©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

MECHANICAL PROPERTIES OF FLUIDS

Jee Main 5 Years At A Glance

1. A small soap bubble of radius 4 cm is trapped inside another bubble of radius 6 cm without any
contact. Let P_{2} be the pressure inside the inner
bubble and P_{0}, the pressure outside the outer bubble. Radius of another bubble with pressure difference $P_{2}-P_{0}$ between its inside and outside would be :
A. 6 cm
B. 12 cm
C. 4.8 cm
D. 2.4 cm

Answer: D

- Watch Video Solution

2. When an air bubble of radius ' r ' rises from the
bottom to the surface of a lake, its radius becomes
$5 r / 4$ (the pressure of the atmosphere is equal to the $10 m$ height of water column). If the temperature is constant and the surface tension is neglected, the depth of the lake is

A. $10.5 m$

B. $8.7 m$
C. $11.2 m$
D. $9.5 m$

Answer: D
3. Two tubes of radii r_{1} and r_{2} and lengths l_{1} and l_{2} respectively, are connected in series and a liquid flows through each of them in streamline conditions. P_{1} and P_{2} are pressure differences across the two tubes. If P_{2} is $4 P_{1}$ and l_{2} is $\frac{l_{1}}{4}$ then the radius r, will be equal to:
A. r_{1}
B. $2 r_{1}$
C. $4 r_{1}$
D. $\frac{r_{1}}{2}$

Answer: D

- Watch Video Solution

4. Which of the following option correctly describes the variation of the speed and acceleration ' a ' of a point mass falling vertically in a viscous medium that applies a force $F=-k v$, where ' k ' is constant, on the body?
(Graphs are schematic and drawn to scale)
A.
B.
c.
D.

Answer: C

- Watch Video Solution

5. If it takes 5 minutes to fill a 15 litre bucket from a water tap diameter $\frac{2}{\sqrt{\pi}} \mathrm{~cm}$ then the raynolds number for the flow is (density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity of water $=10^{-3}$ Pa.s) close to
A. 100
B. 11000
C. 550
D. 5500

Answer: D

- Watch Video Solution

6. The velocity of water in a rier is $18 \mathrm{kmh}^{-1}$ near the surface. If the river is 5 m deepm, find the shearing stress between the horizontal lyers of
water. The coefficient of viscosity of water $\begin{gathered} \\ =10^{\wedge}-2\end{gathered}$ poise.

$$
\begin{aligned}
& \text { A. } 10^{-1} N / m^{2} \\
& \text { B. } 10^{-2} N / m^{2} \\
& \text { C. } 10^{-3} N / m^{2} \\
& \text { D. } 10^{-4} N / m^{2}
\end{aligned}
$$

Answer: B
7. An open glass tube is immersed in mercury in such a way that a length of 8 cm extends above the mercury level. The open end of the tube is then closed and sealed and the tube is raised vertically up by additional 46 cm . what will be length of the air column above mercury in the above now?
(Atmospheric pressure $=76 \mathrm{~cm}$ of Hg)
A. 16 cm
B. 22 cm
C. 38 cm
D. 6 cm

- Watch Video Solution

Exercise 1 Concept Builder

1. The pressure at the bottom of a tank containing a liquid does not depend on
A. acceleration due to gravity
B. height of the liquid column
C. area of the bottom surface
D. nature of the liquid A beaker containing a liquid of density p moves up with an acceleration

Answer: C

- Watch Video Solution

2. How does liquid pressure depend on the depth of a point below the surface of a liquid
A. $h \rho g$
B. $h \rho(g-a)$
C. $h \rho(g+a)$
D. $2 h \rho g\left(\frac{g+a}{g-a}\right)$

Answer: C

- Watch Video Solution

3. An egg when placed in ordinary water sinks but floats when placed in brine. This is because
A. density of brine is less than that of ordinary

water

B. density of brine is equal to that of ordinary water
C. density of brine is greater than that of ordinary water
D. None of these

Answer: C

D Watch Video Solution

4. A common hydrometer reads specific gravity of
liquids Compared to the 1.6 mark of the stem the
mark 1.5 will be
A. upwards
B. downwards
C. in the same place
D. may be upward or downward depending upon the hydrometer

Answer: A

- Watch Video Solution

5. The spring balance A reads 2 kg with a block of mass m suspended from it. A balance B reads 5 kg when a beaker with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass is inside the liquid in a beaker as shown in fig. Then
A. balance A will read more than 2 kg
B. balance B will read less than 5 kg
C. balance A will read less than 2 kg and B will read more than 5 kg
D. balance A will read more than 2 kg and B will read less than 5 kg

Answer: C

- View Text Solution

6. The density of ice is $x g m / c c$ and that of water is
$y g m / c c$. What is the change in volume in $c c$, when $m g m$ of ice metls?
A. $m y(x-y)$
B. $m /(y-x)$
C. $m\left(\frac{1}{y}-\frac{1}{y}\right)$
D. $(y-x) / x$

Answer: C

- Watch Video Solution

7. A small lead shot is embedded in a big lump of ice floating in a jar of water. The level of water in the jar is noted. When all the ice melts down, the level of water in the jar would
A. be raised
B. go down
C. remain unchanged
D. None of these

