©'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

CONCEPT BUILDER

Jee Main 5 Years At A Glance

1. A body of mass m starts moving from rest along x -axis so that it velocity varies as $\mathrm{v}=a \sqrt{s}$
where a is a constant and s is the distance covered by the body . The total work done by all the forces acting on the body in the first second after the start of the motion is :
A. $\frac{1}{8} m a^{4} t^{2}$
B. $4 m a^{4} t^{2}$
C. $8 m a^{4} t^{2}$
D. $\frac{1}{4} m a^{4} t^{2}$

Answer: A
2. Two particles of the same mass m are moving in circular orbits because of force, given by
$F(r)=\frac{-16}{r}-r^{3}$
The first particle is at a distance $r=1$, and the
second, at $r=4$. The best estimate for the ratio
of kinetic energies of the first and the second particle is closet to :
A. 10^{-1}
B. 6×10^{-2}
C. 6×10^{2}
D. 3×10^{-3}

Answer: B

D Watch Video Solution

3. A particle is moving in a circular path of radius a under the action of an attractive potential $U=-\frac{k}{2 r^{2}}$. Its total energy is :
A. $-\frac{K}{4 a^{2}}$
B. $\frac{K}{2 a^{2}}$
C. Zero
D. $-\frac{3 k}{2 a^{2}}$

Answer: C

D Watch Video Solution

4. An object is dropped from a height h from the ground .Every time it hits the ground it looses 50\% of its kinetic energy.The total distance covered as $t \rightarrow \infty$ is:
A. 3h
B. ∞
C. $\frac{5}{3} h$

D. $\frac{8}{3} h$

Answer: A

- Watch Video Solution

5. A time dependent force $F=6 t$ acts on a particle of mass 1 kg . If the particle starts from rest, the work done by the force during the first 1 sec. will be
A. 9 J
B. 18 J
C. 4.5 J

D. 22 J

Answer: C

D Watch Video Solution

6. A person trying to lose weight by burning fat
lifts a mass of 10 kg upto a height of 1 m 1000
times. Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work
done only when the weight is lifted up? Fat supplies $3.8 x 10^{7} J$ of energy per kg which is converted to mechanical energy with a 20% efficiency rate. Take $g=9.8 m s^{-2}$:
A. $9.89 \times 10^{-3} \mathrm{~kg}$
B. $12.89 \times 10^{-3} \mathrm{~kg}$
C. $2.45 \times 10^{-3} \mathrm{~kg}$
D. $6.45 \times 10^{-3} \mathrm{~kg}$

Answer: B
7. A particle is moving in a circle of radius r under the action of a force $\mathrm{F}=\alpha r^{2}$ which is directed towards centre of the circle.Total mechanical enery (kinetic energy+potential energy)of the particle is (take potential energy=0 for $r=0$)
A. $\frac{1}{2} \alpha r^{3}$
B. $\frac{5}{6} \alpha r^{3}$
C. $\frac{4}{3} \alpha r^{3}$
D. αr^{3}

Answer: B

D Watch Video Solution

8. A particle of mass m moving in the x direction
with speed 2 v is hit by another particle of mass
$2 m$ moving in they y direction with speed v. If
the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to :
A. 0.56
B. 0.62
C. 0.44
D. 0.5

Answer: A

D Watch Video Solution

9. A bullet looses $\left(\frac{1}{n}\right)^{t h}$ of its velocity passing through one plank.The number of such planks
that are required to stop the bullet can be:
A. $\frac{n^{2}}{2 n-1}$
B. $\frac{2 n^{2}}{n-1}$
C. infinite
D. n

Answer: A

D Watch Video Solution

10. When a rubber-band is stretched by a distance x, it exerts a restoring force of magnitude $F=a x+b x^{2}$ where a and b are
constants. The work done in stretching the unstretched rubber band by L is :

$$
\begin{aligned}
& \text { A. } a L^{2}+b L^{3} \\
& \text { B. } \frac{1}{2}\left(a L^{2}+b L^{3}\right) \\
& \text { C. } \frac{a L^{2}}{2}+\frac{b L^{3}}{3} \\
& \text { D. } \frac{1}{2}\left(a \frac{L^{2}}{2}+\frac{b L^{3}}{3}\right)
\end{aligned}
$$

Answer: C

1. If the amount of work done by a force depends only on the initial and final positions of the object which has been moved, then such a force is called
A. A conservatitve or non conservative force
B. A conservatitve force
C. A non-conservative force
D. None of these

Answer: B
2. The vessels A and B of equal volume and weight are immersed in water to depth h.The vessel A has an opening at the bottom through which water can enter.If the work done in immersing A and B are W_{A} and W_{B} respectively,then
A. $W_{A}=W_{B}$
B. $W_{A}<W_{B}$
C. $W_{A>W_{B}}$
D. None of these

