©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

LAWS OF MOTION

Jee Main 5 Years At A Glance

1. A disc rotates about its aixs of symmetry in a
horizontal plane at a steady rate of 3.5
revolutions per second A coin placed at a distance fo 1.25 cm form the axis of ratation remains at rest on the disc The coefficient of friction between the coin and the disc is : $\left(g=10 / s^{2}\right)$
A. 0.5
B. 0.7
C. 0.3
D. 0.6

Answer: D
2. A given object taken n time more time to slide down 45° rough inclined plane as it taken to slide down a perfectly smooth 45° incline The coefficient of kintic friction between the object and the incline is .
A. $\sqrt{1-\frac{1}{n^{2}}}$
B. $1-\frac{1}{n^{2}}$
C. $\frac{1}{2-n^{2}}$
D. $\sqrt{\frac{1}{1-n^{2}}}$

Answer: B

- Watch Video Solution

3. Two masses $m_{1}=5 \mathrm{~kg}$ and $m_{2}=10 \mathrm{~kg}$,
connected by an inextensible string over a
frictionless pulley, are moving as shown in the
figure. The coefficient of friction of horizontal
surface is 0.15 . The minimum weight m that
should be put on top of my to stop the motion is:
A. 18.3 kg
B. 27.3 kg
C. 43.3 kg
D. 10.3 kg

Answer: B

D View Text Solution

4. A conical pendulum of length 1 m makes an
anlge $\theta=45^{\circ}$ w.r.t. Z-axis and moves in a
circle in the XY plane. The radius of the circle is
0.4 m and its centre is vertically below O . The speed of the pendulum, in its circular path, will be :(Take $=10 m s^{-2}$)
A. $0.4 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $0.2 \mathrm{~m} / \mathrm{s}$
D. $2 \mathrm{~m} / \mathrm{s}$

Answer: D

5. Two blocks A and B of masses 3 m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively: [2017]
A. $\frac{g}{3}, g$
B. g, g
C. $\frac{g}{3}, \frac{g}{3}$
D. $g, \frac{g}{3}$

Answer: A

D View Text Solution

6. A rocket is fired vertically from the earth
with an acceleration of 2 g , where g is the gravitational acceleration. On an inclined plane inside the tocket, making an angle θ with the horizontal, a point object of mass m
is kept, the minimum coefficient of friction
$\mu_{\text {min }}$ between the mass and the inclined suface such that the mass does not move is:
A. $\tan 2 \theta$
B. $\tan \theta$
C. $\tan \theta$
D. $2 \tan \theta$

Answer: B

D Watch Video Solution
7. Given in the figure are two blocks A and B of weight 20 N and 100 N , respectively. These are being pressed against a wall by a force F as shown. If the coefficient of friction between the blocks is 0.1 and between block B and the wall is 0.15 , the frictional force applied by the wall on block B is:
A. 120 N
B. 150 N
C. 100 N

D. 80 N

Answer: A

D View Text Solution

8. A body of mass 5 kg under the action of constant force $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}$ has velocity at $\mathrm{t}=0 \mathrm{~s}$ as $\vec{v}=(6 \hat{i}-2 \hat{j}) \mathrm{m} / \mathrm{s}$ and at $\mathrm{t}=10 \mathrm{~s}$ as $\vec{v}=+6 \hat{j} \mathrm{~m} / \mathrm{s}$. The force \vec{F} is:

$$
\text { A. }(-3 \hat{i}+4 \hat{j}) N
$$

B. $\left(-\frac{3}{5} \hat{i}+\frac{4}{5} \hat{j}\right) N$
C. $(3 \hat{i}-4 \hat{j}) N$
D. $\left(\frac{3}{5} \hat{i}-\frac{4}{5} \hat{j}\right) N$

Answer: A

D Watch Video Solution

9. A balloon with mass m is descending down
with an acceleration a (wherea $<g$). How
much mass should be removed from it so that
it starts moving up with an acceleration a?
A. $\frac{2 m a}{g+a}$
B. $\frac{2 m a}{g-a}$
C. $\frac{m a}{g+a}$
D. $\frac{m a}{g-a}$

Answer: A

D Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 I II Illrd Laws Of Motion

1. An object will continue moving uniformly

until

A. on it is increasing continuously
B. is at right angles to its rotation
C. on it is zero
D. on it begins to decrease

Answer: C

D Watch Video Solution

2. When a body is stationary :
A. there is no force acting on it
B. the force acting on it is not in contact
with it
C. the combination of forces acting on it balances each other

D. the body is in vacuum

Answer: C

3. A particle of mass 0.3 kg subject to a force
$F=-k x$ with $k=15 N / m$. What will be its
initial acceleration if it is released from a point 20 cm away from the origin?
A. $15 m / s^{2}$
B. $3 m / s^{2}$
C. $10 m / s^{2}$
D. $5 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

4. If a ship of mass $4 \times 10^{7} \mathrm{~kg}$ initially at rest is pulled by a force of $5 \times 10^{4} \mathrm{~N}$ through a distance of 4 m , then the speed of the ship will be (resistance due to water is negligible)
A. $1.5 \mathrm{~m} / \mathrm{sec}$
B. $60 \mathrm{~m} / \mathrm{sec}$.
C. $0.1 \mathrm{~m} / \mathrm{sec}$.
D. $5 \mathrm{~m} / \mathrm{sec}$.