Answer: B

- Watch Video Solution

8. The pressure at depth h below the surface of a liquid of density ρ open to the atmosphere is
A. greater than the atmospheric pressure by pgh
B. less than the atmospheric pressure by pgh
C. equal to the atmospheric pressure
D. decreases exponentially with depth

Answer: A

- Watch Video Solution

9. The force acting on a window of are $50 \times 50 \mathrm{~cm}$
of a submarine at a depth of 2000 m in an ocean
,the interior of which is maintained at sea level
atmospheric pressure is (density of sea water = $10^{3} \mathrm{kgm}^{-3}, \mathrm{~g}=10 \mathrm{~ms}^{-2}$)
A. $10^{6} N$
B. $5 \times 10^{5} N$
C. $25 \times N 10^{6} N$
D. $5 \times 10^{6} N$

Answer: D

- Watch Video Solution

10. A wooden block, with a coin placed on its top,
floats in water as shown in fig. the distance 1 and h are shown there. After some time the coin falls into
the water. Then
A. I decreases and h increasesCoin
B. I increases and h decreases
C. both C and h increases
D. both and h decreases

Answer: D

D View Text Solution
11. The density ρ of water of buk modulus B at a depth y then ocean is related to the density at surface ρ_{0} by the relation

$$
\begin{aligned}
& \text { A. } \rho=\rho_{0}\left[1-\frac{\rho_{0} g y}{B}\right] \\
& \text { B. } \rho=\rho_{0}\left[1+\frac{\rho_{0} g y}{B}\right] \\
& \text { C. } \rho=\rho_{0}\left[1+\frac{B}{\rho_{0} h g y}\right] \\
& \text { D. } \rho=\rho_{0}\left[1-\frac{B}{\rho_{0} g y}\right]
\end{aligned}
$$

Answer: B

12. A large block of ice $5 m$ thick has a vertical hole drilled through it and is floating in the middle of a
lake. What is the minimum length of a rope required to scoop up a bucket full of water through the hole? Relative density of ice $=0.9$.

A. $5.5 m$
B. 5 m

C. 4.5 m

D. 0.5 m

Answer: D

- Watch Video Solution

13. A sphere of solid material of specific gravity 8 has a concentric spherical cavity and just sinks in water. The ratio of radius of cavity to that of outer radius of the sphere must be

$$
\text { A. } \frac{7^{1 / 3}}{2}
$$

B. $\frac{5^{1 / 3}}{2}$
C. $\frac{9^{1 / 3}}{2}$
D. $\frac{3^{1 / 3}}{2}$

Answer: A

- Watch Video Solution

14. A metallic sphere weighs $210 g$ in air, 180 g in water and 120 g in an unknown liquid. Find the density of metal and of liquid.
A. the density of the metal is $3 \mathrm{~g} / \mathrm{cm}^{3}$
B. the density of the metal is $7 \mathrm{~g} / \mathrm{cm}^{3}$
C. density of the metal is 4 times the density of unknown liquid
D. the metal still float in water

Answer: A

- Watch Video Solution

15. An iceberg is floating partly immersed in sea water, the density of sea water is $1.03 \mathrm{gcm}^{-3}$ and that of ice is $0.92 \mathrm{gcm}^{-3}$. The fraction of the total
volume of the iceberg above the level of sea water is
A. 8.1%
B. 11%
C. 34%
D. 0.8%

Answer: B
(Watch Video Solution
16. A boat having a length of 3 m and breadth of 2
m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the mas is:

A. 60 kg

B. 62 kg
C. 72 kg
D. 128 kg

Answer: A

- Watch Video Solution

17. A body of density ρ is dropped from reat from a height h into a lake of density $\sigma(\sigma>\rho)$. The maximum depth the body sinks inside the liquid is
(neglect viscous effect of liquid)
A. $\frac{h}{\rho-\rho^{\prime}}$
B. $\frac{h \rho^{\prime}}{\rho}$
C. $\frac{h \rho}{\rho-\rho^{\prime}}$
D. $\frac{h \rho^{\prime}}{\rho}$

Answer: C

18. A vessel contains oil (density $=0.8 \mathrm{gm} / \mathrm{cm}^{3}$) over mercury (density $=13.6 \mathrm{gmcm}^{3}$). A homogeneous sphere floats with half its volume immersed in mercury and the other half in oil. The density of the material of the sphere in $\mathrm{gm} / \mathrm{cm}^{3}$ is
A. 3.3
B. 6.4
C. 7.2
D. 12.8

Answer: C

19. A sphere of solid material of relative density 9
has a concentric spherical cavity and sinks in water.
If the radius of the sphere be R. Then the radius of
the cavity (r) will be related to R as

$$
\begin{aligned}
& \text { A. } r^{3}=\frac{9}{9} R^{3} \\
& \text { B. } r^{3}=\frac{2}{3} R^{3} \\
& \text { C. } r^{2}=\frac{\sqrt{8}}{9} R^{3} \\
& \text { D. } r^{3}=\sqrt{\frac{2}{3}} R^{3}
\end{aligned}
$$

Answer: A

20. A pieceo of ice is floating in water. Find the fraction of volume of he piece of ice outside the water
(Given density of ice $=900 \mathrm{~kg} / \mathrm{m}^{3}$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)
A. $\frac{90}{103}$
B. $\frac{13}{103}$
C. $\frac{10}{103}$
D. $\frac{1}{103}$

