© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

JEE MAINS- 2019 (HELD ON :9TH APRIL 2019 (SHIFT-I))

Questions

1. In the density measurement of a cube, the mass and edge length are measured as
$(10.00 \pm 0.10) \mathrm{kg}$
and
$(0.10 \pm 0.01) m$,
respectively. The relative error in the measurement of density is:
A. $0.01 \mathrm{~kg} / \mathrm{m}^{3}$
B. $0.10 \mathrm{~kg} / \mathrm{m}^{3}$
C. $0.31 \mathrm{~kg} / \mathrm{m}^{3}$
D. $0.07 \mathrm{~kg} / \mathrm{m}^{3}$
2. The stream of a river is flowing with a speed of $2 \mathrm{~km} / \mathrm{h}$. A swimmer can swim at a speed of 4 km / h. What should be the direction of the swimmer with respect to the flow of the river to cross the river straight?
A. 90°
B. 150°
C. 120°
D. 60°

Answer: c

D Watch Video Solution

3. A ball is thrown vertically up (taken as $+z$-axis) from the ground. The correct momentum-height ($p-h$) diagram is:

Answer: d

D Watch Video Solution

4. A uniform cable of mass ' M ' and length ' L ' is
placed on a horizontal surface such that its $\left(\frac{1}{n}\right)^{t h}$ part is hanging below the edge of the
surface. To lift the hanging part of the cable upto the surface, the work done should be:

$$
\begin{aligned}
& \text { A. } \frac{M g l}{2 n^{2}} \\
& \text { B. } \frac{M g l}{n^{2}} \\
& \text { C. } \frac{2 M g l}{n^{2}} \\
& \text { D. } \mathrm{nMgl}
\end{aligned}
$$

Answer: b

D Watch Video Solution
5. A body of mass 2 kg makes an elastic collision with another body at rest and continues to move in the original direction but with one fourth its original speed. What is the mass of the body it collides with ?
A. 1.0 Kg
B. 1.5 kg
C. 1.8 kg
D. 1.2 kg

- Watch Video Solution

6. A stationary horizontal disc is free to rotate about its axis. When a torque is applied on it, its kinetic energy as a function of θ, where θ is the angle by which it has rotated, is given as $k \theta^{2}$ If its moment of inertia is 1 then the angular acceleration of the disc is
A. $\frac{k}{4 I} \theta$
B. $\frac{k}{I} \theta$
C. $\frac{k}{2 I} \theta$

D. $\frac{2 k}{I} \theta$

Answer: d

D Watch Video Solution

7. The following bodies are made to roll up
(without slipping) the same inclined plane from a horizontal plane : (i) a ring of radius R , (ii) a solid cylinder of radius $\frac{R}{2}$ and (iii) a solid sphere of radius $\frac{R}{4}$ If, in each case, the speed of the center of mass at the bottom of the incline
is same, the ratio of the maximum heights they
climb is
A. $4: 3: 2$
B. 10:15:7
C. $14: 15: 20$
D. $2: 3: 4$

Answer: c

D Watch Video Solution
8. A solid sphere of radius a and mass m is
surrounded by cocentric spherical shell of thickness $2 a$ and mass $2 m$ the gravitational field at a distance 3a from their centres is

$$
\begin{aligned}
& \text { A. } \frac{2 G M}{9 a^{2}} \\
& \text { B. } \frac{G M}{9 a^{2}} \\
& \text { C. } \frac{G M}{3 a^{2}} \\
& \text { D. } \frac{2 G M}{3 a^{2}}
\end{aligned}
$$

Answer: c

9. A capillary tube of radius R is immersed in

 water and water rises in it a height H. Mass of water in capillary tube is M. If the radius of the tube is doubled, mass of water that will rise in
capillary tube will be

A. M
B. $\frac{M}{2}$
C. 4 M
D. 2 M

Answer: d

D Watch Video Solution

10. Following figure shows two processes A and B for a gas. If ΔQ_{A} and ΔQ_{B} are the amount of heat absorbed by the system in two cases, and
ΔU_{A} and ΔU_{B} are changes in internal energies, respectively, then:
A. $\Delta Q_{A}<\Delta Q_{B}, \Delta U_{A}<\Delta U_{B}$

$$
\begin{aligned}
& \text { B. } \Delta Q_{A}>\Delta Q_{B}, \Delta U_{A}>\Delta U_{B} \\
& \text { C. } \Delta Q_{A}>\Delta Q_{B}, \Delta U_{A}=\Delta U_{B} \\
& \text { D. } \Delta Q_{A}=\Delta Q_{B}, \Delta U_{A}=\Delta U_{B}
\end{aligned}
$$

Answer: c

D View Text Solution

11. For a given gas at 1 atm pressure, rms speed of the molecules is $200 \mathrm{~m} / \mathrm{s}$ at $127^{\circ} C$. At 2 atm pressure and at $227^{\circ} C$, the rms speed of the molecules will be:
A. $100 \mathrm{~m} / \mathrm{s}$
B. $80 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $100 \sqrt{5} \mathrm{~m} / \mathrm{s}$
D. $80 \mathrm{~m} / \mathrm{s}$