Answer: C

D Watch Video Solution

5. A 600 kg rocket is set for vertical firing. If the exhaust speed is $1000 \mathrm{~m} / \mathrm{s}$, the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is
A. $117.6 \mathrm{kgs}^{-1}$
B. $58.6 \mathrm{kgs}^{-1}$
C. $6 \mathrm{kgs}^{-1}$

D. $76 . \mathrm{kgs}^{-1}$

Answer: C

D Watch Video Solution

6. An object of mass 20 kg moves at a constant
speed of $5 m s^{-1}$. A constant force, that acts
for 2 sec on the object, gives it a speed of
$3 m s^{-1}$ in opposite direction. The force acting on the object is
A. 8 N

B. $-80 N$

C. $-8 N$
D. 80 N

Answer: B

D Watch Video Solution

7. A satellite in a force - free space sweeps stationary interplanetary dust at a rate $d M / d t=\alpha v$, where M is the mass, v is the
velocity of the satellite and α is a constant.

What is the deacceleration of the satellite?

$$
\begin{aligned}
& \text { A. } \frac{-2 \alpha v^{2}}{M} \\
& \text { B. } \frac{-\alpha v^{2}}{M} \\
& \text { C. } \frac{-\alpha v^{2}}{2 M} \\
& \text { D. }-\alpha v^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

8. A jet plane flies in the air because
A. the gravity does not act on bodies moving with high speeds
B. the thrust of the jet compensates for
the force of gravity
C. the flow of air around the wings causes
an upward force, which compensates for
the force of gravity

D. the weight of air whose volume is equal

 to the volume of the plane is more than the weight of the plane
Answer: D

D Watch Video Solution

9. A player stops a football weighing 0.5 kg which comes flying towards him with a velocity of $10 \mathrm{~m} / \mathrm{s}$. If the impact lasts for $1 / 50$ th sec.
and the ball bounces back with a velocity of 15 m / s, then the average force involved is
A. 250 N
B. 1250 N
C. 500 N
D. 625 N

Answer: D

D Watch Video Solution
10. A ball of mass 0.2 kg is thrown vertically
upwards by applying a force by hand. If the
hand moves 0.2 m while applying the force and the ball goes upto 2 m height further, find
the magnitude of the force. (Consider $\left.g=10 m / s^{2}\right)$.
A. 4 N
B. 16 N
C. 20 N
D. 22 N

Answer: D

- Watch Video Solution

11. A block of mass kg 5 is moving horizontally
at a speed of $1.5 m / s$. A perpendicular force
of 5 N acts on it for 4 sec . What will be the distance of the block from the point where the force started acting
A. $2 m$
B. 6 m ,
C. 8 m
D. 10 m

Answer: D

D Watch Video Solution

12. A boy sitting on the top most berth in the
compartment of a train which is just going to
stop on railway station, drops and apple aiming at the open hand of his brother
situated vertically below his hands at a distance of about 2 m . The apple will fail
A. in the hand of his brother
B. slightly away from the hand of his
brother in the direction of motion of the
train
C. slightly away from the hand of his
brother opposite to the direction of
motion of the train
D. None of the above

Answer: B

D Watch Video Solution

13. A particle of mass 10 kg is moving in a straight line. If its displacement, x with time tis given by $x=\left(t^{3}-2 t-10\right) m$ then the force acting on it at the end of 4 seconds is
A. 24 N
B. 240 N
C. 300 N

D. 1200 N

Answer: B

- Watch Video Solution

14. Three forces start acting simultaneously on
a particle moving with velocity, \vec{v}. These
forces are represented in magnitude and direction by the three sides of a triangle $A B C$.

The particle will now move with velocity
A. less than \vec{v}
B. greater than \vec{v}
C. $|\vec{v}|$ in the direction of the largest forec

BC

D. \vec{v}, remaining unchanged

Answer: D

D View Text Solution

Exercise 1 Concept Builder Topicwise Topic 2 Momentum Law Of Conservation Of Momentum

And Impulse

1. A particle of mass m is moving with a uniform velocity v_{1}. It is given an impulse such that its velocity becomes v_{2}. The impulse is equal to

$$
\begin{aligned}
& \text { A. } m\left(\vec{v}_{2}-\vec{v}_{1}\right) \\
& \text { B. } m\left(\vec{v}_{1}-\vec{v}_{2}\right) \\
& \text { C. } 1.5 m \times\left(\vec{v}_{2}-\vec{v}_{1}\right) \\
& \text { D. } 0.5 m\left(\vec{v}_{2}-\vec{v}_{1}\right)
\end{aligned}
$$

D Watch Video Solution

2. A hammer weighing 3 kg strikes the head of
a nail with a speed of $2 m s^{-1}$ drives it by 1 cm
into the wall. The impulse imparted to the wall
is
A. 6 Ns
B. 3 Ns
C. 2 Ns