- Watch Video Solution

21. In car lift compressed air exerts a force F_{1} on a small piston having a radius of 5 cm . This pressure is transmitted to a second piston of radius 15 cm . If the mass of the car to be lifted is 1350 kg , what is
F_{1} ? What is the pressure necessary to ac complish this task?
A. 1. $4 \times 10^{5} P a$
B. $2 \times 10^{5} \mathrm{~Pa}$
C. 1. $9 \times 10^{5} \mathrm{~Pa}$

D. 1.9 Pa

Answer: C

- Watch Video Solution

22. A cone full of water, is placed on its side on a horizontal table, the thrust on its base is x times the weight of the contained fluid, where 2α is the vertical angle of the cone. Find the value of x.
A. $3 \cos \alpha$
B. $3 \sin \alpha$

C. $2 \sin \alpha$

D. $2 \cos \alpha$

Answer: B

- Watch Video Solution

23. A narrow tube completely filled with a liquid is
lying on a series of cylinders as shown in figure.
Assuming no sliding between any surfaces, the
value of acceleration of the cylinders for which
liquid will not come out of the tube from anywhere
is given by

> A. $\frac{g H}{2 L}$ B. $\frac{g H}{L}$ C. $\frac{2 g H}{L}$ D. $\frac{g H}{\sqrt{2} L}$

Answer: A

D View Text Solution
24. The total weight of a piece of wood is 6 kg in the floating state in water its $1 / 3$ part remains inside the water on this floating solid what maximum weight is to be put such that the whole of the piece of wood is to be drowned in the water
A. 15 kg
B. 14 kg
C. 10 kg
D. 12 kg

Answer: D
25. Water is flowing continuously from a tap having an internal diameter $8 \times 10^{-3} \mathrm{~m}$. The water velocity as it lewes the tap is $0.4 m s^{-1}$. The diameter of the water stream at a distance $2 \times 10^{-1} \mathrm{~m}$ below the tap is close to $\left(g=10 m / s^{2}\right)$
A. $7.5 \times 10^{-3} m$
B. $9.6 x 10^{-3} m$
C. $3.6 \times 10^{-3} m$
D. $5.0 \times 10^{-3} \mathrm{~m}$

Answer: C

- Watch Video Solution

26. The cylinderical tube of a spray pump has
radius R, One end of which has n fine holes, each of
radius r. If the speed of the liquid in the tube is V, the speed of the ejection of the liquid through the holes is :
A. $\frac{V R^{2}}{n r^{2}}$
B. $\frac{V R^{2}}{n^{3} r^{2}}$
C. $\frac{V^{2} R}{n r}$
D. $\frac{V R^{2}}{n^{2} r^{2}}$

Answer: A

- Watch Video Solution

27. A fluid is in streamline flow across a horizontal pipe of variable area of cross section. For this which of the following statements is correct?
A. The velocity is minimum at the narrowest
part of thepipe and the pressure is minimum
at the widest part of the pipe
B. The veloeity is maximum at the narrowest
part of the pipe and pressure is maximum at
the widest part of the pipe
C. Velocity and pressure both are maximum at
the narrowest part of the pipe
D. Velocity and pressure both are maximum at the widest part of the pipe

Answer: B

- Watch Video Solution

28. A cylindrical vessel contains a liquid of density ρ
up to height h. The liquid is closed by a piston of mass m and area of cross section A. There is a small hole at the bottom of the vessel. The speed v with which the liquid comes out of the hole is

A. $\sqrt{2} g h$
B. $\sqrt{2 g\left(h+\frac{m}{\rho A}\right)}$
C. $\sqrt{g\left(h+\frac{m}{\rho A}\right)}$
D. $\sqrt{g\left(h+\frac{2 m}{\rho A}\right)}$

Answer: B

- Watch Video Solution

29. Oil is filled in a cylindrical container up to height 4 m . A small hole of area ' p ' is punched in the wall of the container at a height 1.52 m from the bottom. The cross sectional area of the container is
Q. If $\frac{p}{q}=0.1$ then v is (where vis the velocity of oil coming out of the hole)
A. $5 \sqrt{2}$
B. $6 \sqrt{3}$
C. $8 \sqrt{2}$
D. $7 \sqrt{5}$

Answer: A

- Watch Video Solution

30. Figure shows a liquid flowing through a tube at the rate of $0.1 \mathrm{~m}^{3} / \mathrm{s}$. The tube is branched into two semicircular tubes of cross - sectional area $A / 3$ and $2 A / 3$. The velocity of liquid at Q is (the crosssection of the main tube is

$$
\left.A=10^{-2} \mathrm{~m}^{2} \text { and } v_{p}=20 \mathrm{~m} / \mathrm{s}\right)
$$

A. $5 \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $35 \mathrm{~m} / \mathrm{s}$
D. None of these

D View Text Solution

31. A cylinder of height 20 m is completely filled with water. The velocity of effux of water $\left(\in m s^{-1}\right)$
through a small hole on the side wall of the
cylinder near its bottom is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $25.5 \mathrm{~m} / \mathrm{s}$
D. $5 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

