©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PUBLICATION PHYSICS

(HINGLISH)

MOTION IN A PLANE

Jee Main 5 Years At A Glance

1. Let $\vec{A}=(\hat{i}+\hat{j})$ and,$\vec{B}=(2 \hat{i}-\hat{j})$.

The magnitude of a coplanar vector \vec{C} such
that $\vec{A} \cdot \vec{C}=\vec{B} \cdot \vec{C}=\vec{A} \cdot \vec{B}$, is given by:

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{5}{9}} \\
& \text { B. } \sqrt{\frac{10}{9}} \\
& \text { C. } \sqrt{\frac{20}{9}} \\
& \text { D. } \sqrt{\frac{9}{12}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

2. A vector \vec{A} ur is rotated by a small angle
$\triangle \theta$ radian $(\triangle \theta<l)$ to get a new vector \bar{B}
In that case $|\vec{B}-\vec{A}|$ is:
A. $|\vec{A}| \Delta \theta$
B. $|\vec{B}| \Delta \theta-|\vec{A}|$
C. $|\vec{A}|\left(1-\frac{\Delta \theta^{2}}{2}\right)$
D. 0

Answer: A
3. If a body moving in circular path maintains constant speed of $10 \mathrm{~ms}^{-1}$, then which of the
following correctly describes relation between acceleration and radius ?
A.
B.
c.
D.

Answer: C

4. The initial speed of a bullet fired from a rifle is $630 \mathrm{~m} / \mathrm{s}$. . The rifle is fired at the centre of a target 700 m away at the same level as the target. How far above the centre of target, the rifle must be aimed in order to hit the target?
A. 1.0 m
B. 4.2 m
C. 6.1 m
D. 9.8 m

Answer: C

D Watch Video Solution

5. The position of a projectile launched from
the origin at $\mathrm{t}=0$ is given by $s=(40 \hat{i}+50 \hat{j}) m$
at $t=2 s$. if the projectile was launched at an
angle θ from the horizontal, then θ is (take $\mathrm{g}=$ $10 m s^{-2}$
A. $\tan ^{-1} \frac{2}{3}$
B. $\tan ^{-1} \frac{3}{2}$
C. $\tan ^{-1} \frac{7}{4}$
D. $\tan ^{-1} \frac{4}{5}$

Answer: C

D Watch Video Solution

Exercise 1 Concept Builder Topicwise

1. Which of the following conditions are sufficient and essential for a quantity to be a
vector?
A. Magnitude and direction only
B. Magnitude and addition, subtraction, multiplication by rules of algebra
C. Magnitude, direction, and addition,
subtraction and multiplication by vector
laws
D. Magnitude, direction and combination
of vectors by rules of algebra

Answer: C

2. Let $\vec{C}=\vec{A}+\vec{B}$
A. $|\vec{C}|$ is always greater than $|\vec{A}|$
B. it is possible to have $|\vec{C}|<|\vec{A}|$ and

$$
|\vec{C}|<|\vec{B}|
$$

c. \vec{C} is always equal to $\vec{A}+\vec{B}$
D. \vec{C} is never equal to $\vec{A}+\vec{B}$

Answer: B
3. \vec{A} and \vec{B} are two vectors and θ is the angle between them,
$|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B})$ the value of θ is:-
A. 45°
B. 30°
C. 90°
D. 60°

Answer: D

- Watch Video Solution

4. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that
$\vec{a}+\vec{b}+\vec{c}=0$, then the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is
A. $\frac{3}{2}$
B. -1
C. 0
D. $-\frac{3}{2}$

Answer: D
5. Two forces are acting as shown in figure. The resultant of the two forces is
A. $5 \sqrt{3} N$
B. $10 \sqrt{3} N$
C. $5 \sqrt{5} N$
D. None of these

D View Text Solution

6. What is the area of triangle formed by
$\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=\hat{i}-\hat{k}$ and their
Resultant?
A. $\sqrt{13.5}$ units
B. 13.5 units
C. $\sqrt{38.7}$ units
D. 38.7 units

- Watch Video Solution

7. If $\vec{A}=4 \hat{i}+6 \hat{j}$ and $\vec{B}=2 \hat{i}+3 \hat{j}$. Then
A. $\vec{A} \cdot \vec{B}=29$
B. $\vec{A} \times \vec{B}=\overrightarrow{0}$
c. $\frac{|\vec{B}|}{|\vec{A}|}=\frac{2}{1}$
D. angle between \vec{A} and \vec{B} is 30°

Answer: B
8. Following three forces keep a body in equilibrium.
$\vec{F}_{1}=\hat{i}+3 \hat{j}+2 \hat{k}, \vec{F}_{2}=3 \hat{i}-4 \hat{k} \quad$ and
$\vec{F}_{3}=a \hat{i}-3 \hat{j}+2 \hat{k}$, then the value of a is
A. 1
B. -1
C. 2
D. -4