D. 12 Ns

Answer: A

- Watch Video Solution

3. A ball is thrown up at an angle with the horizontal. Then the total change of momentum by the instant it returns to ground is
A. acceleration due to gravity \times total time of flight
B. weight of the ball \times half the time of
flight
C. weight of the ball \times total time of flight
D. weight of the ball \times horizontal range

Answer: C

- Watch Video Solution

4. A machine gun has a mass 5 kg . It fires 50 gram bullets at the rate of 30 bullets per minute at a speed of $400 \mathrm{~m} \mathrm{~s}^{-1}$. What force is required to keep the gun in positon?
A. 10 N
B. 5 N
C. 15 N
D. 30 N

Answer: A
5. A force time graph for the motion of a body
is shown in Fig. Change in linear momentum between 0 and 8 s is
A. zero
B. $4 \mathrm{~N}-\mathrm{s}$
C. 8 Ns
D. None of these

Answer: A

D View Text Solution

6. An object at rest in space suddenly explodes
into three parts of same mass. The momentum
of the two parts are $2 p \hat{i}$ and $p \hat{j}$. The momentum of the third part
A. will have a magnitude $p \sqrt{3}$
B. will have a magnitude $p \sqrt{5}$
C. will have a magnitude p

D. will have a magnitude $2 p$.

Answer: B

D Watch Video Solution

7. A 50 kg ice skater, initially at rest, throws a
0.15 kg snowball with a speed of $35 \mathrm{~m} / \mathrm{s}$. What is the approximate recoil speed of the skater?
A. $0.10 \mathrm{~m} / \mathrm{s}$
B. $0.20 \mathrm{~m} / \mathrm{s}$

C. $0.70 \mathrm{~m} / \mathrm{s}$

D. $1.4 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

8. A bag of sand of mass m is suspended by a rope. A bullet of mass $\frac{m}{20}$ is fired at it with a velocity vand gets embedded into it. The velocity of the bag finally is
A. $\frac{v}{20} \times 21$
B. $\frac{20 v}{21}$
C. $\frac{v}{20}$
D. $\frac{v}{21}$

Answer: A

D Watch Video Solution

9. A ball of mass m falls vertically to the ground from a height h_{1} and rebound to a
height h_{2}. The change in momentum of the ball on striking the ground is.
A. $m \sqrt{2} g\left(h_{1}+h_{2}\right)$
B. $\left.m \sqrt{2 g\left(m_{1}+m_{2}\right)}\right)$
C. $m g\left(h_{1}-h_{2}\right)$
D. $m\left(\sqrt{2 g h_{1}}-\sqrt{2 g h_{2}}\right)$

Answer: D

D Watch Video Solution

10. A ball of mass 10 g moving perpendicular to the plane of the wall strikes it and rebounds in the same line with the same velocity. If the impulse experienced by the wall is 0.54 Ns , the velocity of the ball is

$$
\begin{aligned}
& \text { A. } 27 m s^{-1} \\
& \text { B. } 3.7 m s^{-1} \\
& \text { C. } 54 m s^{-1} \\
& \text { D. } 37 m s^{-1}
\end{aligned}
$$

- Watch Video Solution

11. The rate of mass of the gas emitted from
the rear of a rocket is initially $0.1 \mathrm{~kg} / \mathrm{s}$. If the speed of the gas relative to the rocket is $50 \mathrm{~m} / \mathrm{s}$ and the mass of the rocket is $2 k g$, then the acceleration of the rocket in m / s^{2} is
A. 5
B. 5.2
C. 2.5
D. 25

Answer: C

D Watch Video Solution

12. The linear momentum p of a body moving
in one dimension varies with time according
to the equation $p=a+b t^{2}$, where a and b are positive constants. The net force acting on the body is
A. proportional to t^{2}

B. a constant

C. proportional to t
D. inversely proportional to t

Answer: C

D Watch Video Solution

13. A balloon has $8 g$ of air A small hole is
pierced into it The air escapes at a unifrom rate of $7 \mathrm{~cm} / \mathrm{s}$ If the ballon shrinks in 5.6 s then the average force acting on the ballon is.
A. $10^{-4} N$
B. $10^{-2} d y \neq$
C. 56 dyne
D. $10^{-6} N$

Answer: A

- Watch Video Solution

14. An object of mass $3 m$ splits into three equal fragments. Two fragments have
velocities $v \hat{j}$ and $v \hat{i}$. The velocity of the third
fragment is

$$
\begin{aligned}
& \text { A. } v(\hat{j}-\hat{i}) \\
& \text { B. } v(\hat{i}-\hat{j}) \\
& \text { C. } v(\hat{i}+\hat{j}) \\
& \text { D. } \frac{v(\hat{i}+\hat{j})}{\sqrt{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution
15. A shell at rest at the origin explodes into
three fragments of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and mkg .