32. Atank is filled with water upto a height H. Water is allowed to come out of a hole P in one of the walls at a depth h below the surface of water (see
fig.) Express the horizontal distance X in terms Hand h.
A. $X=\sqrt{h(H-h)}$
B. $\left(X \sqrt{\frac{h}{2}(H-h)}\right.$

$$
\begin{aligned}
& \text { C. }(X=2 \sqrt{h(H-h)} \\
& \text { D. } X=4 \sqrt{h(H-h)}
\end{aligned}
$$

Answer: C

- View Text Solution

33. There is a small hole at the bottom of tank filled with water. If total pressure at the bottom is $3 \operatorname{atm}\left(1 \mathrm{~atm}=10^{5} \mathrm{Nm}^{-2}\right)$, then find the velocity of water flowing from hole.

$$
\text { A. } \sqrt{400} \mathrm{~m} / \mathrm{s}
$$

B. $\sqrt{600} \mathrm{~m} / \mathrm{s}$
C. $\sqrt{60} \mathrm{~m} / \mathrm{s}$
D. None of thtese

Answer: A

- Watch Video Solution

34. In the figure, the velocity V_{2} will be
A. Zero
B. $4 m s^{-1}$
C. $1 m s^{-1}$
D. $3 m s^{-1}$

Answer: C

- View Text Solution

35. Three tubes X, Y and Z are connected to a horizontal pipe in which ideal liquid is flowing. The radii of the tubes X, Y and Z at the junction are respectively $3 \mathrm{~cm}, 1 \mathrm{~cm}$ and 3 cm . It can be said
A. the height of the liquid in the tube A is maximum.
B. the height of liquid in the tubes Aand B is same.
C. the height liquid in the tubes A, B and C is same.
D. the height of the liquid in the tubes A and C
is the same.

Answer: D

D View Text Solution
36. Air flows horizontally with a speed $\mathrm{v}=106 \mathrm{~km} / \mathrm{hr}$.

A house has plane roof of area $A=20 m^{2}$ The magnitude of aerodynamic lift of the roof is
A. $1.127 \times 10^{4} N$
B. $5.0 \times 10^{4} N$
C. $1.127 \times 10^{5} N$
D. $3.127 \times 10^{4} N$

Answer: A

37. A vessel of area of cross-section A has liquid to
a height H . There is a hole at the bottom of vessel having area of cross-section a. The time taken to decrease the level from H_{1} to H_{2} will sec
A. $\frac{2 A}{\pi a^{2}} \sqrt{\frac{h}{g}}$
B. $\frac{\sqrt{2} A}{\pi a^{2}} \sqrt{\frac{h}{g}}$
C. $\frac{2 \sqrt{2} A}{\pi a^{2}} \sqrt{\frac{h}{g}}$
D. $\frac{A}{\sqrt{2} \pi a^{2}} \sqrt{\frac{h}{g}}$

Answer: B
38. Water is flowing through a horizontal tube having crosssectional areas of its two ends being A and A^{\prime} such that the ratio All ' is 5 . If the pressure difference of water between the two ends is $3 \times 10^{5} \mathrm{Nm}^{-2}$ the velocity of water with which it enters the tube will be (neglect gravity effects)
A. $5 m s^{-1}$
B. $10 m s^{-1}$
C. $25 m s^{-1}$
D. $50 \sqrt{10} m s^{-1}$

D Watch Video Solution

39. Which of the following statement(s) is/are true?
A. For gases, in general, viscosity increases with
temperature
B. For liquids, viscosity varies directly with pressure
C. For gases, viscosity is independent of pressure
D. All of the above

Answer: D

- Watch Video Solution

40. If the terminal speed of a sphere of gold
(density $=19.5 \mathrm{~kg} / \mathrm{m}^{3}$) is $0.2 \mathrm{~m} / \mathrm{s}$ in a viscous
liquid (density $=1.5 \mathrm{~kg} / \mathrm{m}^{3}$), find the terminal
speed of a sphere of silver (density $=10.5 \mathrm{~kg} / \mathrm{m}^{3}$)
of the same size in the same liquid
A. $0.4 \mathrm{~m} / \mathrm{s}$
B. $0.133 \mathrm{~m} / \mathrm{s}$
C. $0.1 \mathrm{~m} / \mathrm{s}$
D. $0.2 \mathrm{~m} / \mathrm{s}$

Answer: C

- Watch Video Solution

41. What is the velocity v of a metallic ball of radius
r falling in a tank of liquid at the instant when its acceleration is one-half that of a freely falling body
? (The densities of metal and of liquid are r and s respectively, and the viscosity of the liquid is η).

$$
\begin{aligned}
& \text { A. } \frac{r^{2} g}{9 \eta}(\rho-2 \sigma) \\
& \text { B. } \frac{r^{2} g}{9 \eta}(2 \rho-\sigma)
\end{aligned}
$$

C. $\frac{r^{2} g}{9 \eta}(\rho-\sigma)$
D. $\frac{2 r^{2} g}{9 \eta}(\rho-\sigma)$

Answer: C

- Watch Video Solution

42. A rain drop of radius 0.3 mm has a terminal velocity in air $=1 \mathrm{~m} / \mathrm{s}$. The viscosity of air is 8×10^{-5} poise. The viscous force on it is
A. 45.2×10^{-4} dyne
B. 101. $73 \times 10^{-5} 1$ dyne
C. 16.95×10^{-4} dyne
D. 16.96×10^{-5} dyne

