# ©゙"doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - DISHA PUBLICATION PHYSICS

## (HINGLISH)

## MAGNETISM AND MATTER

## Jee Main 5 Years At A Glance

1. The B-H curve for a ferromagnet is shown in
the figure. The ferromagnet is placed inside a
long solenoid with 1000 turns/cm . The current
that should be passed in the solenoid to demagnetise the ferromagnet completely is :
A. 2 mA
B. 1 mA
C. $40 \mu A$
D. $20 \mu \mathrm{~A}$

## Answer: b

2. A magentic dipole in a constant magnetic field has
A. maximum potential energy when the
torque is maximum.
B. zero potential energy when the torque is
minimum.
C. zero potential energy when the torque is
maximum.

# D. minimum potential energy when the 

 torque is maximum.
## Answer: c

## D Watch Video Solution

3. A magnetic needle of magnetic moment
$6.7 \times 10^{-2} A . m^{2} \quad$ And moment of inertia
$7.5 \times 10^{-6} \mathrm{~kg} . m^{2} \quad$ Is performing simple harmonic oscillations in a magnetic field of
0.01 T. time taken for 10 complete oscillations is
A. $6.98 s$
B. $8.76 s$
C. 6.65 s
D. $8.89 s$

Answer: c
( Watch Video Solution
4. A magnetic dipole is acted upon by two magnetic fields with inclined to each other at an angle of $75^{\circ}$. One of the fields has a magnitude of 15 mT . The dipole attains stable equilibrium at an angle of $30^{\circ}$ with this field.

The magnitude of the other field (in mT ) is close to
A. 1
B. 11
C. 36

## D. 1060

## Answer: b

## D Watch Video Solution

5. Hysteresis loops for two magnetic materials
$a$ and $B$ are given below:
These materials are used to make magnets for elecric generators, transformer core and electromagnet core. Then it is proper to use:
A. A for transformers and B for electric generators.
B. B for electromagnets and transformers.
C. A for eletric generators and trasformers.
D. A for electromagnets and B for electric generators.

Answer: b

## D View Text Solution

6. A 25 cm long solenoid has radius 2 cm and

500 total number of turns. It carries as current of $15 A$.If it is equivalent to a magnet of the same size and magnetization $\bar{M}$ (magnetic moment//volume) then $|\bar{M}|$ is:

A. $30000 \pi A m^{-1}$<br>B. $3 \pi A m^{-1}$<br>C. $30000 A m^{-1}$<br>D. $300 A m^{-1}$

## - Watch Video Solution

7. Suppose that the source of earth's magnetism is a magnetic dipole at the earth.

Find the moment of this magnetic dipole if the strength of earth's magnetic field at the equator is $4 \times 10^{-5} \mathrm{~T}$. Given, radius of the earth
$6.4 \times 10^{6} \mathrm{~m}$ and $\frac{\mu_{0}}{4 \pi}=10^{-7}$ T. $\mathrm{m} . A^{-1}$.
A. $10^{23} A m^{2}$
B. $10^{20} \mathrm{Am}^{2}$
C. $10^{16} \mathrm{Am}^{2}$
D. $10^{10} \mathrm{Am}^{2}$

## Answer: a

## D Watch Video Solution

8. An implies that a perfect diamagnet is a supercondutor. This implies that when a super conductor is put in a magnetic field of intensity B , the magnetic field $B_{s}$ inside the superconductor will be such that :
A. $B_{s}=-B$
B. $B_{s}=0$
C. $B_{s}=B$
D. $B_{s}<B$ but Bs $\neq 0$

Answer: b

D Watch Video Solution
9. The coercitivity of a small magnet where the ferromagnet gets demagnetized is
$3 \times 10^{3} \mathrm{Am}^{-1}$. The current required to be
passed in a solenoid of length 10 cm and number of turns 100 , so that the magnet gets demagnetized when inside the solenoid, is :
A. 30 mA
B. 60 mA
C. 3A
D. 6 A

Answer: c

D Watch Video Solution

1. The ratio of the magnetic fields due to small
bar magnet in end position an broad side on
position is (at equal distance from the magnet)
A. $1 / 4$
B. $1 / 2$
C. 1
D. 2

## Answer: d

## D Watch Video Solution

2. A curve between magnetic moment and temperature of magnet is
A. E
B.
c.
D.

## Answer: c

## D Watch Video Solution

3. The major contribution of magnetism in substance is due to
A. orbital motion of electrons
B. spin motion of electrons
C. equally due to orbital and spin motions of electrons

## D. hidden magnets

## Answer: b

## D Watch Video Solution

4. Magnetic dipole moment is a vector directed from
A. south pole to north pole
B. north pole to south pole
C. east to west

## D. west to east

## Answer: a

## D Watch Video Solution

5. The magnetic potential at a point at a distance of 10 cm from mid point of magnetic dipole on a line making an angle of $60^{\circ}$ with axis is $1.5 \times 10^{-7} \mathrm{~Wb} / \mathrm{m}$. The magnetic moment of the dipole is

$$
\text { A. } 300 a b-a m p \times c m^{2}
$$

B. $600 a b-a m p \times c m^{2}$
C. $30 a b-a m p \times c m^{2}$
D. $60 a b-a m p \times c m^{2}$

## Answer: b

## D Watch Video Solution

6. The magnetic dipole moment of a coil is
$5.4 \times 10^{-6}$ joule/tesla and it is lined up with an external magnetic field whose strength is
$0.80 T$. Then the work done in rotating the coil
(for $\left.\theta=180^{\circ}\right)$ is
A. $4.32 \mu J$
B. $2.16 \mu J$
C. $8.6 \mu J$
D. None of these