Thel kg and 2 kg pieces fly off with speeds of 12 m / s along X -axis and $16 \mathrm{~m} / \mathrm{s}$ along y -axis respectively. If the m kg piece flies off with a speed of $40 \mathrm{~m} / \mathrm{s}$, the total mass of the shell must be
A. 3.8 kg
B. 4 kg
C. 4.5 kg

D. 5 kg

Answer: A

D Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 3 Equilibrium Of Forces Motion Of Connected Bodies And Pulley

1. A rope of length 4 m having mass $1.5 \mathrm{~kg} / \mathrm{m}$
lying on a horizontal frictionless surface is
pulled at one end by a force of 12 N . What is
the tension in the rope at a point 1.6 m from the other end?
A. 5 N
B. 4.8 N
C. 7.2 N
D. 6 N

Answer: B
(Watch Video Solution
2. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. If a force P is applied at the free end of the rope, the force exerted by the rope on the block is
A. $\frac{P m}{M+m}$
B. $\frac{P m}{M-m}$
C. P
D. $\frac{P M}{M+m}$

Answer: D

- Watch Video Solution

3. Two mass m and 2 m are attached with each other by a rope passing over a frictionless and massless pulley. If the pulley is accelerated upwards with an acceleration ' a ', what is the value of tension?
A. $\frac{g+a}{3}$
B. $\frac{g-a}{3}$
C. $\frac{4 m(g+a)}{3}$
D. $\frac{m(g-a)}{3}$

Answer: C

- Watch Video Solution

4. A lift is moving down with acceleration a. A man in the lift drops a ball inside the lift. The acceleration of the ball as observed by the man in the lift and a man standing stationary on the ground are respectively
A. g.g
B. $g-a, g-a$
C. $g-a, g$
D. a, g

Answer: C

- Watch Video Solution

5. A spring balance is attached to the ceiling of
a lift. A man hangs his bag on the spring and
the spring reads 49 N , when the lift is
stationary. If the lift moves downward with an
acceleration of $5 m / 2^{2}$, the reading of the spring balance will be
A. 24 N
B. 74 N
C. 15 N
D. 49 N

Answer: A
(Watch Video Solution
6. A triangular block of mass M with angle
$30,60,90$ rests with its $30-90$ side on a horizontal smooth fixed table. A cubical block of mass m rests on the $60-30$
sideofthe triangular block. What horizontal
acceleration a must M have relative to the
stationary table so that m remains stationary
with respect to the triangular block [$M=9 \mathrm{~kg}$,
$\mathrm{m}=1 \mathrm{~kg}$]
A. g
B. $\frac{g}{\sqrt{2}}$

> C. $\frac{g}{\sqrt{3}}$
> D. $\frac{g}{\sqrt{5}}$

Answer: C

D Watch Video Solution

7. A uniform chain of length / and mass mis
hanging vertically from its ends A and B which
are close together. At a given instant the end
B is released. What is the tension at A when B
has fallen a distance $\mathrm{x}(x<l)$?
A. $\frac{m g}{2}\left[1+\frac{3 x}{l}\right]$
B. $m g\left[1+\frac{2 x}{l}\right]$
C. $\frac{m g}{2}\left[1+\frac{x}{l}\right]$
D. $\frac{m g}{2}\left[1+\frac{4 x}{l}\right]$

Answer: A

D Watch Video Solution

8. Two blocks of masses 2 kg and 1 kg are placed on a smooth horizontal table in contact with each other. A horizontal force of

3 newton is applied on the first so that the block moves with a constant acceleration. The
force between the blocks would be
A. 3 newton
B. 2 newton
C. 1 newton
D. zero

Answer: C

D Watch Video Solution
9. Block A is moving with acceleration A along
a frictionless horizontal surface. When a second block, B is placed on top of Block A the acceleration of the combined blocks drops to $1 / 5$ the original value. What is the ratio of the mass of A to the mass of B ?
A. $5: 1$
B. 1: 4
C. $3: 1$
D. 2:1

Answer: B

- Watch Video Solution

10. Two blocks of masses 2 kg and 4 kg are attached by an inextensible light string as shown in the figure. If a force of 120 N pulls the blocks vertically upward, the tension in the string is (take $g=10 \mathrm{~ms}^{-2}$)
A. 20 N

B. 15 N

C. 35 N
D. 40 N

Answer: D

D View Text Solution

11. A block is kept on a frictionless inclined surface with angle of inclination ' α '. The incline is given an acceleration 'a' to keep the

block stationary. Then 'a' is equal to

A. $g \cos e c \alpha$
B. $g / \tan \alpha$
C. gtanalpha`
D. g

Answer: C

D View Text Solution
12. Three blocks with masses til, 2 ou and 3 in are connected by strings as shown in the figure. After an upward force F is applied on block m, the masses move upward at constant speed v. What is the net force on the block of mass 2 m ? (g is the acceleration due to gravity)
A. 2 mg
B. 3 mg
C. 6 mg

D. zero

Answer: D

D View Text Solution

Exercise 1 Concept Builder Topicwise Topic 4 Friction

1. A conveyor belt is moving at a constant speed of $2 m / s$. A box is gently dropped on it.

The coefficient of friction between them is
$\mu=0.5$. The distance that the box will move relative to belt before coming to rest on it taking $g=10 m s^{-2}$ is:
A. 1.2 m
B. 0.6 m
C. zero
D. 0.4 m

Answer: D

D Watch Video Solution
2. A plank with a box on it at one end is gradually raised about he other end. As the angle of inclination with the horizontal reaches 30° the box starts to slip and slides
4.0 m down the plank in 4.0 s . The coefficients
of static and kinetic friction between the box and the plank will be, respectively:
A. 0.6 and 0.5
B. 0.5 and 0.6
C. 0.4 and 0.3