Answer: A

- Watch Video Solution

43. A spherical ball of iron of radius 2 mm is falling through a column of glycerine. If densities of glycerine and iron are respectively $1.3 \times 103 \mathrm{~kg} / \mathrm{m}^{3}$ and $8 \times 103 \mathrm{~kg} / \mathrm{m}^{3} . \quad \eta \quad$ for glycerine $=0.83 \mathrm{Nm}^{-2} \mathrm{sec}$, then the terminal velocity
A. $0.7 m / s$
B. $0.07 \mathrm{~m} / \mathrm{s}$
C. $0.007 \mathrm{~m} / \mathrm{s}$
D. $0.0007 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

44. A small spherical ball falling through a viscous
medium of negligible density has terminal velocity
v. Another ball of the same mass but of radius
twice that of the earlier falling through the same viscous medium will have terminal velocity
A. v
B. $v / 4$
C. $\mathrm{v} / 2$
D. 2 v

Answer: C

- Watch Video Solution

45. Two drops of the same radius are falling through air with a steady velcoity of $5 \mathrm{cms}^{-1}$. If the two drops coalesce, the terminal velocity would be
A. 10 cm per sec
B. 2.5 cm per sec
C. $5 \times(4)^{1 / 3} \mathrm{~cm}$ per sec
D. $5 \times \sqrt{3} \mathrm{~cm}$ per sec

Answer: C

46. A lead shot of a 1 mm diameter falls through a long column of glycerine.The variation of its velocity v with distance covered is represented by, A. `
(\#\#DSH_NTA_JEE_MN_PHY_C09_EO2_047_O01.png"
width="30\%">
B.
(\#\#DSH_NTA_JEE_MN_PHY_CO9_EO2_047_O02.png"
width="30\%">
C.
(\#\#DSH_NTA_JEE_MN_PHY_CO9_EO2_047_O03.png"
width="30\%">
D.

(\#\#DSH_NTA_JEE_MN_PHY_C09_EO2_047_O04.png"

width="30\%">

Answer: B

- Watch Video Solution

47. When a ball is released from rest in a very long
column of viscous. Liquid its downwards acceleration is a (just after release). Then its
acceleration when it has acquired two third of the maximum velocity:
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

48. A ball of radius r and density p falls freely under gravity through a distance h before entering water.

Velocity of ball does not change even on entering water. If viscosity of water is n the value of his given by

$$
\begin{aligned}
& \text { A. } \frac{2}{9} r^{2}\left(\frac{1-\rho}{\eta}\right) g \\
& \text { B. } \frac{2}{81} r^{2}\left(\frac{\rho-1}{\eta}\right) g \\
& \text { C. } \frac{2}{81} r^{4}\left(\frac{\rho-1}{\eta}\right)^{2} g \\
& \text { D. } \frac{2}{9} r^{4}\left(\frac{\rho-1}{\eta}\right)^{2} g
\end{aligned}
$$

49. A small ball (mass m) falling under gravity in a viscous medium experience a drag force proportional to the instantaneous speed u such that $F_{d r a g}=k u$. Then the terminal speed of ball within viscous medium is
A. $\frac{K}{m g}$
B. $\frac{m g}{K}$
C. $\sqrt{\frac{m g}{K}}$
D. $\left(\frac{m g}{K}\right)^{2}$

Answer: D

- Watch Video Solution

50. An air bubble of radius 1 cm rises with terminal velocity $0.21 \mathrm{~cm} / \mathrm{s}$ in liquid column. If the density of
liquid is $1.47 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Then the value of coefficient of viscosity of liquid ignoring the density of air, will be
A. 1. 71×10^{4} poise
B. 1.82×10^{4} poise
C. 1.78×10^{4} poise

D. 1.52×10^{4} poise

Answer: D

- Watch Video Solution

51. Two soap bubbles A and B are kept in a closed chamber where the air is maintained at pressure $8 \mathrm{~N} / \mathrm{m}^{2}$. The radii of bubbles A and B are 2 cm and
$4 c m$, respectively. Surface tension of the soap.

Water used to make bubbles is $0.04 \mathrm{~N} / \mathrm{m}$. Find the ratio n_{B} / n_{A}, where n_{A} and n_{B} are the number of
moles of air in bubbles A and B respectively.
[Neglect the effect of gravity.]
A. 2
B. 9
C. 8
D. 6

Answer: D

- Watch Video Solution

52. Let T_{1} be surface tension between solid and air,
T_{2} be the surface tension between solid and liquid and T be the surface tension between liquid and air. Then in equilibrium, for a drop of liquid on a clean glass plate, the relation is θ is angle of contact)
A. $\cos \theta=\frac{T}{T_{1}+T_{2}}$
B. $\cos \theta=\frac{T}{T_{1}-T_{2}}$
C. $\cos \theta=\frac{T_{1} T_{2}}{T}$
D. $\cos \theta=\frac{T_{1}-T_{2}}{T}$

D View Text Solution

53. An isolated and charged spherical soap bubble
has a radius r and the pressure inside is
atmospheric. IfT is the surface tension of soap
solution, then charge on drop is $X \pi \sqrt{2 r T \varepsilon_{0}}$ then find the value of X.
A. 8
B. 9
C. 7
D. 2