Answer: c
( Watch Video Solution
7. A bar magnet of length 'I' and magnetic dipole moment ' $M$ ' is bent in the from of arc as
shown in figure. The new magnetic dipole moment will be

> А. $\frac{3}{\pi} M$
> B. $\frac{2}{\pi} M$
> С. $\frac{M}{2}$
D. $M$
8. A short bar magnet pleaced with its axis at
$30^{\circ}$ with a uniform external magnetic field of
0.16 Tesla expriences a torque of magnitude
0.032 Joule. The magnetic moment of the bar magnet will be
A. 4
B. 0.2
C. 0.5

## D. 0.4

## Answer: d

## - Watch Video Solution

9. A bar magnet has a length of 8 cm . The magnetic field at a point at a distnace 3 cm
from the centre in the broadside-on position is found to be $4 \times 10^{-6} T$. Find the pole strength of the magnet.

$$
\text { A. } 6 \times 10^{-5} \mathrm{Am}
$$

B. $5 \times 10^{-5} \mathrm{Am}$
C. $2 \times 10^{-4} \mathrm{Am}$
D. $3 \times 10^{-4} \mathrm{Am}$

## Answer: a

## D Watch Video Solution

10. A bar magnet having centre $O$ has a length of 4 cm . Point $P_{1}$ is in the broad side-on and
$P_{2}$ is in the end side-on position with
$O P_{1}=O P_{2}=10$ metres. The ratio of magnetic intensities $H$ at $P_{1}$ and $P_{2}$ is
A. $H_{1}: H_{2}=16: 100$
B. $H_{1}: H_{2}=1: 2$
C. $H_{1}: H_{2}=2: 1$
D. $H_{1}: H_{2}=100: 16$

Answer: b

- Watch Video Solution

11. The magnetic moment of a magnet is
$0.1 a m p \times m^{2}$. It is suspended in a magnetic
field of intensity $3 \times 10^{-4}$ weber $/ \mathrm{m}^{2}$. The couple acting upon it when deflected by $30^{\circ}$ from the magnetic field is
A. $1 \times 10^{-5} \mathrm{Nm}$
B. $1.5 \times 10^{-5} \mathrm{Nm}$
C. $2 \times 10^{-5} \mathrm{Nm}$
D. $2.5 \times 10^{-5} \mathrm{Nm}$

Answer: b

## - Watch Video Solution

12. Two identcal magnetic dipole of magnetic moment $1.0 A-m^{2}$ each, placed at a separation of 2 m with their axis perpendicular to each other. The resultant magnetic field at a point midway between the dipole is
A. $5 \times 10^{-7} T$
B. $\sqrt{5} \times 10^{-7} T$
C. $10^{-7} T$

## D. $2 \times 10^{-7} T$

## Answer: b

## D Watch Video Solution

13. Force between two identical bar magnets
whose centres are $r$ metre apart is $4.8 N$, when
their axes are in the same line. If separation is increased to $2 r$, the force between them is reduced to
A. $4 N$
B. $2 N$
C. $1 N$
D. 0.5 N

## Answer: d

## D Watch Video Solution

14. A bar magnet having a magnetic moment of $2 \times 10^{4} J T^{-1}$ is free to rotate in a horizontal plane. A horizontal magnetic field $B=6 \times 10^{-4} T$ exists in the space. The work
done in taking the magnet slowly from a direction parallel to the field to a direction $60^{\circ}$ from the field is
A. 12 J
B. 6J
C. 2J
D. 0.6 J

Answer: b

D Watch Video Solution
15. A bar magnet is cut into two equal halves by a plane parallel to the magnetic axis of the following physical quantities the one which remains unchanged is
A. pole strength
B. magnetic moment
C. intensity of magnetisation
D. moment of inertia

Answer: c

D Watch Video Solution
16. A thin bar magnet of length $2 I$ and breadth

2 b pole strength m and magnetic moment M
is divided into four equal parts with length
and breadth of each part being half of original
magnet.
Then, the magnetic moment of each part is
A. $m$
B. $m / 2$
C. $2 m$
D. $m / 4$

Answer: b

## D Watch Video Solution

17. Point $A$ and $B$ are situated along the extended axis of 2 cm long bar magnet at a distance x and $2 x \mathrm{~cm}$ respectively. From the pole nearer to the points, the ratio of the magnetic field at $A$ and $B$ will be
A. 4: 1 exactly
B. 4:1 approximately

## C. 8:1 approximately

D. 1:1 approximately

## Answer: c

## D Watch Video Solution

18. The net magnetic moment of two identical
magnets each of magnetic moment $M_{0}$, inclined at $60^{\circ}$ with each other is
A. $M_{0}$
B. $\sqrt{2} M_{0}$
C. $\sqrt{3} M_{0}$
D. $2 M_{0}$

Answer: c

D View Text Solution
19. A magnet of magnetic moment $M$ amd pole strenth $m$ is divided in two equal parts, then magnetic moment of each part will be
A. $M$
B. $M / 4$
C. $\sqrt{2} M$
D. $m / 3$

Answer: d

## D Watch Video Solution

20. A steel wire of length I has a magnetic moment $M$. It is bent into a semicircular arc.

What is the new magnetic moment?
A. $\frac{M}{\pi}$
B. $\frac{2 M}{\pi}$
C. $\frac{3 M}{\pi}$
D. $\frac{4 M}{\pi}$

