©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

COMMUNICATION SYSTEM

Jee Main 5 Year At A Glance

1. The number of $A M$ broadcast stations that
can be accomodated in a 300 kHz band width
for the highest modulating frequency $15 k H z$ will be
A. 20
B. 10
C. 8
D. 15

Answer: B

- Watch Video Solution

2. The carrier frequency of a transmitter is provided by a tank circuit of a coil of inductance $49 \mu H$ and a capacitance of 2.5 nF It is modulated by an audio signal of 12 kHz

The frequency range occupied by the side bands is :
A. $18 \mathrm{kHz}-30 \mathrm{kHz}$
B. $63 \mathrm{kHz}-75 \mathrm{kHz}$
C. $442 \mathrm{kHz}-466 \mathrm{kHz}$
D. $13482 \mathrm{kHz}-13494 \mathrm{kHz}$

Answer: C

D Watch Video Solution

3. A telephonic communication service is working at carrier frequency of 10 GHz . Only 10% of it is utilized for transmission. How many telephonic channels can be transmitted simultaneously if each channel requires a bandwidth of 5 kHz ?
A. 2×10^{3}
B. 2×10^{4}
C. 2×10^{5}
D. 2×10^{6}

Answer: C

D Watch Video Solution

4. A carrier wave of peak voltage 14 V is used for transmitting a message signal. The peak voltage of modulating signal given to achieve a modulation index of 80% will be :
A. 11.2 V
B. 7 V
C. 22.4 V
D. 28 V

Answer: A

D Watch Video Solution
5. A signal is to be transmitted through a wave of wavelength λ, using a linear antenna. The
length 1 of the antenna and effective power
radiated $P_{\text {eff }}$ will be given respectively as : (K is a constant of proportionality)

$$
\begin{aligned}
& \text { A. } \lambda, P_{e f f}=K\left(\frac{1}{\lambda}\right)^{2} \\
& \text { B. } \frac{\lambda}{8}, P_{e f f}=K\left(\frac{1}{\lambda}\right) \\
& \text { C. } \frac{\lambda}{16}, P_{e f f}=K\left(\frac{1}{\lambda}\right)^{3} \\
& \text { D. } \frac{\lambda}{5}, P_{e f f}=K\left(\frac{1}{\lambda}\right)^{\frac{1}{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. In amplitude modulation, sinusoidal carrier frequency used is denoted by ω_{c} and the signal frequency is denoted by ω_{m}. The band width $\left(\Delta \omega_{m}\right)$ of the signal is such that
$\Delta \omega_{m} \ll \omega_{c}$. Which of the following frequencies is not contained in the modulated wave?
A. $\omega_{m}+\omega_{c}$
B. $\omega_{c}-\omega_{m}$
C. ω_{m}

D. ω_{c}

Answer: C

D Watch Video Solution

7. Choose the correct statement :

A. In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.
B. In frequency modulation the amplitude
of the high frequency carrier wave is
made to vary in proportion to the frequency of the audio signal.
C. In amplitude modulation the amplitude
of the high frequency carrier wave is
made to vary in proportion to the amplitude of the audio signal.
D. In amplitude modulation the frequency
of the high frequency carrier wave is
made to vary in proportion to the amplitude of the audio signal.

Answer: C

D Watch Video Solution

8. A signal of 5 kHz frequency is amplitude modulated on a carrier wave of frequency 2

MHz . The frequencies of the resultant signal is/ are
A. 2005 kHz, 2000 kHz and 1995 kHz
B. 2000 kHz and 1995 kHz
C. 2 MHz only
D. 2005 kHz and 1995 kHz

Answer: A

D Watch Video Solution
9. Long range radio transmission is possible when the radio waves are reflected from the
ionosphere. For this to happen the frequency of the radio waves must be in the range:
A. $80-150 \mathrm{MHz}$
B. $8-25 \mathrm{MHz}$
C. 1-3 MHz
D. 150-1500KHZ