Answer: D

D Watch Video Solution

9. Forces of 4 N and 5 N are applied at origin along X -axis and Y -axis respectively. The resultant force will be
A. $\sqrt{41} N, \tan ^{-1}\left(\frac{5}{4}\right)$
B. $\sqrt{41} N, \tan ^{-1}\left(\frac{4}{5}\right)$
C. $-\sqrt{41} N, \tan ^{-1}\left(\frac{5}{4}\right)$
D. $-\sqrt{41} N, \tan ^{-1}\left(\frac{4}{5}\right)$

Answer: A

D Watch Video Solution

10. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible
values o α and $\beta ?(A)$ alpha=2, beta=1 (B)
alpha=1, beta=1 (C) alpha=2, beta $=1(D)$ alpha $=1$, beta=2`
A. $\alpha=2, \beta=2$

$$
\text { B. } \alpha=1, \beta=2
$$

C. $\alpha=2, \beta=1$
D. $\alpha=1, \beta=1$

Answer: D

D Watch Video Solution

11. The linear velocity of a rotating body is given by $\vec{v}=\vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector.

The angular velocity of a body is
$\vec{\omega}=\hat{i}-2 \hat{j}+2 \hat{k}$ and the radius vector $\vec{r}=4 \hat{j}-3 \hat{k}$, then $|\vec{v}|$ is-
A. $\sqrt{29}$ units
B. $\sqrt{31}$ units
C. $\sqrt{37}$ units
D. $\sqrt{41}$ units

Answer: A

D Watch Video Solution
12. The angles which the vector
$A=3 \hat{i}+6 \hat{j}+2 \hat{k}$ makes with the coordinate
axes are
A. $\cos ^{-1} \frac{3}{7}, \cos ^{-1} \frac{4}{7}, \cos ^{-1} \frac{1}{7}$
B. $\cos ^{-1} \frac{3}{7}, \cos ^{-1} \frac{6}{7}, \cos ^{-1} \frac{2}{7}$
C. $\cos ^{-1} \frac{4}{7}, \cos ^{-1} \frac{5}{7}, \cos ^{-1} \frac{3}{7}$
D. None of these

Answer: B

13. The resultant of \vec{p} and \vec{q} makes angle α with \vec{p} and β with \vec{q}. Then
A. θ_{1} cannot be less than θ_{2}
B. If $\theta_{1}<\theta_{2}$ then $|\vec{P}|<|\vec{Q}|$
C. If $\theta_{1}<\theta_{2}$ then $|\vec{P}|>|\vec{Q}|$
D. If $\theta_{1}=\theta_{2}$ then $|\vec{P}|=|\vec{Q}|$

Answer: C

- Watch Video Solution

14. A vector of magnitude b is rotated through
angle θ. What is the change in magnitude of the vector?

A. $2 b \sin \frac{\theta}{2}$
B. $2 b \cos \frac{\theta}{2}$

C. $2 b \sin \theta$
D. $2 b \cos \theta$

Answer: A

D Watch Video Solution

15. Given $\quad \vec{P} \cdot \vec{Q}=|\vec{P} \times \vec{Q}| \quad$ and $\vec{R}=\vec{P}+\vec{Q}$ then $|\vec{R}|$ is
A. $\sqrt{P^{2}+Q^{2}}$
B. $\mathrm{P}+\mathrm{Q}$
C. $\sqrt{P^{2}+Q^{2}+\frac{\mathrm{PQ}}{\sqrt{2}}}$
D. $\left[P^{2}+Q^{2}+\sqrt{2} P Q\right]^{\frac{1}{2}}$

Answer: D

- Watch Video Solution

16. P, Q and R are three coplanar forces acting
at a point and are in equilibrium. Given
$\mathrm{P}=1.9318 \mathrm{~kg} w t, \sin \theta_{1}=0.9659$, the value of R is
(in kg wt)
A. 0.9659
B. 2
C. 1
D. $\frac{1}{2}$

Answer: C
17. Three vectors \vec{A}, \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$. The vector \vec{A} is parallel to
A. \vec{B} and \vec{C}
B. $\vec{A} \times \vec{B}$
c. $\vec{B}+\vec{C}$
D. $\vec{B} \times \vec{C}$

- Watch Video Solution

18. If rain falls vertically with a velocity V_{r} and
wind blows with a velocity V_{w} from east to
west, then a person standing on the roadside should hold the umbrella in the direction
A. $\tan \theta=\frac{V_{w}}{V_{r}}$
B. $\tan \theta=\frac{V_{r}}{V_{w}}$
C. $\tan \theta=\frac{V_{r w}}{\sqrt{V_{r}^{2}+V_{w}^{2}}}$
D. $\tan \theta=\frac{V_{r}}{\sqrt{V_{r}^{2}+V_{w}^{2}}}$

Answer: A

D Watch Video Solution

19. A river flows with a speed more than the maximum speed with which a person can swim in still water. He intends to cross the river by the shortest possible path (i.e., he wants to reach the point on the opposite bank which directly opposite to the starting point). Which of the following is correct?
A. He should start normal to the river bank
B. He should start in such a way that, he
moves normal to the bank, relative to
the bank.
C. He should start in a particular
(calculated) direction making an obtuse
angle with the direction of water current
D. The man cannot cross the river, in that
way