Answer: b

- Watch Video Solution

21. A steel wire of length I has a magnetic moment $M$. It is bent in L-shape (Figure). The
new magnetic moment is
A. M
B. $\frac{M}{\sqrt{2}}$
C. $\frac{M}{2}$
D. $2 M$

Answer: b

- View Text Solution

22. A circular coil of 16 turns and radius 10 cm
carrying a current of 0.75 A rests with its plane normal to an external field of magnitude
$5 \cdot 0 \times 10^{-2} T$. The coil is free to turn about
an axis in its plane perpendicular to the field
direction. When the coil is turned slightly and released, it oscillates about its stable equilibrium with a frequency of $2 \cdot 0 \mathrm{~s}^{-1}$. What is the moment of inertia of the coil about its axis of rotation?

$$
\text { A. } 3.4 \times 10^{-5} \mathrm{kgm}^{2}
$$

B. $1.2 \times 10^{-4} \mathrm{kgm}^{2}$
C. $2.6 \times 10^{-4} \mathrm{kgm}^{2}$
D. $4.7 \times 10^{-5} \mathrm{kgm}^{2}$

Answer: b

D Watch Video Solution
23. Which of the following is responsible for the earth's magnetic field?
A. Convective current in earth 's core .
B. Diversive current in earth's core.
C. Rotational motion of earth.
D. Translation motion of earth .

## Answer: a

## D Watch Video Solution

24. A compass needle whose magnetic moment is $60 A m^{2}$, is directed towards geographical north at any place experiencing moment of force of $1.2 x \times 10^{-3} \mathrm{Nm}$. At that
place the horizontal component of earth field is 40 micro $W / m^{2}$. What is the value of dip angle at that place?
A. $30^{\circ}$
B. $60^{\circ}$
C. $45^{\circ}$
D. $15^{\circ}$

Answer: a

D Watch Video Solution
25. The horizontal component of the earth's magnetic field is $3.6 \times 10^{-5} T$ where the dip is $60^{\circ}$. Find the magnitude of the earth's magnetic field.
A. $2.8 \times 10^{-4}$ tesla
B. $2.1 \times 20^{-4}$ tesla
C. $7.2 \times 10^{-5}$ tesla
D. $3.6 \times 10^{-5}$ tesla

Answer: c

- Watch Video Solution

26. The work done in turning a magnet of magnetic moment ' M ' by an angle of $90^{\circ}$ from
the meridian is ' $n$ ' times the corresponding
work done to turn it through an angle of $60^{\circ}$,
where ' $n$ ' is given by
A. $1 / 2$
B. 2
C. $1 / 4$
D. 1

Answer: b

## D Watch Video Solution

27. A short magnet of length 4 cm is kept at a
distance of 20 cm to the east of a compass
box such that is axis is perpendicular to the magnetic meridian. If the deflection produced
is $45^{\circ}$, find the pole strength $\left(H=30 A m^{1}\right)$
A. 17.7 Am
B. 44.2 Am
C. 27.7 Am
D. 37.7 Am

## Answer: d

## D Watch Video Solution

28. A short bar magnet with its north pole
facing north forms a neutral point at $P$ in the
horizontal plane. If the magnet is rotated by $90^{\circ}$ in the horizontal plane, the net magnetic
induction at $P$ is (Horizontal component of earth's magnetic field $=B_{H}$ )
A. 0
B. $2 B_{H}$
C. $\frac{\sqrt{5}}{2} B_{H}$
D. $\sqrt{5} B_{H}$

Answer: d
( Watch Video Solution
29. At the magnetic north pole of the earth, the value of horizontal component of earth's magnetic field and angle of dip are, respectively
A. zero, maximum
B. maximum, minimum
C. maximum, maximum
D. minimum, minimum

## Answer: a

30. At a certain place, horizontal component of earth's field is $\sqrt{3}$ times the vertical component of earth's field. The angle of dip at this place is
A. 0
B. $\pi / 3$
C. $\pi / 6$
D. $\pi / 8$

## D Watch Video Solution

31. At a certain place the angle of dip is $30^{\circ}$
and the horizontal component of earth's
magnetic field is 0.50 oersted. The earth's total magnetic field is
A. $\sqrt{3}$
B. 1
C. $\frac{1}{\sqrt{3}}$

## D. $\frac{1}{2}$

## Answer: c

## - Watch Video Solution

32. A bar magnet is oscillating in the earth's magnetic field with a period T. What happens to its period and motion if its mass is quadrupled
A. Motion remains simple harmonic with
new period $=T / 2$
B. Motion remains simple harmonic with new period $=2 T$
C. Motion remains simple harmonic with
new period $=4 T$
D. Motion remains simple harmonic and
the period stays nearly constant

## Answer: b

33. Horizontal component of earth's field at a
height of 1 m from the surface of earth is H . Its
value at a height of 10 m from surface of earth is
A. $H / 10$
B. $H / 9$
C. $H / 100$
D. H

## - Watch Video Solution

34. The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to
$8 \times 10^{22} \mathrm{Am}^{2}$, the value of earth's magnetic field near the equator is closed to (radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ )
A. 0.6 Gauss
B. 1.2 Gauss
C. 1.8 Gauss

## D. 0.32 Gauss

## Answer: a

## D Watch Video Solution

35. A current carryingcoil is placed with its axis
perpendicular to N-S direction. Let horizontal
component of earth's magnetic field be $H_{0}$ and magnetic field inside the loop is H . If a magnet is suspended inside the loop, it makes angle $\theta$ with H . Then $\theta=$
A. $\tan ^{-1}\left(\frac{H_{0}}{H}\right)$
B. $\tan ^{-1}\left(\frac{H}{H_{0}}\right)$
C. $\cos e c^{-1}\left(\frac{H}{H_{0}}\right)$
D. $\cot ^{-1}\left(\frac{H_{0}}{H}\right)$