Answer: A

- Watch Video Solution

54. The rise in the water level in a capillary tube of radius 0.07 cm when dipped veryically in a beaker containing water of surface tension $0.07 \mathrm{Nm}^{-1}$ is $\left(\mathrm{g}=10 \mathrm{~ms} \mathrm{~s}^{-2}\right)$
A. 2 cm
B. 4 cm

C. 1.5 cm

D. 3 cm

Answer: D

- Watch Video Solution

55. If two glass plates have water between them and are separated by very small distance (see figure), it is very difficult to pull them apart. It is because the water in between forms cylindrical surface on the side that gives rise to lower pressure in the water in comparison to
atmosphere. If the radius of the cylindrical surface
is R and surface tension of water is T then the pressure in water between the plates is lower by

$$
\begin{aligned}
& \text { A. } \frac{2 T}{R} \\
& \text { B. } \frac{4 T}{R} \\
& \text { C. } \frac{T}{4 R} \\
& \text { D. } \frac{T}{R}
\end{aligned}
$$

Answer: C
56. Water rises to a height of 10 cm in capillary
tube and mercury falls to a depth of 3.112 cm in the
same capillary tube. If the density of mercury is 13.6
and the angle of contact for mercury is 135°, the ratio of surface tension of water and mercury is

A. $1: 0.15$

B. 1:3
C. 1:6
D. 1.5: 1

Answer: C
57. A water film is formed between two parallel wires of 10 cm length. The distance of 0.5 cm between the wires is increased by 1 mm . What will be the work done? (Given, surface tension of water of $72 \times 10^{-3} \mathrm{Nm}^{-1}$)
A. 36 erg
B. 288 erg
C. 144 erg
D. 72 erg

D Watch Video Solution

58. A film of water is formed between two straight parallel wires of length 10 cm each separated by 0.5 cm If their separation is increased by 1 mm while still maintaining their parallelism, how much work will have to be done (Surface tension of water $\left.=7.2 \times 10^{-2} \frac{N}{m}\right)$
A. 7.22×10^{-6} joule
B. 1.44×10^{-5} joule
C. 2.88×10^{-5} joule
D. 5.76×10^{-5} joule

Answer: B

- Watch Video Solution

59. A glass capillary tube of inner diameter 0.28 mm is lowered vertically into water in a vessel. The pressure to be applied on the water in the capillary tube so that water level in the tube is same as the
vessel in $\frac{N}{m^{2}}$ is (surface tension of water
$=0.07 \frac{\mathrm{~N}}{\mathrm{~m}}$ atmospheric pressure $=10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
A. 10^{3}
B. 99×10^{3}
C. 100×10^{3}
D. 101×10^{3}

Answer: B

- Watch Video Solution

Exercise 2 Concept Applicator

1. Two pieces of metals are suspended from the arms of a balance and are found to be in equilibrium when kept immersed in water. The mass of one piece is 32 g and its density $8 \mathrm{~g} \mathrm{~cm}^{-3}$.

The density of the other is 5 g per cm ${ }^{3}$. Then the mass of the other is
A. 28 g
B. 35 g
C. 21 g
D. 33.6

Answer: B

- Watch Video Solution

2. Air of density $1.2 \mathrm{kgm}^{-3}$ is blowing across the horizontal wings of an aeroplane in such a way that its speeds above and below the wings are $150 \mathrm{~ms}^{-1}$ and $100 \mathrm{~ms}^{-1}$, respectively. The pressure difference between the upper and lower sides of the wings, is :
A. $60 \mathrm{Nm}^{-2}$
B. $180 \mathrm{Nm}^{-2}$
C. $7500 \mathrm{Nm}^{-2}$
D. $12500 \mathrm{Nm}^{-2}$
3. Suppose the average mass of raindrops is $3.0 \times 10^{-5} \mathrm{~kg}$ and their average terminal velocity $9 m s^{-1}$. Calculate the energy transferred by rain to each square metre of the surface at the place which receives 100 cm of rain in a year.
A. $23.5 \times 10^{5} \mathrm{~J}$
B. $4.05 \times 10^{4} J$
C. $3.0 \times 10^{5} \mathrm{~J}$
D. $9.0 \times 10^{4} J$

Answer: B

- Watch Video Solution

4. A ring is cut from a platinum tube 8.5 cm internal and 8.7 cm external diameter. It is supported horizontally from the pan of a balance, so that it comes in contact with the water in a glass vessel. If an extra $3.103 g . f$. is required to pull it away from water, the surface tension of water is
A. 72 dyne cm^{-1}
B. 70.80 dyne cm^{-1}
C. 63.35 dyne cm^{-1}
D. 60 dyne cm^{-1}

Answer: A

- Watch Video Solution

5. A boat with base area $8 m^{2}$ floating on the surface of a still river is intended to move with a
constant speed of $2 \mathrm{~m} / \mathrm{s}$ by the application of a horizontal force. If the river bed is 2 m deep find the force needed, (assuming a constant velocity
gradient) Coefficient of viscosity of water is 0.90×10^{-2} poise.
A. 729 dyne
B. 620 dyne
C. 520 dyne
D. 360 dyne