- Watch Video Solution

20. A ship A is moving westwards with a speed of $10 \mathrm{kmh}^{-1}$ and a ship B 100 km south of A, is moving northwards with a speed of $10 \mathrm{kmh}^{-1}$

The time after which the distance between them becomes shortest, is
A. 5 h
B. $5 \sqrt{2} \mathrm{~h}$
C. $10 \sqrt{2} \mathrm{~h}$

D. 0 h

Answer: A

D Watch Video Solution

21. A boat is moving with a velocity $2 i+3 j$ with
respect to ground. The water in the river is
moving with a velocity $-2 i-3 j$ with respect to
ground. The relative velocity of the boat with
respect to water is
A. 4 j
B. $-4 j+6 j$
C. $4 j+6 j$
D. 6 j

Answer: C

D Watch Video Solution

22. A boat which has a speed of $6 \mathrm{~km} / \mathrm{h}$ in still water crosses a river of width 1 km along the shortest possible path in 20 min . the velocity of the river water in km / h is
A. 5
B. 4
C. 3
D. 1

Answer: A

D Watch Video Solution
23. A boat B is moving upstream with velocity
$3 \mathrm{~m} / \mathrm{s}$ with respect to ground. An observer standing on boat observes that a swimmer S is
crossing the river perpendicular to the direction of motion of boat. If river flow velocity is $4 \mathrm{~m} / \mathrm{s}$ and swimmer crosses the river of width 100 min 50 sec , then
A. velocity of swimmer w.r.t ground is $\sqrt{13}$ m / s
B. drift of swimmer along river is zero
C. drift of swimmer along river will be 50 m
D. velocity of swimmer w.r.t ground is $2 \mathrm{~m} / \mathrm{s}$

Answer: A

D View Text Solution

24. Two boys are standing at the ends A and B
of a ground, where $A B=a$. The boy at B
starts running in a direction perpendicular to

AB with velocity v_{1}. The boy at A starts running simultaneously with velocity v and catches the other boy in a time t, where t is :

$$
\text { A. } \frac{a^{2}}{\sqrt{v^{2}+v_{1}^{2}}}
$$

B. $\frac{a^{2}}{v^{2}-v_{1}^{2}}$
C. $\frac{a^{2}}{v^{2}+v_{1}^{2}}$
D. $\sqrt{\frac{a^{2}}{v^{2}-v_{1}^{2}}}$

Answer: D

D Watch Video Solution

25. A bus is moving on a straight road towards north with a uniform speed of $50 \mathrm{~km} / \mathrm{hour}$ turns through 90°. If the speed remains
unchanged after turning, the increase in the velocity of bus in the turning process is
A. $70.7 \mathrm{~km} /$ hour along south-west direction
B. zero
C. $50 \mathrm{~km} /$ hour along west
D. $70.7 \mathrm{~km} /$ hour along north-west direction.

Answer: A

D Watch Video Solution

26. Two cars are moving in the same direction with the same speed $30 \mathrm{~km} / \mathrm{hr}$. They are
separated by a distance of $5 k m$, the speed of a car moving in the opposite direction of it meets these two cars at an interval of 4 minutes, will be.
A. $40 \mathrm{~km} / \mathrm{hr}$
B. $45 \mathrm{~km} / \mathrm{hr}$
C. $30 \mathrm{~km} / \mathrm{hr}$
D. $15 \mathrm{~km} / \mathrm{hr}$

Answer: B

- Watch Video Solution

27. A particle moves in a plane with constant
acceleration in a direction different from the initial velocity. The path of the particle will be
A. straight line
B. arc of a circle
C. parabola
D. ellipse

Answer: C

- Watch Video Solution

28. A particle reaches its highest point when it
has covered exactly one half of its horizontal
range. The corresponding point on the displacement -time graph is charecterized by :
A. negative slope and zero curvature
B. zero slope and negative curvature
C. zero slope and positive curvature

D. positive slope and zero curvature

Answer: C

- Watch Video Solution

29. The range of a projectile, when launched at an angle of 15° with the horizontal is 1.5 km . what is the range of the projectile, when launched at an angle of 45° to the horizontal with the same speed?
A. 1.5 km
B. 3.0 km
C. 6.3 km
D. 0.75 km

Answer: B

D Watch Video Solution

30. a body is thrown horizontally with a
velocity $\sqrt{2 g h}$ from the top of a tower of height h. It strikes the level gound through
the foot of the tower at a distance x from the tower. The value of x is :-
A. gh
B. $\frac{g h}{2}$
C. $2 h$
D. $\frac{2 g h}{3}$

Answer: C
(Watch Video Solution
31. A projectile is thrown at an angle of 40° with the horizontal and its range is R_{1}. Another projectile is thrown at an angle of 40° with the vertical and its range is R_{2}. What is the relation between R_{1} and R_{2} ? (projection speed is same in both cases)
A. $R_{1}=R_{2}$
B. $R_{1}=2 R_{2}$
C. $2 R_{1}=R_{2}$
D. $R R_{1}=4 R_{2} / 5$