Answer: B

10. Sky Wave Propagation

A. 1 MHz to 2 MHz

B. 5 MHz to 25 MHz
C. 35 MHz to 40 MHz
D. 45 MHz to 50 MHz

Answer: B

1. Communication is the process of

A. keeping in touch
B. exchange information
C. broadcasting
D. entertainment by electronics

Answer: B

D Watch Video Solution

2. Reception of information involves

A. decoding of signal
B. storage of signal
C. interpretation of signal
D. All of the above

Answer: D

3. For good demodulation of AM signal of

 carrier frequency f, the value of $R C$ should be$$
\begin{aligned}
& \text { A. } \frac{1}{f} \\
& \text { B. }<\frac{1}{f} \\
& \text { C. } \geq \frac{1}{f} \\
& \text { D. } \gg \frac{1}{f}
\end{aligned}
$$

Answer: D

4. The purpose of ...A... is to convert the message signal produced by the source of information into a form suitable for transmission through the ...B... Here, A and B refer to
A. channel, transmitter
B. transmitter, channel
C. receiver, transmitter
D. receiver, channel

Answer: B
5. The fundamental radio antenna is a metal rod which has a length equal to
A. lamdba in free space at the frequency of operation
B. $\omega / 2$ in free space at the frequency of operation
C. $\lambda / 4$ in free space at the frequency of operation

D. $3 \lambda / 4$ in free space at the frequency of

operation

Answer: C

D Watch Video Solution

6. If a number of sine waves with modulation
indices n_{1}, n_{2}, n_{3}... modulate a carrier wave, then total modulation index (n) of the wave is

$$
\text { A. } n_{1}+n_{2} \ldots \ldots+2\left(n_{1}+n_{2} \ldots\right)
$$

B. $\sqrt{n_{1}-n_{2}+n_{3} \ldots \ldots \ldots .}$
C. $\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2} \ldots \ldots .}$
D. $\sqrt{n_{1}+n_{2}+\ldots \ldots \ldots .}$

Answer: C

D Watch Video Solution

7. Pre-emphasis in FM system is done to

A. compress modulating signal
B. expand modulating signal
C. amplify lower frequency component of
the modulating signal

D. amplify higher frequency component of

the modulating signal

Answer: D

D Watch Video Solution

8. If the output of the information source is a non-electrical signal like a voice signal, a ...A...
converts it to ...B. form before giving it as an input to the ...C.... Here, A, B and C refer to
A. receiver, electrical, channel
B. channel, magnetic, transducer
C. transducer, electrical, channel
D. transducer, electrical, transmitter

Answer: D

D Watch Video Solution

9. During the process of transmission \& reception the signal gets deteriorated due to
A. noise introduced in the system
B. distortion in the system
C. both (a) \& (b)
D. neither (a) nor (b)

Answer: C
(Watch Video Solution
10. Optical fibres transmit light along its axis, by the process of
A. total internal reflection
B. refraction
C. interference
D. diffraction

Answer: A

D Watch Video Solution
11. A modem is a
A. modulator-demodulator
B. multiplexer-demultiplexer
C. multivibrator-degenerator

D. None of these

Answer: A
12. Which of the following $A M$-scheme requires
the minimum transmitted power \& minimum channel bandwidth?
A. VSB
B. DSB-SC
C. AM
D. SSB

Answer: D

D Watch Video Solution

13. Buffer amplifier is used at the transmitting

 end toA.feed carrier frequency to master oscillator
B. amplify carrier frequency
C. mix modulating signal with carrier frequency
D. isolate master oscillator from other stages of transmitter.