D. 0.6 and 0.6

Answer: A

D View Text Solution

3. A body of mass 2 kg is placed on a horizontal
surface having kinetic friction 0.4 and static
friction 0.5 . If the force applied on the body is
$2.5 N$, then the frictional force acting on the
body will be
A. 8 N

B. 10 N

C. 20 N

D. 2.5 N

Answer: D

- Watch Video Solution

4. A block rests on a rough inclined plane making an angle of 30° with the horizontal.

The coefficient of static friction between the block and the plane is 0.8 . If the frictional force
on the block is 10 N , the mass of the block (in kg) is
A. 1.6
B. 4.0
C. 2.0
D. 2.5

Answer: C
(Watch Video Solution
5. A body starts from rest on a long inclined
plane of slope 45°. The coefficient of friction
between the body and the plane varies as
$\mu=0.3 x$, where x is the distance travelled
down the plane. The body will have maximum
speed (for $g=10 m / s^{2}$) when $\mathrm{x}=$
A. 9.8 m
B. 27 m
C. 12 m
D. 3.33 m

Answer: D

D Watch Video Solution

6. A horizontal force of 10 N is necessary to
just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2 . The weight of the block is
A. 20 N
B. 50 N

C. 100 N

D. 2 N

Answer: D

D View Text Solution

7. A 100 N force acts horizontally on a block of

10 kg placed on a horizontal rough surface of coefficient of friction $\mu=0.5$. If the acceleration due to gravity (g) is taken as
$10 \mathrm{~ms}^{-2}$, the acceleration of the block (in $m s^{-2}$) is
A. 2.5
B. 10
C. 5
D. 7.5

Answer: C
(Watch Video Solution
8. A block of mass 0.1 is held against a wall applying a horizontal force of 5 N on block. If the coefficient of friction between the block and the wall is 0.5 , the magnitude of the frictional force acting on the block is:
A. 2.5 N
B. 0.98 N
C. 4.9 N
D. 0.49 N

Answer: B

- Watch Video Solution

9. A block of mass is placed on a surface with a vertical cross section given by $y=\frac{x^{3}}{6}$. If the coefficient of friction is 0.5 , the maximum height above the ground at which the block can be placed without slipping is:
A. $\frac{1}{6} m$
B. $\frac{2}{3} m$
C. $\frac{1}{3} m$

$$
\text { D. } \frac{1}{2} m
$$

Answer: A

D Watch Video Solution

10. Starting from rest, a body slides down at
45° inclined plane in twice the time it takes to
slide down the same distance in the absence
of friction. The coefficient of friction between
the body and the inclined plane is
A. 0.33
B. 0.25
C. 0.75
D. 0.80

Answer: C

D Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 5 Circular Motion And Banking Of Road

1. A cane filled with water is revolved in a
vertical circle of radius 4 m and water just does not fall down. The time period of revolution will be -
A. 1 sec
B. 10 sec
C. 8 sec
D. 4 sec

Answer: D

2. The string of pendulum of length 1 is displaced through 90° from the vertical and released. Then the minimum strength of the string in order to withstand the tension, as the pendulum passes through the mean position is
A. 3 mg
B. 4 mg
C. 5 mg

D. 6 mg

Answer: A

D Watch Video Solution

3. A body of mass 0.4 kg is whirled in a vertical circle making $2 \mathrm{rev} / \mathrm{sec}$. If the radius of the circle is 1.2 m , then tension in the string when the body is at the top of the circle, is
A. 41.56 N

B. 89.86 N

C. 109.86
D. 115.86 N

Answer: A

- Watch Video Solution

4. A body of mass m is tied to one end of a spring and whirled round in a horizontal circle with a constant angular velocity .The elongation is 1 cm . If the angular velocity is
doubled, the elongation in the spring is 5 cm . what is the original length of the spring ?
A. 15 cm ,
B. 12 cm
C. 16 cm
D. 10 cm

Answer: A
(Watch Video Solution
5. A particle of mass m rotates with a uniform
angular speed ω. It is viewed from a frame rotating about the Z -axis with a uniform angular speed ω_{0}. The centrifugal force on the particler is
A. $m \omega^{2} r$
B. $m \omega_{0}^{2} r$
C. $m\left(\frac{\omega+\omega_{0}}{2}\right) a$
D. zero

Answer: B
6. the coefficient of friction between the rubber tyres and the roadway is 0.25 . Find the maximum speed with which a car can be driven round a curve of radius 20 m without skidding
A. $5 \mathrm{~m} / \mathrm{s}$
B. $7 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$

D. $14 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

7. A bucket tied at the end of a $1.6 m$ long string is whirled in a verticle circle with constant speed. What should be the minimum speed so that the water from the bucket does not spill, when the bucket is at the highest position $\left(\right.$ Takeg $\left.=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $4 \mathrm{~m} / \mathrm{sec}$
B. $6.25 \mathrm{~m} / \mathrm{sec}$
C. $16 \mathrm{~m} / \mathrm{sec}$
D. None of the above

Answer: A

- Watch Video Solution

Exercise 2 Concept Applicator

1. A body of mass 4 kg moving on a horizontal
surface with an initial velocity of $6 \mathrm{~ms}^{-1}$ comes to rest after 3 seconds. If one wants to keep the body moving on the same surface with the velocity of $6 \mathrm{~ms}^{-1}$ the force required is
A. zero
B. 4 N
C. 8 N
D. 16 N

Answer: C

D Watch Video Solution

2. A block of mass m is connected to another
block of mass M by a spring (massless) of spring constant k. The block are kept on a smooth horizontal plane. Initially the blocks are at rest and the spring is unstretched. Then
a constant force F starts acting on the block of mass M to pull it. Find the force of the block of mass M .