Answer: A

D Watch Video Solution

32. The equation of a projectile is
$y=\sqrt{3} x-\frac{g x^{2}}{2}$
the angle of projection is:-
A. $\tan \theta=\frac{1}{\sqrt{3}}$
B. $\tan \theta=\sqrt{3}$
C. $\frac{\pi}{2}$

D. zero

Answer: B

D Watch Video Solution

33. A gun fires two bulets at 60° and 30°
with the horizontal The bullets strike at some
horizontal distance. The ratio of maximum height for the two bullet is
A. $2: 1$
B. $3: 1$
C. $4: 1$
D. 1:1

Answer: B

D Watch Video Solution

34. A projectile thrown with a speed v at an angle θ has a range R on the surface of earth.

For same v and θ, its range on the surface of moon will be
A. R/6
B. R
C. 6 R
D. 36 R

Answer: C

D Watch Video Solution
35. An object is projected with a velocity of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ making an angle of 45° with horizontal.

The equation for the trajectory is
$h=A x-B x^{2}$ where h is height, x is
horizontal distance, A and B are constants. The ratio $\mathrm{A}: \mathrm{B}$ is $\left(\mathrm{g}=m s^{-2}\right)$
A. $1: 5$
B. 5:1
C. 1: 40
D. $40: 1$

Answer: D

D Watch Video Solution
36. A particle is projected with a velocity v such that its range on the horizontal plane is twice the greatest height attained by it. The range of the projectile is (where g is acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{4 v^{2}}{5 g} \\
& \text { B. } \frac{4 g}{5 v^{2}} \\
& \text { C. } \frac{v^{2}}{g} \\
& \text { D. } \frac{4 v^{2}}{\sqrt{5} g}
\end{aligned}
$$

Watch Video Solution

37. A ball is thrown from the ground with a velocity of $20 \sqrt{3} \mathrm{~m} / \mathrm{s}$ making an angle of 60° with the horizontal. The ball will be at a height of 40 m from the ground after a time t equal to $\left(g=10 m s^{-2}\right)$
A. $\sqrt{2} \mathrm{sec}$
B. $\sqrt{3} \mathrm{sec}$
C. 2 sec
D. 3 sec

Answer: C

- Watch Video Solution

38. A bomb is dropped on an enemy post by an
aeroplane flying. With a horizontal velocity of $60 \mathrm{~km} / \mathrm{hr}$ and at a height of 490 m . how far the aeroplane must be from the enemy post at the
time of dropping the bomb, so that it may directly hit the target? $\left(g=9.8 m / s^{2}\right)$

$$
\text { A. } \frac{400}{3} \mathrm{~m}
$$

B. $\frac{500}{3} \mathrm{~m}$
C. $\frac{1700}{3} m$
D. 498 m

Answer: B

D Watch Video Solution

39. A body is projected horizontally from a point above the ground and motion of the body is described by the equation $x=2 t$, $y=5 t^{2}$ where x , and y are horizontal and
vertical coordinates in metre after time t. The
initial velocity of the body will be
A. $\sqrt{29} \mathrm{~m} / \mathrm{s}$ horizontal
B. $5 \mathrm{~m} / \mathrm{s}$ horizontal
C. $2 \mathrm{~m} / \mathrm{s}$ vertical
D. $2 \mathrm{~m} / \mathrm{s}$ horizontal

Answer: D

D Watch Video Solution

40. A projectile thrown with velocity v making angle θ with vertical gains maximum height H in the time for which the projectile remains in air, the time period is

> A. $\sqrt{H \cos \theta / g}$
> B. $\sqrt{2 H \cos \theta / g}$
> C. $\sqrt{4 H / g}$
> D. $\sqrt{8 H / g}$

Answer: D

41. A boy aims a gun at a bird from a point, at a horizontal distance of 100 m . If the gun can impart a velocity of $500 \mathrm{~m} / \mathrm{sec}$ to the bullet, at what height above the bird must he aim his gun in order to hit it?
A. 10.4 cm
B. 20.35 cm
C. 50 cm
D. 100 cm

Answer: B

- Watch Video Solution

42. A man standing on the roof of a house of
height h throws one particle vertically downwards and another particle horizontally with the same velocity u. The ratio of their velocities when they reach the earth's surface will be

$$
\text { A. } \sqrt{2 g h+u^{2}}: u
$$

B. $1: 2$
C. 1:1
D. $\sqrt{2 g h+u^{2}}: \sqrt{2 g h}$

Answer: C

- Watch Video Solution

43. Initial velocity with which a body is projected is $10 \mathrm{~m} / \mathrm{sec}$ and angle of projection is 60°, find the range R
A. $\frac{15 \sqrt{3} m}{2}$
B. $\frac{40}{3} \mathrm{~m}$
C. $5 \sqrt{3} \mathrm{~m}$
D. $\frac{20}{3} \mathrm{~m}$

Answer: D

D View Text Solution

44. A projectile can have same range R for two
angles of projection. It t_{1} and t_{2} are the times
of flight in the two cases, then what is the product of two times of flight?