Answer: B

- Watch Video Solution

3. A spring, which is initially in its unstretched condition, is first stretched by a length x and then again by a further length x . The work done in the first case is W_{1} and in the second case is W_{2}.
A. $W_{2}=W_{1}$
B. $W_{2}=2 W_{1}$
C. $W_{2}=3 W_{1}$

$$
\text { D. } W_{2}=4 W_{1}
$$

Answer: C

D Watch Video Solution

4. Given that a force \widehat{F} acts on a body for time t , and displaces the body by \hat{d}. In which of the following cases,the speed of the body must not increase?
A. $F>d$

$$
\begin{aligned}
& \text { B. } F<d \\
& \text { C. } \widehat{F}=\hat{d} \\
& \text { D. } \widehat{F} \perp \hat{d}
\end{aligned}
$$

Answer: D

D Watch Video Solution

5. A spring, which is initially is its unstretched
condition, is first stretched by a length 5 cm and
then again by a further length 5 cm .The work done in the first case is W_{1}, and in the second
case is W_{2}.Then the work required to stetch it further by another 5 cm is $\left(K=5 \times 10^{3}\right)$
A. 18.75 J
B. 25.00 J
C. 6.25 J
D. 12.50 J

Answer: A

D Watch Video Solution
6. A particle moving in the xy plane undergoes a displacement $\vec{S}=(2.0 \hat{i}+3.0 \widehat{J}) m$ while a constant
force $\vec{F}=(5.0 \hat{1}+2.0 \hat{j}) \quad \mathrm{N}$ acts on the particle.
(a) Calculate the magnitude of the displacement and that of the force.
(b) Calculate the work done by the force
A. 17 joule
B. 18 joule
C. 16 joule

D. 15 joule

Answer: C

- Watch Video Solution

7. A boy pushes a toy box 2.0 m along the floor by means of a force of 10 N directed downward at an angle of 60° to the horizontal.The work done by the boy is
A. 6 J
B. 8 J
C. 10J

D. 12J

Answer: C

D Watch Video Solution

8. A rigid body moves a distance of 10 m along a
straight line under the action of a force 5 N . If
the work done by this force on the body is 25
joules, the angle which the force makes with the
force makes with the direction of motion of the
body is:
A. 0°
B. 30°
C. 60°
D. 90°

Answer: C

D Watch Video Solution
9. If a motorcyclist skids and stops after covering a distance of 15 m . The stopping force acting on the motorcycle by the road is 100N,then work done by the motorcycle on the road is
A. 1500 J
B. -1500 J
C. 750 J
D. Zero

- Watch Video Solution

10. A uniform force of $(3 \hat{i}+\hat{j}) \mathrm{N}$ acts on a particle of mass 2 kg . Hence, the particle is displaced from position $(2 \hat{i}+\hat{k}) \mathrm{m}$ to position $(4 \hat{i}+3 \hat{j}-\hat{k}) \mathrm{m}$. The work done by the force on the particle is
A. 6J
B. 13J
C. 15J
D. 9 J

Answer: D

D Watch Video Solution

11. The position of a Particle of Mass 4 g ,acted upon by a constant force is given by $\mathrm{x}=4 t^{2}$
+t ,where x is in metre and t in second. The work done during the first 2 seconds is
A. 128 mJ
B. 512 mJ
C. 576 mJ
```
D. 144 mJ
```

Answer: C

- Watch Video Solution

12. A force $\vec{F}=(5 \vec{i}+3 \vec{j}+2 \vec{k}) N$ is applied over a particle which displaces it from its origin to the point $\vec{r}=(2 \vec{i}-\vec{j}) m$. The work done on the particle in joules is.
A. +10
B. +7

C. -7

D. +13

Answer: B

- Watch Video Solution

13. In figure, a carriage P is pulled up from A to B.The relevant Coefficient of friction is 0.40 .The work done will be

B. 23 KJ

C. 25 KJ
D. 28 KJ

Answer: B

- View Text Solution

14. A particle moved from position
$\vec{r}_{1}=3 \hat{i}+2 \hat{j}-6 \hat{k} \mathrm{to}$ position
$\vec{r}_{2}=14 \hat{i}+13 \hat{j}+9 \hat{k}$ indre the action of a
force $(4 \hat{i}+\hat{j}+3 \hat{k})$ newtons. Find the work done.
A. 100 J
B. 50 J
C. 200 J
D. 75 J

Answer: A
15. A man drags a block through 10 m on rough
surface ($\mu=0.5$). A force of $\sqrt{3} \mathrm{kN}$ acting at 30°
to the horizontal .The work done by applied force is
A. zero
B. 15 kJ
C. 5 kJ
D. 10 kJ

Answer: B
16. A foce acts on a 30.9 particle in such a way
that the position of the particle as a function of
time is given by
$x=3 t-4 t^{2}+t^{3}$, where x is in metre and t in
second. The work done during the first 4 s is
A. 576 mJ
B. 450 mJ
C. 490 mJ
D. 530 mJ

Answer: A

D Watch Video Solution

17. In kinetic theory of gases, a molecule of mass
m of an ideal gas collides with a wall of vessel
with velocity v. The change in the linear momentum of the molecule is
A. 2 mv
B. 4 mv
C. 8 mv

D Watch Video Solution

18. A body of mass m moving with velocity
$3 \mathrm{~km} / \mathrm{h}$ collides with a body of mass 2 m at rest.
Now, the coalesced mass starts to move with a velocity
A. $1 \mathrm{~km} / \mathrm{h}$
B. $2 \mathrm{~km} / \mathrm{h}$