> A. $\frac{M F}{(m+M)}$
> B. $\frac{m F}{M}$
> C. $\frac{(M+m) F}{m}$
> D. $\frac{m F}{(m+M)}$

Answer: D

D Watch Video Solution

3. A plate of mass M is placed on a horizontal of frictionless surface (see figure), and a body of mass m is placed on this plate. The
coefficient of dynamic friction between this
body and the plate is μ. If a force $2 \mu m g$ is applied to the body of mass m along the horizontal, the acceleration of the plate will be
A. $\frac{\mu m}{M} g$
B. $\frac{\mu m}{(M+m)} g$
C. $\frac{2 \mu m}{M} g$
D. $\frac{2 \mu m}{(M+m)} g$

Answer: A
4. An overweight acrobat, weighing in at 115
kg, wants to perform a single hand stand. He tries to cheat by resting one foot against a smooth frictionless vertical wall. The horizontal force there is 130 N . What is the magnitude of the force exerted by the floor on his hand? Answer in N.
A. 1134
B. 1257
C. 997
D. 1119

Answer: A

D Watch Video Solution

5. A ball of mass 400 gm is dropped from a height of 5 m . A boy on the ground hits the ball vertically upwards with a bat with an average force of 100 newton so that it attains a vertical velocity of $20 \mathrm{~m} / \mathrm{s}$. The time for which
the ball remains in contact with the bat is

$$
\left(g=10 m / s^{2}\right)
$$

A. 0.12 s
B. 0.08 s
C. 0.04 s
D. 12 s

Answer: A
(Watch Video Solution
6. A man weighing 80 kg is standing on a trolley weighting 320 kg . The trolley is resting on frictionless horizontal rails. If the man starts walking on the trolley along the rails at speed $1 \mathrm{~m} / \mathrm{s}$ (w.r.t. to trolley) then after $4 s$ his displacement relative to the ground will be :
A. 5 metres
B. 4.8 metres
C. 3.2 metres
D. 3.0 metres

Answer: C

D Watch Video Solution

7. A bullet is fired from a gun. The force on the bullet is given by $F=600-2 \times 10^{5} \mathrm{t}$, where
F is in newtons and t in seconds. The force on
the bullet becomes zero as soon as it leaves
the barrel. What is the average impulse imparted to the bullet?
A. $1.8 \mathrm{~N}-\mathrm{s}$
B. Zero
C. $9 \mathrm{~N}-\mathrm{s}$
D. $0.9 \mathrm{~N}-\mathrm{s}$

Answer: D

- Watch Video Solution

8. A block the of mass $4 k g$ is placed on another block of mass 5 kg and the block B rests on a smooth horizontal table for sliding the block A on B a horizontal force $12 N$ is
required to be applied force on it How much maximum horizontal force can be applied on 'B' s that both A and B move together? Also find out the accleration proudced by this force

A. 30 N
B. 25 N
C. 27 N
D. 48 N

Answer: C

- Watch Video Solution

9. A rocket of mass 5000 kg is to be projected
vertically upward. The gases are exhausted vertically downwards with velocity $1000 \mathrm{~ms}^{-1}$ with respect to the rocket. What is the minimum rate of burning the fuel so as to just
lift the rocket upwards against gravitational attraction ?
A. $49 \mathrm{kgs}^{-1}$
B. $147 \mathrm{kgs}^{-1}$
C. $98 \mathrm{kgs}^{-1}$
D. $196 \mathrm{kgs}^{-1}$

Answer: A

D Watch Video Solution

10. A particle of mass m is acted upon by a force F given by the emprical law $F=\frac{R}{t^{2}} v(t)$

If this law is to be tested experimentally by
observing the motion starting from rest, the best way is to plot :
A. $\log \mathrm{v}(\mathrm{t})$ against $\frac{1}{t}$
B. $\mathrm{v}(\mathrm{t})$ against t^{2}
C. $\log \mathrm{v}(\mathrm{t})$ agninst $\frac{1}{t^{2}}$
D. $\operatorname{lov} v(t)$ against t

Answer: A

D Watch Video Solution

11. An insect crawls up a hemispherical surface
very slowly. The coefficient of friction between
the insect and the surface is $1 / 3$. If the line joining the centre of the hemispherical surface
to the insect makes an angle a with the vertical, the maximum possible value of α so that the insect does not slip is given by
A. $\cot \alpha=3$
B. $\sec \alpha=3$
C. $\cos e c \alpha 3$

$$
\text { D. } \cos \alpha=3
$$

Answer: A

D View Text Solution

12. A trailer of mass 1000 kg is towed by means
of a rope attached to a car moving at a steady
speed along a level road. The tension in the rope is 400 N . The car starts to accelerate steadily. If the tension in the rope is now

1650N, with what acceleration is the trailer

moving?