> A. $t_{1} t_{2} \propto R^{2}$
> B. $t_{1} t_{2} \propto R$
> C. $t_{1} t_{2} \propto \frac{1}{R}$
> D. $t_{1} t_{2} \propto \frac{1}{R^{2}}$

Answer: B

D Watch Video Solution

45. A ball rolls off top of a staircase with a horizontal velocity $u m s^{-1}$. If the steps are h metre high and b mere wide, the ball will just hit the edge of $n t h$ step. Find the value of n.

$$
\begin{aligned}
& \text { A. } n=\frac{2 h u}{g b^{2}} \\
& \text { B. } n=\frac{2 h u^{2}}{g b} \\
& \text { C. } n=\frac{2 h u^{2}}{g b^{2}} \\
& \text { D. } n=\frac{h u^{2}}{g b^{2}}
\end{aligned}
$$

Answer: C

46. A water fountain on the ground sprinkles
water all around it. If the speed of water coming out of the fountains is v, the total area around the fountain that gets wet is:

$$
\begin{aligned}
& \text { A. } \pi \frac{v^{4}}{g^{2}} \\
& \text { B. } \frac{\pi}{2} \frac{v^{4}}{g^{2}} \\
& \text { C. } \pi \frac{v^{2}}{g^{2}} \\
& \text { D. } \pi \frac{v^{2}}{g}
\end{aligned}
$$

Answer: A

D Watch Video Solution

47. A ball projected from ground at an angle of
45° just clears a wall infront. If point of projection is $4 m$ from the foot of wall and ball strikes the ground at a distance of $6 m$ on the other side of the wall, the height of the wall is
A. 4.4 m
B. 2.4 m

C. 3.6 m

D. 1.6 m

Answer: B

- Watch Video Solution

48. A boy can throw a stone up to a maximum
height of 10 m . The maximum horizontal
distance that the boy can throw the same stone up to will be:
A. $20 \sqrt{2} \mathrm{~m}$
B. 10 m
C. $10 \sqrt{2} \mathrm{~m}$
D. 20 m

Answer: D

D Watch Video Solution

49. A ball thrown down the incline strikes at a point on the incline 25 m below the horizontal as shown in the figure. If the ball rises to a
maximum height of 20 m above the point of
projection, the angle of projection α (with
horizontal x-axis) is
A. $\tan ^{-1} \frac{4}{3}$
B. $\tan ^{-1} \frac{3}{4}$
C. $\tan ^{-1} \frac{3}{2}$
D. $\tan ^{-1} \frac{2}{3}$

Answer: A

50. An artillary piece which consistently shoots
its shells with the same muzzle speed has a
maximum range R. To hit a target which is
$R / 2$ from the gun and on the same level, the elevation angle of the gun should be
A. 15°
B. 45°
C. 30°
D. 60°

- Watch Video Solution

51. In uniform circular motion

A. both velocity and acceleration are
constant
B. acceleration and speed are constant but
velocity changes
C. both acceleration and velocity change
D. both acceleration and speed are constant

Answer: C

D Watch Video Solution

52. A particle moves in a circle of radius 4 cm
clockwise at constant speed $2 \mathrm{~cm} / \mathrm{s}$. If \widehat{x} and \hat{y}
are unit acceleration vectors along X and Y axis respectively (in $\mathrm{cm} / \mathrm{s}^{2}$), the acceleration of the particle at the instant half way between
P and Q is given by
A. $-4(\widehat{x}+\hat{y})$
B. $4(\widehat{x}+\hat{y})$
C. $-(\widehat{x}+\hat{y}) / \sqrt{2}$
D. $(\widehat{x}-\hat{y}) / 4$

Answer: C

D View Text Solution
53. An aircraft executes a horizontal loop of
radius 1 km with a steady speed of $900 \mathrm{kmh}^{-1}$.

Compare its centripetal acceleration with the acceleration due to gravity.
A. 6.38
B. 9.98
C. 11.33
D. 12.13

Answer: A
54. A particle moving along the circular path with a speed v and its speed increases by g in one second. If the radius of the circular path be r, then the net acceleration of the particle is:
A. $\frac{v^{2}}{r}+g$
B. $\frac{v^{2}}{r^{2}}+g^{2}$
C. $\left[\frac{v^{4}}{r^{2}}+g^{2}\right]^{1 / 2}$
D. $\left[\frac{v^{2}}{r}+g\right]^{1 / 2}$

D Watch Video Solution

55. A particle P is moving in a circle of radius r with a uniform speed u. C is the centre of the circle and $A B$ is diameter. The angular velocity of P about A and V are in the ratio :
A. $1: 1$
B. 1:2
C. 2:1

D. $4: 1$

Answer: B

D Watch Video Solution

56. A particle moves in a circle of radius 25 cm
at two revolutions per sec. The acceleration of
the particle in m / s^{2} is:
A. π^{2}
B. $8 \pi^{2}$
C. $4 \pi^{2}$
D. $2 \pi^{2}$