Answer: D

D Watch Video Solution

14. A transducer used at the transmitting end,
serves the purpose of converting
A. electrical signal to sound form
B. sound signal to electrical form
C. electrical signal to magnetic form
D. sound signal to magnetic form

Answer: B

- Watch Video Solution

15. The purpose of a detector at the receiving end is
A. to amplify signal
B. to reduce its frequency level
C. to modulate signal
D. to demodulate signal

Answer: D

- Watch Video Solution

16. The term channel is used to indicate
A. the amplitude range allocated to a given
source
B. the frequency range allocated to a given
source

C. the voltage-range allocated to a given

source

D. all of the above

Answer: B

D Watch Video Solution

17. Optical fibre are used for long distance communication because
A. it amplifies signals to be transmitted
B. it transfer signals faster than electrical cables
C. it pre-emphasise weak signals
D. it provide little attenuation as compared
to electrical cable for light propagation

Answer: D

D Watch Video Solution

18. For transmission of speeches, talks, music, dramas etc. is used
A. radio broadcast transmitter
B. radio telegraph transmitter
C. navigation transmitter

D. None of these

Answer: A

(D) Watch Video Solution
19. E.m. wave of audible frequency cannot be directly propagated over a long distance because
A. they have vary small energy content
B. the length of antenna required for transmission of these wave is too large
C. both (a) and (b)
D. neither (a) nor (b)

Answer: C
20. For transmission of e.m.wave of audible frequency, these waves are superimposed with waves of
A. frequency less than 20 Hz
B. frequency less than 10 KHz .
C. frequency in the audible range.
D. radio-frequency.

Answer: D
21. Wave obtained on superimposition of audible frequency e.m. wave is known as
A. carrier wave
B. high frequency wave
C. modulating wave
D. modulated wave

Answer: D

- Watch Video Solution

22. In an ionized medium, the phase velocity v_{p} group velocity v_{g} and the speed of light are related as
A. $v_{p}>v_{g}>c$
B. $v_{p}=v_{g}=c$
C. $v_{p}<v_{g}<c$
D. $v_{p}>c, v_{g}<c$

Answer: D
23. Sky wave propagation is not possible for waves of frequency $>30 \mathrm{MHz}$ because
A. these waves do not have much energy to
reach ionosphere
B. they are not reflected by ionosphere
C. they get absorbed by troposphere
D. they get reflected by stratosphere

Answer: B
24. Long range transmission of TV-signal is done by
A. space-wave
B. sky waves
C. ground wave
D. artificial satellite

Answer: D

25. Communication on ground is through electromagnetic waves of wavelength
A. larger than 600 m
B. between 200 and 600 m
C. between 1 and 5 m
D. between 10^{-3} and 0.1

Answer: D

26. Earth's atmosphere is transparent for
A. only the visible light
B. only the X-rays
C. only the y-rays

D. visible light and microwaves

Answer: D

D Watch Video Solution

27. Ground wave propagation is suitable for
A. low radio frequency over a short range
B. high radio frequency over a short range
C. high radio frequency over a long range
D. low radio frequency over a short range

Answer: A
28. During ground wave propagation the transmitted waves gets attenuated because
A. earth surface absorbs the waves
B. frequency of the waves are too low
C. energy content of these waves are high
D. earth surface offers resistance

Answer: D

D Watch Video Solution

29. Long range propagation is not possible by space wave propagation because
A. height of troposhere is quite small
B. height of troposhere is large
C. troposphere absorbs transmitted wave
D. None of these

Answer: A

- Watch Video Solution

30. The wave reaching the receiving antenna will have maximum intensity if the direct wave \& wave after reflection from earth's surface
A. are out of phase by 90°
B. are out of phase by 270°
C. are in phase
D. None of these

Answer: A

D Watch Video Solution
31. For a radio wave reaching the ionised medium
A. will bend away from normal
B. will bend towards normal
C. will bend follow a straight-path
D. None of these

Answer: A

D Watch Video Solution
32. Intensity of electric field obtained at
receiver antenna for a space wave propagation is

A. directly proportional to the

perpendicular-distance from transmitter
to antenna
B. inversely proportional to the
perpendicular-distance from transmitter
to antenna

C. directly proportional to the square

 perpendicular distance from transmitter to antennaD. inversely proportional to the square
perpendicular distance from transmitter
to antenna