Answer: a

## D Watch Video Solution

36. The B-H curve (i) and (ii) shown in fig associated with
A. (i) diamagnetic and
(ii) paramagnetic substance
B. (i) paramagnetic and
(ii) ferromagnetic substance
C. (i) soft iron and (ii) steel
D. (i) steel and (ii) soft iron

## Answer: c

## D View Text Solution

37. The mensicus of a liquid contained in one of the limbs of a narrow U-tube is held in an electromagnetic with the mensicus in line with
the field. The liquid is seen to rise. This
indicates that the liquid is
A. ferromagnetic
B. paramagnetic
C. diamagnetic
D. non-magnetic
38. If a diamagnetic solution is poured into a

U-tube and one aem of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will
A. rise
B. fall
C. oscillate slowly

## D. remains as such

## Answer: b

## D Watch Video Solution

39. The variation of magnetic susceptibility
$(\chi)$ with temperature for a diamagnetic substance is best represented by
A.
B.
c.

R
D.

Answer: b

## - Watch Video Solution

40. If a diamagnetic substance is brought near north or south pole of a bar magnet, it is
A. attracted by poles
B. repelled by pole

# C. replaced by north pole and attracted by 

south pole
D. attracted by north pole and repelled by
south pole

## Answer: b

## D Watch Video Solution

41. If $\mu_{0}$ is absolute permeability of vacum and $\mu_{r}$ is relative magnetic permeability of another medium , then permeability $\mu$ of the medium
A. $\mu_{0} \mu_{r}$
B. $\mu_{0} / \mu_{r}$
C. $\mu_{r} / \mu_{0}$
D. $1 / \mu_{0} \mu_{r}$

Answer: a

- Watch Video Solution

42. The ferromagnetic core of electromagnets
should have
A. a broad hysteresis loop
B. high permeability and high retentivity
C. low permeability and low retentivity
D. high permeability and low retentivity

## Answer: d

## D View Text Solution

43. The material suitable for making electromagnets should have
A. high retentivity and low coercivity
B. low retentivity and low coercivity
C. high retentivity and high coercivity
D. low retentivity and high coercivity

## Answer: b

## D Watch Video Solution

44. The relative permeability of iron is 6000 .

Its magnetic susceptibility is
A. 5999
B. 6001
C. $6000 \times 10^{-7}$
D. $6000 \times 10^{7}$

Answer: a

D Watch Video Solution
45. Which of the following is not correct about relative magnetic permeability $\left(\mu_{r}\right)$ ?
A. It is a dimensionsless pure ratio.
B. For vacuum medium its value is one .
C. For ferromagnetic materials $\mu_{r} \gg 1$
D. For paramagnetic materials $\mu_{r}>1$.

## Answer: d

## D Watch Video Solution

46. The basic magnetization curve for a feromagnetic materials is shown in figure .

Then , the value of relative permeability is
highest for the point
A. P
B. Q
C. R
D. S

Answer: b

- View Text Solution

47. When a piece of a ferromagnetic sobstance is put in a uniform magnetic field, the flux density inside it is four times the flux density away from the piece. The magnetic permeability of the material is
A. 1
B. 2
C. 3
D. 4
48. The permanent magnet is made fron which one of the following substances?
A. Diamagnetic
B. Paramagnetic
C. Ferromagnetic
D. Electromanetic

Answer: c
49. Demagnetisation of magnets can be done by
A. rough handling
B. heating
C. magnetising in the opposite direction
D. All the above

Answer: d

- View Text Solution

50. Nickel shows ferromagnetic property at room temperature. If the temperature is increased beyond curie temperature, then it will show
A. anti ferromagnetism
B. no magnetic property
C. diamagnetism
D. paramagnetism

## - Watch Video Solution

51. If a diamagnetic substance is brought near north or south pole of a bar magnet, it is
A. repelled by the north pole and attracted by the south pole
B. attracted by the north pole and repelled
by the south pole
C. attracted by north poles
D. repelled by both the poles

## Answer: d

## - Watch Video Solution

52. A paramagnetic material is placed in a magnetic field. Consider the following statements : (A) If the magnetic field is increased, the magnetization is increased. (B)

If the temperature is increased, the increased the magnetization is increased.
A. increases in proportion to $T$
B. decreases in proportion to $\frac{1}{T}$
C. increases in proportion to $T^{2}$
D. decreases in proportion to $\frac{1}{T^{2}}$

## Answer: b

## - Watch Video Solution

53. When a ferromagnetic material is heated
to temperature above its Curie tamperature,
the material
A. is permanently magnetizd
B. remains ferromagnetic
C. behaves like a diamagnetic material
D. behaves like a paramagnetic material

## Answer: d

## D Watch Video Solution

54. The magnetic moment of a magnet
$(15 \mathrm{~cm} \times 2 \mathrm{~cm} \times 1 \mathrm{~cm}) i s 1.2 A-m^{2}$. Calculate
its intensity of magnetisation
A. $4 \times 10^{4} \mathrm{Am}^{-1}$
B. $2 \times 10^{4} \mathrm{Am}^{-1}$
C. $10^{4} \mathrm{Am}^{-1}$
D. None of these