Answer: A

- Watch Video Solution

6. A vessel in the shape of a hollow hemisphere surmounted by a once is held with the axis vertical and vertex uppermost. If it be filled with a liquid so as to submerge half the axis of the cone in the
liquid, and the height of the cone be double the radius of its base, find the liquid on the vessel is x times the weight of the liquid that the hemisphere can hold.
A. $15 / 8$
B. $1 / 8$
C. $5 / 8$
D. $15 / 2$

Answer: A

- Watch Video Solution

7. Two liquids of densities d_{1} and d_{2} are flowing in identical capillaries under same pressure difference. If t_{1} and t_{2} are the time taken for the flow of equal quantities of liquid, then the ratio of coefficients of viscosities of liquids must be
A. $\frac{d_{1} t_{1}}{d_{2} t_{2}}$
B. $\frac{t_{1}}{t_{2}}$
C. $\frac{d_{2}}{d_{1}} \frac{t_{2}}{t_{1}}$
D. $\sqrt{\frac{d_{1} t_{1}}{d_{2} t_{2}}}$

Answer: A

- Watch Video Solution

8. Water rises in a capillary tube to a certain height
such that the upward force due to surface tension is balanced by 75×10^{-4} newton force due to the weight of the liquid. If the surface tension of water is $6 \times 10^{\wedge}-2^{`}$ newton/metre the inner circumference of the capillary must be:

$$
\text { A. } 1.25 \times 10^{-2} m
$$

B. $0.50 \times 10^{-2} \mathrm{~m}$
C. $6.5 \times 10^{-2} m$
D. $12.5 \times 10^{-2} m$

Answer: A

- Watch Video Solution

9. Two spherical soap bubble coalesce. If V is the consequent change in volume of the contained air and S the change in total surface area, show that $3 P V+4 S T=0$
where T is the surface tension of soap bubble and

P is

Atmospheric pressure
A. $4 P V+3 S T=0$
B. $3 P V+4 S T=0$
C. $2 P V+3 S T=0$
D. $3 P V+2 S T=0$

Answer: B

- Watch Video Solution

10. A tank and a trough are placed on a trolley as shown. Water issues from the tank through a 5 cm .
diameter nozzle at $5 \mathrm{~m} / \mathrm{s}$ and strikes the through which turns it by 45° as shown. Determine the compression of the spring of stiffnes 20 Ncm .
A. 1.74 cm
B. 1.12 cm
C. 0.78 cm
D. 2.12 cm
11. A solid hemisphere of radius a and weight W is
floating in liquid and at a point on the base at a distance c from the centre rests a weight w. The tangent of the inclination of the axis of the hemisphere to the vertical for the corresponding position of equilibrium is. [assuming the base of the hemisphere to be entirely out of the fluid]
A. $\frac{4}{3} \frac{c}{a} \frac{w}{W}$
B. $\frac{2}{3} \frac{c}{a} \frac{w}{W}$
C. $\frac{8}{3} \frac{c}{a} \frac{w}{W}$
D. $\frac{8}{5} \frac{c}{a} \frac{w}{W}$

Answer: C

- Watch Video Solution

12. Two solid spherical balls of radii
r_{1} and $r_{2}\left(<r_{1}\right)$ and of density σ are tied up with
a long string and released in a viscous liquid column of lesser density ρ with the string just tatu
as shown. The tension in the string when terminal
velocity is attained is
A. $\frac{4}{3} \pi\left(\frac{r_{2}^{4}-r_{1}^{4}}{r_{2}-r_{1}}\right)(\sigma-\rho) g$
B. $\frac{2}{3} \pi\left(r_{2}^{3}-r_{1}^{3}\right)(\rho-\sigma) g$
C. $\frac{4}{3}\left(r_{2}^{3}-r(1)^{3}\right)(\sigma-\rho) g$
D. $\frac{4}{3} \pi\left(\frac{r_{2}^{4}-r_{1}^{4}}{r_{2}+r_{1}}(\sigma-\rho) g\right.$

Answer: D

- View Text Solution

13. A steel ball of diameter $d=3.0 \mathrm{~mm}$ starts
sinking with zero initial velocity in olive oil whose
viscosity is $\eta=0.90 P$. How soon after the
beginning of motion will the velocity of the ball differ from the steady-state velocity by $n=1.0 \%$?
A. 0.2 sec .
B. 0.8 sec .
C. 0.6 sec .
D. 1.2 sec .

Answer: A

- Watch Video Solution

14. Two parallel glass plates are dipped partly in the liquid of density d keeping them vertical. If the distance between the plates is x surface tension for the liquid is T and angle of contact θ, then rise of
liquid between the plates due to capillary will be

$$
\begin{aligned}
& \text { A. } \frac{T \cos \theta}{x d} \\
& \text { B. } \frac{2 T \cos \theta}{x e g} \\
& \text { C. } \frac{2 T}{x d g \cos \theta} \\
& \text { D. } \frac{T \cos \theta}{x d g}
\end{aligned}
$$

Answer: B

15. Water rises upto a height x in capillary tube immersed vertically in water. When this whole arrangement is taken to a depth d in a mine, the water level rises upto a height y. If R is the radius of the earth, then the ration $\frac{x}{y}$ is given by
A. $\left(1-\frac{d}{R}\right)$
B. $\left(1-\frac{2 d}{R}\right)$
C. $\left(\frac{R-d}{R+d}\right)$
D. $\left(\frac{R+d}{R-d}\right)$