Answer: D

(D) Watch Video Solution
33. Ground waves are polarised
A. parallel to the earth's surface
B. normal to the earth's surface
C. at an angle 45° from earth's surface
D. in any direction

Answer: B

34. Field strength of tropospheric TV signal is

proportional to

A. $\frac{1}{\lambda}$
B. λ
C. $\frac{1}{\lambda^{2}}$
D. λ^{2}

Answer: A

D Watch Video Solution
35. The service area of space wave communication increases by
A. increasing the height of transmitting
antenna
B. decreasing the height of receiving
antenna
C. increasing the height of both
transmitting and receiving antenna
D. decreasing the distance between
transmitting and receiving antenna

Answer: C

D Watch Video Solution

36. Main function of the RF amplifiers in a superheterodyne receiver is to
A. amplify signal
B. reject unwanted signal
C. discriminate against image frequency
signal and IF-signal

D. all of the above

Answer: D

D Watch Video Solution

37. Array gain of an antenna is
A. directly proportional to power radiated
by isotropic antenna
B. invesely proportional to power radiated
by isotropic antenna

C. directly proportional to power radiated

by practical antenna
D. inversely proportional to square of
power radiated by practical antenna

Answer: A

D Watch Video Solution
38. Critical frequency that gets reflected back
from ionosphere is
A. same for all layers of the ionosphere
B. different for different layers of the ionosphere
C. not dependent on layers of the ionosphere
D. None of these

Answer: B

D Watch Video Solution
39. Intensity of electric field obtained at receiver antenna for a space wave propagation is
A. directly proportional to the perpendicular-distance from transmitter
to antenna
B. inversely proportional to the
perpendicular-distance from transmitter
to antenna

C. directly proportional to the square

 perpendicular distance from transmitter to antennaD. inversely proportional to the square
perpendicular distance from transmitter
to antenna

Answer: D

40. The function of an amplitude limitter in an

FM-receiver is
A. to reduce the amplitude ofthe signal to
suit IF amplifier
B. to amplify low frequency signal
C. to eliminate any change in amplitude of
receiver FM signal
D. None of these

Answer: C
41. Depth of modulation in terms of $E_{\text {max }}$ and $E_{\text {min }}$ is
A. $m_{a}=E_{\max }+E_{\text {min }} / E_{\text {min }}$
B. $m a=E_{\text {max }}-E_{\text {min }} / E_{\text {max }}$
C.

$$
m_{a}=E_{\max }-E_{\min } / E_{\max }+E_{\min }
$$

D. $m a=E_{\text {max }}+E \min / E_{\text {max }}-E_{\text {min }}$
42. A tuned amplifier circuit is used to generate a carrier frequency of 2 MHz for the amplitude modulation. The value of $\sqrt{L C}$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{3 \pi \times 10^{6}} \\
& \text { B. } \frac{1}{2 \pi \times 10^{6}} \\
& \text { C. } \frac{1}{4 \pi \times 10^{6}} \\
& \text { D. } \frac{1}{2 \times 10^{6}}
\end{aligned}
$$

43. For a single side band transmission a balanced modulator is used to
A. increase power of carrier wave
B. increase amplitude of carrier wave
C. suppress audio signal
D. suppress carrier component

Answer: D
44. Audio in television signals are
A. frequency modulated
B. amplitude modulated
C. both frequency and amplitude
modulated
D. phase modulated

Answer: A

D Watch Video Solution
45. Skip distance does not depend on
A. the frequency of signal transmitted
B. electron density of the layer
C. they get absorbed by troposphere

D. they get reflected by stratosphere

Answer: D

46. In PCM if the transmission path is very long
A. pulse spacing is reduced
B. pulse amplitude is increased
C. pulse width is increased
D. repeater stations are used

Answer: D

- Watch Video Solution

47. 100\% modulation in FM means
A. actual frequency deviation $>$ maximum
allowed frequency deviation
B. actual frequency deviation = maximum
allowed frequency deviation
C. actual frequency deviation \geq maximum allowed frequency deviation