Answer: a

D Watch Video Solution
55. Needles $N_{1}, N_{2}$, and $N_{3}$ are made of a ferromagnetic, $a$ paramagnetic and $a$
diamagnetic substance respectively. A magnet when brought close to them will
A. attract $N_{1}$ and $N_{2}$ strongly but repel $N_{3}$
B. attract $N_{1}$ strongly, $N_{2}$ weakly and repel
$N_{3}$ weakly
C. attract $N_{1}$ strongly, but repel $N_{2}$ and $N_{3}$
weaklt
D. attract all three of them

Answer: b
56. Three identical bars $A, B$ and $C$ are made of different magnetic materials. When kept in a uniform magnetic field, the field lines around them look as follows:

Make the correspondence of these bars with their material being diamagnetic (D), ferromagnetic (F) and paramagnetic (P):

$$
\text { A. } A \Rightarrow D, B \Rightarrow P, C \Rightarrow F
$$

$$
\text { B. } A \Rightarrow F, B \Rightarrow D, C \Rightarrow P
$$

C. $A \Rightarrow P, B \Rightarrow F, C \Rightarrow D$

$$
\text { D. } A \Rightarrow F, B \Rightarrow P, C \Rightarrow D
$$

## Answer: b

## D View Text Solution

57. Relative permitivity and permeability of a material $\varepsilon_{r}$ and $\mu_{r}$, respectively. Which of the following values of these quantities are allowed for a diamagnetic material?

$$
\begin{aligned}
& \text { A. } \varepsilon_{r}=0.5, \mu_{r}=1.5 \\
& \text { B. } \varepsilon_{r}=1.5, \nu_{r}=0.5 \\
& \text { C. } \varepsilon_{r}=0.5, \mu_{r}=0.5 \\
& \text { D. } \varepsilon_{r}=1.5, \mu_{r}=1.5
\end{aligned}
$$

## Answer: b

## - Watch Video Solution

58. IF the current is doubled, the deflection is also doubled in
A. a tangent galvanometer
B. a moving-coil galvanometer
C. both
D. None of these

Answer: b

- Watch Video Solution

59. To measure the magnetic moment of a bar magnet, one may use
A. a deflection glavanometer if the earth's horizontal field is known
B. an oscillation magnetometer if the earth's horizontal field is known

C. both deflection and oscillation

magnetometer if the earth's horizontal
field is not known
D. all of the above

## Answer: d

60. A bar magnet of moment of inertia $9 \times 10^{-5} \mathrm{kgm}^{2} \quad$ placed in a vibration magnetometer and oscillating in a uniform magnetic field $16 \pi^{2} \times 10^{-5} T$ makes 20 oscillations in 15 s . The magnetic moment of the bar magnet is
A. $3 A m^{2}$
B. $1 A m^{2}$
C. $5 A m^{2}$

## D. $4 A m^{2}$

## Answer: d

## D Watch Video Solution

61. If the period of oscillaion of freely
suspended bar magnet in earth's horizontal
field $H$ is 4 sec. When another magnet is brought near it, the period of oscillation is reduced to 2 s . The magnetic field of second bar magnet is
A. 4 H
B. 3 H
C. 2 H
D. $\sqrt{3} H$

Answer: B

## D Watch Video Solution

62. A thin rectangular magnet suspnded freely
has a period of oscillation of 4 s . If it is broken
into one of the pieces is suspened similarly .

The period of its oscillation will be
A. 4 s
B. 2s
C. 0.5 s
D. 0.25 s

Answer: b
( Watch Video Solution
63. The time period of oscillation of a freely
suspended bar magnet with usual notations is
given by
A. $T=2 \pi \sqrt{\frac{I}{M B_{H}}}$
B. $T=2 \pi \sqrt{\frac{M B_{H}}{I}}$
C. $T=\sqrt{\frac{I}{M B_{H}}}$
D. $T=2 \pi \sqrt{\frac{B_{H}}{M I}}$

## Answer: a

64. Two tangent galvanometers having coils of the same radius are connected in series. A
current flowing in them produces deflections of $60^{\circ}$ and $45^{\circ}$ respectively. The ratio of the number of turns in the coils is
A. $4 / 3$
B. $\frac{\sqrt{3}+1}{1}$
C. $\frac{\sqrt{+1}}{\sqrt{-1}}$
D. $\frac{\sqrt{3}}{1}$

Answer: d

## D Watch Video Solution

65. The perio of oscillation of a magnet in
vibration magnetometer is 2 sec . The period of
oscillation of a magnet whosr magnetic moment is four times that of the first magnet is
A. 1 sec
B. 5 sec
C. 8 sec
D. 0.5 sec

## Answer: a

## D Watch Video Solution

66. Two magnets of magnetic moments $M$ and

2 M are placed in a vibration magnetometre,
with the identical poles in the same direction.
The time period of viberation is T. If the
magnets are placed with opposite poles together and vibrate with time period $T_{2}$ then
A. $T_{2}$ is infinite
B. $T_{2}=T_{1}$
C. $T_{2}>T_{1}$
D. $T_{2}<T_{1}$

Answer: c

D View Text Solution
67. Two tangent galvanometers $A$ and $B$ have coils of radii 8 cm and 16 cm respectively and resistance 8 ohm each. They are connected in parallel to a cell of emf $4 V$ and negligible internal resistance. The deflections produced are $30^{\circ}$ and $60^{\circ}$ respectivley. $A$ has 2 turns.