Answer: c

D Watch Video Solution

12. An HCl molecule has rotational, translational
and vibrational motions. If the rms velocity of HCl molecules in its gaseous phase is \vec{v}, m is
its mass and k_{s} is Bolzmann constant, then its
temperature will be $\frac{m v^{2}}{n k_{B}}$, where n is

> A. $\frac{m v^{2}}{6 k_{B}}$
> B. $\frac{m v^{2}}{3 k_{B}}$
> C. $\frac{m v^{2}}{7 k_{B}}$
> D. $\frac{m v^{2}}{5 k_{B}}$

Answer: a

- Watch Video Solution

13. A simple pendulum oscillating in air has period T. The bob of the pendulum is completely immersed in a non-viscous liquid. The density of the liquid is $\frac{1}{16} t h$ of the material of the bob. If the bob is inside liquid all the time, its period of oscillation in this liquid is :

$$
\begin{aligned}
& \text { A. } 2 T \sqrt{\frac{1}{10}} \\
& \text { B. } 2 T \sqrt{\frac{1}{14}} \\
& \text { C. } 4 T \sqrt{\frac{1}{15}} \\
& \text { D. } 4 T \sqrt{\frac{1}{14}}
\end{aligned}
$$

Answer: c

D Watch Video Solution

$\begin{array}{lrr}\text { 14. The } & \text { pressure } & \text { wave, } \\ P=0.01 \sin [1000 t-3 x] N m^{-2}, & \text { corresponds }\end{array}$
to the sound produced by a vibrating blade on a day when atmospheric temperature is $0^{\circ} \mathrm{C}$. On some other day when temperature is T, the speed of sound produced by the same blade and at the same frequency is found to be $336 m s^{1}$. Approximate value of T is:
A. $4^{\circ} C$
B. $11^{\circ} \mathrm{C}$
C. $12^{\circ} \mathrm{C}$
D. $15^{\circ} \mathrm{C}$

Answer: a

D Watch Video Solution

15. A string is clamped at both the ends and it is
vibrating in its $4^{\text {th }}$ harmonic. The equation of
the stationary
wave
$Y=0.3 \sin (0.157 x) \cos (200 \pi t)$. The length of the string is: (All quantities are in SI units.)

A. 20 m

B. 80 m
C. 40 m
D. 60 m

Answer: b

D Watch Video Solution
16. A system of three charges are placed as shown in the figure:

If $D \gg d$ the potential energy of the system is best given by

$$
\begin{aligned}
& \text { A. } \frac{1}{4 \pi \varepsilon_{0}}\left[\frac{-q^{2}}{d}-\frac{-q Q d}{2 D^{2}}\right] \\
& \text { B. } \frac{1}{4 \pi \varepsilon_{0}}\left[\frac{-q^{2}}{d}+\frac{2 q Q d}{D^{2}}\right] \\
& \text { C. } \frac{1}{4 \pi \varepsilon_{0}}\left[\frac{+q^{2}}{d}+\frac{q Q d}{D^{2}}\right] \\
& \text { D. } \frac{1}{4 \pi \varepsilon_{0}}\left[\frac{-q^{2}}{d}-\frac{q Q d}{D^{2}}\right]
\end{aligned}
$$

Answer: d
17. Determine the charge on the capacitor in the following circuit:
A. $60 \mu C$
B. $2 \mathrm{muC}^{\prime}$
C. $10 \mu C$
D. $200 \mu C$

Answer: d
18. A capacitor with capacitance $5 \mu F$ is charged
to $5 \mu C$. If the plates are pulled apart to reduce
the capacitance to $2 \mu F$, how much work is done?
A. 6.25×10^{-6} J
B. $3.75 \times 10^{-6} \mathrm{~J}$
C. $2.16 \times 10^{-6} \mathrm{~J}$
D. $2.55 \times 10^{-6} \mathrm{~J}$

Answer: b

D Watch Video Solution

19. A wire of resistance R is bent to form a square $A B C D$ as shown in the figure. The effective resistance between E and C is: (E is mid-point of arm CD)
A. R
B. $\frac{7}{64} R$

> C. $\frac{3}{4} R$
> D. $\frac{1}{16} R$

Answer: b

- View Text Solution

20. A rectangular coil (Dimension $5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$)
with 100 turns, carrying a current of A in the origin and in the $\mathrm{X}-\mathrm{Z}$ plane. A magnetic field of 1
T is applied along X-axis. If the coil is tilted
through 45° about Z -axis, then the torque on the coil is :