D. actual frequency deviation $<$ maximum

allowed frequency deviation

Answer: B

48. Encoding of signal is required for

A. modulation at transmitting end
B. modulation at receiving end
C. demodulation at receiving end

D. demodulation at transmitting end

Answer: A

D Watch Video Solution

49. Picture signal of TV-signal is
A. amplitude modulated
B. frequency modulated
C. phase modulated
D. pulse modulated

Answer: A

D Watch Video Solution

50. A geosynchronous satellite is
A. located at a height of 34860 km to
ensure global coverage
B. appears stationary over a place on
earth's magnetic pole
C. not really stationary at all, but orbits the
earth within 24 hours
D. always at fixed location in space and
simply spins about its own axis

Answer: C

51. Which one of the following statement is wrong
A. Radio waves in the frequency range 30

MHz to 60 MHz are called sky waves.
B. Radio horizon of the tramitting antenna
for space wave is $d_{T}=\sqrt{\left(2 R h_{T}\right)}, \mathrm{R}=$ Radius of earth , $h_{T}=$ height of transmitting antenna).
C. Within the skip distance neigthe the ground waves nor the sky waves are
received.
D. The principle of fibre optical
communication is total internal
reflection.

Answer: A

- Watch Video Solution

52. Identify the incorrect statement from the following.
A.AM detection is carried out using a rectifier and an envelop detector
B. Pulse position denotes the time of rise or fall of the pulse amplitude
C. Modulation index μ is kept ≥ 1, to

D. Facsimile (FAX) scans the contents of the

document to create electronic signals

Answer: C

D Watch Video Solution

53. If the heights of transmitting and the receiving antennas are each equal to h, the maximum line-of-sight distance between them is (R is the radius of earth)
A. $\sqrt{2 R h}$
B. $\sqrt{4 R h}$
C. $\sqrt{6 R h}$
D. $\sqrt{8 R h}$

Answer: D

- Watch Video Solution

54. Which of the following modulated signal has the best noise tolerance?
A. Long-wave
B. Short-wav
C. Medium-wave
D. Amplitude-modulated

Answer: B

D Watch Video Solution
55. The rms value of a carrier voltage is 100
volts. Compute its rms value when it has been
amplitude modulated by a sinusoidal audio
voltage to a depth of 30%.
A. 94 V
B. 104.5 V
C. 114.4 V
D. 124 V

Answer: B
(Watch Video Solution
56. For sky wave propagation of a 10 MHz signal, what should be the minimum electron density in ionosphere?

$$
\begin{aligned}
& \text { A. } \sim 1.2 \times 10^{12} \mathrm{~m}^{-3} \\
& \text { B. } \sim 10^{6} \mathrm{~m}^{-3} \\
& \text { C. } \sim 10^{14} \mathrm{~m}^{-3} \\
& \text { D. } \sim 10^{22} \mathrm{~m}^{-3}
\end{aligned}
$$

Answer: A

- Watch Video Solution

57. The gap between the frequency of the side bands in an amplitude modulated wave is
A. twice that of the carrier signal
B. twice that of the message signal
C. the same as that of the message signal
D. the same as that of the carrier signal

Answer: B

D Watch Video Solution

58. Which of the following four alternatives is not correct, We need modulation :-
A.to reduce the time lag between
transmission and reception of the
information signal
B. to reduce the size of antenna
C. to reduce the fractional band width, that
is the ratio of the signal band width to
the centre frequency
D. to increase the selectivity

Answer: A

D Watch Video Solution

59. An audio signal represented as
$25 \sin 2 \pi(2000 t)$ amplitude modulated by a
carrier wave : $60 \sin 2 \pi(100,000) t$. The modulation index of the modulated signal is
A. 25%
B. 41.6%
C. 50%