C. $3 \mathrm{~km} / \mathrm{h}$

D. $4 \mathrm{~km} / \mathrm{h}$

Answer: A

D Watch Video Solution

19. A ball hits the floor and rebounds after an inelastic collision. In this case
A. the momentum of the ball just after the
collision is the same as that just before

the collision

B. the mechanical energy of the ball remains
the same in the collision
C. the total momentum of the ball and the
earth is consrved

D. the total energy of the ball and the earth

is conserved

Answer: C

20. A sphere of mass $8 m$ collides elastically (in one dimension) with a block of mass $2 m$. If the initial energy of sphere is E. What is the final energy of sphere?
A. 0.8 E
B. 0.36 E
C. 0.08 E
D. $0.64 E$

Answer: B
21. A bomb of mass 30 kg at rest explodes into two pieces of mass 18 kg and 12 kg . The velocity of mass $18 \mathrm{kgis} 6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the other mass is
A. 324 J
B. 486 J
C. 256 J
D. 524 J

Answer: B
22. A tennis ball is released from height h above
ground level. If the ball makes inelastic collision
with the ground, to what height will it rise after third collision
A. $h e^{6}$
B. $e^{2} h$
C. $e^{3} h$
D. $e(4) h$

- Watch Video Solution

23. A body of mass m moving with a constant velocity v hits another body of the same mass moving with the same velocity v but in the opposite direction and sticks to it. The velocity of the compound body after collision is
A. valid
B. 2v
C. zero
D. $\mathrm{v} / 2$

Answer: C

D Watch Video Solution

24. A mass of $0,5 \mathrm{~kg}$ moving with a speed of 1.5
m / s on a horizontal smooth surface,collides
with a nearly weightless spring of force
constant $\mathrm{k}=50 \mathrm{~N} / \mathrm{m}$. The maximum compression
of the spring would be
A. 0.5 m

B. 0.15 m

C. 0.12 m
D. 1.5 m

Answer: B

- View Text Solution

25. Two particles having position verctors
$\vec{r}_{1}=(3 \hat{i}+5 \hat{j})$
metres and
$\vec{r}_{2}=(-5 \hat{i}-3 \hat{j})$ metres are moving with
velocities

$$
\vec{v}_{1}=(4 \hat{i}+3 \hat{j}) m / s \text { and } \vec{v}_{2}=(\alpha \hat{i}+7 \hat{j}) m / s
$$

. If they collide after 2 seconds, the value of α is
A. 8
B. 6
C. 4
D. 2

Answer: A

D Watch Video Solution
26. A mass of 20 kg moving with a speed of 10 m / s collides with another stationary mass of . 5 kg As a result of the collision, the two masses stick together. The kinetic energy of the composite mass will be
A. 600
B. 800
C. 1000
D. 1200

- Watch Video Solution

27. A body of mass 2 kg makes an elastic collision with another body at rest and continues to move in the original direction but with one - fourth its original speed. What is the mass of the body it collides with ?
A. 0.75 kg
B. 1.0 Kg
C. $1,2 \mathrm{Kg}$
D. None of these

Answer: D

D Watch Video Solution

28. A bullet of mass $20 g$ and moving with $600 \frac{\mathrm{~m}}{\mathrm{~s}}$ collides with a block of mass 4 kg hanging with
the string. What is the velocity of bullet when it comes out of block, if block rises to height $0.2 m$ after collision?
A. $200 \mathrm{~m} / \mathrm{s}$
B. $150 \mathrm{~m} / \mathrm{s}$
C. $400 \mathrm{~m} / \mathrm{s}$

D. $300 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

29. A body of mass m moving with velocity v makes a head-on collision with another body of mass 2 m which is initially at rest. The loss of kinetic energy of the colliding body (mass m) is
A. $\frac{1}{2}$ of its initial kinetic energy
B. $\frac{1}{9}$ of its initial kinetic energy
C. $\frac{8}{9}$ of its initial kinetic energy
D. $\frac{1}{4}$ of its initial kinetic energy

Answer: C

D Watch Video Solution

30. The solid rubber balls A and B having masses 200 and 400 gm respectively are moving in opposite directions with velocity of A
equal to $0.3 \mathrm{~m} / \mathrm{s}$. After collision the two balls come to rest, then the velocity of B is

A. $0.15 \mathrm{~m} / \mathrm{sec}$

B. $1.5 \mathrm{~m} / \mathrm{sec}$
C. ${ }^{~}-0.15 \mathrm{~m} / \mathrm{sec}$
D. None of these

Answer: A

D Watch Video Solution
31. A ball moving with velocity $2 m s^{-1}$ collides head on with another stationary ball of double
the mass. If the coefficient of restitution is 0.5 , then their velocities (in $m s^{-1}$) after collision will be
A. 0,1
B. 1,1
C. 1,0.5
D. 0,2

- Watch Video Solution

32. A block of mass 2 kg collide with identical stationary block head on elastically with velocity of $20 \mathrm{~m} / \mathrm{s}$.After collision second block collide with the third block of mass 2 kg initially at rest.If they collide head on perfectly inelastically then the velocity of their combination will be
A. $5 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: C