Answer: C

D Watch Video Solution

57. A wheel rotates with a constasnt acceleration of $2.0 \mathrm{ra} \frac{\mathrm{d}}{s^{2}}$. If the wheel starts
from rest, how many evolutions wil it make in
the first 10 senconds?
A. 32
B. 24
C. 16
D. 8

Answer: C

D Watch Video Solution

58. A car is moving in a circular path of radius 500 m with a speed of $30 \mathrm{~m} / \mathrm{s}$. If the speed is
increased at the rate of $2 m / s^{2}$, the resultant acceleration will be .
A. $4.7 m / s^{2}$
B. $3.8 m / s^{2}$
C. $3 m / s^{2}$
D. $2.7 m / s^{2}$

Answer: D
(Watch Video Solution
59. A car runs at a constant speed on a circular track of radius 100 m , taking 62.8 s for every circular loop. The average velocity and average speed for each circular loop respectively is:
A. $0,10 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}, 0$
D. 0,0

Answer: A
60. A particle describes uniform circular motion in a circle of radius 2 m , with the angular speed of $2 \mathrm{rad} s^{-1}$. The magnitude of
the change in its velocity in $\frac{\pi}{2} \mathrm{~s}$ is
A. $0 m s^{-1}$
B. $2 \sqrt{2} m s^{-1}$
C. $8 m s^{-1}$
D. $4 m s^{-1}$

Answer: C

- Watch Video Solution

Exercise 2 Concept Applicator

1. The value of a for which the points A, B, C with
position
vectors
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$
respectively are the vertices are the vetices of
a righat angled triangle with $C=\frac{\pi}{2}$ are (A)
-2 and -1 (B) -2 and 1 (C) 2 and -1
(D) '2 and 1
A. 2 and 1
B. - 2 and -1
C. -2 and 1
D. 2 and -1

Answer: A

- Watch Video Solution

2. Two particles start simultaneously from the same point and move along two straight lines.

One with uniform velocity v and other with a uniform acceleration a. if α is the angle between the lines of motion of two particles
then the least value of relative velocity will be at time given by
A. $\frac{v}{a} \sin \alpha$
B. $\frac{v}{a} \cos \alpha$
C. $\frac{v}{a} \tan \alpha$
D. $\frac{v}{a} \cot \alpha$

Answer: B

D Watch Video Solution

3. A projectile A is thrown at an angle of 30° to the horizontal from point P. At the same
time, another projectile B is thrown with velocity v_{2} upwards from the point Q vertically below the highest point. For B to collide with

$\mathrm{A}, \frac{v_{2}}{u^{2}}$ should be v_{1}

R
A. 1
B. 2
C. $\frac{1}{2}$
D. 4

Answer: C

D View Text Solution
4. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3 \quad$ if \quad the projection of \vec{v} along $h \vec{u}$ is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals
A. 14
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 2

Answer: C

D Watch Video Solution

5. A man starts running along a straight road with uniform velocity observes that the rain is
falling vertically downward. If he doubles his speed, he finds that the rain is coming at an angle θ to the vertical. The velocity of rain with respect to the ground is :
A. ui-uj
B. $u \hat{i}-\frac{u}{\tan \theta} \hat{j}$
C. $2 u \hat{i}+u \cot \theta \hat{j}$
D. $u i+u \sin \theta \hat{j}$

Answer: B

D Watch Video Solution

6. From a point on the ground at a distance of 2 m from the fot of a verticle wal, a ball is thrown at an angle of 45° which just clears the top of the wall and then strikes the
A. $\frac{2}{3} \mathrm{~m}$
B. $\frac{3}{4} \mathrm{~m}$
C. $\frac{1}{3} \mathrm{~m}$
D. $\frac{4}{3} \mathrm{~m}$

Answer: D

D Watch Video Solution

7. A particle is projected over a traingle from one end of a horizontal base and grazing the vertex falls on the other end of the base. If α and β be the base angles and θ the angle of projection, prove that $\tan \theta=\tan \alpha+\tan \beta$.
A. $\sin \theta=\cos \alpha+\tan \beta$
B. $\tan \theta=\tan \alpha+\tan \beta$
C. $\cos \theta=\cos \alpha+\cos \beta$
D. $\sin \alpha+\sin \theta+\sin \beta$
8. A particle is moving along a circular path in
$x y$-plane.When its crosses x-axis,it has an acceleration along the path of $1.5 \mathrm{~m} / \mathrm{s}^{2}$, and is moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ in $-v e y^{-}$

direction.The total acceleration is

A. $50 \hat{i}-1.5 \hat{j} m / s^{2}$
B. $-50 \hat{i}-1.5 \hat{j} m / s^{2}$
C. $10 \hat{i}-1.5 \hat{j} m / s^{2}$
D. $1.5 \hat{i}-50 \hat{j} m / s^{2}$