D. 75%

Answer: B

D Watch Video Solution

60. If a carrier wave $c(t)=A \sin \omega_{c} t$ is amplitude modulated by a modulator signal $m(t)=A \sin \omega_{m} t$ then the equation of modulated signal $\left[C_{m}(t)\right]$ and its modulation index are respectively

$$
\text { A. } C_{m}(t)=A\left(1+\sin \omega_{m} t\right) \sin \omega_{c} t \text { and } 2
$$

B. $C_{m}(t)=A\left(1+\sin \omega_{m} t\right) \sin \omega m t$ and 1
C. $C_{m}(t)=A\left(1+\sin \omega_{m} t\right) \sin \omega_{c} t$ and 1
D. $C_{m}(t)=A\left(1+\sin \omega_{c} t\right) \sin \omega_{m} t$ and 2

Answer: C

D Watch Video Solution

Exercise 2 Concept Applicator

1. Given the electric field of a complete amplitude modulated wave as
$\vec{E}=\hat{i} E_{C}\left(1+\frac{E_{m}}{E_{C}} \cos \omega_{m} t\right) \cos \omega_{c} t$.
Where the subscript c stands for the carrier wave and m for the modulating signal . The frequencies present in the modulated wave are
A. ω_{c} and $\sqrt{\omega_{c}^{2}+\omega_{m}^{2}}$
B. $\omega_{c}, \omega_{c}+\omega_{m}$ and $\omega_{c}-\omega_{m}$
C. ω_{c} and ω_{m}
D. ω_{c} and $\sqrt{\omega_{c} \omega_{m}}$

Answer: B
2. Sinusoidal carrier voltage of frequency 1.5

MHz and amplitude 50 V is amplitude modulated by sinusoidal voltage of frequency

10 kHz producing 50% modulation. The lower and upper side-band frequency in kHz are
A. 1490,1510
B. 1510,1490
C. $\frac{1}{1490}, \frac{1}{1510}$
D. $\frac{1}{1510}, \frac{1}{1490}$

Answer: A

- Watch Video Solution

3. Television signal on earth cannot be recevied at distances greater than 100 km
from the transmission station. The reasion behind this is that
A. the receiver antenna is unable to detect
the signal at a disance greater than 100
B. the TV programme consists of both audio and video signals
C. the TV signals are less powerful than
radio signals
D. the surface of earth is curved like a
sphere

Answer: D

- Watch Video Solution

4. When radio waves passes through
ionosphere, phase difference between space
current and capacitive displacement current is
A. 0 rad
B. $(3 \pi / 2) \mathrm{rad}$
C. $(\pi / 2) \mathrm{rad}$
D. $\pi \mathrm{rad}$

Answer: A

D Watch Video Solution
5. The electron density of a layer of ionosphere
at a height 150 km from the earth's surface is 9
$\times 109$ per m3. For the sky transmission from
this layer up to a range of 250 km ,

The critical frequency of the layer is
A. 2 Hz
B. 2.7 Hz
C. 2.78 kHz
D. 2.7 MHz

Answer: D

- Watch Video Solution

6. In optical communication system operating at 1200 nm , only 2% of the source frequency is available for TV t ransmission having a bandwidth of 5 MHz . the number of TV channels that can be transmitted is
A. 2 million
B. 10 million
C. 0.1 million

D. 1 million

Answer: D

D Watch Video Solution

7. A radiostation has two channels. One is AM at 1020 kHz and the other FM at 89.5 MHz . For good results you will use
A. longer antenna for the AM channel and
shorter for the FM
B. shorter antenna for the AM channel and

longer for the FM

C. same length antenna will work for both
D. information given is not enough to say

which one to use for which

Answer: B

D Watch Video Solution

8. Antennas are used to receive and transmit
A. electric component of the electromagnetic wave produced by antenna

B. magnetic
component
of
the
electromagnetic wave produced by antenna

C. both electric and magnetic components
of the electromagnetic wave produced
by antenna
D. 50% of both components of the electromagnetic wave produced by antenna