D View Text Solution

33. Hailstorms are observed to strike the surface
of a frozen lake at an angle of 30° with the
vertical and rebound at an angle of 60° with
vertical. Assuming the contact to be smooth,
the coefficient of restitution is

$$
\begin{aligned}
& \text { A. } e=\frac{1}{\sqrt{3}} \\
& \text { B. } e=\frac{1}{3} \\
& \text { C. } e=\sqrt{3} \\
& \text { D. } e=3
\end{aligned}
$$

Answer: B

D Watch Video Solution

34. A mass m moving horizontal (along the x axis) with velocity v collides and stricks to mass of $3 m$ moving vertically upward (along the y -
axis) with velocity $2 v$. The final velocity of the combination is

$$
\begin{aligned}
& \text { А. } \frac{1}{4} v \hat{i}+\frac{3}{2} v \hat{j} \\
& \text { В. } \frac{1}{3} v \hat{i}+\frac{2}{3} v \hat{j} \\
& \text { С. } \frac{2}{3} v \hat{i}+\frac{1}{3} v \hat{j} \\
& \text { D. } \frac{3}{2} v \hat{i}+\frac{1}{4} v \hat{j}
\end{aligned}
$$

Answer: A

D Watch Video Solution

1. A bullet is fired fram a riffie . If the riffe recoils
freely determine whether the kinetic energy of
the rifle is greater then, equal or less then that of the bullet .
A. less than that of the bullet
B. more than that of the bullet
C. Sane as that of the bullet
D. Equal or less than that of the bullet

Answer: A
2. A wire extends by ' l ' on the application of load ' $m g^{\prime}$ '. Then the energy stored in it is
A. 2 Mg I
B. Mg I
C. $\frac{M g l}{2}$
D. $\frac{M g l}{4}$

Answer: C
3. A body of mass 0.5 kg travels in a straight line with velocity $v=5 x^{3 / 2}$. The work done by the net force during its displacement from $x=0$ to $x=2 \mathrm{~m}$ is
A. 25 J
B. 50 J
C. 75 J
D. 100 J

Answer: B
4. The figure gives the potential energy funvtion $\mathrm{U}(\mathrm{x})$ for a system in which a particle is in onedimensional motion.In which region the magnitude of the force on the particle is greatest:
A. OA
B. $A B$
C. BC
D. CD

Answer: D

D View Text Solution

5. A ball is allowed to fall from a height of 10 m .

If there is 40% loss of energy due to impact,
then after one impact ball will go up to

A. 10 m

B. 8 m
C. 4 m
D. 6 m

Answer: D

D Watch Video Solution

6. A body accelerates uniformly from rest to a
velocity $1 \mathrm{~ms}^{-1}$ in 15 seconds. The kinetic energy
of the body will be $\frac{2}{9} j$ when t is equal to [Take mass of body as 1 kg]
A. 4 s
B. 8 s
C. 10s

Answer: C

D Watch Video Solution

7. The potential energy of a conservative system is given by $\mathrm{U}=a y^{2}$-by,where y represents the position of the particle and a as well b are constants.What is the force acting on the system?

$$
\text { A. }-a y
$$

B. $-b y$
C. $2 a y-b$
D. $b-2 a y$

Answer: D

D Watch Video Solution

8. The kinetic energy of partical moving along a circule of radius R depends upon the distance covered S and given by $K=a S$ where a is a constant. The the force acting on the partical is

$$
\begin{aligned}
& \text { A. } \frac{a S}{R} \\
& \text { B. } \frac{2(a S)^{2}}{R} \\
& \text { C. } \frac{a S^{2}}{R^{2}} \\
& \text { D. } \frac{2 a S}{R}
\end{aligned}
$$

Answer: D

- Watch Video Solution

9. Figure shows a bob of mass m suspended
from a string of length L.The velocity is v_{0} at
A,then the porential energy of the system is
at the lowes point A .
A. $\frac{1}{2} m v_{0}^{2}$
B. mgh
C. $\frac{-1}{2} m v_{0}^{2}$
D. zero

Answer: D

D View Text Solution
10. A spring of unstretched length I has a mass m with one end fixed to a rigid support.Assuming spring to be made of a uniform wire,the kinetic energy possessed by it is its free end is pulled with uniform velocity v is
A. $\frac{1}{2} m v^{2}$
B. $m v^{2}$
C. $\frac{1}{3} m v^{2}$
D. $\frac{1}{6} m v^{2}$

Answer: D

D Watch Video Solution

11. Two springs of force constants $300 \frac{\mathrm{~N}}{\mathrm{~m}}$ (Spring A) and $400 \frac{\mathrm{~N}}{\mathrm{~m}}$ (Spring B) are joined together in series. The combination is compressed by 8.75 cm . The ratio of energy stored in A and B is $\frac{E_{A}}{E_{B}}$ Then $\frac{E_{A}}{E_{B}}$ is equal to:
A. $\frac{4}{3}$
B. $\frac{16}{9}$