Answer: D

D Watch Video Solution

9. An aircraft moving with a speed of $250 \mathrm{~m} / \mathrm{s}$
is at a height of 6000 m , just overhead of an
anti aircraft gun. If the muzzle velocity is 500
m / s, the firing angle θ should be:
A. 30°
B. 45°
C. 60°

D. None of these

Answer: C

D View Text Solution

10. A cricket ball thrown across a field is at
heights h_{1} and h_{2} from the point of projection
at time t_{1} and t_{2} respectively after the throw.
The ball is caught by a fielder at the same
height as that of projection. The time of flight

of the ball in this journey is

$$
\begin{aligned}
& \text { A. } \frac{h_{1} t_{2}^{2}-h_{2} t_{1}^{2}}{h_{1} t_{2}-h_{2} t_{1}} \\
& \text { B. } \frac{h_{1} t_{2}^{2}+h_{2} t_{1}^{2}}{h_{1} t_{2}+h_{2} t_{1}} \\
& \text { C. } \frac{h_{1} t_{2}}{h_{2} t_{1}-h_{1} t_{2}}
\end{aligned}
$$

D. None

Answer: A
11. If the equation for the displacement of a particle moving in a circular path is given by $(\theta)=2 t^{3}+0.5$, where θ is in radians and t in seconds, then the angular velocity of particle after $2 s$ from its start is
A. $8 \mathrm{rad} / \mathrm{s}$
B. $12 \mathrm{rad} / \mathrm{s}$
C. $24 \mathrm{rad} / \mathrm{s}$
D. $36 \mathrm{rad} / \mathrm{s}$

Answer: C

- Watch Video Solution

12. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors
such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between the vectors \vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$
(C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$

D. $\frac{1}{3}$

Answer: A

D Watch Video Solution

13. Two balls are projected simultaneously in
the same vertical plane from the same point with velocities v_{1} and v_{2} with angle θ_{1} and θ_{2} respectively with the horizontal. If $v_{1} \cos$
$\theta_{1}=v_{2} \cos \theta_{2}$, the path of one ball as seen
from the position of other ball is :
A. parabola
B. horizontal straight line
C. vertical straight line
D. straight line making 45° with the
vertical

Answer: C

- View Text Solution

14. Consider a collection of a large number of particles each with speed v in a plane.The direction of velocity is randomly distributed in
the collection. The magnitude of the average relative velocity of a particle with velocities of all other particles is
A. $4 v / \pi$
B. $3 v / 2 \pi$
C. $5 v / 3 \pi$
D. $2 v / 3 \pi$

Answer: A

D Watch Video Solution

15. A cannon on a level plane is aimed at an
angle θ above the horizontal and a shell is
fired with a muzzle velocity v_{0} towards a vertical cliff a distance D away. Then the height
from the bottom at which the shell strikes the side walls of the cliff is
A. $D \sin \theta-\frac{g D^{2}}{2 v_{0}^{2} \sin ^{2} \theta}$

> B. $D \cos \theta-\frac{g D^{2}}{2 v_{0}^{2} \cos ^{2} \theta}$
> C. $D \tan \theta-\frac{g D^{2}}{2 v_{0}^{2} \cos ^{2} \theta}$
> D. $D \tan \theta-\frac{g D^{2}}{2 v_{0}^{2} \sin ^{2} \theta}$

Answer: C

- Watch Video Solution

16. A wheel is subjected to uniform angular acceleration about its axis. Initially, its angular
velocity is zero. In the first 2 sec , it rotates
through an angle θ_{1}, in the next 2 sec , it
rotates through an angle θ_{2}. The ratio of θ_{2} / θ_{1} is
A. 1
B. 2
C. 3
D. 5

Answer: C
(Watch Video Solution
17. A ball is thrown from a point with a speed
' $v^{\wedge}(0)$ ' at an elevation angle of θ. From the
same point and at the same instant, a person starts running with a constant speed $\frac{v_{0} \text { ' }}{2}$ to
catch the ball. Will the person be able to
catch the ball ? If yes, what should be the angle of projection θ ?
A. No , 0°
B. Yes, 30°
C. Yes, 60°

D. Yes, 45°

Answer: C

D Watch Video Solution

18. A boy playing on the roof of a 10 m high
building throws a ball with a speed of $10 \mathrm{~m} / \mathrm{s}$
at an angle 30° with the horizontal. How far
from the throwing point will the ball be at the
height of 10 m from the ground?
$\left(g=10 m / s^{2}\right)$
A. 5.20 m
B. 4.33 m
C. 2.60 m
D. 8.66 m

Answer: D

- Watch Video Solution

19. If the vector \vec{x} satisfying
$\vec{x} \times \vec{a}+(\vec{x} \cdot \vec{b}) \vec{c}=\vec{d}$ be given by

$$
\vec{x}=\lambda \vec{a}+\vec{a} \times \frac{\vec{a} \times(\vec{d} \times \vec{c})}{(\vec{a} \cdot \vec{c}) \vec{a}^{2}}, \text { then } \theta
$$

is equal to

$$
\begin{aligned}
& \text { A. } \frac{\vec{a} \cdot \vec{c}}{a^{2}} \\
& \text { B. } \frac{\vec{a} \cdot \vec{c}}{b^{2}} \\
& \text { C. } \frac{\vec{c} \cdot \vec{d}}{c^{2}} \\
& \text { D. } \frac{\vec{a} \cdot \vec{x}}{a^{2}}
\end{aligned}
$$

Answer: D

20. A projectile moves from the ground such
that its horizontal displacement is $x=K t$ and vertical displacement is $y=K t(1-\alpha t)$, where K and α are constants and t is time.