What is the number of turns in $B$ ?
A. 18 turns
B. 12 turns
C. 6 turns

## D. 2 turns

## Answer: b

## D Watch Video Solution

68. The magnetic needle of a tangent galvanometer is deflected at an angle $30^{\circ}$ due to a magnet. The hoeizontal component of earth's magnetic field $0.34 \times 10^{-4} T$ is along the plane of the coil. The magnetic intensity is

$$
\text { A. } 1.96 \times 10^{-4} T
$$

B. $1.96 \times 10^{-5} T$
C. $1.96 \times 10^{-4} T$
D. $1.96 \times 10^{5} T$

Answer: b

- Watch Video Solution

69. If $\theta_{1}$ and $\theta_{2}$ are two solutions of the equation $\quad$ a $\quad \cos 2 \theta+b \sin 2 \theta=c \quad$ then $\tan \theta_{1}+\tan \theta_{2}$
A. $2: 1$
B. 1:2
C. 1:1
D. None of these

Answer: a

- Watch Video Solution

Exercise 2 Concept Applicator

1. In a vibration magnetometer, the time period of a bar magnet oscillating in
horizontal componnt of earth's magnetic field is 2 sec . When a magnet is brought near and parallel to it, the time period reduces to 1 sec .

The ratio $H / F$ of the horizontal component $H$ and the field $F$ due to magnet will be
A. 3
B. $1 / 3$
C. $\sqrt{3}$

## D. $1 / \sqrt{3}$

## Answer: b

## D Watch Video Solution

2. A bar magnet 8 cm long is placed in the magnetic merdian with the N -pole pointing towards geographical north. Two netural points separated by a distance of 6 cms are obtained on the equatorial axis of the magnet . If horizontal component of earth's field
$=3.2 \times 10^{-5} T, \quad$ then pole strength of magnet is
A. $5 a b-a m p \times c m$
B. $10 a b-a m p \times c m$
C. $2.5 a b-a m p \times c m$
D. $20 a b-a m p \times c m$

Answer: a

- Watch Video Solution

3. Two magnets are held together in a vibration magnetometer and are allowed to oscillate in the earth's magnetic field with like poles togather, 12 oscillations per minute are made but for unlike poles togather only 4 oscillations per minute are axecuted. The ratio of their magnetic miments is
A. $3: 1$
B. $1: 3$
C. $3: 5$

## D. 5:4

## Answer: d

## D Watch Video Solution

4. A dip needle lies initially in the magnetic merdian when it shows an angle of $\operatorname{dip} \theta$ at a place. The dip circle is rotated through an angle $x$ in the horizontal plane and then it shows an angle of $\operatorname{dip} \theta^{\prime}$. Then $\frac{\tan \theta^{\prime}}{\tan \theta}$ is A. $\frac{1}{\cos x}$

# B. $\frac{1}{\sin x}$ <br> C. $\frac{1}{\tan x}$ 

D. $\cos x$

## Answer: a

## D Watch Video Solution

5. A coil in the shape of an equilateral triangle of side $I$ is suspended between the pole pieces of a permanent magnet such that $\vec{B}$ is in the plane of the coil. If due to a current $i$ in the
triangle a torque $\tau$ acts on it, the side I of the triangle is

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}}\left(\frac{\tau}{B \cdot i}\right)^{1 / 2} \\
& \text { B. } 2\left(\frac{\tau}{\sqrt{3} B \cdot i}\right) \\
& \text { C. } \frac{2}{\sqrt{3}}\left(\frac{\tau}{B \cdot i}\right) \\
& \text { D. } \frac{1}{\sqrt{3}} \frac{\tau}{B \cdot i}
\end{aligned}
$$

Answer: b

## D Watch Video Solution

6. The length of a magnet is large compared to
its width and breadth. The time period of its oscillation in a vibration magnetometer is $2 s$.

The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like poles together .

The time period of this combination will be
A. $2 \sqrt{3} s$
B. $\frac{2}{3} s$
C. $2 s$

$$
\text { D. } \frac{2}{\sqrt{3}} s
$$

## Answer: b

## D Watch Video Solution

7. The figure shown the various positions
(labelled by subscripts) of small magnetised needles $P$ and $Q$. The arrows show the direction of their magnetic moment . Which configuration corresponds to the lowest potential energy among all the configurations
A. $P Q_{3}$
B. $P Q_{4}$
C. $P Q_{5}$
D. $P Q_{6}$

Answer: d

D View Text Solution
8. Two identical short bar magnets, each
having magnetic moment $M$, are placed a distance of $2 d$ apart with axes perpendicular to each other in a horizontal plane. The magnetic induction at a point midway between them is
A. $\frac{\mu_{0}}{4 \pi}(\sqrt{2}) \frac{M}{d^{3}}$
B. $\frac{\mu_{0}}{4 \pi}(\sqrt{3}) \frac{M}{d^{3}}$
C. $\left(\frac{2 \mu_{0}}{\pi}\right) \frac{M}{d^{3}}$
D. $\frac{\mu_{0}}{4 \pi}(\sqrt{5}) \frac{M}{d^{3}}$

Answer: d

## - Watch Video Solution

9. A very small magnet is placed in the magnetic meridian with its south pole pointing north. The null point is obtained 20 cm away from the centre of the magnet. If the earth's magnetic field (horizontal component) at this point be 0.3 Gauss, the magnetic moment of the magnet is
A. $8.0 \times 10^{2} e . m . u$
B. $1.2 \times 10^{3} e . m . u$
C. $2.4 \times 10^{3} e . m . u$
D. $3.6 \times 10^{3}$ e.m. u