> C. $\frac{3}{4}$
> D. $\frac{9}{16}$

Answer: A

D Watch Video Solution

12. A rubber ball is dropped from a height of 5 m on a plane, where the acceleration due to gravity is not shown. On bouncing it rises to 1.8 m . The ball loses its velocity on bouncing by a factor of
A. $\frac{16}{25}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{9}{25}$
displace it until the string makes an angle of
45° with the initial vertical direction is
A. $\operatorname{Mg}(\sqrt{2+1}$
B. $\mathrm{Mg} \sqrt{2}$
C. $\frac{M g}{\sqrt{2}}$
D. $\operatorname{Mg}(\sqrt{2}-1)$

Answer: D
14. A body is allowed to fall freely under gravity from a height of 10 m . If it looses 25% of its energy due to impact with the ground, then the maximum height it rises after one impact is
A. 2.5 m
B. 5.0 m
C. 7.5 m
D. 8.2 m

Answer: C
15. A particle is dropped a height h. A constant horizontal velocity is given to the particle.

Taking g to be constant every where, kinetic energy E of the particle w. r. t. time t is correctly shown in
A.
B.
c. 2
D.

Answer: A

D Watch Video Solution

Exercise 1 Concept Builder Topic 3 Power

1. A car of mass m starta from rest and accelerates so that the instyantaneous power delivered to the car has a constant magnitude
P_{0}. The instaneous velocity of this car is proportional to
A. t^{2}
B. $t^{1 / 2}$
C. $t^{-1 / 2}$
D. $\frac{t}{\sqrt{m}}$

Answer: B

D Watch Video Solution

2. The power of a motor pump is 2 kW . How much water per minute the pump can raise to a heiht of 10 m ? (Given $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. 1000

B. 1200

C. 100
D. 2000

Answer: B

D Watch Video Solution

3. A body of mass m accelerates uniformly from rest to v_{1} in time v_{2}. As a function of time t, the instantaneous power delivered to the body is

$$
\begin{aligned}
& \text { A. } \frac{m v_{1} t}{t_{1}^{2}} \\
& \text { B. } \frac{m v_{1}^{2} t}{t_{1}} \\
& \text { C. } \frac{m v_{1}^{2} t}{t_{1}} \\
& \text { D. } \frac{m v_{1}^{2} t}{t_{1}^{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

4. Johnny and his sister Jane race up a hill.Johnny weights twice as much as jane and
takes twice as long as jane to reach the top.Compared to jane
A. Johnny did more work and delivered more power
B. johnny did more work and delivered the same amount of power
C. Johnny did more work and delivered less
power
D. Johnny did less work and johnny delivered
less power

Answer: B

D Watch Video Solution

5. if a particle F is applied on a body and it moves with a velocity v , the power will be
A. $F \times V$
B. F/v
C. F / v^{2}
D. $F x v^{2}$

Answer: A

D Watch Video Solution

6. An electric motor exerts a force of 40 N on a
cable and pulls it by a distance of 30 m in one minute. The power supplied by the motor (in Watts) is
A. 20
B. 200
C. 2

Answer: A

- Watch Video Solution

7. An engine pumps water continously through
a hose. Water leave the hose with a velocity v
and m is the mass per unit length of the Water
jet. What is the rate at Which kinetic energy is imparted to water?
A. $m v^{2}$
B. $\frac{1}{2} m v^{2}$
C. $\frac{1}{2} m^{2} v^{2}$
D. $\frac{1}{2} m v^{3}$

Answer: D

D Watch Video Solution

8. If two person A and B take 2 s and 4 s , respectively to lift an object to the same height
h, then the ratio of their powers is
A. $1: 2$
B. 1: 1
C. 2: 1
D. $1: 3$

Answer: D

D Watch Video Solution

9. A body of mass 10 kg moves with a constant speed v of $2 \mathrm{~ms}^{-1}$ along a circular path of radius 8 m . The power produced by the body will be
A. $10 \mathrm{~J} / \mathrm{s}$
B. $98 \mathrm{~J} / \mathrm{s}$
C. $49 \mathrm{~J} / \mathrm{s}$
D. zero

Answer: D

D Watch Video Solution

10. An engineer claims to have made an engine delivering 10 kW power with fuel consumption
of $1 \mathrm{gs}^{-1}$. The calorific value of fuel is $2 \mathrm{kcal} / \mathrm{g}$
. His claim

A. valid

B. invalid
C. depends on engine design
D. dependent on load

Answer: B

Watch Video Solution

11. A force applied by an engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ changes its velocity from 5 m / s to $25 \mathrm{~m} / \mathrm{s}$ in 5 minutes. The power of the engine is

A. 1.025 MW

B. 2.05 MW
C. 5 MW
D. 6 MW

Answer: B
12. A 10 m long iron chain of linear mass density
$0.8 \mathrm{~kg} \mathrm{~m}^{-1}$ is hanging freely from a rigid
support .If $g=10 m s^{-2}$,then the power required
to left the chain upto the point of support in 10
second
A. 10 W
B. 20 W
C. 30W
D. 40 W