Find out total time of flight (T) and maximum
height attained $\left(Y_{\max }\right)$

$$
\begin{aligned}
& \text { A. } T-\alpha, Y_{\max }-\frac{K}{2 \alpha} \\
& \text { B. } T=\frac{1}{\alpha}, Y_{\max }=\frac{2 K}{\alpha} \\
& \text { C. } T=\frac{1}{\alpha}, Y_{\max }=\frac{K}{6 \alpha} \\
& \text { D. } T=\frac{1}{\alpha}, Y_{\max }=\frac{K}{4 \alpha}
\end{aligned}
$$

Answer: D

- Watch Video Solution

21. A particle is projected horizontally with a
speed u from the top of plane inclined at an
angle θ with the horizontal. How far from the point of projection will the particle strike the
plane?

A. $2 u^{2} \tan \theta \cdot \sec \theta / g$
B. $u^{2} \sin \theta \cdot \cos \theta / g$
C. $3 u^{2} \cos \theta \cdot \sec \theta / g$
D. $2 u^{2} \sin ^{2} \theta / g$

Answer: A

- Watch Video Solution

22. A man can swim in still water with a speed of $2 m s^{-1}$. If he wants to cross a river of water
current speed $\sqrt{3} m s^{-1}$ along the shortest possible path, then in which direction should he swim ?
A. At an angle 120° to the water current.
B. At an angle 150° to the water current.
C. At an angle 90° to the water current.
D. None of these

Answer: B

- Watch Video Solution

23. Which of the following plots correctly represents the variation of the magnitude of acceleration $\left|a_{R}\right|$ with time t for a particle projected at $\mathrm{t}=0$ with speed v_{0} at an angle θ above the horizontal?
A.
B.
c.

D. ${ }^{2}$

Answer: A

D View Text Solution

24. A point P moves in counter-clockwise direction on a circular path as shown in the figure. The movement of ' P ' is such that it sweeps out a length $s=t^{3}+5$, where s is in metres and t is in seconds. The radius of the
path is 20 m . The acceleration of ' P ' when $t=2 \mathrm{~s}$
is nearly.
A. $13 m / s^{2}$
B. $12 m / s^{2}$
C. $7.2 m s^{2}$
D. $14 m / s^{2}$

Answer: D

D View Text Solution
25. A particle of unit mass is projected with velocity u at an inclination α above the horizon in a medium whose resistance is k times the velocity. Its direction will again make an angle α with the horizon after a time

$$
\begin{aligned}
& \text { A. } \frac{1}{k} \log \left\{1-\frac{2 k u}{g} \sin \alpha\right\} \\
& \text { B. } \frac{1}{k} \log \left\{1+\frac{2 k u}{g} \sin \alpha\right\} \\
& \text { C. } \frac{1}{k} \log \left\{1+\frac{k u}{g} \sin \alpha\right\} \\
& \text { D. } \frac{1}{k} \log \left\{1+\frac{2 k u}{3 g} \sin \alpha\right\}
\end{aligned}
$$

View Text Solution

26. The maximum range of a bullet fired from a toy pistol mounted on a car at rest is $R_{0}=40 \mathrm{~m}$. What will be the acute angle of inclination of the pistol for maximum range when the car is moving in the direction of firing with uniform velocity $V=20 \mathrm{~m} / \mathrm{s}$, on a horizontal surface? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 30°
B. 60°
C. 75°

D. 45°

Answer: B

- Watch Video Solution

27. A stone must be projected horizontally
from a point P, which is h metre above the foot
of a plane inclined at an angle θ with
horizontal as shown in figure. What is the
velocity v of the stone so that it may hit the
inclined plane perpendicularly?
A. $\sqrt{2 g h /\left(2+\cot ^{2} \theta\right)}$
B. $\sqrt{2 g h \cot ^{2} \theta}$
C. $\sqrt{2 g h /\left(1+\tan ^{2} \theta\right)}$
D. $\sqrt{2 g h \tan ^{2} \theta}$

Answer: A

D View Text Solution
28. Two boats, A and B, move away from a buoy
anchored at the middle of a river along the
mutually perpendicular straight lines: the boat
A along the river, and the boat B across the river. Having moved off an equal distance from the buoy the boats returned. Find the ratio of times of motion of boats τ_{A} / τ_{B} if the velocity of each boat with respect to water is $\eta=1.2$ times greater than the stream velocity. A. 2.3
B. 1.8
C. 0.5
D. 0.2

Answer: B
(D) Watch Video Solution