Answer: b

## D Watch Video Solution

10. A vibration magnetometer placed in magnetic meridian has a small bar magnet.

The magnet executes oscillations with a time
period of 2 sec in earth's horizontal magnetic
field of 24 microtesla. When a horizontal field of 18 microtesla is produced opposite to the earth's field by placing a current carrying wire, the new time period of magnet will be
A. 1s
B. 2s
C. 3 s
D. 4 s

Answer: d
11. A thin rectangular magnet suspended freely
has a period of oscillation equal to $T$. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is $T^{\prime}$, then ratio $\frac{T^{\prime}}{T}$ is
A. 4 s
B. 2s
C. 0.5 s

## D. 0.25 s

## Answer: b

## D Watch Video Solution

12. A magnet makes 40 oscillations per minute at a place having magnetic field intensity of $0.1 \times 10^{-5} T$. At another place, it takes 2.5 sec to complete one vibrating. The value of earth's horizontal field at that place is

$$
\text { A. } 0.25 \times 10^{-6} T
$$

B. $0.36 \times 10^{-6} T$
C. $0.66 \times 10^{-8} T$
D. $1.2 \times 10^{-6} T$

## Answer: b

## - Watch Video Solution

13. Two short bar magnets of length 1 cm each
have magnetic
moments
$1.20 \mathrm{Am}^{2}$ and $1.00 \mathrm{Am}^{2}$ respectively. They are placed on a horizontal table parallel to each
other with their $N$ poles pointing towards the south. They have a common magnetic equator and are separted by a distance of 20.0 cm . The value of the resultant horizontal magnetic induction at the mid - point $O$ of the line joining their centres is close to (Horizontal component of earths magnetic induction is $3.6 \times 10.5 W h / m^{2}$

$$
\begin{aligned}
& \text { А. } 3.6 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2} \\
& \text { В. } 2.56 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2} \\
& \text { C. } 3.50 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\text { D. } 5.80 \times 10^{-4} W b / m^{2}
$$

## Answer: b

## D Watch Video Solution

14. A bar magnet of length 10 cm and having the pole strength equal to $10^{-3}$ weber is kept in a magnetic field having magnetic induction
(B) equal to $4 \pi \times 10^{-3}$ Tesla. It makes an angle of $30^{\circ}$ with the direction of mwgnetic induction. The value of the torque acting on
the magnet is

$$
\left(\mu_{0}=4 \pi \times 10^{-7} \text { weber } / a m p \times m\right)
$$

A. $2 \pi \times 10^{-7} N \times m$
B. $2 \pi \times 10^{-5} N \times m$
C. $0.5 N \times m$
D. $0.5 \times 10^{2} N \times m$

Answer: a

D Watch Video Solution
15. A thin rectangular magnet suspended
freely has a period of oscillation equal to $T$.
Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is $T^{\prime}$, then ratio $\frac{T^{\prime}}{T}$ is
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2}$
C. 2
D. $\frac{1}{2}$

## Answer: b

## D Watch Video Solution

16. Two solenoids acting as short bar magnets
$P$ and $Q$ are arranged such that their centres
are on the X -axis and are separated by a large distance. The magnetic axes of $P$ and $Q$ are along $X$ and $Y$-axes, respectively. At a point $R$, midway between their centres, if $B$ is the
magnitude of induction due to Q , then the magnitude of total induction at $R$ due to the both magnets is
A. 3 B
B. $\sqrt{5} B$
C. $\frac{\sqrt{5}}{2} B$
D. $B$

Answer: b

D Watch Video Solution
17. A domain in a ferromagnetic substance is in
the form of a cube of side length $1 \mu \mathrm{~m}$. If it contains $8 \times 10^{10}$ atoms and each atomic dipole has a dipole moment of $9 \times 10^{-24} \mathrm{Am}^{2}$ , then magnetization of the domain is
A. $7.2 \times 10^{5} A m^{-1}$
B. $7.2 \times 10^{3} \mathrm{Am}^{-1}$
C. $7.2 \times 10^{9} A m^{-1}$
D. $7.2 X X 10^{12} a M^{-1}$

## Watch Video Solution

18. A short bar magnet is placed in the magnetic meridian of the earth with its north pole pointing north. Neutral points are found at a distance of 30 cm from the magnet on the

East-West line drawn through the mid point of the magnet. What is the magnetic moment of the magnet in $A m^{2}$ ? (Given $m=10^{-7}$ in S ) units and $B_{H}=$ horizontal component of earth's magnetic field $=3.6 \times 10^{-5}$ tesla)
A. 14.6
B. 19.4
C. 9.7
D. 4.9

## Answer: c

## D Watch Video Solution

19. A long straight horizontal cable carries a current fo 2.5 A in the direction $10^{\circ}$ south of west to $10^{\circ}$ north of east . The magnetic
meridian of the plane happens to be $10^{\circ}$ west of the geographic meridian . The earth's magnetic field at the location is 0.33 G , and the angle of dip is zero. Locate the line of neutral points.
A. 1.5 cm
B. 2.5 cm
C. 3.5 cm
D. 2.0 cm

Answer: a
20. The magnetic moment of a magnet is
$0.1 a m p \times m^{2}$. It is suspended in a magnetic
field of intensity $3 \times 10^{-4}$ weber $/ \mathrm{m}^{2}$. The
couple acting upon it when deflected by $30^{\circ}$
from the magnetic field is
A. $1 \times 10^{-5} \mathrm{Nm}$
B. $1.5 \times 10^{-5} \mathrm{Nm}$
C. $2 \times 10^{-5} \mathrm{Nm}$
D. $2.5 \times 10^{-5} \mathrm{Nm}$

