon sample be left over?

D Watch Video Solution

6. the count rate from a radioactive sample falls from 4.0×10^{6} per second to 1.0×10^{6} per second in 20 hours. What will be the count rate 100 hours after the begnning ?
7. In an ore containing Uranium, the ratio of U^{238} to Pb^{206} nuceli is 3 . Calculate the age of the ore, assuming that alll the lead present in the ore is the final stable, product of U^{238}. Take the half-like of U^{238} to be 4.5×10^{9} years. In $(4 / 3)=0.288$.
8. In a nuclear reactor, U^{235} undergoes fission
libertaing 200 MeV of energy. The reactor has a
10% efficiency and produces $1000 M W$ power.
If the reactor is to function for 10 years, find the total mass of urnaium needed.

D Watch Video Solution

9. A radioactive source, in the form of a metallic
sphere of radius $10^{-2} m$ emits β - particles at
the rate of 5×10^{10} particles per second. The source is electrically insulated. How long will it
take for its potential to be raised by $2 V$, assuming that 40% of the emitted $\beta-$ particles escape the source.

- Watch Video Solution

10. It is proposed to use the nuclear fusion reaction,
$.{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} \mathrm{He}$
in a nuclear reactor $200 M W$ rating. If the
energy from the above reaction is used with a
25 per cent efficiency in the reactor, how many grams of deuterium fuel will be needed per day?
(The masses of.${ }_{1}^{2} \mathrm{H}$ and $\cdot{ }_{2}^{4} \mathrm{He}$ are 2.0141 atomic mass units and 4.0026 atomic mass units respectively.)

D Watch Video Solution

11. A.$^{7} L i$ target is bombarded with a proton
beam current of $10^{-4} \mathrm{~A}$ for 1 hour to produce
.7 Be of activity 1.8×10^{8} disintegrations per second.

Assuming that.${ }^{7} B e$ radioactive nucleus is produced by bombarding 1000 protons, determine its half-life.

- Watch Video Solution

12. The disintegration rate of a certain radioactive sample at any instant is 4750 disintegrations per minute. Five minutes later the rate becomes 2700 per minute. Calculate
(a) decay constant and (b) half-life of the sample

D Watch Video Solution

13. If the radius of a nucleus ${ }^{256} X$ is 8 fermi, then the radius (in fermi) of ${ }^{4} \mathrm{He}$ nucleus will be

(D) Watch Video Solution

14. The mass defect for the nucleus of helium is
0.0303 a.m.u. What is the binding energy per nucleon for helium in MeV ?

(D) Watch Video Solution

15. The radius of germanium (Ge) nuclide is measured to be twice the radius of ${ }_{4}^{9} \mathrm{Be}$. The number of nucleons in $G e$ are

Chapter 28 Semiconductor Electronics Materials

 Devices And Simple Circuits1. Mobility of electrons in a semiconductor is
defined as the ratio of their drift velocity to the applied electric field. If, for an n-type semiconuctor, the density of electrons is $10^{19} \mathrm{~m}^{-3}$ and their mobility is $1.6 \mathrm{~m}^{2} /(V . s)$ then the resistivity of te semiconductor (since it is an n-type semiconductor contribution of holes is ignored) is close to :

- Watch Video Solution

2. Ge and Si diodes start conducting at 0.3 V and
0.7 V respectively. In the following figure if Ge diode connection are reversed, the value of V_{0}
(in volt) changes by: (assume that the Ge diode
has large breakdown voltage)

- View Text Solution

3. Copper, a monovalent, has molar mass 63.54 $\mathrm{g} / \mathrm{mol}$ and density $8.96 \mathrm{~g} / \mathrm{cm}^{3}$. What is the number density n (in m^{-3}) of conduction electron in copper?

D Watch Video Solution

4. An LED is constructed from a $\mathrm{p}-\mathrm{n}$ junction based on a certain Ga-As-P semiconducting material whose energy is 1.9 eV . What is the wavelength of the emitted light?
5. For the circuit shown below, the current (in $\mathrm{mA})$ through the Zener diode is:

D View Text Solution

6. A non transistor operates as a common emitter amplifier, with a power gain of 60 dB .

The input circuit resistance is 100Ω and the output load resistance is $10 k \Omega$. The common emitter current gain β is:

- Watch Video Solution

7. In half - wave rectification, what is the output
frequency, if the
input frequency is 50 Hz ? What is the output frequency of a full - wave rectifier for the same input frequency?

- Watch Video Solution

8. A comon emitter amplifier circuit, built using an npn transistor, is shown in the figure its dc
current gain is $250, R_{C}=1 k \Omega$ and $V_{\mathrm{CC}}=10 \mathrm{~V}$.

What is the minimum base current (in μA) for
$V_{C E}$ to reach saturation?