Answer: D

D Watch Video Solution

13. A force $2 \hat{i}+3 \hat{j}+4 \hat{k} \mathrm{~N}$ acts on a body for 4
sec, produces a displacement of
$(3 \hat{i}+4 \hat{j}+5 \hat{k}) \mathrm{m}$. the power used is
A. 9.5 W
B. 7.5 W
C. 6.5 W
D. 4.5 W

Answer: A

D Watch Video Solution

14. An elevator can carry a maximum load of

1800 kg (elevator + passengers) is moving up
with a constant speed of $2 m s^{-1}$. The friction
force opposite the motion is $4000 N$.What is
minimum power delivered by the motor to the elevator?
A. 59 hp

B. 22 hp

C. 34 hp

D. 44 hp

Answer: D

D Watch Video Solution

15. A car of mass m is driven with acceleration a
along a straight level road against a constant external resistive force R. When the velocity of
the car V, the rate at which the engine of the car
is doing work will be
A. Rv
B. mav
C. (R+ma)v
D. $(m a-R) v$

Answer: C

D Watch Video Solution
16. An engine is hauling a train of mass m on a level track at a constant speed v. The resistance due to friction is f. What power is the engine producing? What extra power must the engine develop to maintain the speed up a gradient 1 in I. What is the new total power developed by the engine develop to maintain the speed up a gradient 1 in I. What is the new total power developed by the engine?
A. $\frac{M g h v}{s}$
B. $\frac{M g h s}{v}$
C. Mghvs
D. zero

Answer: C

D Watch Video Solution

17. An automobile moves under the action of a
constant power supplied by its engine ,it follows that
A. The driving roce and velocity ,both are
B. The driving force is constant but not the

velocity

C. The velocity is constant but not the driving force

D. Both driving force as well as velocity vary

Answer: D

- Watch Video Solution

18. Water falls from a height of 60 m at the rate $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to
frictional forces are 10% of energy. How much
power is generated to by the turbine? ($\mathrm{g}=10$ $\left.\mathrm{m} / / \mathrm{s}^{\wedge}(2)\right)^{\prime}$.
A. 0.9 kW
B. 0.4 kW
C. 0.3 kW
D. 0.6 kW

Answer: A

Watch Video Solution
19. Ten litre of water per second is lifted from well through 20 m and delivered with a velocity of $10 \mathrm{~m} / \mathrm{s}$, then the power of the motor is :
A. 1 kW
B. 1.5 kW
C. 2 kW
D. 2.5 kW

Answer: B
20. An automobile of mass m accelerates,
starting from rest, while the engine supplies
constant power P. Find its position and instantaneous velocity at time t assuming the automobile starts from rest.
A. $[P t / m]^{1 / 2}$
B. $[2 P t / M]^{1 / 2}$
C. $[P t / 2 M]^{1 / 2}$
D. $[P t / 4 M]^{1 / 2}$

Answer: B

Exercise 1 Concept Builder Topic 4 Collisions

1. In case of elastic collision,at the time of impact

A. Total K.E of colliding bodies is conserved

B. total K.E. of colliding bodies is conserved

C. total K.E. of colliding bodies decreases
D. total momentum of colliding bodies

Answer: C

D Watch Video Solution

Exercise 2 Concept Applicator

1. A small block of mass m is kept on a rough
inclined surface of inclination θ in an elevator.Th
elevator goes up with a uniform velocity v and
the block does not slide on the wedge.The work done by the force of friction on the block in
time t as seen by the observer on the inclined plane will be
A. zero
B. $\mathrm{mgvt} \cos ^{2} \theta$
C. mgvt $\sin ^{2} \theta$
D. $m g v t \sin 2 \theta$

Answer: A

D Watch Video Solution
2. The potential energy of a 1 kg particle free to move along the x - axis is given by
$V(x)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) J$
The total mechainical energy of the particle is
$2 J$. Then , the maximum speed (in $\mathrm{m} / / \mathrm{s}$) is
A. $\frac{3}{\sqrt{2}}$
B. $\sqrt{2}$
C. $(1)(\sqrt{2})$
D. 2

- Watch Video Solution

3. A particle initially at rest on a frictionless horizontal surface, is acted upon by a horizontal force which is constant is size and direction. A graph is plotted between the work done (W) on the particle, against the speed of the particle, (v). If there are no other horizontal forces acting on the particle the graph would look like A. B.
C.

D.

Answer: C

(Watch Video Solution

4. A moving body with a mass m_{1} strikes a stationary body of mass m_{2}. The masses m_{1} and m_{2} should be in the ratio $\frac{m_{1}}{m_{2}}$ so as to decrease the velocity of the first body 1.5 times
assuming a perfectly elastic impact. Then the
ratio $\frac{m_{1}}{m_{2}}$ is
A. 5
B. $1 / 5$
C. $1 / 25$
D. 25

Answer: A

D Watch Video Solution
5. A toy gun a spring of force constant k. When changed before being triggered in the upward direction, the spring is compressed by a distance x. If the mass of the shot is m, on the being triggered it will go up to a height of

$$
\begin{aligned}
& \text { A. } \frac{2 m g}{k x} \\
& \text { B. } \frac{k x^{2}}{m g} \\
& \text { C. } \frac{k x}{m g} \\
& \text { D. } \frac{k x^{2}}{2 m g}
\end{aligned}
$$