- Watch Video Solution

16. A jar is folled with two non-mixing liquids 1 and

2 having densities ρ_{1} and, ρ_{2} respectively. A solid ball, made of a material of density ρ_{3}, is dropped in the jar. It comes to equilibrium in the position shown in the figure. Which of the following is true for ρ_{1}, ρ_{2} and ρ_{3} ?
A. $\rho_{3}<\rho_{1}<\rho_{2}$
B. $\rho_{1}>\rho_{3}>\rho_{2}$
C. $\rho_{1}<\rho_{2}<\rho_{3}$
D. $\rho_{1}<\rho_{3}<\rho_{2}$

Answer: D

- View Text Solution

17. A vessel with water is placed on a weighing pan and it reads 600 g . Now a ball of mass 40 g and density $0.80 \mathrm{gcm}^{-3}$ is sunk into the water with a pin of negligible volume, as shown in figure keeping in sunk. The weighting pan will show a reading
A. 600 g
B. 550 g
C. 650 g
D. 632 g

Answer: C

- View Text Solution

18. Water is flowing at a speed of $1.5 \mathrm{~ms}^{-1}$ through
horizontal tube of cross-sectional area $10^{-2} \mathrm{~m}^{2}$
and you are trying to stop the flow by your palm.
Assuming that the water stops immediately after
hitting the palm, the minimum force that you must every should be
(density of water $=10^{3} \mathrm{kgm}^{-3}$)
A. 15 N
B. 22.5 N
C. 33.7 N
D. 45 N

Answer: A

- Watch Video Solution

19. Consider a water jar of radius R that has water
filled up to height H and is kept on a stand of height h (see figure). Through a hole of radius r ($r \ll R$) at its bottom, the water leaks out and the stream of water coming down towards the ground has a shape like a funnel as shown in the figure. IF the radius of the cross-section of water stream when it hits the ground is x . Then:

$$
\begin{aligned}
& \text { A. } x=r\left(\frac{H}{H+h}\right)^{\frac{1}{4}} \\
& \text { В. } x=r\left(\frac{H}{H+h}\right) \\
& \text { С. } x=r\left(\frac{H}{H+h}\right)^{2}
\end{aligned}
$$

D. $x=r\left(\frac{H}{H+h}\right)^{\frac{1}{2}}$

Answer: A

D View Text Solution

20. I a cylindrical water tank, there are two small holes A and B on the wall at a depth of h_{1}, from the surface of water and at a height of h_{2} from the bottomof water tank. Surface of water is at height of h_{2} from the bottom of water tank. Surface of water is at height H from the bottom of water tank.

Water coming out from both holes strikes the
ground at the same point S. FInd the ratio of
h_{1} and h_{2}
A. Depends on H
B. 1: 1
C. 2:2
D. $1: 2$

Answer: A

D View Text Solution
21. A large number of liquid drops each of radius 'a' coalesce to form a single spherical drop of radish b. The energy released in the process is converted into kinetic energy of the big drops formed. The speed of big drop will be

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)} \\
& \text { B. } \sqrt{\frac{2 T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)} \\
& \text { C. } \sqrt{\frac{4 T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)} \\
& \text { D. } \sqrt{\frac{6 T}{\rho}\left(\frac{1}{r}-\frac{1}{R}\right)}
\end{aligned}
$$

Answer: D
22. Water flows in a streamline manner through a capillary tube of radius a. The pressure difference being P and the rate of flow is Q. If the radius is reduced to $a / 2$ and the pressure difference is increased to $2 P$, then find the rate of flow.
A. 4 Q
B. Q
C. $\frac{Q}{2}$
D. $\frac{Q}{8}$

Answer: D

- Watch Video Solution

23. A space 2.5 cm wide between two large plane
surface is filled with oil. Force required to drag a very thin plate of area $0.5 m^{2}$ just midway the surfaces at a speed of $0.5 \mathrm{~m} / \mathrm{sec}$. Is 1 N . The coefficient of viscosity in $k g-\mathrm{sec} / \mathrm{m}^{2}$ is
A. 5×10^{-2}
B. 2.5×10^{-2}
C. 1×10^{-2}
D. 7.5×10^{-2}

Answer: B

D View Text Solution

24. A long cylinder of radius R_{1} is displaced along
its axis with a constant velocity v_{0} inside a stationary co-axial cylinder of radius R_{2}. The space
between the cylinders is filled with viscous liquid.
Find the velocity of the liquid as a function of the
distance r from the axis of the cylinders. The flow is
laminar.

$$
\begin{aligned}
& \text { A. } 2 v_{0} \frac{\ln \left(r / R_{2}\right)}{\ln \left(R_{1} / R_{2}\right)} \\
& \text { B. } \frac{v_{0}}{2} \frac{\ln \left(r / R_{2}\right)}{\left(R_{1} / R_{2}\right)} \\
& \text { C. } v_{0} \frac{\ln \left(r / R_{2}\right)}{\left(R_{1} / R_{2}\right)} \\
& \text { D. } \frac{2 v_{0}}{3} \frac{\ln \left(r / R_{2}\right)}{\ln \left(R_{1} / R_{2}\right)}
\end{aligned}
$$

Answer: C

- Watch Video Solution