- View Text Solution

9. In a photodiode,the conductivity increases when the material is exposed to light.It is found that the conductivity changes only if the wavelength is less than 620 nm .What is the band gap?
10. When the base current in a transistor is changed from $30 \mu A$ to $80 \mu A$,the collector current is changed form 1.0 mA to 3.5 mA . Find the current gain β.

D Watch Video Solution

11. In the given circuit the current (in mA) through Zener Diode is
12. In an intrinsic semiconductor the energy gap
E_{g} is 1.2 eV . Its hole mobility is much smaller
than electron mobility and independent of temperature. What is the ratio between conductivity at 600 K and that at 300 K ? Assume that the temerature dependence of intrinsic
carrier concentration n_{i} is given by
$n_{i}=n_{0} \exp \left(-\frac{E_{g}}{2 k_{B} T}\right)$ where n_{0} is a constant.
13. The reverse breakdwon voltage of a Zener diode is 5.6 V in the given circuit.

The current I_{2} (in mA) through the Zener is:

- View Text Solution

14. The transfer characteristic curve of a transistor, having input and output resistance
100Ω and $100 k \Omega$ respectively, is shown in the figure. The Voltage gain is
15. The circuit shown below contains two ideal diodes, eac with a forwad resistance of 50Ω. If the battery voltage is 6 V , the current through the 100Ω resistance (in Ampere) is:

D View Text Solution

Chapter 29 Communication Systems

1. An audio signal of amplitude 0.1 V is used is used in amplitude modulation of a carrier wave of amplitude 0.2 V . Calculate the modulation index.

D Watch Video Solution

2. A transmitting antenna at the top of a tower has a height $32 m$ and the height of the receiving antenna is 50 m . What is the maximum distance between them for satisfactory
communication in $L O S$ mode? Given radius of earth $6.4 \times 10^{6} \mathrm{~m}$.

D Watch Video Solution

3. A telephonic communication service is working at carrier frequency of 10 GHz . Only 10% of it is utilized for transmission. How many telephonic channels can be transmitted simultaneously if each channel requires a bandwidth of 5 kHz ?
4. For an amplitude modulated wave, the maximum amplitude is found to be 10 V while minimum amplitude is found to be 2 V .

Determine the modulation index μ. What would be the value of μ if the minimum amplitude is zero?

D Watch Video Solution

5. A radar has a power of $1 k W$ and is operating at a frequency of $10 G H z$. It is located on a mountain top of height 500 m . The maximum
distance upto which it can detect object located
on the surface of the earth (Radius of earth $\left.6.4 \times 10^{6} \mathrm{~m}\right)$ is

D Watch Video Solution

6. An audio signal consists of two distinct
sound. One a human speech signal in the frequency band of 200 Hz to 2700 Hz , while the other is a high frequency music signal in the frequency band of 10200 Hz to 15200 Hz . The ratio of the $A M$ signal together to the $A M$ signal
band width required to send just the human speech is:

D Watch Video Solution

7. In a communication system operating at wavelength 800 nm , only one percent of source frequency is a available as signal bandwidth. The number of channels accomodated for transmitting TV signals of band width 6 MHz are
(Take
velocity
of
light
$\left.c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$
8. A TV transmission tower has a height of 140 m and the height of the receiving antenna is 40 m .

What is the maximum distance upto which signals can be broadcasted from this tower in LOS (Line of Sight) mode ? (Given : radius of earth $\left.=6.4 \times 10^{6} \mathrm{~m}\right)$.

D Watch Video Solution

9. The modulation frequency of an AM radio station is 250 kHz , which is 10% of the carrier
wave. If another AM station approaches you for
license what broadcast frequency will you allot?

- Watch Video Solution

10. A 100 V carrier wave is mode to vary betqeen

160 and 40 V by a modulating signal. What is the modulation index?
11. To double the covering range of a TV transimitter tower, its height should be made

D Watch Video Solution

12. The wavelength of the carrier waves in a modern optical fiber communication network is close to :

D Watch Video Solution

13. In a line of sight radio communication, a distance of about 50 is Kept between the transmitting and receiving entennas. If the height of the receiving antenna is 70 m , then the minimum height fof the transmitting antenna should be:
(Radius of the Earth $=6.4 \times 10^{6} \mathrm{~m}$).

(D) Watch Video Solution

14. A message signal of frequency 10 kHz and peak voltage of 10 volts is used to modulate a
carrier of frequency 1 MHz and peak voltage of 20 volts. The side bands are 1010 kHz and kHz.

D Watch Video Solution

15. A diode detector is used to detect an amplitudemodulated wave of 60% modulation by using a condenser of capacity 250 picofarad in parallel with a load resistance 100 kilo ohm.

Find the maximum modulated frequency (in kHz)
which could be detected by it.

View Text Solution