A. $1.75 m s^{-2}$
B. $0.75 \mathrm{~ms}^{-2}$
C. $2.5 m s^{-2}$
D. $1.25 \mathrm{~ms}^{-2}$

Answer: D

D Watch Video Solution

13. A particle moves in a circle with a uniform
speed. When it goes from a point A to a diametrically opposite point B, the momentum of the particle changes by $\vec{P}_{A}-\vec{P}_{B}=2 \mathrm{~kg}$ $\mathrm{m} / \mathrm{s}(\hat{j})$ and the centripetal force acting on it changes by $\vec{F}_{A}-\vec{F}_{B}=8 N(\hat{i})$ where \hat{i}, \hat{j} are unit vectors along X and Y axes respectively. The angular velocity of the particle is
A. dependent on its mass
B. $4 \mathrm{rad} / \mathrm{sec}$
C. $\frac{2}{\pi} \mathrm{rad} / \mathrm{sec}$
D. $16 \pi \mathrm{rad} / \mathrm{sec}$

Answer: B

D Watch Video Solution

14. A ball of mass 0.5 kg moving with a velocity of $2 m / s$ strikes a wall normally and bounces
back with the same speed. If the time of contact between the ball and the wall is 1
millisecond, the average force exerted by the wall on the ball is
A. 2000 newton
B. 1000 newton
C. 5000 newton
D. 125 newton

Answer: A
(Watch Video Solution
15. A small ball of mass m starts at a point A with speed v_{0}. and moves along a frictionless
track $A B$ as shown. The track $B C$ has coefficient of friction μ. The ball comes to stop at Cafter travelling a distance L which is:
A. $\frac{2 h}{\mu}+\frac{v_{o}^{2}}{2 \mu g}$
B. $\frac{h}{\mu}+\frac{v_{o}^{2}}{2 \mu g}$
C. $\frac{h}{2 \mu}+\frac{v_{o}^{2}}{\mu g}$
D. $\frac{h}{2 \mu}+\frac{v_{o}^{2}}{2 \mu g}$

Answer: B

D View Text Solution

16. A box of mass 8 kg is placed on a rough
inclined plane of inclination 45°. Its downward motion c can be prevented by applying an upward pull F and it can be made to slide upwards by applying a force $2 F$. The coefficient of friction between the box and the inclined plane is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{3}$

Answer: D

D Watch Video Solution

17. A rocket has a mass of $100 \mathrm{~kg} .90 \%$ of this is fuel. It ejects fuel vapours at the rate of $1 \mathrm{~kg} / \mathrm{sec}$ with a velocity of $500 \mathrm{~m} / \mathrm{sec}$ relative
to the rocket. It is supposed that the rocket is
outside the gravitational field. The initial
upthrust on the rocket when it just starts moving upwards is
A. zero
B. 500 newton
C. 1000 newton
D. 2000 newton

Answer: B
18. A 40 kg slab rests on frictionless floor as
shown in fig. A 10 kg block rests on the top of
the slab. The static coefficient of friction between the block and slab is 0.60 while the kinetic friction is 0.40 . The 10 kg block is acted upon by a horizontal force of 100 N . If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the resulting acceleration of the slab will be:
A. $0.98 m / s^{2}$
B. $1.47 m / s^{2}$
C. $1.52 m / s^{2}$
D. $6.1 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D View Text Solution

19. A small body of mass m slides down from
the top of a hemisphere of radius r. The surface of block and hemisphere are frictionless. The height at which the body lose

contact with the surface of the sphere is

A. $(3 / 2) r$
B. $(2 / 3) r$
C. $\left(\frac{1}{2}\right) g r^{2}$
D. $v^{2} / 2 g$

Answer: B

D View Text Solution
20. A spring is compressed between two toy carts of mass m_{1} and m_{2}. When the toy carts
are released, the springs exert equal and opposite average forces for the same time on each toy cart. If v_{1} and v_{2} are the velocities of the toy carts and there is no friction between the toy carts and the ground, then :

$$
\begin{aligned}
& \text { A. } v_{1} / v_{2}=m_{1} / m_{2} \\
& \text { B. } v_{1} / v_{2}-m_{2} / m_{1} \\
& \text { C. } v_{1} / v_{2}=-m_{2} / m_{1}
\end{aligned}
$$

$$
\text { D. } v_{1} / v_{2}=-m_{1} / m_{2}
$$

Answer: C

D Watch Video Solution

21. A heavy box is to be dragged along a rough
horizontal floor. To do so, person A pushes it at an angle 30° from the horizontal and requires a minimum force F_{A}, while person B pulls the box at angle 60° from the horizontal and needs minimum force F_{B}. If the coefficient
of friction between the box and the floor is
$\frac{\sqrt{3}}{5}$, the ratio is $\frac{F_{A}}{F_{B}}$
A. $\sqrt{3}$
B. $\frac{5}{\sqrt{3}}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{2}{\sqrt{3}}$