Answer: A

D Watch Video Solution

9. An $A M$ wave is expressed as
$e=10(1+0.6 \cos 2000 \pi t) \cos 2 \times 10^{8} \pi t$ volts,
the minimum and maximum values of modulated carrier wave are
A. 10 V and 20 V
B. 4 V and 8 V
C. 16 V and 4 V
D. 8 V and 20 V

Answer: C

D Watch Video Solution

10. Calculate the power developed by an amplitude modulated wave in a load resistance of 100Ω, if the peak voltage of
carrier wave is 100 V and modulation index is
0.4 .
A. 50 watt
B. 54 watt
C. 104 watt
D. 4 watt

Answer: B

D Watch Video Solution
11. 12 signals each band limited to 5 kHz are to
be transmitted by frequency-division
multiplexer. If AM-SSB modulation guard band
of 1 kHz is used then the bandwidth of multiplexed signal is
A. 101 kHz
B. 99 kHz
C. 84 kHz
D. 71 kHz

Answer: D
12. In a radar system, peak transmitted power
is increased a factor of 81 and the antenna
diameter is increased by a factor of 3 , then the maximum-range will increase by a factor of
A. 81
B. 27
C. 9
D. 3

Answer: C

D Watch Video Solution

13. A carrier frequency of 10 kV at 1 MHz is amplitude modulated by a 1 kHz signal of 6 kV peak voltage. When the modulation pattern is observed on a calibrated CRO, the voltage indicated by the CRO will be
A. 16
B. 32

C. 864

D. 84

Answer: B

D Watch Video Solution

14. A $1000 k H z$ carrrier is simultaneously modulated with $300 \mathrm{~Hz}, 800 \mathrm{~Hz}$ and $2 k H z$ audio waves. The frequencies present in the output are
A. $999.7 \mathrm{kHz}, 100.3 \mathrm{kHz}, 999.2 \mathrm{kHz}$
B. $1000.8 \mathrm{kHz}, 998 \mathrm{kHz}, 1002 \mathrm{kHz}$
C. $1002.8 \mathrm{kHz}, 996 \mathrm{kHz}, 1106 \mathrm{kHz}$
D. both (a) and (b)

Answer: D

D Watch Video Solution

15. A 10 kW carrier is sinusoidally modulated by
two carriers corresponding to a modulation
index of 30% and 40% respectively then total power radiated by the modulator is

A. 10.25 kW

B. 11.25 kW
C. 12.75 kW
D. 17 kW

Answer: B
(Watch Video Solution
16. An FM signal has a resting frequency of

105 MHz and highest frequency of 105.03 MHz
when modulated by a signal of frequency 5 kHz .
The carrier swing is
A. 25 kHz
B. 54 kHz
C. 60 kHz
D. 75 kHz

Answer: C
17. A super heterodyne receiver is designed to
receive transmitted signals between 5 and 10

MHz . The tuning range of the local oscillate for

IF frequency 600 kHz for high-side tuning would be
A. 4.6 to 9.6 MHz
B. 5.6 to 10.6 MHZ
C. 4.6 to 10.6 MHz
D. 5.6 to 9.6 MHz

Answer: B

D Watch Video Solution

18. Consider the following amplitude
modulated (AM) signal, where $f_{m}<B$
$x_{A M}(t)=10\left(1+0.5 \sin 2 \pi f_{m} t\right) \cos 2 \pi f_{c} t$
The average side-band power for the $A M$ signal given above is
A. 25
B. 12.5
C. 6.25
D. 3.125

Answer: C

D Watch Video Solution

19. An AM - signal is given as
$x_{A M}(t)=100[p(t)+0.5 g(t)] \cos \omega_{c} t$
interval $0 \leq t<1$. One set of possible values
of the modulating signal and modulation
index would be
A. $t, 0.5$
B. $t, 1.0$
C. $t, 1.5$
D. $t^{2}, 2.0$

Answer: A

D Watch Video Solution

20. A device with input $x(t)$ and output $y(t)$ is
characterized by :
$y(t)=x^{2}(t)$.

An FM signal with frequency deviation of 90
kHz and modulating signal bandwidth of 5 kHz
is applied to this device. The bandwidth of the output signal is
A. 370 kHz
B. 190 kHz
C. 380 kHz
D. 95 kHz

Answer: C

21. A sinusoidal carrier voltage of frequency 10

MHz and amplitude 200 volts is amplitude modulated by a sinusoidal voltage of frequency 10 kHz producing 40% modulation.