D Watch Video Solution

6. A block of mass 5.0 kg is suspended from the end of a vertical spring which is stretched by 10 cm under the load of the block. The block is given a sharp impulse from below so that it acquires an upward speed of $2.0 \mathrm{~m} / \mathrm{s}$. How high will it rise? Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
A. 0.10 m
B. 0.20 m
C. 0.25 m

D. None of these

Answer: B

D Watch Video Solution

7. Water is drawn from a well in a $5 k g$ drum of capacity $55 L$ by two ropes connected to the top of the drum. The linear mass density of each rope is $0.5 \mathrm{kgm}^{-1}$. The work done in lifting water to the ground from the surface of water in the well 20 m below is
$\left[g=10 m s^{-2}\right]$
A. $1.4 \times 10^{4} J$
B. $1.5 \times 10^{4} J$
C. $9.8 \times 10 \times 6 J$
D. 18J

Answer: A

D Watch Video Solution

8. A 2 kg block slides on a horizontal floor with a speed of $4 \mathrm{~m} / \mathrm{s}$. It strikes an uncompressed spring, and compresses it till the block is
motionless. The kinetic friction force is 15 N and
spring constant is $10000 \mathrm{~N} / \mathrm{m}$. The spring is
compressed by (in cm):
A. 8.5 cm
B. 5.5 cm
C. 2.5 cm
D. 11.0 cm

Answer: B

Watch Video Solution
9. A body of mass m kg is ascending on a smooth inclined plane of inclination
$\theta\left(\sin \theta=\frac{1}{x}\right)$ with constant acceleration of a m / s^{2}. The final velocity of the body is $\mathrm{v} m / s^{2}$.

The work done by the body during this motion is (Initial velocity of the body $=0$)

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m v^{2}(g+x a) \\
& \text { B. } \frac{m v^{2}}{2}\left(\frac{g}{2}+a\right) \\
& \text { C. } \frac{2 m v^{2} x}{a}(a+g x) \\
& \text { D. } \frac{m v^{2}}{2 a x}(g+x a)
\end{aligned}
$$

10. A projectile moving vertically upwards with a velocity of $200 \mathrm{~ms}^{-1}$ breaks into equal parts at a height of 490 m.One part starts moving vertically upwards with a velocity of $400 \mathrm{~ms}^{-1}$.How much time it will take,after the break up with the other part to hit the ground?
A. $2 \operatorname{swrt(10)s}$
B. 5 s
C. 10s

D. $\sqrt{10 s}$

Answer: C

D Watch Video Solution

11. A point particle of mas 0.5 kg is moving along the x-axis under a force described by the potential energy U shown below.lt is projected towards the right from the origin with a speed v .What is the minimum value of v for which the partilce will escape infinitely far away from the
origin:
A. $2 \sqrt{2} m / s$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. the particel will never escape

Answer: B

12. Two blocks A and B of masses in and $2 m$ respectively placed on a smooth floor are connected by a spring. A third body C of mass m moves with velocity v_{0} along the line joining
A and B and collides elastically with A. At a certain instant of time after collision it is found that the instantaneous velocities of A and B are same then:

A. $m \frac{v_{0}^{2}}{x_{0}^{2}}$

$$
\begin{aligned}
& \text { B. } m \frac{v_{0}}{2 x_{0}} \\
& \text { C. } 2 m \frac{v_{0}}{x_{0}} \\
& \text { D. } \frac{2}{3} m\left(\frac{v_{0}}{x_{0}}\right)^{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

13. A car of weight W is on an inclined road that
rises by 100 m over a distance of 1 km and applies a constant frictional force $\frac{W}{20}$ on the car.While moving uphill on the road at a speed
of $10 \mathrm{~ms}^{-1}$,the car needs power P.If it needs power $\frac{P}{2}$ while moving downhill at speed v then value of v is:
A. $20 m s^{-1}$
B. $5 m s^{-1}$
C. $15 m s^{-1}$
D. $10 m s^{-1}$

Answer: C

14. A horse drinks water from a cunical container of side 1 m . The level of the stomach of horse is at 2 m from the grounf.Assume that all the water drunk by the horse is at a level of 2 m of the ground.The minimum work done by the horse in drinking the entire water of the container is
(Take $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=10 \mathrm{~m} / \mathrm{s}^{2}$) -
A. 10 KJ
B. 15 KJ
C. 20KJ

Answer: B

D View Text Solution

15. A wind - powered generator convets and energy into electrical energy. Assume that the generator convents a fixed fraction of the wind energy intercepited by to blades into electrical energy for wind speed V, the electrical power output will be propertional to
A. V^{4}
B. V^{2}
C. V^{3}
D. V

Answer: C

D Watch Video Solution

16. A vertical spring with force constant k is
fixed on a table. A ball of mass m at a height h
above the free upper end of the spring falls
vertically on the spring, so that the spring is compressed by a distance d. The net work done in the process is

$$
\begin{aligned}
& \text { A. } m g(h+d)-\frac{1}{2} k d^{2} \\
& \text { B. } m g(h-d)-\frac{1}{2} k f^{2} \\
& \text { C. } m g(h-d)+\frac{1}{2} k d^{2} \\
& \text { D. } m g(h+d)+\frac{1}{2} k d^{2}
\end{aligned}
$$