A. 0.38 Nm

B. 0.55 Nm
C. 0.42 Nm
D. 0.27 Nm

Answer: d

- Watch Video Solution

21. A rigid square of loop of side 'a' and carrying current I_{2} is lying on a horizontal surface near a long current I_{1} carrying wire in the same plane as shown in figure. The net force on the loop due to the wire will be:
A. Repulsive and equal to $\frac{\mu_{0} I_{1} I_{2}}{2 \pi}$
B. Attractive and equal to $\frac{\mu_{0} I_{1} I_{2}}{3 \pi}$
C. Repulsive and equal to $\frac{\mu_{0} I_{1} I_{2}}{4 \pi}$
D. Zero

Answer: c

- View Text Solution

22. A moving coil galvanometer has resistance
50Ω and it indicates full deflection at 4 mA
current. A voltmeter is made using this galvanometer and a $5 k \Omega$ resistance. The maximum voltage, that can be measured using this voltmeter (in volts) will be \qquad .
A. 40 V

B. 15 V

C. 20 V

D. 10 V

Answer: c

D Watch Video Solution

23. The total number of turns and cross-section
area in a solenoid is fixed. However, its length L
is varied by adjusting the separation between
windings. The inductance of solenoid will be proportional to:
A. L
B. L^{2}
C. $\frac{1}{L^{2}}$
D. $\frac{1}{L}$

Answer: d

- Watch Video Solution

24. The magnetic field of a plane electromagnetic wave is given by:
$\vec{B}=B_{0} \hat{i}-[\cos (k z-\omega t)]+B_{1} \hat{j} \cos (k z+\omega t)$
where $B_{0}=3 \times 10^{-5} T$ and $B_{1}=2 \times 10^{-6} T$.

The rms value of the force experienced by a stationary charge $Q=10^{-4} C$ at $z=0$ is close to:
A. 0.6 N
B. 0.1 N
C. 0.9 N
D. $3 \times 10^{-2} N$

Answer: a

D Watch Video Solution

25. A signal $A \cos \omega t$ is transmitted using $v_{0} \sin \omega_{0} t$ modulated (AM) signal is:
A.
$v_{0} \sin \omega_{0} t+\frac{A}{2} \sin \left(\omega_{0}-\omega\right) t+\frac{A}{2}\left(\omega_{0}+\omega\right) t$
B. $v_{0} \sin \left[\omega_{0}(1+0.01 A \sin \omega t) t\right]$
C. $v_{0} \sin \omega_{0} t+A \cos \omega t$
D. $\left(v_{0}+A\right) \cos \omega t \sin \omega_{0} t$

Answer: a

D Watch Video Solution

26. A concave mirror used for face viewing has
focal length of $0.4 m$. The distance at which you
hold the mirror from your face in order to see
your image upright with a magnification of 5 is
(in m).
A. $0.24 m$
B. 1.60 m
C. 0.32 m

D. 0.16 m

Answer: c

D Watch Video Solution

27. The figure shows a Young's double slit experimental setup. It is observed that when a thin transparent sheet of thickness t and refractive index μ is put in front of one of the slits, the central maximum gets shifted by a
distance equal to n fringe widths. If the wavelength of light used is λ, t will be:

$$
\begin{aligned}
& \text { A. } \frac{n D \lambda}{a(\mu-1)} \\
& \text { B. } \frac{2 n D \lambda}{a(\mu-1)} \\
& \text { C. } \frac{D \lambda}{a(\mu-1)} \\
& \text { D. } \frac{2 D \lambda}{a(\mu-1)}
\end{aligned}
$$

Answer:

- View Text Solution

28. The electric field of light wave is given as $\vec{E}=10^{-3} \cos \left(\frac{2 \pi x}{5 \times 10^{-7}}-2 \pi \times 6 \times 10^{14} t\right) \widehat{x} \frac{N}{C}$
. This light falls on a metal plate of work
function 2 eV . The stopping potential of the photo-electrons is:

Given, $\mathrm{E}(\mathrm{in} \mathrm{eV})=\frac{12375}{\lambda(\operatorname{in} \AA)}$
A. 2.0 V
B. 0.48 V
C. 0.72 V
D. 2.48 V

Answer: c

D Watch Video Solution

29. Taking the wavelength of first Balmer line in hydrogen spectrum ($n=3$ to $n=2$) as 660 nm , the wavelength of the $2^{n d}$ Balmer line ($n=4$ to $n=2$) will be:
A. 889.2 nm
B. 488.9 nmn
C. 642.7 nm

D. 388.9 nm

Answer: b

D Watch Video Solution

30. An NPN transistor is used in common emitter configuration as an amplifier with $1 k \Omega$ load resistance. Signal voltage of 10 mV is applied across the base-emitter. This produces a

3 mA change in the collector current and $15 \mu A$ change in the base current of the amplifier. The input resistance and voltage gain are:

A. $0.33 k \Omega, 1.5$

B. $0.67 k \Omega, 300$

C. $0.67 k \Omega, 200$
D. $0.33 k \Omega, 300$

Answer: b

D Watch Video Solution