## Answer: b

## D Watch Video Solution

21. Two bar magnets of the same length and breadth but having magnetic moments $M$ and
$2 M$ are joined with like poles together and suspended by a string. The time of oscillation of this assembly in a magnetic field of strength $B$ is 3 sec . What will be the period of oscillation, if the polarity of one of the
magnets is changed and the combination is

## again made to oscillate in the same field ?

A. $\sqrt{3} \mathrm{sec}$
B. $3 \sqrt{3} \mathrm{sec}$
C. 3 sec
D. 6 sec

Answer: b
( Watch Video Solution
22. A dip circle is so set that the dip needle moves freely in the magnetic meridian. In this position the angle of dip is $39^{\circ}$. Now, the dip circle is rotated so that the plane in which the needle moves makes an angle of $30^{\circ}$ with the magnetic meridian. In this position, the needle will dip by an angle -
A. $40^{\circ}$
B. $30^{\circ}$
C. more than $40^{\circ}$

## D. less than $40^{\circ}$

## Answer: d

## D Watch Video Solution

23. Ratio of magnetic intensities for an axial point and a point on broad side-on position at equal distance $d$ from the centre of magnet will be or The magnetic field at a distance $d$
from a short bar magnet in longitudinal and transverse positions are in the ratio
A. $1: 1$
B. 2: 3
C. 2:1
D. $3: 2$

## Answer: c

## D Watch Video Solution

24. A magnetic dipole is under the influence of two magnetic fields. The angle between the two field directions is $60^{\circ}$ and one of the
fields has a magnitude of $1.2 \times 10^{-2} T$. If the dipole comes to stable equilibrium at an angle of $15^{\circ}$ with this field, what is the magnitude of the other field?
A. $4.4 \times 10^{-3}$ tesla
B. $5.2 \times 10^{-3}$ tesla
C. $3.4 \times 10^{-3}$ tesla
D. $7.8 \times 10^{-3}$ tesla

## Answer: a

25. A 10 cm long bar magnet of magnetic moment 1.34 Am2 is placed in the magnetic meridian with its south pole pointing geographical south. The neutral point is obtained at a distance of 15 cm from the centre of the magnet. Calculate the horizontal component of earth's magnetic field.
A. $0.12 \times 10^{-4} \mathrm{~T}$
B. $0.21 \times 10^{-4} \mathrm{~T}$
C. $0.34 \times 10^{-4} \mathrm{~T}$

## D. $0.87 \times 10^{-7} T$

## Answer: c

## D Watch Video Solution

26. A vibration magnetometer consists of two
identical bar magnets placed one over the other such that they are perpendicular and bisect each other. The time period of oscillation in a horizontal magnetic field $2^{\frac{5}{4}} s$.

One of the magnets is removed and if the
other magnet oscillates in the time field, then
the time period in second is
A. $2^{1 / 4}$
B. $2^{1 / 2}$
C. 2
D. $2^{3 / 4}$

Answer: c
( Watch Video Solution
27. Torques $\tau_{1}$ and $\tau_{2}$ are required for $a$ magnetic needle to remain perpendicular to the magnetic fields at two different places. The magnetic field at those places are B1 and B2 respectively, then $\frac{B_{1}}{B_{2}}$ is

$$
\begin{aligned}
& \text { A. } \frac{\tau_{2}}{\tau_{1}} \\
& \text { B. } \frac{\tau_{1}}{\tau_{2}} \\
& \text { C. } \frac{\tau_{1}+\tau_{2}}{\tau_{1}-\tau_{2}} \\
& \text { D. } \frac{\tau_{1}-\tau_{2}}{\tau_{1}+\tau_{2}}
\end{aligned}
$$

## - Watch Video Solution

28. The mass of a speciment of a ferromagnetic material is 0.6 kg . and its density is $7.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If the area of hysteresis loop of alternating magnetising field of frequency 50 Hz is $0.722 M K S$ units then the hysteresis loss per second will be
A. $277.7 \times 10^{-5}$ joule
B. $277.7 \times 10^{-6}$ joule

# C. $277.7 \times 10^{-4}$ joule 

$$
\text { D. } 27.77 \times 10^{-4} \text { joule }
$$

## Answer: a

## D View Text Solution

29. The time period of oscillation of a magnet
in a vibration magnetometer is 1.5 seconds.

The time period of oscillation of another of another magnet similar in size, shap and mass but having one-fourth magnetic moment than
that of first magnet, oscillating at same place will be
A. 0.75 sec
B. 1.5 sec
C. 3.0 sec
D. 6.0 sec

Answer: c
( Watch Video Solution
30. Two short magnets have equal to pole strength but one is twice as long as the other.

The shorter magnet is placed 20 cm in $\tan \mathrm{A}$ position from the compass needle. The longer magnet must be placed on the other side of the magnetometer for no deflection at a distance equal to:
A. 20 cms
B. $20(2)^{1 / 3} \mathrm{cms}$
C. $20(2)^{2 / 3} \mathrm{cms}$

## D. $20(2)^{3 / 3} \mathrm{cms}$

## Answer: b

## D Watch Video Solution

31. At a place on earth, horizontal component of earth's magnetic field is $B_{1}$ and vertical component of earth's magnetic field is $B_{2}$. If a magnetic needle is kept vertical, in a plane making angle $\alpha$ with the horizontal component of magnetic field, then square of
time period of oscillation of needle when slightly distributed is proportional to

D. infinite

## Answer: c

## D Watch Video Solution