Answer: D

D Watch Video Solution

22. An open topped rail road car of mass M
has an initial velocity v_{0} along a straight
horizontal frictionless track. It suddenly starts
raising at timet $=0$. The rain drops fall vertically with velocity u and add a mass m $\mathrm{kg} / \mathrm{sec}$ of water. The velocity of car after t second will be (assuming that it is not completely filled with water)
A. $v_{0}+m \frac{u}{M}$
B. $\frac{M v_{0}}{M+m t}$
C. $\frac{M v_{0}+u t}{M+u t}$

$$
\text { D. } v_{0}+\frac{m u t}{M+u t}
$$

Answer: B

D Watch Video Solution

23. A 0.5 kg ball moving with speed of $12 \mathrm{~m} / \mathrm{s}$
strikes a hard wall at an angle of 30° with the
wall. It is reflected with the same speed and at
the same angle. If the ball is in contact with
the wall for 0.25 seconds, the average force
acting on the wall is
A. 24 N
B. 12 N
C. 96 N
D. 48 N

Answer: A

D View Text Solution
24. A 0.1 kg block suspended from a massless
string is moved first vertically up with an acceleration of $5 \mathrm{~ms}^{-2}$ and then moved vertically down with an acceleration of $5 \mathrm{~ms}^{-2}$.

If T_{1} and T_{2} are the respective tensions in the two cases, then
A. $T_{2}>T_{1}$
B. $T_{1}-T_{2}=1 N$, if $g=10 \mathrm{~ms}^{-2}$
C. $T_{1}-T_{2}=1 \mathrm{kgf}$
D. $T_{1}-T_{2}=9.8 N$, if $g=9.8 \mathrm{~ms}^{-2}$

Answer: B

D Watch Video Solution

25. A projectile of mass M is fired so that the
horizontal range is 4 km . At the highest point
the projectile explodes in two parts of masses
$M / 4$ and $3 M / 4$ respectively and the heavier part starts falling down vertically with zero initial speed. The horizontal range (distance from point of firing) of the lighter part is:
A. 16 km
B. 1 km
C. 10 km
D. 2 km

Answer: C

D Watch Video Solution

26. A rifle man, who together with his rifle has
a mass of 100 kg , stands on a smooth surface
and fires 10 shots horizontally. Each bullet. has
a mass 10 g and a muzzle velocity of $800 \mathrm{~m} / \mathrm{s}$,
a. What velocity does the rifle man acquire at the end of 10 shots?
b. If the shots are fired in $10 s$, what will he the average force exerted on him?
c. Compare his kinetic energy with that of 10 bullets
A. $8 m s^{-1}$
B. $0.8 m s^{-1}$
C. $0.08 m s^{-1}$
D. $-0.8 m s^{-1}$

Answer: B

- Watch Video Solution

27. A block of 7 kg is placed on a rough horizontal surface and is pulled through a variable force $\mathrm{F}($ in N$)=5 \mathrm{t}$, where t is time in second, at an angle of 37° with the horizontal as shown in figure. The coefficient of static friction of the block with the surface is one. If the force starts acting at $\mathrm{t}=0 \mathrm{~s}$, the time at which the block starts to slide is $t_{0} \mathrm{sec}$. Find
the value of $t_{0} / 2$ in sec. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and
$\left.\cos 37^{\circ}=\frac{4}{5}\right)$
A. 3
B. 4
C. 5
D. 6

Answer: C

D View Text Solution
28. A motor cyclist moving with a velocity of 72 $\mathrm{km} /$ hour on a flat road takes a turn on the road at a point where the radius of curvature of the road is 20 meters. The acceleration due to gravity is $10 \mathrm{~m} / \mathrm{sec}^{2}$. In order to avoid skidding, he must not bend with respect to the vertical plane by an angle greater than

$$
\begin{aligned}
& \text { A. } \tan =\tan ^{-1} 6 \\
& \text { B. } \theta=\tan ^{-1} 2 \\
& \text { C. } \theta=\tan ^{-1} 25.92 \\
& \text { D. } \theta=\tan ^{-1} 4
\end{aligned}
$$

Answer: B

- Watch Video Solution

29. A blocky of mass m rests on a horizotal
floor with which it has a coefficient of static
friction μ. It is desired to make the body move by applying the minimum possible force F .

Find the magnitude of F and the direction in which it has be applies.

$$
\text { A. } \theta=\tan ^{-1}(\mu), F=\frac{\mu W}{\sqrt{1+\mu^{2}}}
$$

> B. $\theta=\tan ^{-1}\left(\frac{1}{\mu}\right), F=\frac{\mu W}{\sqrt{1+\mu^{2}}}$
> C. $\theta=0, F=\mu W$
> D. $\theta=\tan ^{-1}\left(\frac{\mu}{1+\mu}\right), F=\frac{\mu W}{1+\mu}$

Answer: A

D Watch Video Solution

30. Fig. shows a uniform rod of length 30 cm
having a mass of 3.0 kg . The strings shown in
the figure are pulled by constant forces of 20

N and 32 N . All the surfaces are smooth and
the strings and pulleys are light. The force exerted by 20 cm part of the rod on the 10 cm part is
A. 20 N
B. 24 N
C. 32 N
D. 52 N

Answer: B