Answer: A

17. A block of mss m rests on a rough horizontal
surface (Coefficient of friction is μ). When a bullet of mass $\mathrm{m} / 2$ strikes horizontally,and get embedded in it,the block moves a distance d before coming to rest.The initial velocity of the bullet is $k \sqrt{2 \mu g d}$,

Then the value of k is
A. 2
B. 3
C. 4
D. 5

Answer: B

D View Text Solution

18. In the figure shown ,a particle of mass m is released from the position A on a smooth track.When the particle reaches at B,then normal reaction on it by the track is
A. mg
B. 2 mg

> C. $\frac{2}{3} m g$
> D. $\frac{m^{2} g}{h}$

Answer: A

D View Text Solution

19. Figure shows a block of mass m,kept on a smooth horizontal plane and attached with two unstretched elastic springs with spring constants k_{1} and k_{2}.If the block be displace by distance x on either side and released, then the
velocity of the block as it passes through the mwan position is

$$
\begin{aligned}
& \text { A. } x \sqrt{\frac{m}{k_{1}+\frac{m}{k_{2}}}} \\
& \text { B. } x \sqrt{\frac{k_{1} k_{2}}{m\left(k_{1}+k_{2}\right)}} \\
& \text { C. } x \sqrt{\frac{k_{1}+k_{2}}{m}} \\
& \text { D. zero }
\end{aligned}
$$

Answer: C

20. Consider elastic collision of a particle of mass m moving with a velocity u with another particle of the same mass at rest. After the collision the projectile and the struck particle move in direction making angles θ_{1} and θ_{2} respectively with the initial direction of motion.

The sum of the angles. $\theta_{1}+\theta_{2}$, is
A. 45°
B. 90°
C. 135°
D. 180°

Answer: B

- Watch Video Solution

21. A particle of mass 10 g moves along a circle of radius 64 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to $8 \times 10^{-4} J$ by the end of the second revolution after the beginning of the motion ?
A. $0.1 m / s^{2}$

B. $0.15 \mathrm{~m} / \mathrm{s}^{2}$
C. $0.18 m / s^{2}$
D. $0.2 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D Watch Video Solution

22. A load hangs from a travelling crane,moving horizintally with velocity v .If the load is not to swing more than 4 m horizontally, when the crane is stopped suddenly,what is the maximum
allowable speed of the crane?
A. $4.05 \mathrm{~m} / \mathrm{s}$
B. $4.00 \mathrm{~m} / \mathrm{s}$
C. $3.00 \mathrm{~m} / \mathrm{s}$
D. $3.50 \mathrm{~m} / \mathrm{s}$

Answer: A
23. A stone is tied to a string of length I and is whirled in a vertical circle with the other end of
the string as the centre. At a certain instant of
time, the stone is at its lowest position and has
a speed u. The magnitude of the change in
velocity as it reaches a position where the
string is horizontal (g being acceleration due to gravity) is
A. $\sqrt{2 g l}$
B. $\sqrt{2\left(u^{2}-g l\right)}$
C. $\sqrt{u^{2}-g l}$

$$
\text { D. } u-\sqrt{u^{2}-2 g l}
$$

Answer: B

D Watch Video Solution

24. A particle of mass 10 kg moving eastwards with a speed $5 \mathrm{~ms}^{-1}$ collides with another particle of the same mass moving north-wards with the same speed $5 \mathrm{~ms}^{-1}$.The two particles coalesce on collision.The new particle of mass 20 kg will move in the north-east direction with velocity

A. $10 m s^{-1}$

B. $5 m s^{-1}$
C. $(5 / \sqrt{2}) m s^{-1}$
D. None of these

Answer: C

D Watch Video Solution

25. An object of mass m is tied to string of length L and a variable horizontal force is applied on it which starts at zero and gradually
increases (it is pulled extremely slowly so that
equilibrium exists at all times)until the string makes an angle θ with the vertical.Work done by the force F is:
A. $m g L(1-\cos \theta)$
B. $m g L(1-\sin \theta)$
C. mgL
D. $m g L(1+\tan \theta)$

Answer: A
26. One end of an unstretched vertical spring is attached to the ceiling and an object attached
to the other end is slowly lowered to its
equilibrium position. If S is the gain in spring energy and G is the loss in gravitational potential energy in the process, then
A. $\mathrm{S}=\mathrm{G}$
B. $S=2 G$
C. $G=2 S$
D. None of these

Answer: C

D Watch Video Solution

27. A block of mass $m=0.1 \mathrm{~kg}$ is connceted to a spring of unknown spring constant k. It is compressed to a distance x from its equilibrium position and released from rest. After approaching half the distance $\left(\frac{x}{2}\right)$ from the euilibrium position, it hits another block and
comes to rest momentarily, while the other
block moves with velocity $3 m s^{-1}$. The total initial energy of the spring is :
A. 0.3 J
B. 0.6 J
C. 0.8 J
D. 1.5 J

Answer: B

D Watch Video Solution