Calculate the frequency of upper and lower sidebands.
A. 10010 kHz, 9990 kHz
B. $1010 \mathrm{kHz}, 990 \mathrm{kHz}$
C. $10100 \mathrm{~Hz}, 9990 \mathrm{~Hz}$
D. $1010 \mathrm{MHz}, 990 \mathrm{MHz}$

Answer: A

- Watch Video Solution

22. An audio signal consists of two distinct
sound. One a human speech signal in the
frequency band of 200 Hz to 2700 Hz , while the other is a high frequency music signal in the frequency band of 10200 Hz to 15200 Hz .

The ratio of the AM signal together to the AM signal band width required to send just the human speech is:
A. 2
B. 5
C. 6
D. 3

Answer: C

D Watch Video Solution

23. A carrier frequency of 1 MHz and peak value
of 10 V is amplitude modulated with a signal
frequency of 10 KHz with peak value of 0.5 V .

What are the values of the modulation index and the side band frequencies ?
A. 0.05 and $1 \pm 0.010 \mathrm{MHz}$
B. 0.5 and $1 \pm 0.010 \mathrm{MHz}$
C. 0.5 and $1 \pm 0.005 \mathrm{MHz}$
D. 0.05 and $1 \pm 0.005 \mathrm{MHz}$

Answer: A

D Watch Video Solution

24. For an A.M. wave, the maximum and minimum amplitude is found to be 20 V and 4 v .

Find the modulation index(m).
A. $3 / 5$
B. $5 / 3$
C. $2 / 3$
D. $3 / 2$

Answer: C

D Watch Video Solution
25. A transmitting antenna at the top of a tower has height 32 m and height of the receiving antenna is 50 m . What is the maximum distance between them for satisfactory communication in line of sight (LOS) mode?
A. 55.4 km
B. 45.5 km
C. 54.5 km
D. 455 km

Answer: B

D Watch Video Solution

26. The maximum range for the tropospheric transmission of radio wave of wavelength 3 m
using the transmitting antenna and receiving
antenna of heights 100 m and 60 m
respectively is
A. 8 m
B. 800 m
C. 8 km
D. 80 km

Answer: C

D Watch Video Solution

27. The height of a television tower is 100 m . If radius of earth is 6.4×10^{6} and averagepopulation density surrounding the tower is 1000 per km^{2}, then the population covered by the television transmission is
A. 2.06×10^{6}
B. 4.02×10^{6}
C. 5.18×10^{9}
D. 6.04×10^{9}

Answer: B

D Watch Video Solution

28. The area of the region covered by the TV broadcast by a TV tower of 100 m height is
(Radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$)
A. $12.8 \pi \times 10^{8} \mathrm{~km}^{2}$
B. $1.28 \pi \times 10^{3} \mathrm{~km}^{2}$
C. $0.64 \pi \times 10^{3} \mathrm{~km}^{2}$
D. $1.28 \times 10^{3} \mathrm{~km}^{2}$

Answer: B

D Watch Video Solution

29. A broadcast radio transmitter radiates 12
kW when percentage of modulation is 50%,
then the unmodulated carrier power is
A. 5.67 kW
B. 7.15 kW
C. 9.7 kW
D. 12 kW

Answer: C

D Watch Video Solution

30. A transmitter radiates 11.8 kW of power with the carrier unmodulated and 10 kW with
the carrier sinusoidally modulated. The modulation factor is
A. 56%
B. 60%
С. 72%
D. 84%

Answer: B

D Watch Video Solution

